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In ultrarelativistic heavy-ion collisions, the Fourier decomposition of the relative azimuthal angle, �φ,
distribution of particle pairs yields a large cos(3�φ) component, extending to large rapidity separations �η > 1.
This component captures a significant portion of the ridge and shoulder structures in the �φ distribution, which
have been observed after contributions from elliptic flow are subtracted. An average finite triangularity owing
to event-by-event fluctuations in the initial matter distribution, followed by collective flow, naturally produces
a cos(3�φ) correlation. Using ideal and viscous hydrodynamics and transport theory, we study the physics
of triangular (v3) flow in comparison to elliptic (v2), quadrangular (v4), and pentagonal (v5) flow. We make
quantitative predictions for v3 at RHIC and LHC as a function of centrality and transverse momentum. Our
results for the centrality dependence of v3 show a quantitative agreement with data extracted from previous
correlation measurements by the STAR collaboration. This study supports previous results on the importance of
triangular flow in the understanding of ridge and shoulder structures. Triangular flow is found to be a sensitive
probe of initial geometry fluctuations and viscosity.

DOI: 10.1103/PhysRevC.82.034913 PACS number(s): 25.75.Gz, 25.75.Ld, 24.10.Nz

I. INTRODUCTION

Correlations between particles produced in ultrarelativistic
heavy-ion collisions have been thoroughly studied experimen-
tally. Correlation structures previously identified in proton-
proton collisions have been observed to be modified and pat-
terns that are specific to nucleus-nucleus collisions have been
revealed. The dominant feature in two-particle correlations
is elliptic flow, one of the early observations at RHIC [1].
Elliptic flow leads to a cos(2�φ) term in the distribution
of particle pairs with relative azimuthal angle �φ. More
recently, additional structures have been identified in azimuthal
correlations after accounting for contributions from elliptic
flow [2–7]. An excess of correlated particles is observed in a
narrow “ridge” near �φ = 0 and the away-side peak at �φ =
π is wider in comparison to that in proton-proton collisions.
For central collisions and high-transverse-momentum triggers,
the away-side structure develops a dip at �φ = π , with two
“shoulders” appearing. These ridge and shoulder structures
persist for large values of the relative rapidity �η, which means
that they are produced at very early times [8].

It has recently been argued [9] that both the ridge and the
shoulder are natural consequences of the triangular flow (v3)
produced by a triangular fluctuation of the initial distribution.
The purpose of this paper is to carry out a systematic study of v3

using relativistic viscous hydrodynamics, which is the standard
model for ultrarelativistic heavy-ion collisions [10]. We also
perform transport calculations [11], because they allow us to
check the range of validity of viscous hydrodynamics and, also,
because they provide further insight into the physics. Along
with v3, we also investigate v4 (quadrangular flow) and v5

(pentagonal flow). In Sec. II, we recall why odd moments
of the azimuthal distributions, such as v3, are relevant.

*jean-yves.ollitrault@cea.fr

In Sec. III, we study the general properties of anisotropic
flow induced by a harmonic deformation of the initial density
profile using hydrodynamics and kinetic theory. In Sec. IV, we
present our predictions for v3 and v5 at RHIC and LHC. The
contribution of quadrangular fluctuations to v4 is difficult to
evaluate because v4 also has a large contribution from elliptic
flow [12]: this will be studied in a forthcoming publication
[13].

II. CORRELATIONS FROM FLUCTUATIONS

A fluid at freeze-out emits particles whose azimuthal
distribution f (φ) depends on the distribution of the fluid
velocity [12]. f (φ) can generally be written as a Fourier series,

f (φ) = 1

2π

(
1 + 2

+∞∑
n=1

vn cos(nφ − nψn)

)
, (1)

where vn are the coefficients of anisotropic flow [14] that are
real and positive, and ψn is defined modulo 2π/n (for vn �= 0).
Equivalently, one can write

〈einφ〉 ≡
∫ 2π

0
einφf (φ) dφ = vne

inψn, (2)

where angle brackets denote an average value over outgoing
particles.

Generally, vn is measured using the event-plane method
[15]. However, two-particle correlation measurements are also
sensitive to anisotropic flow. Consider a pair of particles with
azimuthal angles φ1, φ2 = φ1 + �φ. Assuming that the only
correlation between the particles is caused by the collective
expansion, Eq. (2) gives

〈ein�φ〉 = 〈einφ1e−inφ2〉 = 〈einφ1〉〈e−inφ2〉 = (vn)2. (3)

The left-hand side can be measured experimentally, and vn

can thus be extracted from Eq. (3) [16]. Experimentally, one
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averages over several events. vn fluctuates from one event to
the other, and the observable measured through Eq. (3) is the
average value of (vn)2. It can be shown that the event-plane
method also measures the rms,

√
v2

n, unless the “reaction-plane
resolution” is extremely good [17,18].

Most fluid calculations of heavy-ion collisions are done
with smooth initial profiles [19–23]. These profiles are
symmetric with respect to the reaction plane ψR , so that all ψn

in Eq. (1) are equal to ψR (with this convention, all vn are not
necessarily positive). For symmetric collisions at midrapidity,
smooth profiles are also symmetric under φ → φ + π , so that
all odd harmonics v1, v3, etc., are identically 0. However, it
has been shown that fluctuations in the positions of nucleons
within the colliding nuclei may lead to significant deviations
from the smooth profiles event by event [24,25]. They result in
lumpy initial conditions that have no particular symmetry, and
this lumpiness should be taken into account in fluid dynamical
calculations [26–29]. More precisely, one should calculate the
azimuthal distribution for each initial condition, then average
over initial conditions.

Initial geometry fluctuations are a priori important for
all vn, as anticipated in Ref. [30]. Their effect on flow
measurements has already been considered for elliptic flow v2

[31,32] and quadrangular flow v4 [33]. Event-by-event elliptic
flow fluctuations have been measured and found to be signif-
icantly large, consistent with the fluctuations in the nucleon
positions [34]. Directed flow, v1, is constrained by transverse
momentum conservation, which implies

∑
ptv1(pt ) = 0 and

is not considered here. In this paper, we study triangular flow
v3 [9], and pentagonal flow v5, which arise solely owing to
initial geometry fluctuations.

III. FLOW FROM HARMONIC DEFORMATIONS

Elliptic flow is the response of the system to an initial
distribution with an elliptic shape in the transverse plane (x,y)
[35]. In this article, we study the response to higher-order
deformations. For the sake of simplicity, we assume in this
section that the initial energy profile in the transverse plane
(x,y) is a deformed Gaussian at t = t0:

ε(x,y) = ε0 exp

(
− r2{1 + εn cos[n(φ − ψn]}

2ρ2

)
, (4)

where we have introduced polar coordinates x = r cos φ, y =
r sin φ. In Eq. (4), n is a positive integer, εn is the magnitude of
the deformation, ψn is a reference angle, and ρ is the transverse
size. Convergence at infinity implies 0 � εn < 1. Figure 1
displays contour plots of the energy density for n = 3 and
ε3 = 0.2. The sign in front of εn in Eq. (4) has been chosen
such that ψn is the direction of the flat side of the polygon. For
n = 2, it is the minor axis of the ellipse, which is the standard
definition of the participant plane [25].

For t > t0, we assume that the system evolves according
to the equations of hydrodynamics or to the Boltzmann
transport equation, until particles are emitted, and we compute
the azimuthal distribution f (φ) of outgoing particles. The
initial profile, Eq. (4), is symmetric under the transformation
φ → φ + 2π

n
, therefore f (φ) has the same symmetry. The only

ψ3

FIG. 1. (Color online) Contour plots of the energy density (4) for
n = 3 and ε3 = 0.2.

nonvanishing Fourier coefficients are 〈einφ〉, 〈e2inφ〉, 〈e3inφ〉,
etc. Symmetry of the initial profile under the transformation
(φ − ψn) → −(φ − ψn) implies

〈einφ〉 = vne
inψn , (5)

where vn is real. As we shall see, vn is usually positive for
εn > 0, which means that anisotropic flow develops along the
flat side of the polygon (see Fig. 1).

We now present quantitative results for vn, as defined
by Eq. (5), using two models. The first model is relativistic
hydrodynamics (see Ref. [10] for details). We fix ε0, t0, and
the freeze-out temperature to the same values as for a central
Au-Au collision at RHIC with Glauber initial conditions [10],
and ρ = 3 fm, corresponding roughly to the rms values of
x and y. Unless stated otherwise, results are shown for
pions at freeze-out. Corrections owing to resonance decays
[36] are not included in this section. They are included
only in our final predictions in Sec. IV. The second model
is a relativistic Boltzmann equation for massless particles
in 2 + 1 dimensions (see Ref. [11] for details). The only
parameter in this calculation is the Knudsen number K = λ/R,
where the mean free path λ and the transverse size R are
defined as in Ref. [11]. ρ in Eq. (4) is the rms width of the
energy distribution, while R is defined from the rms widths σx

and σy of the particle distribution, by R−2 = σ−2
x + σ−2

y . For
a two-dimensional ideal gas of massless particles, the particle
density n is related to the energy density through n ∝ ε2/3,
which gives R =

√
3

2 ρ. Boltzmann transport theory is less
realistic than hydrodynamics for several reasons.

(i) The equation of state is that of an ideal gas, while the
equation of state used in hydrodynamics is taken from
lattice QCD: it is much softer around the transition to
quark-gluon plasma. Although transport is equivalent
to ideal hydrodynamics when the mean free path goes to
0, our results from transport and ideal hydrodynamics
differ in this limit, because of the different equation of
state.

(ii) There is no longitudinal expansion.
(iii) Particles are massless.

The main advantage of transport theory is that it can
be used for arbitrary values of the mean free path, while
hydrodynamics can only be used if the mean free path is small.
Furthermore, the time evolution of the system can be studied
and no modeling is required for the freeze-out process using the
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FIG. 2. (Color online) vn versus εn in transport theory and ideal
hydrodynamics. The Knudsen number in the transport calculation is
K = 0.025, close to the ideal hydrodynamics limit K = 0.

transport approach, because one follows all elastic collisions
until the very last one.

A. vn versus εn

Figure 2 displays vn versus εn for n = 2, 3, 4 in transport
theory and ideal hydrodynamics (zero viscosity). The values
of vn are smaller in hydrodynamics, which is caused by the
softer equation of state [37].

As expected from previous studies of v2 [38] and v3 [9], we
observe that vn is linear for small values of εn. Nonlinearities
are stronger for larger values of n, in both transport theory
and hydrodynamics. A possible interpretation of these strong
nonlinearities is that the contour plot of the initial density
is no longer convex if εn > 2/(n2 − 2). The threshold values
for n = 3, 4 are ε3 = 2

7 and ε4 = 1
7 . If the contour plot is not

convex, the streamlines (which are orthogonal to equal density
contours) are no longer divergent: shock waves may appear,
which hinder the development of anisotropies.

The results presented in the remainder of this section are
obtained in the linear regime where vn ∝ εn. In this regime,
we find v2/ε2 	 0.21, in agreement with other calculations
[39]. Note that in our hydrodynamic calculation, chemical
equilibrium is maintained until freeze-out. When chemical
freeze-out is implemented earlier than kinetic freeze-out,
v2/ε2 is slightly larger [19]. Figure 2 shows that v3/ε3 has
a magnitude comparable to that of v2/ε2, while v4/ε4 is
significantly smaller. Our results for v5/ε5 (not shown) are
even smaller.

B. Time dependence

In the transport approach, one follows all the trajectories
of the particles, so that vn is well defined at all times, which
is not the case in hydrodynamics before freeze-out. Figure 3
displays the results for vn versus t/ρ, where ρ is the width of
the initial distribution, Eq. (4). As expected for dimensional
reasons [37], anisotropic flow appears for t ∼ ρ. However, vn

appears slightly later for larger n. This can be traced to the
behavior of vn at early times. The transport results presented
in Fig. 3 are obtained with a very small value of the Knudsen
number, K = 0.025, close to the ideal hydrodynamics limit.
In ideal fluid dynamics, the fluid transverse velocity increases
linearly with t , and vn involves an nth power of the fluid
velocity, so that vn scales like tn. In transport theory, the
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FIG. 3. (Color online) vn/εn versus time in transport theory.
Each curve is the result of a single Monte Carlo simulation with
K = 0.025 and εn = 0.1. The number of particles in the simulation is
N = 4 × 106, and the corresponding statistical error in vn/εn is
3.5 × 10−3.

number of collisions increases like t at early times, which
gives an extra power of t , and vn increases like tn+1 [11]. In
both cases, the behavior of vn at small t is flatter for larger
values of n, which is clearly shown in Fig. 3.

While elliptic flow keeps increasing with time (it decreases
slightly at later times, not shown in Fig. 3), vn with n � 3
reaches a maximum and then decreases. The decrease is more
pronounced for larger n: the mechanism producing vn is self-
quenching.

C. Differential flow

Figure 4 displays the differential anisotropic flow vn(pt )
versus the transverse momentum pt for pions in ideal hy-
drodynamics, scaled by the initial eccentricity εn. At low
pt , one generally expects vn to scale like (pt )n for massive
particles [40].1 One clearly sees that vn is much flatter at
low pt for larger values of n. For larger values of pt , vn(pt ) is
linear in pt . The arguments that explain this linear dependence
of v2 [12] can be generalized to arbitrary n [41]. The linear

1There is no such constraint for massless particles where the pt → 0
limit is singular. Our transport calculations for massless partons give
vn(pt ) ∝ pt at low pt for all n.
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FIG. 4. (Color online) vn/εn versus pt in ideal hydrodynamics,
with εn = 0.1.
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behavior at larger pt is also clearly shown in Fig. 4. It has
already been noted for v3 [9].

The value of v3 increases with pt , which explains why
the ridge and shoulder are more pronounced with a high pt

trigger (“hard” ridge) [42]. Though the relative strength of v3

is smaller at low pt , it is still comparable to v2, leading to
the smaller “soft” ridge [43]. Predictions for v3(pt ) in viscous
hydrodynamics for identified particles are presented in Sec. IV.

D. Viscous damping of vn

We study the effect of viscosity first in the transport
approach, then in viscous hydrodynamics. In transport, the
degree of thermalization is characterized by the Knudsen
number K . Experimentally, 1/K scales like (1/S)(dN/dy),
where dN/dy is the multiplicity per unit rapidity, and S is the
overlap area between the colliding nuclei [44]. The dependence
of vn on K can be studied by varying the collision system and
the centrality of the collision [45].

Transport is equivalent to ideal hydrodynamics in the limit
K → 0. For small K , observables (such as vn and particle
spectra) deviate from the K = 0 limit by corrections that are
linear in K . These are the viscous corrections: both K and
the shear viscosity η are proportional to the particle mean free
path λ. Viscous damping is expected to scale with the wave
number k like k2. Here, the wavelength of the deformation
is 2πR/n; hence, k ∼ n/R. Therefore viscous corrections
should scale with K and n approximately like n2K [46].
The limit K → ∞ (free streaming) is also interesting, as vn

vanishes in this limit. For large K , one therefore expects vn to
scale like 1/K , which is essentially the number of collisions
per particle [11]. For intermediate values of K (K ∼ 1), no
universal behavior is expected, and observables depend on
the scattering cross section used in the transport calculation
(dependence on energy and scattering angle).

Figure 5 displays the variation of vn/εn versus the scaling
variable 1/(n2K) in the transport calculation. Our numerical
results can be fitted by smooth rational functions (Padé
approximants) [47] for all K:

vn(K) = vih
n

1 + BnK + DnK
2

1 + (An + Bn)K + CnK2 + EnK3
, (6)
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FIG. 5. (Color online) vn/εn versus 1/(n2K) in transport theory.
Values of εn are ε2 = 5

13 , ε3 = ε4 = 0.3, and ε5 = 0.1. Arrows
indicate our extrapolation to K = 0 (ideal hydrodynamics limit) using
Eq. (6).

where vih
n , An, Bn, Cn, Dn, and En are fit parameters. This for-

mula has the expected behavior in both K → 0 and K → ∞
limits. For n = 2, the lowest-order formula, with B2 = C2 =
D2 = E2 = 0, gives a good fit [11]. For n = 3, we obtain
a good fit using the next-to-leading-order approximant, with
D3 = E3 = 0 but free B3, C3. For n = 4 or 5, we need all
six parameters to achieve a good fit. Fits are represented as
solid lines in Fig. 5, and extrapolations to K = 0 are indicated
by arrows. As already noted, the hydrodynamics limits vih

3 /ε3

and vih
2 /ε2 are comparable, while vih

4 /ε4 is smaller by roughly
a factor of 2. vih

5 /ε5 is found to be smaller yet by about a
factor 5, with a large theoretical uncertainty.

For small K , vn(K) 	 vih
n (1 − AnK): the parameter An

measures the magnitude of the viscous correction. Our fit gives
A2 = 1.4 ± 0.1 [11], A3 = 4.2 ± 0.3, and A4 = 11.0 ± 0.9.
The error bar on A5 is too large to extract a meaningful value.
For n = 2, 3, 4, we observe An ∝ nα with α = 2.8 ± 0.2,
closer to n3 than to the expected n2. The fact that viscous
corrections are larger for larger n also implies that the range of
validity of viscous hydrodynamics is smaller for vn with n � 3
than for v2. Even after rescaling K by n2, corrections are linear
in K only for very small K , which is why higher-order Padé
approximations are needed.

The magnitude of viscous effects can be seen more directly
by varying the shear viscosity η in viscous hydrodynamics
[48]. For each value of n, we have performed three calcula-
tions, with η 	 0 (ideal hydrodynamics), η/s = 0.08 	 1/4π

[49], and η/s = 0.16, where s is the entropy density. The result
is presented in Fig. 6. The variation of vn with η is found to
be linear for all n for this range of viscosities, which is a
hint that viscous hydrodynamics (which addresses first-order
deviations to local equilibrium) is a reasonable description.
Interestingly, the lines are almost parallel, which means that
the absolute viscous correction to vn/εn depends little on
n. However, as vn/εn is smaller for larger n, the relative
viscous correction is larger for larger n. From the transport
calculation, we expect that the relative viscous correction is
3 times larger for v3 than for v2 and 8 times larger for v4

than for v2. The increase in Fig. 6 is more modest. Note that
we keep the freeze-out temperature constant for all values
of η/s. Strictly speaking, this is inconsistent. Freeze-out is
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FIG. 6. (Color online) vn/εn versus η/s in hydrodynamics. The
initial and freeze-out temperature are Ti = 340 MeV and Tf =
140 MeV, respectively.
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defined as the point where viscous corrections become so
large that hydrodynamics breaks down: when the viscosity
goes to 0, so does the freeze-out temperature [12]. By varying
only η/s and keeping Tf constant, we only capture part of the
viscous correction.2 Because triangular flow, like elliptic flow,
develops at early times, v3 is sensitive to the value of η/s at
the high-density phase of the collision.

IV. PREDICTIONS FOR v3 AT RHIC AND LHC

A. Triangularity fluctuations

We now give realistic predictions for v3 at RHIC and LHC.
The transport calculations in Ref. [9] show that, even with
lumpy initial conditions, v3 in a given event scales like the
triangularity ε3. We define εn as in [9]:

εne
inψn ≡ −

∫
ε(x,y) r2einφdx dy∫
ε(x,y) r2 dx dy

, (7)

where ε(x,y) is the initial energy density and (r, φ) are the
usual polar coordinates, x = r cos φ, y = r sin φ.

Following the discussion in Sec. II, experiments measure
the average value of (vn)2, so that

vexp
n =

√
〈(vn)2〉. (8)

Assuming vn = κεn in each event, the measured vn scales like
the rms εn defined by

εrms
n ≡

√
〈(εn)2〉. (9)

We compute εrms
n using two different models. The first model

is the PHOBOS Monte Carlo Glauber model [50], where
it is assumed that the initial energy is distributed in the
transverse plane in the same way as nucleons within colliding
nuclei. We modify the initial model slightly [33] by giving
each nucleon a weight w = 1 − x + xNcoll, where Ncoll is the
number of binary collisions of the nucleon. We take x = 0.145
at RHIC and x = 0.18 at the LHC [51]. The second model
is the Monte Carlo KLN model of Drescher and Nara [52],
which is the only model incorporating both saturation physics
and fluctuations. Both of these models yield event-by-event
eccentricity fluctuations, which are consistent with measured
elliptic flow fluctuations [34]. We loosely refer to the two
models as Glauber and color glass condensate (CGC).

Figure 7 displays εrms
n as a function of the number of

participants. εrms
2 is larger than εrms

3,4,5 for noncentral collisions,
which is caused by the almond shape of the overlap area. The
eccentricity is somewhat larger with CGC than Glauber [54].
εrms

3 is very close to εrms
5 . Both vary with NPart essentially like

(NPart)−1/2, as generally expected for statistical fluctuations
[55]. Unlike εrms

2 , they are slightly smaller for CGC than
for Glauber. Because the only source of fluctuations that is
considered in both models is the position of the nucleons in
the colliding nuclei, this difference may be caused by the
technical implementation of the Monte Carlo KLN model.

2We have checked that v3/ε3 is larger with a lower freeze-out
temperature Tf = 100 MeV. In particular, we find v3/ε3 > v2/ε2,
in agreement with the transport calculation.
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FIG. 7. (Color online) Root mean square eccentricities εrms
n for

n = 2, 3, 4, 5 for Au-Au collisions at 200 GeV per nucleon, versus
the number of participant nucleons NPart. NPart is used as a measure
of the centrality in nucleus-nucleus collisions: it is largest for central
collisions, with zero impact parameter [53]. Thick lines, Monte Carlo
Glauber model [50]; thin lines, Monte Carlo KLN model [52].

Finally, εrms
4 is slightly larger than odd harmonics for peripheral

collisions because the almond shape induces a nonzero ε4 as a
second-order effect. Figure 7 only displays results for Au-Au
collisions at RHIC. Results for Pb-Pb collisions at the LHC are
similar, except for the different range in Npart and the somewhat
larger difference between Glauber and CGC for ε3.

B. Method for obtaining v3 in hydrodynamics

To make predictions for v3, we start from a smooth
initial energy profile ε(r, φ), possessing the usual symmetries
φ → −φ and φ → φ + π . By hand, we then put a cos(3φ)
deformation through the transformation, inspired by Eq. (4),

ε(r, φ) → ε(r
√

1 + ε′
3 cos[3(φ − ψ ′

3)], φ), (10)

where ε′
3 is the magnitude of the deformation, and ψ ′

3 the flat
axis of the triangle. We choose ε′

3 = εrms
3 . The choice of ψ ′

3
is arbitrary. The initial profile has a nonzero eccentricity for
noncentral collisions, owing to the almond shape of the overlap
area. Through Eq. (10), we add a triangular deformation to an
ellipse. Because the original profile has φ → φ + π symmetry,
ψ ′

3 is equivalent to ψ ′
3 + π

3 . Furthermore, ψ ′
3 is equivalent to

−ψ ′
3, owing to φ → −φ symmetry. Therefore, one need only

vary ψ ′
3 between 0 and π

6 . We choose the values 0, π
12 , and π

6 .
We then compute ε3 and ψ3 defined by Eq. (7). With the

Gaussian profile, Eq. (4), the input and output values are
identical: ε′

3 = ε3, ψ ′
3 = ψ3. Our predictions use two sets of

profiles, which both describe RHIC data well [10]: optical
Glauber and (fKLN) CGC. With both profiles, ε′

3 differs
from ε3 by a few percent. ψ3 is essentially identical to ψ ′

3,
which means that the elliptic deformation does not interfere
with the triangular deformation. According to the previous
discussion, we should tune ε′

3 in such a way that ε3 = εrms
3

to make predictions for v3. It is, however, easier to use
the proportionality between v3 and ε3: one can then do the
calculation for an arbitrary ε′

3 and rescale the final results
by εrms

3 /ε3. We use εrms
3 from the Monte Carlo Glauber model

with Glauber initial conditions and from the Monte Carlo KLN
model with CGC initial conditions.
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There is some arbitrariness in the definition of the trian-
gularity ε3: one could, for instance, replace r2 with r3 in
Eq. (7) [56]. With this replacement, both ε3 and εrms

3 (from the
Monte Carlo calculations) increase, but the ratio εrms

3 /ε3—and
therefore also our predicted v3—changes little (less than 7%
for all centralities and both sets of initial conditions).3

Finally, we compute v3 in viscous hydrodynamics. It has
been shown that RHIC data are fit equally well with Glauber
initial conditions and η/s = 0.08 and with CGC initial con-
ditions and η/s = 0.16 [10]. The larger eccentricity of CGC
(which should produce more elliptic flow) is compensated by
the higher viscosity (larger damping and less flow), so that
the final values of v2 are very similar. For LHC energies,
details are as in Ref. [57] (with v3 calculated from a Cooper-
Frye freeze-out prescription). In all cases, v3 is found to be
independent of the orientation of the triangle ψ ′

3. In the case of
Glauber initial conditions, we perform calculations of v3 with
and without resonance decays at freeze-out [36]. Resonance
decays roughly amount to multiplying v3 by 0.75 at RHIC and
by 0.83 at the LHC. Our CGC results are computed without
resonance decays and multiplied by the same factor at the end
of the calculation.

C. Results and comparison with data

Results are displayed in Fig. 8 for both sets of initial condi-
tions. CGC initial conditions have both a smaller triangularity
and a higher viscosity, so that they predict a much smaller v3.
The change in viscosity explains roughly 70% of the difference
between CGC and Glauber at RHIC, and about half at the
LHC. The centrality dependence is much flatter in Fig. 8
than in Fig. 7. The decrease in εrms

3 with increasing NPart is
compensated by the increase in the system size and lifetime,
which leads to a smaller effective Knudsen number K or,

3If one replaces r2 with rk in Eq. (7), εn scales with k like k + 2
for a smooth, symmetric density profile ε(r) deformed according to
Eq. (10). Therefore, ε3 is larger by 5

4 if defined with a factor of r3

instead of r2.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  100  200  300  400

v 3

NPart

LHC, η/s=0.08
RHIC, η/s=0.08
LHC, η/s=0.16

RHIC, η/s=0.16

FIG. 8. (Color online) Average v3 of pions as a function of
the number of participants for Au-Au collisions at 200 GeV per
nucleon (RHIC) and Pb-Pb collisions at 5.5 TeV per nucleon (LHC).
Hydrodynamic predictions are for Glauber initial conditions with
η/s = 0.08 and CGC initial conditions with η/s = 0.16, which best
fit v2 data at the RHIC [10].
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FIG. 9. (Color online) v2 for charged particles with 0.8 < pt <

4 GeV/c extracted from STAR charge-independent correlation data
[4] and predictions from viscous hydrodynamics [10] with Glauber
initial conditions and η/s = 0.08 or CGC initial conditions with
η/s = 0.16. Theoretical calculations are for pions with the same
pt cutoff as the data and are scaled by the rms eccentricity from the
corresponding Monte Carlo model. See text for details.

equivalently, a smaller viscous correction. We predict values
of v3 significantly larger at the LHC than at RHIC. This is
because viscous damping is less important, owing to the larger
lifetime of the fluid at LHC [57].

Although experimental data for triangular flow are not yet
available, both v2 and v3 can be extracted from the measured
two-particle azimuthal correlation using Eq. (3) [9]. Figures 9
and 10 display a comparison between experimental data from
STAR [4] and our hydrodynamic calculations. The STAR data
are obtained from correlations between particles at midrapidity
(|η| < 1) and intermediate transverse momentum (0.8 < pt <

4.0 GeV). The correlation results have been projected at 1.2 <

�η < 1.9 to reduce the sensitivity to nonflow effects.
We first discuss our results for v2. As already explained,

our hydrodynamic model has smooth initial conditions and
does not include the effect of eccentricity fluctuations for v2.
Because v2 ∝ ε2 to a good approximation, we have rescaled
our result for v2 by the rms ε2 in Fig. 7 (again using the Monte
Carlo Glauber for Glauber initial conditions and the Monte
Carlo KLN for CGC). This rescaling significantly improves
the agreement with data, compared to that in Ref. [10], for the
most central bin. As shown in Fig. 9, the agreement between
theory and data is excellent with both sets of initial conditions.
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FIG. 10. (Color online) Same as Fig. 9, for v3.
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FIG. 11. (Color online) Differential triangular flow for identified
particles in central (0–5%) Au-Au collisions at RHIC.

The lower viscosity associated with Glauber initial conditions
results in a somewhat steeper centrality dependence than for
CGC initial conditions.

Results for v3 are shown in Fig. 10. The larger magnitude,
compared to that in Fig. 8, is caused by the low pt cutoff. The
cutoff also enhances the effect of viscosity, resulting in a larger
difference between Glauber and CGC. With a low pt cutoff,
the viscous correction is mostly caused by the distortion of
the momentum distribution at freeze-out [58]. The momentum
dependence of this distortion is strongly model dependent [59].
The present calculation uses the standard quadratic ansatz,
which may overestimate the viscous correction at large pt [60].
The magnitude and the centrality dependence of v3 observed
by STAR are rather well reproduced by our calculation with
Glauber initial conditions, except for peripheral collisions,
where hydrodynamics is not expected to be valid.

Figure 11 displays our predictions for v3(pt ) of identified
particles at RHIC. As anticipated in Ref. [41], the well-known
mass ordering of elliptic flow [61] is also expected for v3. At
high pt , a strong viscous suppression is observed. As already
explained, the pt dependence of the viscous correction is
model dependent, and it is likely that the quadratic ansatz used
here overestimates the viscous corrections at large pt [60].
Note that effects of resonance decays are not included in
Fig. 11. Resonance decays change the results only slightly
in the low-pt region.
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FIG. 12. (Color online) Differential pentagonal flow for identified
particles in central (0–5%) Au-Au collisions at the RHIC.

Finally, we have also computed v5 along the same lines as
v3. The driving force for v5 is the rms ε5, which is very close to
ε3 (see Fig. 7). However, the hydrodynamic response is much
smaller, and viscous damping is also much larger as discussed
in Sec. III. We find that the average integrated v5 is smaller
than v3 by at least a factor of 10. Results for differential v5 are
presented in Fig. 12. v5 varies more strongly with pt than do
v2 and v3, and it becomes as large as 0.02 at pt = 1.5 GeV/c

if η/s is as small as 0.08. For higher viscosities, however, v5

may be too small to measure even with a high pt trigger.

V. CONCLUSIONS

We have presented a systematic study of triangular flow
in ideal and viscous hydrodynamics and transport theory.
Triangular flow is driven by the average event-by-event
triangularity in the transverse distribution of nucleons, in the
same way that elliptic flow is driven by the initial eccentricity
of this distribution. The physics of v3 is, in many respects,
similar to the physics of v2. In ideal hydrodynamics, the
response to the initial deformation is almost identical in
both harmonics: v3/ε3 	 v2/ε2 	 0.2. For quadrangular flow,
v4/ε4 is smaller, typically by a factor of 2. For pentagonal
flow, v5/ε5 is so small that v5 is unlikely to be measurable,
even though ε3 and ε5 are almost equal. v3 develops slightly
more slowly than v2, though over comparable time scales.
The dependence on transverse momentum pt is similar for v3

and v2, but v3/v2 increases with pt . Hydrodynamics predicts
a similar mass ordering for v3(pt ) and v2(pt ): v3 at fixed
pt is smaller for more massive particles. These results can
be checked experimentally by a differential measurement of
triangular flow.

We have also made predictions for triangular flow, v3, at
RHIC and LHC, using viscous hydrodynamics. Using as input
the triangularity from a standard Monte Carlo Glauber model,
and a viscosity η/s = 0.08, we reproduce both the magnitude
(within 20%) and the centrality dependence of v3 extracted
from STAR correlation measurements, without any adjustable
parameter. Our results support the hypothesis made in Ref. [9]
that triangular flow explains most of the ridge and shoulder
structures observed in the two-particle azimuthal correlation.

Triangular flow is a sensitive probe of viscosity. Viscous
effects drive the energy and centrality dependence of v3. More
central collisions have fewer fluctuations and, hence, smaller
triangularity. This decrease is, to a large extent, compensated
by the increase in the system size and lifetime, resulting in a
very slow decrease in v3 with centrality (except for peripheral
collisions, where viscous hydrodynamics is unlikely to be
valid). Comparison with existing data favors a low value of
η/s. At the LHC, smaller viscous corrections are expected,
owing to the increased lifetime of the fluid: we predict that v3

should be larger than at RHIC, typically by a factor of 4
3 .

The absolute value of v3 scales linearly with the average ini-
tial triangularity. We have used two models of initial geometry
that incorporate fluctuations, the Monte Carlo Glauber model
and the Monte Carlo KLN model. The underlying source of
fluctuations is the same in both of these models. More work is
needed to constrain initial fluctuations on the theoretical side.
More work is also needed to incorporate these fluctuations

034913-7



ALVER, GOMBEAUD, LUZUM, AND OLLITRAULT PHYSICAL REVIEW C 82, 034913 (2010)

more readily into hydrodynamic calculations. Although trian-
gular flow is expected to be created by lumpy initial conditions,
our predictions are based on smooth initial conditions, in the
same spirit as the study of transverse momentum fluctuations in
Ref. [22]. The underlying assumption is that v3/ε3 is the same
for lumpy initial conditions and for smooth initial conditions.
The validity of this assumption should eventually be checked.

Triangular flow is a new observable that should be used to
constrain models of heavy-ion collisions, along with elliptic
flow. Elliptic flow depends on initial eccentricity, fluctuations,
and viscosity, which are poorly constrained theoretically.
Triangular flow depends solely on fluctuations and viscosity,
with a stronger sensitivity to viscosity than v2. Two different
sets of initial conditions, which fit v2 data equally well,
give very different results for v3. Experiments could measure
v3 as a function of transverse momentum, system size, and
centrality. As shown in this paper, theoretical predictions for
the dependence of v3 on these parameters are very specific.

If experiments confirm our predictions, simultaneous analyses
of v2 and v3 can be used to improve our understanding of the
initial geometry of heavy-ion collisions and to pin down the
viscosity of hot QCD.
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