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£BSTRACT

An algorithm for the triangular decomposition of the sum of a positive
definite matrix and a symmetric dyad is described. Several applications
of the algorithm to the implementation of a square root Kalman filter are

given.
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TRIANGULAR DECOMPCSITION OF A POSITIVE DEFINITE MATRIX
PLUS A SYMMETRIC DYAD WITH APPLICATIONS TO KALMAN FILTERING

I. INTRODUCTION. Given a positive definite matrix P Choleski's theorem

states that there exists a real, non-singular, lower triangular matrix
L such that

LL' = P (1)

Furthermore if the diagonal elements of L are taken to be positive the
decomposition is unique. L is called the square root of P. The Choleski
algorithm for decomposition of P is prezented in [1] and [2]. The

Choleski decomposition is very useful in many numerical linear algebra
problems. In particular it provides a useful numerical technique in the
matrix square root formulation of the Kalman filter [3]. The triangular
decomposition of Choleski is extended below to the decomposition of a posi-
tive definite matrix P plus a symmetric dyad cxxT.

II., FIRST TRIANGULAR DECOMPOSITION ALGORITHM. Suppose we have a lower
triangular decomposition L of a positive definite matrix P. The elements
of L must satisfy the equationms,.

i
I 204,3)20,3) = P, ki (2)
3=l
i

20, oy -
I £°Gd,5 =py (3)
3=1
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Consider the problem of computing the triangular decomposition L~ of the

modified matrix

P’ = P + oxx' (4)

given the decomposition L of P. The decomposition L” must satisfy thne

equations
i i
T 27,07 (k,3) = § 2(i,5)0(k,3) + ex %, , k>1 (s)
3= j=1
i i
Do, = [ 22,5 ¢ o (6)
j=1 j=1

First consider (5) and (6) for the case of i=l. 1iIn this case

27(L,1)2°(x,1) = 2(1,1)R(K,1) + eX X, k>1 (7

272(1,1) = 22(1,1) + cxi (8)

The first column of the modified matrix L” is easily computed from (7) and

(8). Now rewrite (%) as

i i
T 27(5,)07(k,3) + 7°(4,1007°(k,1) = § 2(1,9)8(k,3) + 2(i,1)2(k,1)
j=2 j=2

(9)

+ CX.X
xl k

PPy N




v -

T R

¥,

A MPEBTLE {1 N AR T SO T TP T PO IO U T ST S A TR IR T ey
- -

The second term on the left of (9) can be computed from (7) as

£(4,1)2Q1,1)

2
275, 1007 (k,1) = Gl pei,1)00K,3) ¢ BRIl ox k. +

27°(1,1) L’2(1,1) Lk
(10)
C2X2
2(2,1)2(1,1) oxyx, + 21 %%,
£79(1,1) 74,1y ¢
substituting (10) into (9) and combining terms gives
i i
T 2°(,)87(k,3) = I &(1,9)80,3) + c(l)xgl)xil) (11)
j=2 3=2
where
1) _ e22@,1)
c) - Ll 12)
L9(1,1)
£(3,1)
(1) _ !
Xy (*i - Tﬁ"ﬁ‘) (13)
similarly, (6) can be written as
i i
T 225,9) + 2200 = § 2209 ¢ 22, v (1)
j=2 j=2
3
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Substituting from (7) for the second term on the left of (14) and combining

terms gives

i 1 ,
2
T o725,9) = § 22(1,9) + c(l)xil) (15)
j=2 3=2

Equations (11) and (15) define a decomposition problem equivalent to the
original problem defined by (5) and (6) but with the dimeneion reduced

by one. It is easily seen that the appllcation of the ahbove technique

e = A o G —a Y

n times, each time reducing the dimension of the decompneition problem by
one, solves the original decomposition problem. The following equations

summarize the algorithm for the triangular decomposition of PfcxxT.

Y 1/2
2°(1,i) = [ 22(i,i)+c(1)x§i) .] i=1,n (16)
(1) (D), (1) .

VT 1€ %)) Xy Xk

(k,i) = I’TT_TT 2{k,1) 1 M i € ) { 4 1<ken (17)

(i)

. . *x, (4,1)

x§1+1) = xH - A {+1¢9n (16)

. . 2 '
(41 c(i)(%.(llj’») ) a0 |

III. SECOND TRIANGULAR DECOMPOSITION ALGORITHM. An alternate decompuni-

tion of positive definite matrix is possible. Let L be a unjt lowar tri-

angular matrix, i.e., having ones alung the diagoral. Thun a ponitive

definite matrix P can be written ac




P = LDLT o : . (20)

where D is a diagonal mairix of positive numbers. An algorithm fow
computing the decomposition

| L°p°L°T = wor¥ + exx® . N 1

can be derived in a manner parallel tb the previous .decomposition

, algorithm. . The algorithm is as follows.

RN ¢ I ¢ L
i g te R i=1,n (22)
(i+1) _ x](<i) - xgi)z(k,i) (23)

O
27 (,1) = MKyE) + g x}((lﬂ')} i+ 1<ken (21)
. /A \ 2
(i) . c(l)(a-}> | (25)
i

IV. APPLICATION TO KALMAN FILTERING I. At a measurement update in a

discrete Kalman filter the state estimate is given by

:; I T"l - A R
ST M1t R (zk Hkxk/k—l) (26)
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T

where the covarlance matrix Pk is

( k/k‘i"kak Hk) : (27)

Consider the measurement z, to be a scalar since the vector measurement
problem can always be reduced to this case, see [3]. In this scalar case
H, is a row vectur, RP is a scalar, and P is nxn. In the matrix square
root formulation of the Kalman filter given in (3], (27) is the inversion
of a matrix plus a dyad which is simply expressed by the method of modi-

fication given in Householder [4]. This gives

T

N Py k-1 k-1

p =P - -1 (28)
k/k-1 #H P Y
ALY

Since Pk and ?k/k-l are positive definite write them as

and

T
Prsk-1 ® Ye/he1Mk/k-1

Anowno that Ly/k—l is lower triangular with positive diagonal elements.
Gubst{tuting in (28)

T ot T T T
Wby ® L™ 1 ™ SkMszi-1Me/k- 1PV /k-1 % /k-1 (29)

6
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T l/( Rt P /ie-1Mk ) (30)

Let
T . LT
b R WL (1)
and
" T be/k-1% (82)
Then
T T T
Libye = breaberk-1 ~ Sk (33)

Thus (33) is in the proper form for application of the first algorithm.
In addition to the above computations the state estimate given by (26)
must also be computed. Some manipulation shows that (26) can be written

as

2 +cw(7-H§ ) (34)

kK~ ®k/k-1 7 K"k kTR Kk/k-1
Now consider the numerical efficiency of the application. The

execution of (31) and (32) takes n(n+l) (mult). (30) takes n (mult) and
1 (div), (34) takes (n+l) (mult). The decomposition algorittm for (33)

requires

(3n+0n-6) /2 (murt)
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2(n-1) (div) and n ¥ 's. Thus the use of the first decomposition algo-
rithm requires

(5/2 n2+15/2 n~2) (mult)

2n-1 (div) and n ¥ 's. The technique presented in [3] which we have been
using in our Kalman filter program requires about 3n2+2n (mult) but does
rot generate a triangular square root matrix.

Now consider the numerical efficiency of the second algorithm., A
development paralleling (29)-(34) gives

L = Bt /kerbken Sk (35)
where
b
9 Dy e sieae (&)
¥ ® Dy/k-1 (37)
¢ = 1/ (kakpk /k_l}{:) . (38)

The use of the second algorithm and execution of (34)-(38) requires
2n2+7n (mult) and n (div).

The application of the second algorithm results in fewer operations
than either our present algorithm or the first algorithm presented
above plus the benefit of having a covariance square root which is

triangular.
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V. APPLICATION TO KALMAN FILTERING II. Rather than compute the square

root of the covariance matrix the square root of the inverse covariance

matrix may be computed. The updating of the inverse covariance matrix
is given by (27).

-1 _ -1 T,=-1
K Pk/k-l + HR H (39)

P

since the inverse covariance is also positive definite, write

-1 -1 ST,
Przk-1 ® k-1 Pisk-1 Bkykei

and

-1 -1 -T
= LDy
Again considering scalar measurements let w = H: and ¢ = l/Rk. Then
~l ~T T
k Lk k/k-l Pirk-1li/k-1 ¥ ik (40)

which is in the form for application of the second algorithm. The

computation of the corrected state estimate given by (26) requires the
computation of

T
- D
Yy = R (zk Hkxk/k l) (41)




-

Let e. = ¢ ( zk—Hkxk/k-l) u, and rewrite (41) as

-1 _ -1 .-T _ '
BV T LB L Y, s e (42)

The solution of 2u2) for Y requires the solution of two sets of linear
equations each with a triangular coefficient matrix. The solution of a
triangular set cf linear equations is a standard procedure in numerical
analysis. The solution of (42) for the vector Vi requires about n2+n

(rult) and n (div). The solution of the Kalman filter equatioms (40)

and (42) at a measurement update requires about n2+5n (mult) and a (div)
using the second decomposition algorithm. The specification of (40) and

(42) as the measuremeat update equations requires that L be computed

1
k/k=-1
at a time update. In the special case where there are no process
dynamics, i.e. we are estimating constant parameters, and there is no
process noise L;tk-lzL;il so that no additional computation is required

to obtain L Although this is a special case, it is of interest in the

k/k-1"
bias filter portion of the WSMR BET program where the measurement biases

are assumed to be constant in time.

VI. APPLICATICN TO KALMAN FILTERING 1II. The use of the second tri-
angular decompositicn algorithm in the WSMR BET, which is an extended

Kalman filter, has resulted in a significant increase.in numearical
efficiency, however, the motivating factor Ior the development and use

of this algorithm was for the application described below.

The Kalman rilter in the WSMR BET is divided into two filters, the

L]
zero-bias filter which produces trajectory state estimates x

K and the

10
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bias filter which produces estimates bk of the measurement biases. These

two estimates are combined to form the optimal trajectory state :stimate
% defined b
X Y

~ - * ’
X = xk’+ kak (43)

where Tk is a combining matrix which must satisfy equations determined trom
the orthogonality properties of the statr cstimates. One property of the
X and bk be
orthogonal. This requirement is naturally satisfied by the equations

* ~

filver decompositicn given in (43) is the requirement that x

governing X, bk’ and Tk except at a point where a measuring instrument
is deleted from the filtering process. An instrument may be dropped be-
cause it is no longer taking observations, its bias is too large, or the
measurements are chronically inconsistent with their statistics. Let

xf, Pf denote the zero-bias state estimate and its covariance just prior

to dropping a measurement from the filtering sclution and let x, and P+

be the came quéntitief immediately after dropping the measureme:t.
Similarly let b_ and b+ dﬁnote the bias state estimates before and after
dropping a measurement. b+ is formed by deleting the component of b_
corresponding to the measurement being dropped. T_ and T+ are the
combining matrices before and after. T+ has one less column than T_.
Pb- and Pbr are the bias covariance matrices before and after dropping a

measurement. Pb+ is formed from Pb_ by deleting the trow and column

corresponding to the measurement being dropped. The updating equation

for x 1is

13 * n ™
X, =%t ti( b.-% b+) (uy)

11

e - . aaw‘“&%sw:ab. Ty
uﬁgyanywuwhvﬁ




where T is the column of T_ being deleted, bi is the bias estimate for

®
the measurement being dropped, and & is vector chosen so that x and b
g drop + +

will be orthogonal in the usual statictical sense. The updating equation
U
for P is

Pt =ty t.t?( P, (i,i)-2Tp z) (45)
+ - ii\ b- b+
If '
e et |
and

* % R AT
+ T+ 47t

then (45) is in a form for application of the second triangular decompo-
sition algorithm. In addition, let

T
b- = “p-Pp-Cp-1

o
1]

and
T )
Poe = Cb+Db+Cb+
.th th
Let the i row and column Cb— be deleted. Also let the i row and
column of D, be deleted. Call the resulting matrices C” and D’

b~

b- b-*
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Then

T e e s T
CoePbelpe T Op-Up G * D%y (u€)

where c, is the column deleted from C, and d, is the diagonal element

b-

deleted from Db-' Thus (46) presents another application for the

decomposition algorithm.
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