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i.BSTRACT

An algorithm for the triangular decomposition of the sum of a positive

definite matrix and a symmetric dyad is described. Several applications

of the algorithm to the implementation of a square root Kalman filter are

given.
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TRIANGULAR DECOMPOSITION OF A POSITIVE DEFINITE MATRIX

PLUS A SYMMETRIC DYAD WITH APPLICATIONS TO KALMAN FILTERING

1. INTRODUCTION. Given a positive definite matrix P Choleski's theorem

states that there exists a real, non-singular, lower triangular matrix

L such that

TLL = P (1)

Furthermore if the diagonal elements of L are taken to be positive the

decomposition is unique. L is called the square root of P. The Choleski

algorithm for decomposition of P is pre:ented in [1] and [2]. The

Choleski decomposition is very useful in many numerical linear algebra

problems. In particular it provides a useful numerical technique in the

matrix square root formulation of the Kalman filter [3]. The triangular

decomposition of Choleski is extended below to the decomposition of a posi-

tive definite matrix P plus a symmetric dyad cxxT

II. FIRST TRIANGULAR DECOMPOSITION ALGORITHM. Suppose we have a lower

triangular decomposition L of a positive definite matrix P. The elements

of L must satisfy the equations.

i
. L (i,j)9.(k,J) P i k>i (2) i

i
j ~l

i 2(i'J) =Pi (3)

S~J=l
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P

Consider the problem of computing the triangular decomposition L" of the

modified matrix

" P + Txx (4)

given the decomposition L of P. The decomposition L" must satisfy the

equations

9 £'(i,j)£/(k,j) V i(i,j)M(k,j) + cXiXk, k>i (5)

j=l j=1

i i
22

y,-2(i,j) 1 L2 (ij) + cxi (6)
j=l j=l

First consider (5) and (6) for the case of i=l. in this case

/(l= (l,l)k(k,l) + cxlXk k>l (7)

Z2 (1,1) = z2(1,11 + cx2 (8)

The first column of the modified matrix L' is easily computed from (7) and

(8). Now rewrite (5) as

i i

I k'(i,j)X'(k,j) + 9/(i,l)9/(k,l) I X(i,j)I(k,j) + L(i,l)I(k,l)

j=2 j:=2S~(9)

+ cXiXk

2



The second term on the left of (9) can be computed from (7) as

S£'(~i••(ki) 2(i 1_-_- t(~)(kl (i~l)L(l,1) C~l~ +

L •'-(1,1) L.2 (1,1)1k

(1(10)

2 2
i(kl)L(il) CXl c I XX1

SV22(1,1) 
2. (1,1)

Substituting (10) into (9) and combining terms gives

t (ij)'(kj) t(ij).(kj ) (1) (11)

j=2 J=2

F where

()1  _ ct 2 (1,1) (12)

c ((11)( .(1,l)

x~l) x x. 1 tg ,l) (13)

Similarly, (6) can be written as

i i

)X R-2 (i,j) + £'2(i,i) : [ £2 (i,j) + £2 (i,l)+ cx2 (14)

j=2 J=2

3 I
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Substituting from (7) for trie second teria on the loft of (14) And combining

terms gives

i 2
X 2 (i,J) = j 2(i,', + c(1) x 1) (1

j=2 j=2

Equations (11) and (15) define a decomposition problen equivalent to the

original problem defined by (5) and (6) but with the di,,encion reduced

by one. It is easily seen that the appllcatio:, of the abovo tec-hnque

n times, each time reducing the dimension of the decompnPt1:Ion problqn by

one, solves the original decomposition problem. The follo•i•ig equations

summarize the algorithin for tne trianguldr decomposition of 11-cxxT.

= ii - l,n (16)

2 ) 1 ) i i) i k i 4- lk)n (17)L£(i 'i) Mi Xk~)217 ,1

x (i~l) x x(i-i) £(k,i) i + 1 <._n (Ou)

C (i+1)

III. SECOND TRIANGULAR DECOMPOSITION ALGORITHM. An alternate decomposi-

tion of positive definite matrix inq possible. Let L be a unit lower tri-

angular matrix, i.e., having ones alung the diagornal. Then a poi Litve

definite matrix P can be written ac

4



P - LDLT (20)

where D is a diagonal matrix of positive numbers. Ara algo.lithm for'

computing the decomposition

LD L.T =LDLT + cxxT (21)

can be derived in a manner parallel to the previous .decomposttion.

algorithm. The algorithm is as follows.

(i) (i)2

d: = d. + c x. i = l,n (22)

(i) (i)

XV(ki) t(ki) + i + l<k<n (24)

C(i+l) =_ M (5

!V. APPLICATION TO KALMAN FILTERING I. At a measurement update L. a

dtscrete Kalman filter the state estimate is given by

~~ 14k] +kklkzk-Hkxkkl (26)

k k/k1 k k k~/k-5



where the covariance matrix P is

k

Pk ( Pkk1 TkR-1H.) -1 (27)

Consider the measurement zk to be a scalar since the vector measurement

problem can always be reduced to this case, see [3]. In this scalar case

Hk is a row vector, R; is a scalaa, and Pk i8 nxn. In the matrix square

root formulation of the Kalman filter given in [3], (27) is the inversion

of a matrix plus a dyad which is simply expressed by the method of modi-

fication given in Householder [4]. This gives

T

S =t / . lowerk/k l wHkpk/k (2

-u~luigJ (28))

k k/k-l k* H T
Tk,- Tk/k-T k

F L~ncek and Pkk~ are positive definite write them as

k~ kik-

IT

Ik/' k k/k-a I,. -l k/k (29)A6 ,Gubaitutng I (28
T T T!



c , R/ P,+H,~ _lHk (30)

Let

T .T
uk Lk/kIL (31)

and

w L (32)
k k/k-l'1 k

Then

LkT T CkkkT
L L L iL T T (33)

kk k/k-i k/k-i kwk k

Thus (33) is in the proper form for application of the first algorithm.

In addition to the above computations the state estimate given by (26)

must also be computed. Some manipulation shows that (26) can be written

as

k =k/k-i k k(7k-kk/k- (34)

Now consider t.he numerical efficiency of the application. The

execution of (31) and (32) takes n(n+].) (mult). (30) takes n (mult) and

1 (div), (34) takes (n+J) (mult). The decomposition algorithm for (33)

requires

(3n 2 +9n-6) /2 (murt)

7



2(n-1) (dlv) and n /-s. Thus the use of the first decomposition algo-

rithm requires

(5/2 n2 +15/2 n-2) (mutt)

2n-1 (dlv) and n r's. The technique presented in [3] which we have been

using in our Kalman filter program requires about 3n 2+2n (mult) but does

not generate a triangular square root matrix.

Now consider the numerical efficiency of the second algorithm. A

development paralleling (29)-(34) gives

TLT T T T
k kLk Lk/klDy/k-lLý/k~l- l k kk (35)

where

T T
uk= Dk/k iLk/k lH (36)

wk = Lk/k-l'k (37)

Ck = 1// ( R+Hkpk/kl1 ) (38)

The use of the second algorithm and execution of (34)-(38) requires

2n 2Tn (mult) and n (div).

The application of the second algorithm results in fewer operations

than either our present algorithm or the first algorithm presented

above plus the benefit of having a covariance square root which is

tr5.angular.

Ii,



root of the covariance matrix the square root of the inverse covariance
matrix may be computed. The updating of the inverse covariance matrix

is given by (27).

- -1 T-1

:k ' k/k-l + NR1 k Hk (39)

since the inverse covariance is also positive definite, write

V 1  L T
k/k-1 L k/k-i Dk/k-1 k/k-i

and

-1 -1-T
Ik LD Lk

Again considering scalar measurements let u and ck = hR. Then

alk-d k-

LD-L' L D LT + c uu T
k k Lk/kDk/k-l k/k-I k k k

which is in the form for application of the second algorithm. The
computation of the corrected state estimate given by (26) requires the

computation of

Yk Zk-HkJk/k-l) (41)

1'
9 !
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Let e., -Ck ( zk-Hk%!k)1 u. and rewrite (41) as

P-klYk =- L(kDkLkYk ek (42)

The solution of (42) for yk requires the solution of two sets of linear

equations each with a triangular coefficient matrix. The solution of a

triangular set cf linear equations is a standard procedure in numerical
2analysis. The solution of (42) for the vector Yk requires about n +n

(mult) and n (div). The solution of the Kalman filter equations (40)

and (42) at a measurement update requires about n2+5n (mult) and n (div)

using the second decomposition algorithm. The specification of (40) and-1
(42) as the measurement update equations requires that Lk/k.1 be computed
at a time update. In the special case where there are no process

dynamics, i.e. we are estimating constant parameters, and there is no

process noise k so that no additional computation is required

to obtain k/kl Although this is a special case, it is of interest in the

bias filter pot.tion of the WSHR BET program where the measurement biases

are assumed to be constant in time.

VI. APPLICATION TO KALMAN FILTERING III. The use of the second tri-

angular decomposition algorithm in the WSMR BET, which is an extended

Kalman filter, has resulted in a significant increase.in numerical

efficiency, however, the motivating factor ."or the development and use
of this algorithm was for the application described below.

The Kalman jilter in the WSMR BET is divided into two filters, the

zero-bias filter which produces trajectory state estimates xk and the

10
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bias filter which produces estimates bk of the measurement biases. These

two estimates are combined to form the optimal trajectory state istimate
Sdefined by

Xk k Tkbk (43)

where T is a combining matrix which must satisfy equations determined from
k

* the orthogonality properties of the statr, zstimates. One property of the
* A

filter decomposition given in (43) is the requirement that xk and bk be

orthogonal. This requirement is naturally satisfied by the equations

governing Xk, bk, and Tk except at a point where a measuring instrument

is deleted from the filtering process. An instrument may be dropped be-

cause it is no longer taking observations, its bias is too large, or the

measurements are chronically inconsistent with their statistics. Let•* *

x, P denote the zero-bias state estimate and its covariance just prior

to dropping a measurement from the filtering solution and let x+ and P÷

be ths same quantities immediately after dropping the measurement.

Similarly let b and b denote the bias state estimates before and after- + a a

dropping a measurement. b is formed by deleting the component of b
+

corresponding to the measurement being dropped. T and T are the

combining matrices before and after. T+ has one less column than T_.

P and P are the bias covariance matrices before and after dropping a

measurement. P is formed from Pb by deleting the tow and column

t'orresponding to the measurement being dropped. The updating equation

for x is

+ x + ti b +b (44)i\ ..-

o'



IA
where t. is the column of T_ being deleted, b1 is the bias estimate for

the measurement being iropped, and £ is vector chosen so that x and b+
will be orthogonal in the usual statistical sense. The updating equation

for P is

P• P" + ~( (i,i)_ZTPbit(45P+ _+ .T Pb- (b5

if

*T
P =CDC

and

p* *** T
P = CD+C
P+ C+D+ C+

then (45) is in a form for application of the second triangular decompo-

sition algorithm. In addition, let

P ~C DCT
b- = b-Db-b-I"

and

TPb+ = C b+D bC+

Let the ith row and column C b e deleted. Also let the ith row and

column of D be deleted. Call the resulting matrices C'_ and Db
b- ~b- b

12



Then

C T C~ C_ + D cCT (6
Cb+Db+Cb+ Cb-'b-I i ii(6

where ci is the column deleted from C and d, is the diagonal element

deleted from D b. Thus (46) presents another application for the

decomposition algorithm.
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