TRIANGULAR G_{a} ACTIONS ON C ${ }^{4}$

JAMES K. DEVENEY, DAVID R. FINSTON, AND PETER VAN ROSSUM

(Communicated by Bernd Ulrich)

Abstract

Every locally trivial action of the additive group of complex numbers on four-dimensional complex affine space that is given by a triangular derivation is conjugate to a translation. A criterion for a proper action on complex affine n-space to be locally trivial is given, along with an example showing that the hypotheses of the criterion are sharp.

1. Introduction

Let G_{a} denote the additive group of complex numbers, and X a complex affine variety. By an action of G_{a} on X we will mean an algebraic action. It is well known that every such action can be realized as the exponential of some locally nilpotent derivation D of the coordinate ring $\mathbf{C}[X]$ and that every locally nilpotent derivation gives rise to an action. The ring C_{0} of G_{a} invariants in $\mathbf{C}[X]$ is equal to the ring of constants of the generating derivation.

Given an action $\sigma: G_{a} \times X \rightarrow X$, let $\bar{\sigma}: G_{a} \times X \rightarrow X \times X$ denote the graph morphism and $\hat{\sigma}: \mathbf{C}[X] \rightarrow \mathbf{C}[X, t]$ (resp. $\tilde{\sigma}: \mathbf{C}[X \times X] \rightarrow \mathbf{C}[X, t]$) denote the induced maps on coordinate rings.

The action is said to be proper if $\bar{\sigma}$ is a proper morphism (i.e., if $\mathbf{C}[X, t]$ is integral over the image of $\tilde{\sigma})$. The action is said to be equivariantly trivial if there is a variety Y for which X is G_{a} equivariantly isomorphic to $G_{a} \times Y$, the action on $G_{a} \times Y$ being given by $g *(y, h)=(y, g+h)$. The action is locally trivial if there is a cover of X by G_{a} stable affine open subsets X_{i} on which the action is equivariantly trivial. Equivariant triviality of an action on X is equivalent with the existence of a regular function $s \in \mathbf{C}[X]$ for which $D s=1$. Such a function is called a slice and, if one exists, $\mathbf{C}[X]=C_{0}[s]$. If X is factorial, i.e., its coordinate ring is a unique factorization domain, then local triviality is equivalent with the intersection of the kernel and image of D generating the unit ideal in $\mathbf{C}[X]$.

The affine cancellation problem can be phrased in terms of G_{a} actions on $X=$ \mathbf{C}^{n+1} : If the action is equivariantly trivial, is then $Y \cong \mathbf{C}^{n}$? The answer is affirmative for $n=2$, and for $n=3$ provided the ring of invariants contains a coordinate function [16, Cor. 4.5.5]. It has recently been shown that the ring of G_{a} invariants is finitely generated for actions on \mathbf{C}^{4} whose generating derivation is triangulable (triangulable actions) [2]. These positive results suggest that a more complete understanding of actions on \mathbf{C}^{4} is within reach. In section 1 we show that

[^0]locally trivial triangulable actions on \mathbf{C}^{4} are in fact equivariantly trivial, admitting a geometric quotient isomorphic to \mathbf{C}^{3}. Thus the example of Winkelmann [14] of a locally trivial, but not equivariantly trivial, triangular action on \mathbf{C}^{5} is optimal.

Locally trivial actions are proper, and proper actions on \mathbf{C}^{n} are locally trivial provided that $\mathbf{C}[X]$ is a flat ring extension of C_{0} [4, Theorem 2.8]. This need not always be the case as shown in 5]. On the other hand, Holmann 12 showed that any proper holomorphic action on a complex manifold admits a quotient that is a manifold, while Popp [11 Lecture 3] showed that this quotient admits the structure of an algebraic space if the action is algebraic and the manifold is a smooth variety. Based on these results, we give in section 3 a ring-theoretic criterion for a proper action on \mathbf{C}^{n} to be locally trivial and indicate where the hypotheses fail for the example in [5] of a nonlocally trivial proper action on \mathbf{C}^{5}.

2. Locally trivial triangular actions on \mathbf{C}^{4}

From [4. Theorem 2.8] we know in general that the quotient of a locally trivial action on an affine factorial variety X exists as a quasiaffine variety $Y \subset \mathbf{S p e c}$ R, where R is the subring of C_{0} constructed as follows: Let $\delta\left(a_{1}\right), \ldots, \delta\left(a_{n}\right) \in C_{0}$ generate the unit ideal in $\mathbf{C}[X]$, and set $R_{i}=\mathbf{C}\left[X, \frac{1}{\delta\left(a_{i}\right)}\right]^{G_{a}}$. Note that $\mathbf{C}\left[X, \frac{1}{\delta\left(a_{i}\right)}\right]=$ $R_{i}\left[\frac{a_{i}}{\delta\left(a_{i}\right)}\right]$ so that R_{i} is a finitely generated \mathbf{C} algebra, say $R_{i}=\mathbf{C}\left[b_{i 1}, \ldots, b_{i m}, \frac{1}{\delta\left(a_{i}\right)}\right]$, with $b_{i j} \in C_{0}$. The ring $R=\mathbf{C}\left[b_{i j}, \delta\left(a_{i}\right) \mid 1 \leq i \leq n, 1 \leq j \leq m\right]$ is the required subring of C_{0}.

It is easy to see that C_{0} is the factorial closure of R (i.e., the intersection of all unique factorization domains containing R), and we ask whether C_{0} is the integral closure of R. Of course a positive answer would solve Hilbert's $14^{\text {th }}$ problem for locally trivial G_{a} actions. Since Y is a geometric quotient, C_{0} is the ring of global sections of its structure sheaf. With I denoting the ideal defining the complement of Y in Spec R, and F the quotient field of R, the ring C_{0} is isomorphic to $T_{I} R=\bigcup_{n \geq 0}\left\{\alpha \in F \mid \alpha I^{n} \subset R\right\}$, the ideal transform of R with respect to I. A fuller discussion of these notions can be found in [6].

Consider a locally trivial G_{a} action on \mathbf{C}^{4} generated by the locally nilpotent derivation of $\mathbf{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ defined by δ

$$
\begin{aligned}
x_{4} & \mapsto p\left(x_{1}, x_{2}, x_{3}\right), \\
x_{3} & \mapsto q\left(x_{1}, x_{2}\right), \\
x_{2} & \mapsto r\left(x_{1}\right), \\
x_{1} & \mapsto 0 .
\end{aligned}
$$

It was recently shown [2] that C_{0} is finitely generated for any triangular action on \mathbf{C}^{4}. In the special case under consideration, we show that $Y \cong \operatorname{Spec} C_{0}$. Since the quotient Y is then affine, the action is equivariantly trivial (locally trivial actions with quotient Y correspond to elements of $H^{1}(Y, O(Y))$, which is 0 with Y affine), and van Rossum's thesis [16] then shows that $Y \cong \mathbf{C}^{3}$.
Theorem 2.1. Let G_{a} act locally trivially on $X=\mathbf{C}^{4}$ via a triangular derivation as above. Then the action is equivariantly trivial with quotient isomorphic to \mathbf{C}^{3}.

Proof. Set $Z=\operatorname{Spec} C_{0}$, and denote by $\pi: X \rightarrow Z$ the G_{a} equivariant morphism induced by the ring inclusion $C_{0} \hookrightarrow \mathbf{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. By hypothesis, $x_{1} \in C_{0}$ and is prime, so that for each $\lambda \in \mathbf{C}, \pi_{\lambda}$, the restriction of π to the hyperplane X_{λ}
defined by $x_{1}-\lambda$, is a G_{a} equivariant morphism to the surface $Z_{\lambda} \subset Z$ defined there by $x_{1}-\lambda$. The assertion is proved by showing that π_{λ} is surjective for all λ.

It suffices to consider only those λ for which $x_{1}-\lambda$ divides $r\left(x_{1}\right)$, since otherwise $\frac{x_{2}}{r\left(x_{1}\right)}$ defines a slice on X_{λ}. Assume that $r(0)=0$, and we consider $\pi_{0}: X_{0} \rightarrow Z_{0}$. Note that $X_{0} \cong \mathbf{C}^{3}$ so that the action on X_{0} has a slice and π_{0} is an orbit map, but Z_{0} is not a priori the quotient (which is the open image of π_{0}). Indeed, $Z_{0} \cong \operatorname{Spec} C_{0} /\left(x_{1}\right)$, and $C_{0} /\left(x_{1}\right) \subset\left[C[X] /\left(x_{1}\right)\right]^{G_{a}}$, the latter being the ring of functions defined on the image of π_{0} in Y_{0}, and $X_{0} \rightarrow \mathbf{S p e c}\left[C[X] /\left(x_{1}\right)\right]^{G_{a}}$ is clearly surjective. Denote by I the ideal in $C_{0} /\left(x_{1}\right)$ defining $Y_{0}-\operatorname{im}\left(\pi_{0}\right)$. We have $T_{I}\left(C_{0} /\left(x_{1}\right)\right) \cong\left[\mathbf{C}[X] /\left(x_{1}\right)\right]^{G_{a}} \cong \mathbf{C}^{[2]}$, a polynomial ring in two variables.

Lemma 2.5 of [2] can be interpreted in this context as saying that $C_{0} /\left(x_{1}\right)=$ $R[u]$, where u is transcendental over some subring R, i.e., that the algorithm [1] to construct the ring of invariants terminates with the adjunction of an element transcendental over a subring. Denote by \hat{R} the integral closure of R in its quotient field. Note that $\hat{R}[u] \subset T_{I}(R[u])$ since both are integrally closed. Moreover, \hat{R} is Dedekind and rational since the quotient field, $q f(\hat{R}[u]) \cong \mathbf{C}^{(2)} \cong q f(R)(u)$. By the generalized Luroth theorem, $q f(R)$ is rational. Since \hat{R} is a subring of a polynomial ring, $\hat{R} \cong \mathbf{C}^{[1]}$.

Note that $T_{I \hat{R}[u]}(\hat{R}[u]) \cong T_{I}(R[u]) \cong \mathbf{C}^{[2]}$. If $h t(I \hat{R}[u])=1$, then $I \hat{R}[u]$ is principal, say $I \hat{R}[u]=(f)$. But then $\frac{1}{f} \in \mathbf{C}^{[2]}$, a contradiction. Thus $h t(I \hat{R}[u])=2$, which implies that $T_{I \hat{R}[u]}(\hat{R}[u])=\hat{R}[u]$. Finally, we obtain the chain of surjections:

$$
X_{0} \rightarrow \text { Spec }\left[C[X] /\left(x_{1}\right)\right]^{G_{a}}=\text { Spec } \hat{R}[u] \rightarrow \text { Spec } R[u]=Z_{0}
$$

That the quotient is isomorphic to \mathbf{C}^{3} follows from a special case of [16, Cor. 4.5.5].

Remark 2.2. It appears to be true that every fixed point free action on \mathbf{C}^{3} has a slice (S. Kaliman, preprint), while Winkelmann produced an example of a locally trivial triangular derivation on \mathbf{C}^{5} that has no slice, and there is an example of a triangular proper action on \mathbf{C}^{5} that is not locally trivial. The situation for \mathbf{C}^{4} is not so clear, but the next section proposes an avenue of attack on the proper triangular case.

3. Proper actions

Consider a proper G_{a} action on $X=\mathbf{C}^{n}$ generated by the locally nilpotent derivation D. Assume that the ring of invariants C_{0} is finitely generated defining the affine variety $Y=\operatorname{Spec} C_{0}$. Let $\pi: \mathbf{C}^{n} \rightarrow Y$ as above be the morphism induced by the ring inclusion $C_{0} \subset \mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$, and let I denote the ideal $C_{0} \cap \operatorname{im} D$ ($I=C_{0}$ if and only of the action is equivariantly trivial). Assuming that the action is not equivariantly trivial, in particular $n \geq 4$, denote by Z the closed subset of Y defined by I. From [7] we know that every irreducible component of Z has codimension exactly two and that $\left.\pi\right|_{X-\pi^{-1} Z}: X-\pi^{-1} Z \rightarrow Y-Z$ is a principal G_{a} bundle. The action is locally trivial if and only if $\pi^{-1} Z=\emptyset$.

From Holmann [12]: we know that the space of orbits carries the structure of an analytic space X / G_{a} (in fact, X / G_{a} is a manifold) and from Popp [11] that X / G_{a} is an algebraic space. The simplicity of our context enables us to make this even more explicit. The orbit $G_{a} x$ of any point $x \in X$ is isomorphic to a line. As such it is a coordinate line in some coordinate system, $\left(x_{1}, \ldots, x_{n}\right)$ for X, say
$G_{a} x$ is the x_{1}-axis, and we can take x to be the origin. If H_{x} is the hyperplane $x_{1}=0$, then it is clear that the morphism $G_{a} \times H_{x} \cong \mathbf{C}^{n} \rightarrow X=\mathbf{C}^{n}$ given by $\rho:(\lambda, y) \mapsto \sigma(\lambda, y)$ is étale in an affine neighborhood U of (λ, x) (the principal open subset defined by the Jacobian determinant d of the regular mapping). Indeed, ρ is G_{a} equivariant with respect to the action on $G_{a} \times H_{1}$ given by $(\mu,(\lambda, y)) \mapsto(\mu+\lambda, y)$. Thus $d \in \mathbf{C}\left[G_{a} \times H_{x}\right]^{G_{a}}=\mathbf{C}\left[H_{x}\right]$, and $U=G_{a} \times U_{x}$ with U_{x} the principal open subset of H_{x} defined by d. Identifying U_{x} with the 0 section of the trivial G_{a} bundle, and therefore the quotient of U with respect to the G_{a} action, the restriction $\left.\rho\right|_{U_{x}}: U_{x} \rightarrow X / G_{a}$ gives an étale morphism. The images of finitely many such morphisms $\left.\rho\right|_{U_{x_{i}}}: U_{x_{i}} \rightarrow X / G_{a}$ cover X / G_{a}. That $\amalg_{i} U_{x_{i}} \xrightarrow{\left.\rho\right|_{U_{x_{i}}}} X / G_{a}$ provides an affine étale covering making X / G_{a} an algebraic space is explained in [11, p. 39].

This description of the quotient as an algebraic space uses the complex structure. An alternative realization of the quotient of a variety X by a proper action of an algebraic group G as an algebraic space, valid in any characteristic, is given by Seshadri. Indeed, the construction is similar, differing in that Seshadri builds a variety Z finite over X from affine varieties analogous to U above. The action of G extends to Z and is locally trivial. The quotient W is separated but need not be quasiprojective. However, $\mathbf{C}(Z) / \mathbf{C}(X)$ is Galois with group Γ, Γ acts on W, and the quotient of X by G is the algebraic space W / Γ. For the purposes of this paper the first description of the quotient is more convenient. For example, we can give a nice description of the stalks of the structure sheaf of the algebraic space X / G_{a}.

For a local ring R with maximal ideal \mathfrak{m}, denote by R^{h} the henselization of R and by \widehat{R} its completion at \mathfrak{m}. Recall that for R equal to the localization of an affine domain, R^{h} is the algebraic closure of R in \widehat{R}.

Proposition 3.1. Let $z \in X / G_{a}$. Then $O_{z, X / G_{a}} \equiv \underset{\longrightarrow}{\lim }\left(O\left(U \times_{X / G_{a}} X\right)^{G_{a}}\right) \cong$ $\left[\lim _{\longrightarrow}\left(O\left(U \times_{X / G_{a}} X\right)\right)\right]^{G_{a}} \cong\left(\mathbf{C}\left[x_{2}, \ldots, x_{n}\right]_{\left(x_{2}, \ldots, x_{n}\right)}\right)^{h}$, where the limit is taken over all étale open subsets $U \rightarrow X / G_{a}$ of X / G_{a}.

Proof. The isomorphism between $O_{z, X / G_{a}}$ and $\left(\mathbf{C}\left[x_{2}, \ldots, x_{n}\right]_{\left(x_{2}, \ldots, x_{n}\right)}\right)^{h}$ is clear from the above construction of X / G_{a}. It is also clear that $\underset{\longrightarrow}{\lim }\left(O\left(U \times_{X / G_{a}} X\right)^{G_{a}}\right)$ maps injectively into $\left[\underline{\longrightarrow}\left(O\left(U \times_{X / G_{a}} X\right)\right)\right]^{G_{a}}$. Take $\bar{h} \in\left(\underset{\longrightarrow}{\lim O}\left(U \times_{X / G_{a}} X\right)\right)^{G_{a}}$. Because the action is proper, we can find an étale open $V \rightarrow X / G_{a}$ of X / G_{a} with V affine and $V \times{ }_{X / G_{a}} X$ equivariantly isomorphic to $V \times \mathbf{C}$ with \bar{h} represented by some element $h \in O(V \times \mathbf{C})$. Because \bar{h} is G_{a} invariant, for each $\lambda \in G_{a}$ there is an open subset $V_{\lambda} \times \mathbf{C} \subset V \times \mathbf{C}$ with $\left.\lambda(h)\right|_{V_{\lambda} \times \mathbf{C}}=\left.h\right|_{V_{\lambda} \times \mathbf{C}}$. But then the cyclic subgroup of G_{a} generated by λ stabilizes h on $V_{\lambda} \times \mathbf{C}$. The stabilizer of h is an algebraic subset of G_{a} and is therefore all of G_{a} for any $\lambda \neq 0$. Thus $h \in O(V \times \mathbf{C})^{G_{a}}$ and the image of h in $\xrightarrow{\lim }\left(O\left(U \times_{X / G_{a}} X\right)^{G_{a}}\right)$ is the desired preimage of \bar{h}.

Example 1. The action on $X=\mathbf{C}^{5}$ determined by the locally nilpotent derivation of $\mathbf{C}\left[x_{1}, x_{2}, y_{1}, y_{2}, z\right]$, namely

$$
\delta: x_{2} \mapsto x_{1} \mapsto 0, \quad y_{2} \mapsto y_{1} \mapsto 0, \quad z \mapsto\left(1+x_{1} y_{2}^{2}\right)
$$

is proper. Its quotient is an algebraic space that is not a scheme [5]. In particular, W, as in Seshadri's construction above, is not quasiprojective.

The ring of invariants C_{0} is generated by the five polynomials

$$
\begin{aligned}
c_{1} & =x_{1} \\
c_{2} & =x_{2} \\
c_{3} & =x_{1} y_{2}-x_{2} y_{1} \\
c_{4} & =3 y_{1} z-x_{1} y_{2}^{3}-3 y_{2} \\
c_{5} & =\frac{x_{1}^{2} c_{4}+c_{3}^{3}+3 x_{1} c_{3}}{y 1}
\end{aligned}
$$

Set $Y=\mathbf{S p e c} \mathbf{C}\left[c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right]$, and let $\pi: X \rightarrow Y$ be the morphism defined by the rings inclusion. One checks that the C_{0} ideal $\sqrt{C_{0} \cap \operatorname{im}(\delta)}=\left(c_{1}, c_{2}, c_{3}\right)$ has height 2 , and that $\left[C_{0} \cap \operatorname{im}(\delta)\right] \mathbf{C}[X]=\left(x_{1}, y_{1}\right)$. The singular locus S of Y is one dimensional, properly contained in the zeros locus Z of $\left(c_{1}, c_{2}, c_{3}\right)$, and $\pi\left(\pi^{-1}(Z)\right) \subset$ S. $\left.\pi\right|_{X-\pi^{-1}(Z)}$ is a quotient morphism, but fibers over points in S are all two dimensional.

In general, for a proper action with finitely generated C_{0}, the universal property for geometric quotients yields a morphism of algebraic spaces $\bar{\pi}: X / G_{a} \rightarrow Y$ that is an isomorphism outside of a closed subset of codimension 2 in X / G_{a} and Y (the zero loci of $(c 1, c 2)$ in the respective spaces). Note that $\mathbf{C}[Y]$ is a unique factorization domain (UFD), so that if X / G_{a} had the structure of a variety, $\bar{\pi}$ would be an isomorphism into its image [18, Prop. 1, p. 289]. In our example, however, the completions (and henselizations) of the local rings over points in S do not retain the unique factorization domain property.

To see this, we rely on the paper [15] where it is shown that the localization of the UFD $A=\mathbf{C}[X, Y, Z, T] /\left(X Y-Z T+X^{3}+Y^{3}\right)$ at the maximal ideal generated by the classes of X, Y, Z, T does not remain a UFD upon completion. In fact, the completion \hat{A} is shown to be isomorphic to $\mathbf{C}[[X, Y, Z, T]] /(X Y-Z T)$, i.e., $X^{3}+Y^{3} \in(X Y-Z T) \mathbf{C}[[X, Y, Z, T]]$. In the example above, $\mathbf{C}[Y] \cong$ $\mathbf{C}\left[C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right] /\left(C_{2} C_{5}-C_{1}^{2} C_{4}-C_{3}^{3}-3 C_{1} C_{3}\right)$. With a simple change of variables (replacing C_{3} by $3 C_{3}$) and the observation that $C_{1}^{3}+C_{3}^{3} \in\left(C_{2} C_{5}-\right.$ $\left.C_{1} C_{3}\right) \mathbf{C}\left[\left[C_{1}, C_{2}, C_{3}, C_{5}\right]\right]$, we can realize the completion of $\mathbf{C}[Y]$ at the maximal ideal $\left(C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right)$ as isomorphic to $\mathbf{C}\left[\left[C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right]\right] /\left(C_{2} C_{5}-C_{1} K\right)$ for some K.
Lemma 1. Let A be the localization of a finitely generated domain over \mathbf{C} at the maximal ideal \mathfrak{m}. Then the henselization A^{h} of A is a unique factorization domain if and only if the completion \hat{A} of A is.

Proof. In this context, the henselization and strict henselization of A are equal and $\widehat{A^{h}} \cong \hat{A}$ [19, p. 38]. From 3] (proof of Theorem 1), we have $C\left(A^{h}\right)=C(\hat{A})$, where $C(-)$ denotes the divisor class group.

Lemma 2. Let G_{a} act properly on $X=\mathbf{C}^{n}$ with geometric quotient the algebraic space X / G_{a}. Assume that $C_{0}=\mathbf{C}[X]^{G_{a}}$ is finitely generated defining the affine variety Y. Denote by q the morphism $X \rightarrow Y$ induced by the ring inclusion, by π the quotient morphism $X \rightarrow X / G_{a}$, and by $\bar{\pi}$ the canonical morphism $X / G_{a} \rightarrow Y$. For $z \in X / G_{a}$, let K_{z} be the quotient field of the stalk at z of the structure sheaf of X / G_{a}, and let $F_{\bar{\pi}(z)}$ be the quotient field of the henselization of $C_{0, \mathfrak{m}_{\bar{\pi}(z)}}$. Then $\bar{\pi}$ induces an isomorphism of $F_{\bar{\pi}(z)}$ and K_{z}.
Proof. If the action is locally trivial in the Zariski topology, then there is nothing to show (note that since Y is a variety, $O_{\pi(z), Y}$ is the henselization of $C_{0, \mathfrak{m}_{\pi(z)}}$). If the
action is not Zariski locally trivial, then it is nevertheless geometrically irreducible in codimension one (GICO) [7], i.e., the intersection of the kernel and image of the generating derivation δ lies in no height one prime ideal of $\mathbf{C}[X]$ (or of C_{0}). As a consequence, there is a closed subset Z of codimension precisely 2 in Y so that $\pi^{-1}(Z)$ has codimension 2 in X, and $q: X-\pi^{-1}(Z) \rightarrow Y-Z$ is a principal G_{a} bundle, locally trivial in the Zariski topology with quotient $Y-Z$ [6] (and Theorem 4.2 below) below]. By the uniqueness of geometric quotients, $Y-Z \cong X / G_{a}-\bar{\pi}^{-1} Z$. The result follows by appealing to an affine étale covering of X / G_{a} enabling the reduction to an affine neighborhood U of z. A rational function on U representing an element of K_{z} is clearly in the function field of Y at $\pi(z)$.

Theorem 3.2. Consider a proper action of G_{a} on $X=\mathbf{C}^{n}$ with finitely generated ring of invariants C_{0} defining the affine variety Y and morphism $q: X \rightarrow Y$. The action is locally trivial with quasiaffine quotient if and only if for each $x \in X$ the completion of the local ring of $q(x)$ on Y is a unique factorization domain.

Proof. If the action is locally trivial, then q is a flat morphism (in the Zariski topology) whose image is in the smooth locus of Y.

To prove the converse, the argument is essentially that of 18, p. 289, Proposition 1]. Let $y=q(x), \mathfrak{m}$ the corresponding maximal ideal of C_{0} and $A=C_{0 \mathfrak{m}}$. If y is a smooth point of Y, then the action is locally trivial in an affine neighborhood of $q^{-1}(y)[7]$; so assume that Y is singular at y. From Lemma 3.2, we know that A^{h} is a unique factorization domain. Since the action is proper, X / G_{a} exists as an algebraic space. Let $\bar{\pi}(z)=y$ for $z \in X / G_{a}$, and denote by $B=O_{z}, X / G_{a}$. Since X / G_{a} is smooth but Y is singular at y, we can view A^{h} as a proper subring of B. If $\varphi \in B-A$, from Lemma 3.3, $\varphi=\frac{r}{s}, r, s \in A^{h}$. By choosing a suitable affine neighborhood of y, we can assume that there is a morphism of affine varieties $\bar{\pi}: V \rightarrow W$, subvarieties W_{1}, W_{2} of W (the zero loci of r and s), whose intersection has pure codimension 2 in W, and a subvariety V_{1} of V (the zero locus of s) of codimension 1. Since $r=\varphi s$, every component of V_{1} maps to $W_{1} \cap W_{2}$. In particular, the set of points at which $\bar{\pi}$ is not an isomorphism has codimension 1 , a contradiction.

Problem 1. For which actions does $C_{0, \mathfrak{m}}$ remain a unique factorization domain upon completion? In particular, does this hold for proper actions on C^{4} ?

4. Remarks

Related to Lemma 3.2 we have the following.
Proposition 4.1. Let k be a field of characteristic 0 and A an affine k algebra satisfying the following conditions:
(1) A is a unique factorization domain;
(2) with T denoting an indeterminate, $A[[T]]$ is a unique factorization domain (i.e., A has discrete divisor class group, e.g. A is a regular UFD);
(3) $G_{a}=G_{a}(k)$ acts on A via the locally nilpotent derivation d with kernel A^{d}. Then A^{d} satisfies Serre's S_{3} condition.

Proof. Consider the extension D of the derivation to $A[[T]]$, defined by $D \sum_{i=0}^{\infty} a_{i} T^{i}$ $=\sum_{i=0}^{\infty} d\left(a_{i}\right) T^{i}$, and the extension of the G_{a} action by $\sigma_{t} \sum_{i=0}^{\infty} a_{i} T^{i}=$ $\sum_{i=0}^{\infty} \exp (t d)\left(a_{i}\right) T^{i}$ for each element $t \in k$. It is straightforward to check that
$A[[T]]^{G_{a}}=A[[T]]^{D}=A^{d}[[T]]=A^{G_{a}}[[T]]$. Moreover, $A[[T]]^{G_{a}}$ is factorially closed in $A[[T]]$. Indeed, suppose that $a \in A[[T]]^{G_{a}}$ has the factorization $a=a_{1} a_{2} \ldots a_{k}$ in $A[[T]]$. Then G_{a} permutes the ideals $\left(a_{i}\right)$ inducing a homomorphism from G_{a} to the symmetric group on k letters. However, only the trivial homomorphism exists, so that $\sigma_{t}\left(a_{i}\right)=\lambda(t) a_{i}$ where $\lambda: G_{a} \rightarrow A[[T]]^{*}$. Comparing coefficients of T^{j}, we find that $(\lambda(t)-1) a_{i}=\sum_{j=1}^{N} \frac{t^{j}}{j!} d^{j}\left(a_{i}\right)$, where $N+1$ is the least power of d annihilating a_{i}. Note that d^{N} annihilates $\sum_{j=1}^{N} \frac{t^{j}}{j!} d^{j}\left(a_{i}\right)$. Unless $\lambda(t)=1$, we obtain a contradiction. Thus each $a_{i} \in A[[T]]^{G_{a}}$, and therefore this ring is a unique factorization domain. Thus A^{d} has discrete divisor class group and consequently satisfies Serre's condition S_{3} [13] .

Theorem 4.2. Let X be a smooth factorial quasiaffine variety. Suppose that G_{a} acts algebraically on X and that $O(X)^{G_{a}}$ is finitely generated over \mathbf{C}. If $\operatorname{dim} X \leq$ 5 , then $O(X)^{G_{a}}$ is Gorenstein.

Proof. Since $O(X)^{G_{a}}$ has dimension at most 4 and satisfies S_{3}, [17, Corollary 1.8] shows that all of its localizations are Gorenstein.

The proposition also enables a strengthening of [6] Theorem 3.1] by removing the Cohen-Macaulay hypothesis on the ring of invariants.

Theorem 4.3. Let X be a smooth factorial complex affine variety of dimension $n \geq 4$ with a GICO G_{a} action generated by the locally nilpotent derivation δ of $O(X)$. If $O(X)^{G_{a}}$ is finitely generated and the height of the ideal image $(\delta) \cap O(X)^{G_{a}}$ is at least 3, then the action is equivariantly trivial.
Proof. Let P be a prime ideal of $O(X)^{G_{a}}$ minimal over image $(\delta) \cap O(X)^{G_{a}}$. Set $R=$ $O(X)_{P}^{G_{a}}$, denote the closed point of Spec R by M, and let $U=\operatorname{Spec} R-\{M\}$. The Cohen-Macaulay hypothesis was used to show that $\operatorname{Ext}^{1}\left(O_{U}, O_{U}\right) \cong H_{M}^{2}\left(W, O_{W}\right)=$ 0 . But this follows from the S_{3} condition.

Greuel and Pfister have conjectured [8 that any proper action of a unipotent group on an affine scheme X lifts to locally trivial action on some étale covering of X. If by étale covering one means a finite étale morphism, then the conjecture fails for $X=\mathbf{C}^{n}$ and the connected unipotent group by the simple conectivity of \mathbf{C}^{n} [10]. Indeed, suppose $X=\bigcup_{i=1}^{m} X_{i}$, with $q_{i}: X_{i} \cong X$ for each i. Connectivity implies that each orbit will lie in exactly one X_{i} so that the action is locally trivial on X_{i} and q_{i} is G_{a} equivariant (i.e., the action was already locally trivial on X). On the other hand, if one drops the finiteness requirement, then section 3 indicates why the conjecture does hold for $X=\mathbf{C}^{n}$ and proper G_{a} actions.

References

[1] A. van den Essen: An algorithm to compute the invariant ring of a G_{a} action on an affine variety, J. Symbolic Computation 16 (1993) 531-555. MR 95c:14064
[2] D. Daigle and G. Freudenberg: Triangular derivations of $k\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$, J. Algebra 241 (2001) 328-339. MR 2002g:13058
[3] V. I. Danilov: On rings with discrete divisor class group, Math. USSR Sbornik 17 (1972) 228-236. MR 46:5311
[4] J. K. Deveney, D. R. Finston, and M. Gehrke: G_{a} actions on \mathbf{C}^{n}, Comm. Alg. 22 (1994) 4977-4988. MR 95e:14038
[5] J. K. Deveney and D. R. Finston: A proper G_{a} action on \mathbf{C}^{5} which is not locally trivial, Proc. Amer. Math. Soc. 123 (1995) 651-655. MR 95j:14065
[6] J. K. Deveney and D. R. Finston: G_{a} invariants and slices, Comm. Alg. 30 (2002) 1437-1447. MR 2003c:14073
[7] J. K. Deveney and D. R. Finston: Regular G_{a} invariants, Osaka J. Math. 39 (2002) 275-282. MR 2003e:14037
[8] G.-M. Greuel and G. Pfister: Geometric quotients of unipotent group actions II. Singularities (Oberwolfach, 1996), 27-36, Progr. Math. 162, Birkhäuser, Basel, 1998. MR 99k:14078
[9] J. K. Deveney and D. R. Finston: Local triviality of proper G_{a} actions, J. Algebra 221 (1999) 692-704. MR 2001b:14095
[10] D. Wright: On the Jacobian conjecture. Illinois J. Math. 25 (1981) 423-440. MR 83a:12032
[11] H. Popp: Moduli Theory and Classification Theory of Algebraic Varieties, Lecture Notes in Mathematics, no. 620, Springer-Verlag, Berlin, Heidelberg, New York, 1977. MR 57:6024
[12] H. Holmann: Komplexe Räume mit komplexen Transformationsgruppen, Math. Ann. 150 (1963) 327-360. MR 27:776
[13] J. Lipman: Unique factorization in complete local rings, Proc Sympos. Pure Math. 29 (1974) 531-546. MR 51:10325
[14] J. Winkelmann: On free holomorphic C actions on C^{n} and homogeneous Stein manifolds, Math. Ann. 286 (1990) 593-612. MR 90k:32094
[15] E. Halanay: Un exemple de inel factorial al carui completat nu este factorial, St. Cerc. Mat. 30 (1978) 495-497. MR 80a:13017
[16] P. van Rossum: Tackling Problems on Affine Space with Locally Nilpotent Derivations on Polynomial Rings, Thesis, Catholic University Nijmegen, 2001.
[17] R. Hartshorne and A. Ogus: On the factoriality of local rings of small embedding codimension, Comm Alg. 1 (1974) 415-437. MR 50:322
[18] D. Mumford: The Red Book of Varieties and Schemes, Lecture Notes in Mathematics, no. 1358, Springer-Verlag, Berlin, Heidelberg, New York, 1999. MR 2001b:14001
[19] S. Milne: Étale Cohomology, Princeton University Press, Princeton, NJ, 1980. MR 81j:14002
Department of Mathematical Sciences, Virginia Commonwealth University, 1015 W. Main St., Richmond, Virginia 23284

E-mail address: jdeveney@atlas.vcu.edu
Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003

E-mail address: dfinston@nmsu.edu
Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003

E-mail address: petervr@nmsu.edu

[^0]: Received by the editors July 25, 2002.
 2000 Mathematics Subject Classification. Primary 14L30; Secondary 20G20.
 Key words and phrases. Additive group, slice, geometric quotient, locally trivial.

