PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 10, Pages 2841-2848 S 0002-9939(04)07500-8 Article electronically published on June 2, 2004

TRIANGULAR G_a ACTIONS ON C⁴

JAMES K. DEVENEY, DAVID R. FINSTON, AND PETER VAN ROSSUM

(Communicated by Bernd Ulrich)

ABSTRACT. Every locally trivial action of the additive group of complex numbers on four-dimensional complex affine space that is given by a triangular derivation is conjugate to a translation. A criterion for a proper action on complex affine *n*-space to be locally trivial is given, along with an example showing that the hypotheses of the criterion are sharp.

1. INTRODUCTION

Let G_a denote the additive group of complex numbers, and X a complex affine variety. By an action of G_a on X we will mean an algebraic action. It is well known that every such action can be realized as the exponential of some locally nilpotent derivation D of the coordinate ring $\mathbf{C}[X]$ and that every locally nilpotent derivation gives rise to an action. The ring C_0 of G_a invariants in $\mathbf{C}[X]$ is equal to the ring of constants of the generating derivation.

Given an action $\sigma : G_a \times X \to X$, let $\bar{\sigma} : G_a \times X \to X \times X$ denote the graph morphism and $\hat{\sigma} : \mathbf{C}[X] \to \mathbf{C}[X,t]$ (resp. $\tilde{\sigma} : \mathbf{C}[X \times X] \to \mathbf{C}[X,t]$) denote the induced maps on coordinate rings.

The action is said to be proper if $\bar{\sigma}$ is a proper morphism (i.e., if $\mathbb{C}[X, t]$ is integral over the image of $\tilde{\sigma}$). The action is said to be equivariantly trivial if there is a variety Y for which X is G_a equivariantly isomorphic to $G_a \times Y$, the action on $G_a \times Y$ being given by g * (y, h) = (y, g+h). The action is locally trivial if there is a cover of X by G_a stable affine open subsets X_i on which the action is equivariantly trivial. Equivariant triviality of an action on X is equivalent with the existence of a regular function $s \in \mathbb{C}[X]$ for which Ds = 1. Such a function is called a slice and, if one exists, $\mathbb{C}[X] = C_0[s]$. If X is factorial, i.e., its coordinate ring is a unique factorization domain, then local triviality is equivalent with the intersection of the kernel and image of D generating the unit ideal in $\mathbb{C}[X]$.

The affine cancellation problem can be phrased in terms of G_a actions on $X = \mathbf{C}^{n+1}$: If the action is equivariantly trivial, is then $Y \cong \mathbf{C}^n$? The answer is affirmative for n = 2, and for n = 3 provided the ring of invariants contains a coordinate function [16, Cor. 4.5.5]. It has recently been shown that the ring of G_a invariants is finitely generated for actions on \mathbf{C}^4 whose generating derivation is triangulable (triangulable actions) [2]. These positive results suggest that a more complete understanding of actions on \mathbf{C}^4 is within reach. In section 1 we show that

©2004 American Mathematical Society

Received by the editors July 25, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14L30; Secondary 20G20.

Key words and phrases. Additive group, slice, geometric quotient, locally trivial.

locally trivial triangulable actions on \mathbb{C}^4 are in fact equivariantly trivial, admitting a geometric quotient isomorphic to \mathbb{C}^3 . Thus the example of Winkelmann [14] of a locally trivial, but not equivariantly trivial, triangular action on \mathbb{C}^5 is optimal.

Locally trivial actions are proper, and proper actions on \mathbb{C}^n are locally trivial provided that $\mathbb{C}[X]$ is a flat ring extension of C_0 [4, Theorem 2.8]. This need not always be the case as shown in [5]. On the other hand, Holmann [12] showed that any proper holomorphic action on a complex manifold admits a quotient that is a manifold, while Popp [11, Lecture 3] showed that this quotient admits the structure of an algebraic space if the action is algebraic and the manifold is a smooth variety. Based on these results, we give in section 3 a ring-theoretic criterion for a proper action on \mathbb{C}^n to be locally trivial and indicate where the hypotheses fail for the example in [5] of a nonlocally trivial proper action on \mathbb{C}^5 .

2. Locally trivial triangular actions on \mathbb{C}^4

From [4, Theorem 2.8] we know in general that the quotient of a locally trivial action on an affine factorial variety X exists as a quasiaffine variety $Y \subset \mathbf{Spec}$ R, where R is the subring of C_0 constructed as follows: Let $\delta(a_1), ..., \delta(a_n) \in C_0$ generate the unit ideal in $\mathbf{C}[X]$, and set $R_i = \mathbf{C}[X, \frac{1}{\delta(a_i)}]^{G_a}$. Note that $\mathbf{C}[X, \frac{1}{\delta(a_i)}] = R_i[\frac{a_i}{\delta(a_i)}]$ so that R_i is a finitely generated \mathbf{C} algebra, say $R_i = \mathbf{C}[b_{i1}, ..., b_{im}, \frac{1}{\delta(a_i)}]$, with $b_{ij} \in C_0$. The ring $R = \mathbf{C}[b_{ij}, \delta(a_i) | 1 \leq i \leq n, 1 \leq j \leq m]$ is the required subring of C_0 .

It is easy to see that C_0 is the factorial closure of R (i.e., the intersection of all unique factorization domains containing R), and we ask whether C_0 is the integral closure of R. Of course a positive answer would solve Hilbert's 14^{th} problem for locally trivial G_a actions. Since Y is a geometric quotient, C_0 is the ring of global sections of its structure sheaf. With I denoting the ideal defining the complement of Y in **Spec** R, and F the quotient field of R, the ring C_0 is isomorphic to $T_I R = \bigcup_{n\geq 0} \{\alpha \in F \mid \alpha I^n \subset R\}$, the ideal transform of R with respect to I. A fuller discussion of these notions can be found in [6].

Consider a locally trivial G_a action on \mathbf{C}^4 generated by the locally nilpotent derivation of $\mathbf{C}[x_1, x_2, x_3, x_4]$ defined by δ

$$egin{array}{rcl} x_4 & \mapsto & p(x_1,x_2,x_3), \ x_3 & \mapsto & q(x_1,x_2), \ x_2 & \mapsto & r(x_1), \ x_1 & \mapsto & 0. \end{array}$$

It was recently shown [2] that C_0 is finitely generated for any triangular action on \mathbb{C}^4 . In the special case under consideration, we show that $Y \cong \operatorname{Spec} C_0$. Since the quotient Y is then affine, the action is equivariantly trivial (locally trivial actions with quotient Y correspond to elements of $H^1(Y, O(Y))$, which is 0 with Y affine), and van Rossum's thesis [16] then shows that $Y \cong \mathbb{C}^3$.

Theorem 2.1. Let G_a act locally trivially on $X = \mathbb{C}^4$ via a triangular derivation as above. Then the action is equivariantly trivial with quotient isomorphic to \mathbb{C}^3 .

Proof. Set Z =**Spec** C_0 , and denote by $\pi : X \to Z$ the G_a equivariant morphism induced by the ring inclusion $C_0 \hookrightarrow \mathbf{C}[x_1, x_2, x_3, x_4]$. By hypothesis, $x_1 \in C_0$ and is prime, so that for each $\lambda \in \mathbf{C}$, π_{λ} , the restriction of π to the hyperplane X_{λ} defined by $x_1 - \lambda$, is a G_a equivariant morphism to the surface $Z_{\lambda} \subset Z$ defined there by $x_1 - \lambda$. The assertion is proved by showing that π_{λ} is surjective for all λ .

It suffices to consider only those λ for which $x_1 - \lambda$ divides $r(x_1)$, since otherwise $\frac{x_2}{r(x_1)}$ defines a slice on X_{λ} . Assume that r(0) = 0, and we consider $\pi_0 : X_0 \to Z_0$. Note that $X_0 \cong \mathbb{C}^3$ so that the action on X_0 has a slice and π_0 is an orbit map, but Z_0 is not a priori the quotient (which is the open image of π_0). Indeed, $Z_0 \cong \operatorname{Spec} C_0/(x_1)$, and $C_0/(x_1) \subset [C[X]/(x_1)]^{G_a}$, the latter being the ring of functions defined on the image of π_0 in Y_0 , and $X_0 \to \operatorname{Spec} [C[X]/(x_1)]^{G_a}$ is clearly surjective. Denote by I the ideal in $C_0/(x_1)$ defining $Y_0 - \operatorname{im}(\pi_0)$. We have $T_I(C_0/(x_1)) \cong [\mathbb{C}[X]/(x_1)]^{G_a} \cong \mathbb{C}^{[2]}$, a polynomial ring in two variables.

Lemma 2.5 of [2] can be interpreted in this context as saying that $C_0/(x_1) = R[u]$, where u is transcendental over some subring R, i.e., that the algorithm [1] to construct the ring of invariants terminates with the adjunction of an element transcendental over a subring. Denote by \hat{R} the integral closure of R in its quotient field. Note that $\hat{R}[u] \subset T_I(R[u])$ since both are integrally closed. Moreover, \hat{R} is Dedekind and rational since the quotient field, $qf(\hat{R}[u]) \cong \mathbf{C}^{(2)} \cong qf(R)(u)$. By the generalized Luroth theorem, qf(R) is rational. Since \hat{R} is a subring of a polynomial ring, $\hat{R} \cong \mathbf{C}^{[1]}$.

Note that $T_{I\hat{R}[u]}(\hat{R}[u]) \cong T_I(R[u]) \cong \mathbb{C}^{[2]}$. If $ht(I\hat{R}[u]) = 1$, then $I\hat{R}[u]$ is principal, say $I\hat{R}[u] = (f)$. But then $\frac{1}{f} \in \mathbb{C}^{[2]}$, a contradiction. Thus $ht(I\hat{R}[u]) = 2$, which implies that $T_{I\hat{R}[u]}(\hat{R}[u]) = \hat{R}[u]$. Finally, we obtain the chain of surjections:

$$X_0 \to \operatorname{\mathbf{Spec}} [C[X]/(x_1)]^{G_a} = \operatorname{\mathbf{Spec}} \hat{R}[u] \to \operatorname{\mathbf{Spec}} R[u] = Z_0.$$

That the quotient is isomorphic to \mathbb{C}^3 follows from a special case of [16, Cor. 4.5.5].

Remark 2.2. It appears to be true that every fixed point free action on \mathbb{C}^3 has a slice (S. Kaliman, preprint), while Winkelmann produced an example of a locally trivial triangular derivation on \mathbb{C}^5 that has no slice, and there is an example of a triangular proper action on \mathbb{C}^5 that is not locally trivial. The situation for \mathbb{C}^4 is not so clear, but the next section proposes an avenue of attack on the proper triangular case.

3. Proper actions

Consider a proper G_a action on $X = \mathbb{C}^n$ generated by the locally nilpotent derivation D. Assume that the ring of invariants C_0 is finitely generated defining the affine variety $Y = \operatorname{Spec} C_0$. Let $\pi : \mathbb{C}^n \to Y$ as above be the morphism induced by the ring inclusion $C_0 \subset \mathbb{C}[x_1, ..., x_n]$, and let I denote the ideal $C_0 \cap \operatorname{im} D$ $(I = C_0 \text{ if and only of the action is equivariantly trivial). Assuming that the action is not equivariantly trivial, in particular <math>n \geq 4$, denote by Z the closed subset of Y defined by I. From [7] we know that every irreducible component of Z has codimension exactly two and that $\pi \mid_{X-\pi^{-1}Z} : X - \pi^{-1}Z \to Y - Z$ is a principal G_a bundle. The action is locally trivial if and only if $\pi^{-1}Z = \emptyset$.

From Holmann [12]: we know that the space of orbits carries the structure of an analytic space X/G_a (in fact, X/G_a is a manifold) and from Popp [11] that X/G_a is an algebraic space. The simplicity of our context enables us to make this even more explicit. The orbit $G_a x$ of any point $x \in X$ is isomorphic to a line. As such it is a coordinate line in some coordinate system, $(x_1, ..., x_n)$ for X, say $G_a x$ is the x_1 -axis, and we can take x to be the origin. If H_x is the hyperplane $x_1 = 0$, then it is clear that the morphism $G_a \times H_x \cong \mathbb{C}^n \to X = \mathbb{C}^n$ given by $\rho: (\lambda, y) \mapsto \sigma(\lambda, y)$ is étale in an affine neighborhood U of (λ, x) (the principal open subset defined by the Jacobian determinant d of the regular mapping). Indeed, ρ is G_a equivariant with respect to the action on $G_a \times H_1$ given by $(\mu, (\lambda, y)) \mapsto (\mu + \lambda, y)$. Thus $d \in \mathbb{C}[G_a \times H_x]^{G_a} = \mathbb{C}[H_x]$, and $U = G_a \times U_x$ with U_x the principal open subset of H_x defined by d. Identifying U_x with the 0 section of the trivial G_a bundle, and therefore the quotient of U with respect to the G_a action, the restriction $\rho|_{U_x}: U_x \to X/G_a$ gives an étale morphism. The images of finitely many such morphisms $\rho|_{U_x_i}: U_{x_i} \to X/G_a$ cover X/G_a . That $\coprod_i U_{x_i} \stackrel{\rho|_{U_{x_i}}}{\to} X/G_a$ provides an affine étale covering making X/G_a an algebraic space is explained in [11, p. 39].

This description of the quotient as an algebraic space uses the complex structure. An alternative realization of the quotient of a variety X by a proper action of an algebraic group G as an algebraic space, valid in any characteristic, is given by Seshadri. Indeed, the construction is similar, differing in that Seshadri builds a variety Z finite over X from affine varieties analogous to U above. The action of G extends to Z and is locally trivial. The quotient W is separated but need not be quasiprojective. However, $\mathbf{C}(Z)/\mathbf{C}(X)$ is Galois with group Γ , Γ acts on W, and the quotient of X by G is the algebraic space W/Γ . For the purposes of this paper the first description of the quotient is more convenient. For example, we can give a nice description of the stalks of the structure sheaf of the algebraic space X/G_a .

For a local ring R with maximal ideal \mathfrak{m} , denote by R^h the henselization of R and by \widehat{R} its completion at \mathfrak{m} . Recall that for R equal to the localization of an affine domain, R^h is the algebraic closure of R in \widehat{R} .

Proposition 3.1. Let $z \in X/G_a$. Then $O_{z,X/G_a} \equiv \varinjlim(O(U \times_{X/G_a} X)^{G_a}) \cong [\varinjlim(O(U \times_{X/G_a} X))]^{G_a} \cong (\mathbf{C}[x_2, ..., x_n]_{(x_2, ..., x_n)})^h$, where the limit is taken over all étale open subsets $U \to X/G_a$ of X/G_a .

Proof. The isomorphism between $O_{z,X/G_a}$ and $(\mathbf{C}[x_2,...,x_n]_{(x_2,...,x_n)})^h$ is clear from the above construction of X/G_a . It is also clear that $\varinjlim(O(U \times_{X/G_a} X)^{G_a})$ maps injectively into $[\varinjlim(O(U \times_{X/G_a} X))]^{G_a}$. Take $\overline{h} \in (\varinjlim O(U \times_{X/G_a} X))^{G_a}$. Because the action is proper, we can find an étale open $V \to \overline{X}/G_a$ of X/G_a with V affine and $V \times_{X/G_a} X$ equivariantly isomorphic to $V \times \mathbf{C}$ with \overline{h} represented by some element $h \in O(V \times \mathbf{C})$. Because \overline{h} is G_a invariant, for each $\lambda \in G_a$ there is an open subset $V_\lambda \times \mathbf{C} \subset V \times \mathbf{C}$ with $\lambda(h)|_{V_\lambda \times \mathbf{C}} = h|_{V_\lambda \times \mathbf{C}}$. But then the cyclic subgroup of G_a generated by λ stabilizes h on $V_\lambda \times \mathbf{C}$. The stabilizer of h is an algebraic subset of G_a and is therefore all of G_a for any $\lambda \neq 0$. Thus $h \in O(V \times \mathbf{C})^{G_a}$ and the image of h in $\varinjlim(O(U \times_{X/G_a} X)^{G_a})$ is the desired preimage of \overline{h} . \Box

Example 1. The action on $X = \mathbb{C}^5$ determined by the locally nilpotent derivation of $\mathbb{C}[x_1, x_2, y_1, y_2, z]$, namely

$$\delta: x_2 \mapsto x_1 \mapsto 0, \quad y_2 \mapsto y_1 \mapsto 0, \quad z \mapsto (1 + x_1 y_2^2),$$

is proper. Its quotient is an algebraic space that is not a scheme [5]. In particular, W, as in Seshadri's construction above, is not quasiprojective.

The ring of invariants C_0 is generated by the five polynomials

$$\begin{array}{rcl} c_1 &=& x_1,\\ c_2 &=& x_2,\\ c_3 &=& x_1y_2 - x_2y_1,\\ c_4 &=& 3y_1z - x_1y_2^3 - 3y_2,\\ c_5 &=& \frac{x_1^2c_4 + c_3^3 + 3x_1c_3}{y_1}. \end{array}$$

Set $Y = \operatorname{Spec} \mathbf{C}[c_1, c_2, c_3, c_4, c_5]$, and let $\pi : X \to Y$ be the morphism defined by the rings inclusion. One checks that the C_0 ideal $\sqrt{C_0 \cap \operatorname{im}(\delta)} = (c_1, c_2, c_3)$ has height 2, and that $[C_0 \cap \operatorname{im}(\delta)]\mathbf{C}[X] = (x_1, y_1)$. The singular locus S of Y is one dimensional, properly contained in the zeros locus Z of (c_1, c_2, c_3) , and $\pi(\pi^{-1}(Z)) \subset$ S. $\pi|_{X-\pi^{-1}(Z)}$ is a quotient morphism, but fibers over points in S are all two dimensional.

In general, for a proper action with finitely generated C_0 , the universal property for geometric quotients yields a morphism of algebraic spaces $\overline{\pi}: X/G_a \to Y$ that is an isomorphism outside of a closed subset of codimension 2 in X/G_a and Y (the zero loci of (c1, c2) in the respective spaces). Note that $\mathbf{C}[Y]$ is a unique factorization domain (UFD), so that if X/G_a had the structure of a variety, $\overline{\pi}$ would be an isomorphism into its image [18, Prop. 1, p. 289]. In our example, however, the completions (and henselizations) of the local rings over points in S do not retain the unique factorization domain property.

To see this, we rely on the paper [15] where it is shown that the localization of the UFD $A = \mathbf{C}[X, Y, Z, T]/(XY - ZT + X^3 + Y^3)$ at the maximal ideal generated by the classes of X, Y, Z, T does not remain a UFD upon completion. In fact, the completion \hat{A} is shown to be isomorphic to $\mathbf{C}[[X, Y, Z, T]]/(XY - ZT)$, i.e., $X^3 + Y^3 \in (XY - ZT) \mathbf{C}[[X, Y, Z, T]]$. In the example above, $\mathbf{C}[Y] \cong$ $\mathbf{C}[C_1, C_2, C_3, C_4, C_5]/(C_2C_5 - C_1^2C_4 - C_3^3 - 3C_1C_3)$. With a simple change of variables (replacing C_3 by $3C_3$) and the observation that $C_1^3 + C_3^3 \in (C_2C_5 - C_1C_3)\mathbf{C}[[C_1, C_2, C_3, C_4, C_5]]$, we can realize the completion of $\mathbf{C}[Y]$ at the maximal ideal $(C_1, C_2, C_3, C_4, C_5)$ as isomorphic to $\mathbf{C}[[C_1, C_2, C_3, C_4, C_5]]/(C_2C_5 - C_1K)$ for some K.

Lemma 1. Let A be the localization of a finitely generated domain over \mathbb{C} at the maximal ideal \mathfrak{m} . Then the henselization A^h of A is a unique factorization domain if and only if the completion \hat{A} of A is.

Proof. In this context, the henselization and strict henselization of A are equal and $\widehat{A^h} \cong \widehat{A}$ [19, p. 38]. From [3] (proof of Theorem 1), we have $C(A^h) = C(\widehat{A})$, where C(-) denotes the divisor class group.

Lemma 2. Let G_a act properly on $X = \mathbb{C}^n$ with geometric quotient the algebraic space X/G_a . Assume that $C_0 = \mathbb{C}[X]^{G_a}$ is finitely generated defining the affine variety Y. Denote by q the morphism $X \to Y$ induced by the ring inclusion, by π the quotient morphism $X \to X/G_a$, and by $\overline{\pi}$ the canonical morphism $X/G_a \to Y$. For $z \in X/G_a$, let K_z be the quotient field of the stalk at z of the structure sheaf of X/G_a , and let $F_{\overline{\pi}(z)}$ be the quotient field of the henselization of $C_{0,\mathfrak{m}_{\overline{\pi}(z)}}$. Then $\overline{\pi}$ induces an isomorphism of $F_{\overline{\pi}(z)}$ and K_z .

Proof. If the action is locally trivial in the Zariski topology, then there is nothing to show (note that since Y is a variety, $O_{\pi(z),Y}$ is the henselization of $C_{0,\mathfrak{m}_{\pi(z)}}$). If the

action is not Zariski locally trivial, then it is nevertheless geometrically irreducible in codimension one (GICO) [7], i.e., the intersection of the kernel and image of the generating derivation δ lies in no height one prime ideal of $\mathbf{C}[X]$ (or of C_0). As a consequence, there is a closed subset Z of codimension precisely 2 in Y so that $\pi^{-1}(Z)$ has codimension 2 in X, and $q: X - \pi^{-1}(Z) \to Y - Z$ is a principal G_a bundle, locally trivial in the Zariski topology with quotient Y - Z [6, (and Theorem 4.2 below) below]. By the uniqueness of geometric quotients, $Y - Z \cong X/G_a - \overline{\pi}^{-1}Z$. The result follows by appealing to an affine étale covering of X/G_a enabling the reduction to an affine neighborhood U of z. A rational function on U representing an element of K_z is clearly in the function field of Y at $\pi(z)$.

Theorem 3.2. Consider a proper action of G_a on $X = \mathbb{C}^n$ with finitely generated ring of invariants C_0 defining the affine variety Y and morphism $q: X \to Y$. The action is locally trivial with quasiaffine quotient if and only if for each $x \in X$ the completion of the local ring of q(x) on Y is a unique factorization domain.

Proof. If the action is locally trivial, then q is a flat morphism (in the Zariski topology) whose image is in the smooth locus of Y.

To prove the converse, the argument is essentially that of [18, p. 289, Proposition 1]. Let y = q(x), \mathfrak{m} the corresponding maximal ideal of C_0 and $A = C_{0\mathfrak{m}}$. If yis a smooth point of Y, then the action is locally trivial in an affine neighborhood of $q^{-1}(y)$ [7]; so assume that Y is singular at y. From Lemma 3.2, we know that A^h is a unique factorization domain. Since the action is proper, X/G_a exists as an algebraic space. Let $\overline{\pi}(z) = y$ for $z \in X/G_a$, and denote by $B = O_{z,X/G_a}$. Since X/G_a is smooth but Y is singular at y, we can view A^h as a proper subring of B. If $\varphi \in B - A$, from Lemma 3.3, $\varphi = \frac{r}{s}$, $r, s \in A^h$. By choosing a suitable affine neighborhood of y, we can assume that there is a morphism of affine varieties $\overline{\pi}: V \to W$, subvarieties W_1, W_2 of W (the zero loci of r and s), whose intersection has pure codimension 2 in W, and a subvariety V_1 of V (the zero locus of s) of codimension 1. Since $r = \varphi s$, every component of V_1 maps to $W_1 \cap W_2$. In particular, the set of points at which $\overline{\pi}$ is not an isomorphism has codimension 1, a contradiction. \Box

Problem 1. For which actions does $C_{0,\mathfrak{m}}$ remain a unique factorization domain upon completion? In particular, does this hold for proper actions on C^4 ?

4. Remarks

Related to Lemma 3.2 we have the following.

Proposition 4.1. Let k be a field of characteristic 0 and A an affine k algebra satisfying the following conditions:

- (1) A is a unique factorization domain;
- (2) with T denoting an indeterminate, A[[T]] is a unique factorization domain (i.e., A has discrete divisor class group, e.g. A is a regular UFD);

(3) $G_a = G_a(k)$ acts on A via the locally nilpotent derivation d with kernel A^d . Then A^d satisfies Serre's S_3 condition.

Proof. Consider the extension D of the derivation to A[[T]], defined by $D\sum_{i=0}^{\infty} a_i T^i = \sum_{i=0}^{\infty} d(a_i)T^i$, and the extension of the G_a action by $\sigma_t \sum_{i=0}^{\infty} a_i T^i = \sum_{i=0}^{\infty} \exp(td)(a_i)T^i$ for each element $t \in k$. It is straightforward to check that

 $A[[T]]^{G_a} = A[[T]]^D = A^d[[T]] = A^{G_a}[[T]].$ Moreover, $A[[T]]^{G_a}$ is factorially closed in A[[T]]. Indeed, suppose that $a \in A[[T]]^{G_a}$ has the factorization $a = a_1a_2...a_k$ in A[[T]]. Then G_a permutes the ideals (a_i) inducing a homomorphism from G_a to the symmetric group on k letters. However, only the trivial homomorphism exists, so that $\sigma_t(a_i) = \lambda(t)a_i$ where $\lambda : G_a \to A[[T]]^*.$ Comparing coefficients of T^j , we find that $(\lambda(t) - 1)a_i = \sum_{j=1}^N \frac{t^j}{j!}d^j(a_i)$, where N + 1 is the least power of d annihilating a_i . Note that d^N annihilates $\sum_{j=1}^N \frac{t^j}{j!}d^j(a_i)$. Unless $\lambda(t) = 1$, we obtain a contradiction. Thus each $a_i \in A[[T]]^{G_a}$, and therefore this ring is a unique factorization domain. Thus A^d has discrete divisor class group and consequently satisfies Serre's condition S_3 [13].

Theorem 4.2. Let X be a smooth factorial quasiaffine variety. Suppose that G_a acts algebraically on X and that $O(X)^{G_a}$ is finitely generated over **C**. If dim $X \leq 5$, then $O(X)^{G_a}$ is Gorenstein.

Proof. Since $O(X)^{G_a}$ has dimension at most 4 and satisfies S_3 , [17, Corollary 1.8] shows that all of its localizations are Gorenstein.

The proposition also enables a strengthening of [6, Theorem 3.1] by removing the Cohen-Macaulay hypothesis on the ring of invariants.

Theorem 4.3. Let X be a smooth factorial complex affine variety of dimension $n \geq 4$ with a GICO G_a action generated by the locally nilpotent derivation δ of O(X). If $O(X)^{G_a}$ is finitely generated and the height of the ideal image $(\delta) \cap O(X)^{G_a}$ is at least 3, then the action is equivariantly trivial.

Proof. Let P be a prime ideal of $O(X)^{G_a}$ minimal over $\operatorname{image}(\delta) \cap O(X)^{G_a}$. Set $R = O(X)_{P}^{G_a}$, denote the closed point of **Spec** R by M, and let $U = \operatorname{Spec} R - \{M\}$. The Cohen-Macaulay hypothesis was used to show that $\operatorname{Ext}^1(O_U, O_U) \cong H^2_M(W, O_W) = 0$. But this follows from the S_3 condition.

Greuel and Pfister have conjectured [8] that any proper action of a unipotent group on an affine scheme X lifts to locally trivial action on some étale covering of X. If by étale covering one means a finite étale morphism, then the conjecture fails for $X = \mathbb{C}^n$ and the connected unipotent group by the simple conectivity of \mathbb{C}^n [10]. Indeed, suppose $X = \bigcup_{i=1}^m X_i$, with $q_i : X_i \cong X$ for each *i*. Connectivity implies that each orbit will lie in exactly one X_i so that the action is locally trivial on X_i and q_i is G_a equivariant (i.e., the action was already locally trivial on X). On the other hand, if one drops the finiteness requirement, then section 3 indicates why the conjecture does hold for $X = \mathbb{C}^n$ and proper G_a actions.

References

- A. van den Essen: An algorithm to compute the invariant ring of a G_a action on an affine variety, J. Symbolic Computation 16 (1993) 531-555. MR 95c:14064
- [2] D. Daigle and G. Freudenberg: Triangular derivations of $k[X_1, X_2, X_3, X_4]$, J. Algebra 241 (2001) 328–339. MR 2002g:13058
- [3] V. I. Danilov: On rings with discrete divisor class group, Math. USSR Sbornik 17 (1972) 228-236. MR 46:5311
- [4] J. K. Deveney, D. R. Finston, and M. Gehrke: G_a actions on Cⁿ, Comm. Alg. 22 (1994) 4977-4988. MR 95e:14038
- [5] J. K. Deveney and D. R. Finston: A proper G_a action on C⁵ which is not locally trivial, Proc. Amer. Math. Soc. 123 (1995) 651–655. MR 95j:14065

- [6] J. K. Deveney and D. R. Finston: G_a invariants and slices, Comm. Alg. 30 (2002) 1437-1447. MR 2003c:14073
- [7] J. K. Deveney and D. R. Finston: Regular G_a invariants, Osaka J. Math. 39 (2002) 275-282. MR 2003e:14037
- [8] G.-M. Greuel and G. Pfister: Geometric quotients of unipotent group actions II. Singularities (Oberwolfach, 1996), 27–36, Progr. Math. 162, Birkhäuser, Basel, 1998. MR 99k:14078
- J. K. Deveney and D. R. Finston: Local triviality of proper G_a actions, J. Algebra 221 (1999) 692-704. MR 2001b:14095
- [10] D. Wright: On the Jacobian conjecture. Illinois J. Math. 25 (1981) 423-440. MR 83a:12032
- [11] H. Popp: Moduli Theory and Classification Theory of Algebraic Varieties, Lecture Notes in Mathematics, no. 620, Springer-Verlag, Berlin, Heidelberg, New York, 1977. MR 57:6024
- [12] H. Holmann: Komplexe Räume mit komplexen Transformationsgruppen, Math. Ann. 150 (1963) 327-360. MR 27:776
- [13] J. Lipman: Unique factorization in complete local rings, Proc Sympos. Pure Math. 29 (1974) 531–546. MR 51:10325
- J. Winkelmann: On free holomorphic C actions on Cⁿ and homogeneous Stein manifolds, Math. Ann. 286 (1990) 593-612. MR 90k:32094
- [15] E. Halanay: Un exemple de inel factorial al carui completat nu este factorial, St. Cerc. Mat. 30 (1978) 495-497. MR 80a:13017
- [16] P. van Rossum: Tackling Problems on Affine Space with Locally Nilpotent Derivations on Polynomial Rings, Thesis, Catholic University Nijmegen, 2001.
- [17] R. Hartshorne and A. Ogus: On the factoriality of local rings of small embedding codimension, Comm Alg. 1 (1974) 415-437. MR 50:322
- [18] D. Mumford: The Red Book of Varieties and Schemes, Lecture Notes in Mathematics, no. 1358, Springer-Verlag, Berlin, Heidelberg, New York, 1999. MR 2001b:14001
- [19] S. Milne: Étale Cohomology, Princeton University Press, Princeton, NJ, 1980. MR 81j:14002

Department of Mathematical Sciences, Virginia Commonwealth University, 1015 W. Main St., Richmond, Virginia23284

E-mail address: jdeveney@atlas.vcu.edu

Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico88003

E-mail address: dfinston@nmsu.edu

Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003

E-mail address: petervr@nmsu.edu