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Triangular random matrices and biorthogonal ensembles

Dimitris Cheliotis 1

April 18, 2014

Abstract

We study the singular values of certain triangular random matrices. When their elements

are i.i.d. standard complex Gaussian random variables, the squares of the singular values form

a biorthogonal ensemble, and with an appropriate change in the distribution of the diagonal

elements, they give the biorthogonal Laguerre ensemble. For triangular Wigner matrices, we

give alternative proofs for the convergence of the empirical distribution of the appropriately

scaled squares of the singular eigenvalues to a distribution with support [0, e], as well as for the

almost sure convergence of the rescaled largest singular eigenvalue to
√
e under the additional

assumption of mean zero and finite fourth moment for the law of the matrix elements.

1 Introduction and statement of the results

1.1 Singular values of random matrices

Singular values of randommatrices are of importance in numerical analysis, multivariate statistics,

information theory, and the spectral theory of random non-symmetric matrices. See the survey

paper Chafäı (2009).

We state in this subsection three of the very basic results concerning singular values of random

matrices that are relevant to our work.

Let {Xi,j : i, j ∈ N
+} be i.i.d. complex valued random variables with variance 1, and for

n,m ∈ N
+ consider the n ×m matrix X(n,m) := (Xi,j)1≤i≤n,1≤j≤m. Call λn,m

1 ≥ λn,m
2 ≥ · · · ≥

λn,m
n ≥ 0 the eigenvalues of the Hermitian, positive definite matrix

Sn,m =
1

m
X(n,m)X(n,m)∗,

and

Ln,m :=
1

n

n∑

i=1

δλn,m
i
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their empirical distribution. It was shown in Marchenko and Pastur (1967) that for c > 0, with

probability 1, as n,m → ∞ so that n/m → c, Ln,m converges weakly to the measure

1a≤x≤b
1

2πxc

√

(b− x)(x− a) dx+ 1c>1

(

1− 1

c

)

δ0 (1)

where a = (1−√
c)2, b = (1 +

√
c)2.

Regarding the largest eigenvalue, it was proved in Geman (1980) under certain moment as-

sumptions, that with probability 1, λn,m
1 converges to b as n,m → ∞. Then Bai and Yin (1988)

showed that this convergence takes place under the assumption that |X1,1| has finite fourth mo-

ment and that this assumption is necessary for the validity of the conclusion.

When the Xi,j follow the standard complex Gaussian distribution and n ≤ m, the vector

(λn,m
1 , λn,m

2 , . . . , λn,m
n ) has density with respect to Lebesgue measure in R

n which is

1
∏n

k=1 Γ(m− n+ k)Γ(k)
e−

∑n
k=1 xk

( n∏

k=1

xi

)m−n ∏

1≤i≤j≤n

(xi − xj)
21x1>x2>···>xn>0. (2)

See, for example, relation (3.16) in Forrester (2010).

1.2 Triangular Wigner matrices

In this work, we study the singular values of certain triangular random matrices. The moti-

vation comes from the purely mathematical viewpoint as triangular matrices are ingredients in

several matrix decompositions. The results of this subsection have appeared before, and we offer

alternative proofs.

Assume as above that {Xi,j : i, j ∈ N
+, i ≥ j, } are i.i.d. complex valued with variance 1,

and for n ∈ N
+ let X(n) be the lower triangular n × n matrix whose (i, j) element is Xi,j for

1 ≤ j ≤ i ≤ n. Call λ
(n)
1 ≥ λ

(n)
2 ≥ · · · ≥ λ

(n)
n ≥ 0 the eigenvalues of the Hermitian matrix

Sn =
1

n
X(n)X(n)∗,

and

Ln :=
1

n

n∑

i=1

δ
λ
(n)
i

their empirical distribution.

The fact that Ln converges weakly and description of the limit was given in Dykema and Haagerup

(2004).

Theorem 1. With probability 1, (Ln)n≥1 converges weakly to a deterministic measure µ0 on R

with moments ∫

R

xkdµ0(x) =
kk

(k + 1)!
(3)

for all k ∈ N.
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Figure 1: The graph of the density f0(x) = π−1 Im
{

− 1
xW (−x−1)

}

. Its support is [0, e].

The measure µ0 comes from a density which can be expressed in terms of the Lambert function.

This is a multivalued function, it is the inverse of w 7→ wew. We will use the the principal branch,

W , of this inverse, which is defined in C\(−∞,−e−1]. W is analytic in C\(−∞,−e−1] and can be

extended to C so that it is continuous on the closed upper half plane (See Section 4 of Corless et al.

(1996)). Below, W will denote this extention.

Corollary 1. The measure µ0 has

(i). continuous density f0 with support [0, e].

(ii). Stieltjes transform

S(z) = −1− 1

zW (−z−1)
= −1 + eW (−z−1) (4)

for all z ∈ C with Im(z) > 0.

(iii). R-transform

R(z) = − 1

(1− z) log(1− z)
− 1

z

for all z ∈ C with |z| < 1.

The graph of the density f0 is shown in Figure 1.

Remark 1. Near 0, the density f0 behaves as

f0(x) ∼
1

x(W (x−1))2
∼ 1

x(log x)2
,

so that it explodes much faster than 1/
√
x, which is the speed of explosion of the Marchenko-

Pastur density in the case m = n. Near e, f0 behaves as

f0(x) ∼
√
2

πe3/2
√
e− x. (5)

We prove these statements in Subsection 2.2.
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The next result, which is analogous to the result of Yin and Bai, appeared in the recent

preprint Collins et al. (2014).

Theorem 2. Assume that X1,1 has mean 0, variance 1, and finite fourth moment. Then with

probabilty 1, limn→∞ λ
(n)
1 = e.

Remark 2. When this research begun, a few months ago, we were not aware that the result of

Theorem 1 was known. In Dykema and Haagerup (2004), the theorem is phrased in the language

of free probability, and its proof uses tools from that area together with combinatorial arguments.

The proof of Theorem 2 in Collins et al. (2014) uses probabilistic and operator theoretic

arguments.

Our proofs of Theorems 1 and 2 follow the classical method of moments and path counting

used for the analogous theorems for Wigner and sample covariance matrices (see e.g., Chapter 2

in Tao (2012)). The crucial ingredient in our analysis is the notion of rooted alternating plane

tree, which appears because of the triangular structure of the matrix.

1.3 The complex Gaussian case

In the case that the random variables {Xi,j : i, j ∈ N
+, i ≥ j} in the previous subsection are

complex standard normal, we can compute explicitly the joint distribution of the eigenvalues of

X(n)X(n)∗.

Theorem 3. For each positive integer n:

(i). The vector Λn := (λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
n ) of the eigenvalues λ

(n)
1 ≥ λ

(n)
2 ≥ · · · ≥ λ

(n)
n of

X(n)X∗(n) has density given by

fΛn(x1, x2, . . . , xn) =
1

∏n−1
j=1 j!

e−
∑n

j=1 xj

∏

i<j

(xi − xj)(log xi − log xj)1x1>x2>···>xn>0 (6)

(ii). The point process {λ(n)
1 , λ

(n)
2 , . . . , λ

(n)
n } is determinantal.

The theorem will be implied by the more general Theorems 4 and 5 of the next subsection.

1.4 Eigenvalue realization of the biorthogonal Laguerre ensemble

Fix a positive integer n. Consider the lower triangular matrix (Xi,j)1≤i,j≤n with {Xi,j : 1 ≤ j <

i ≤ n} standard complex normal variables and Xk,k having density

fk(z) =
1

πΓ(ck)
e−|z|2 |z|2(ck−1) (7)

for all z ∈ C, where for (ck)1≤k≤n we assume that they form an arithmetic progression with

difference θ ∈ R so that all its terms are positive. Thus Xk,k can be written as

Xk,k =
1√
2
eiφkYk (8)
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where Yk follows the χ2ck distribution and φk is uniform on [0, 2π) independent of Yk.

It is enough to consider the case that θ ≥ 0, because otherwise taking P the matrix with

ones in the antidiagonal, we see that the matrix (PXP ∗)∗ becomes of the form we consider with

difference θ̃ = −θ. Thus, we assume that there are θ ≥ 0, b > 0 so that

ck = θ(k − 1) + b (9)

for all k ∈ {1, 2, . . . , n}. We denote the matrix constructed with this prescription by Xθ,b(n). For

the distribution of the squares of its singular eigenvalues we have the following theorem.

Theorem 4. The vector Λn := (λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
n ) of the eigenvalues λ

(n)
1 ≥ λ

(n)
2 ≥ · · · ≥ λ

(n)
n ≥

0 of Xθ,b(n)Xθ,b(n)∗ has density fΛn(x1, x2, . . . , xn) given by

1
∏n−1

j=1 j!

θ−n(n−1)/2

∏n
k=1 Γ(ck)

e−
∑n

j=1 xj

( n∏

j=1

xb−1
j

) ∏

1≤i<j≤n

(xi − xj)(x
θ
i − xθj)1x1>x2>···>xn>0 (10)

when θ > 0, and

1
∏n−1

j=1 j!

1

Γ(b)n
e−

∑n
j=1 xj

( n∏

j=1

xb−1
j

) ∏

1≤i<j≤n

(xi − xj)(log xi − log xj)1x1>x2>···>xn>0 (11)

when θ = 0.

Remark 3. i) When θ = 0 and b = 1, the matrix Xθ,b(n) is exactly X(n) of the previous

subsection. And thus we get Part (i) of Theorem 3.

ii) When θ = 1 and b = m− n, with m ≥ n positive integers, (10) is the density (2). This is

expected because there is a unitary matrix U so that X(m,n)U
d
= [X1,m−n(n), 0], where 0 is the

n× (m− n) zero matrix.

iii) The density in (10) is the density of the n-point biorthogonal Laguerre ensemble, so termed

and studied in Section 4 of Borodin (1999), with parameter pair (α, θ) being (b− 1, θ). Note that

(11) is the θ → 0 limit of (10).

iv) Densities of the form (10) were introduced by Muttalib (1995) in the context of disordered

conductors. A good approximation for the conductance of such a conductor is given by the sum
∑n

k=1(1+xk)
−1, where {xk : 1 ≤ k ≤ n} are the eigenvalues of a certain positive definite random

matrix. It is asserted in the above reference that the assumption that these eigenvalues come

from a density of the form (10), with θ 6= 1, which has two two-body interaction terms, namely
∏

i<j(xi−xj) and
∏

i<j(x
θ
i −xθj), matches better experimental measurements from the conductor

in the metalic regime than models with only one such term, as is (2). It is also shown that this

density defines a determinantal point process. Later, Borodin (1999) gave an explicit formula for

the kernel of the process, and using it determined the n → ∞ limit at the hard edge (i.e., at 0)

of an appropriate scaling of the process.
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The formula for fΛn implies that {λ(n)
1 , λ

(n)
2 , . . . , λ

(n)
n } is a biorthogonal ensemble (Borodin

(1999), Forrester (2010) Section 5.8). And this allows to prove with little effort that the ensemble

is a determinantal point process. In the case θ > 0, this is already known. We cover next the

θ = 0 case. Define

gj,k :=

∫ ∞

0
xj(log x)ke−x dx

for j, k ∈ N, and consider the matrix G := (gi,j)i,j∈N.

Theorem 5. For each positive integer n:

(i). The matrix G(n) := (gj,k)0≤j,k≤n−1 is invertible.

(ii). The point process {λ(n)
1 , λ

(n)
2 , . . . , λ

(n)
n } with law given by (11) is determinantal with kernel

Kn(x, y) = e−
x+y

2 (xy)
b−1
2

n∑

j,k=1

c
(n)
j−1,k−1(log y)

j−1xk−1.

where (c
(n)
j,k )0≤j,k≤n−1 is the inverse of G(n).

Finally, we come to the empirical spectral distribution Lθ,b
n of Xθ,b(n)Xθ,b(n)∗/n. The work

in Dykema and Haagerup (2004) implies that this converges to a non trivial limit. To explain

this connection, we need the notion of a DT -element.

Let ν a probability measure on C with compact support, and c > 0. For each n, let Tn be

an n × n matrix with (Tn)i,j = 0 if 1 ≤ i ≤ j ≤ n, and {(Tn)i,j : 1 ≤ j < i ≤ n} i.i.d. standard

complex Gaussian. And let Dn be a diagonal n × n matrix with i.i.d. diagonal elements, each

having law ν, and independent of Tn. Let Zn := Dn + cn−1/2Tn. It can be proved that for each

k ≥ 1 and ε(1), ε(2), . . . , ε(k) ∈ {1, ∗} the limit

lim
n→∞

1

n
E(tr{Zε(1)

n Zε(2)
n · · ·Zε(k)

n }) (12)

exists (Theorem 2.1 in Dykema and Haagerup (2004)).

Definition 1. An element x of a ∗-noncommutative probability space (A, φ) is called a DT (ν, c)-

element if for every k ≥ 1 and ε(1), ε(2), . . . , ε(k) ∈ {1, ∗}, we have that φ(xε(1)xε(2) · · · xε(k))
equals the value in (12).

And we are now ready to discuss the convergence of the sequence (Lθ,b
n )n≥1.

Theorem 6. The empirical distribution of the eigenvalues of Xθ,b(n)Xθ,b(n)∗/n converges to a

measure µθ whose moments are the moments of xx∗ where x is a DT (νθ, 1) element, and νθ is

the uniform measure on the disc D(0,
√
θ) := {z ∈ C : |z| ≤

√
θ}.

Note that the limit does depend on b. In the case that θ > 1 and b = 1, it is proven

in Claeys and Romano (2013), see Paragraph 4.5.1, that the measure µθ has density fθ with

support Iθ = [0, (1 + θ)1+1/θ]. To describe it, let J : C\[−1, 0] → C with

J(z) = θ(z + 1)

(
z + 1

z

)1/θ

.
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For each x interior point of Iθ, there are exactly two solutions of J(z) = x, which are conjugate

complex numbers. Call them I−(x), I+(x) so that Im(I+(x)) > 0. Then the density fθ is given

by

fθ(x) =







θ
2πxi(I+(x)− I−(x)) if x ∈

(
0, (1 + θ)1+1/θ

)
,

0 if x ∈ R\
(
0, (1 + θ)1+1/θ

)
.

(13)

Orientation: Theorem 1 and its corollary are proved in Section 2, while Theorems 4, 5, 6

are proved in Sections 4, 5, 6 respectively.

2 The limiting empirical spectral distribution

In this and the next section we will use some notions from graph theory. For us, a graph is an

ordered triple (V,E, φ), where V,E are two sets (called the sets of vertices and edges respectively),

and φ is a map from E to {{x, y} : x, y ∈ V }. The interpretation is that φ(v) gives the two vertices

that the edge v connects, also called ends of v (see Stanley Vol. 1, pg. 573). Such a graph is not

directed, and can have several edges with the same ends (multiple edges) and edges with both

ends coinciding (loops).

2.1 Proof of Theorem 1

We follow the proof of Theorem 3.7 in Bai and Silverstein (2010). There all matrix elements are

i.i.d., so that everything in that proof transfers to our case (by just replacing all superdiagonal

elements with zero) except the computation of the moments of the limiting measure. In particular,

the first step of that proof shows that we can assume that X1,1 has mean 0 and is bounded. With

this additional assumption, we prove that

lim
n→∞

E

{∫

xkdLn(x)

}

=
kk

(k + 1)!
(14)

for all positive integers k. And this will complete the proof. We abbreviate the matrix X(n) to

X.

We have

E

{∫

xkdLN (x)

}

=
1

n
E tr(Sk

n) =
1

nk+1
E tr{(XX∗)k}

=
1

nk+1
E

{
∑

1≤i1,i2,...,ik≤n

(XX∗)i1,i2(XX∗)i2,i3 · · · (XX∗)ik ,i1

}

=
1

nk+1
E

{
∑

1≤i1,i2,...,ik≤n
1≤j1,j2,...,jk≤n

Xi1,j1X
∗
j1,i2Xi2,j2X

∗
j2,i3 · · ·Xik ,jkX

∗
jk,i1

}

=
1

nk+1

∑

1≤i1,i2,...,ik≤n
1≤j1,j2,...,jk≤n

E(Xi1,j1Xi2,j1Xi2,j2X i3,j2 · · ·Xik,jkXi1,jk). (15)

7



Now for a term with indices i1, i2, . . . , ik, j1, j2, . . . , jk, we let ik+1 := i1, i := (i1, i2, . . . , ik), j :=

(j1, j2, . . . , jk) and consider the graph G(i, j) with vertex set

V (i, j) = {(1, i1), (1, i2), . . . , (1, ik), (2, j1), (2, j2), . . . , (2, jk)}

(its cardinality is not necessarily 2k because of repetitions), set of edges

{(2r − 1, {(1, ir), (2, jr)}), (2r, {(2, jr ), (1, ir+1)}) : r = 1, 2, . . . , k},

which has cardinality 2k, and the map φ maps (x, {y, z}) to {y, z}. We call a vertex of the form

(1, i) an I-vertex, and a vertex of the form (2, i) a J-vertex.

From G(i, j) we generate a graph G1(i, j) by identifying edges with equal ends. Formally,

G1(i, j) has vertex set V (i, j), edge set

{{(1, ir), (2, jr)}, {(2, jr), (1, ir+1)} : r = 1, 2, . . . , k},

and the maps φ1 is the identity map.

As explained in Bai and Silverstein (2010) (in the proof of relation (3.1.6) there, pages 49, 50),

when we take n → ∞ in (15), the only indices (i, j) contributing are those for which:

(i). The graph G1(i, j) is a tree with k + 1 vertices.

(ii). The path (1, i1) → (2, j1) → (1, i2) → (2, j2) → · · · (1, ik) → (2, jk) → (1, i1) traverses each

edge of the tree exactly twice, in opposite directions of course.

In fact, the pair (i, j) defines an ordered (also called plane) tree, that is, a tree on which we have

specified an order among the children of each vertex. Among two vertices with common parent,

we declare smaller the one that appears first in the sequence (i1, j1, i2, j2, . . . , ik, jk). This order

is not related to the labels of the vertices.

In our case, the fact that X is triangular imposes the additional restrictions

(iii). j1 ≤ i1, i2 and j2 ≤ i2, i3,,..., and jk ≤ ik, i1.

That is, each j index is smaller than its two neighbors.

Call ∆(n, k) the set of pairs of indices (i, j) with elements from {1, 2, . . . , n} that satisfy (i),

(ii), (iii) above, and ∆̂(n, k) the subset of it for which {i1, i2, . . . , ik}∩ {j1, j2, . . . , jk} = ∅. A pair

(i, j) ∈ ∆̂(n, k), instead of (iii) above, satisfies the stronger property

(iv). j1 < i1, i2 and j2 < i2, i3,,..., and jk < ik, i1.

An example of a pair (i, j) ∈ ∆̂(n, k) is ((5, 5, 3, 7, 5, 6), (4, 2, 2, 2, 1, 1)). Figure 2 shows the

tree that this defines. The path i1 → j1 → i2 → j2 → · · · ik → jk → i1 travels the tree from left

to right.

8
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3 7 6

12

Figure 2: The tree corresponding to the pair (i, j) = ((5, 5, 3, 7, 5, 6), (4, 2, 2, 2, 1, 1))

Lemma 1. For positive integers n, k with n ≥ k + 1, it holds

|∆̂(n, k)| =
(

n

k + 1

)

kk.

Proof. A tree with r vertices labeled {1, 2, . . . , r} is called alternating if for each path v1, v2, . . . , vs

on it we have

v1 < v2 > v3 < v4 > . . . or

v1 > v2 < v3 > v4 < . . .

The set V (i, j) can take
( n
k+1

)
values. Take one of them, say {1, 2, . . . , k + 1}. The indices

in (i, j) ∈ ∆(n, k) for which V (i, j) = {1, 2, . . . , k + 1} are in a one to one correspondence

with the rooted alternating plane trees with k + 1 vertices labeled 1, 2, . . . , k + 1 and such

that the root is larger than its children. Figure 2 shows the tree corresponding to the pair

(i, j) = ((5, 5, 3, 7, 5, 6), (4, 2, 2, 2, 1, 1)). The number of such trees equals kk (Theorem 3 in

Chauve et al. (2001)). �

Lemma 2.

lim
n→∞

1

nk+1
|∆(n, k)\∆̂(n, k)| = 0.

Proof. The elements of ∆(n, k)\∆̂(n, k) map injectively to the labeled trees with k + 1 vertices

and at most k labels from {1, 2, . . . , n}. The number of such trees is at most

1

k + 1

(
2k

k

) k∑

j=1

(n)j < 2kknk.

Here, (n)j denotes the falling factorial. The lemma follows. �

The expectation in (15) corresponding to each (i, j) ∈ ∆(n, k) equals 1 due to the assumptions

on the distribution of the X’s and property (ii) above. Thus

lim
n→∞

E

{∫

xkdLN (x)

}

= lim
n→∞

1

nk+1
|∆(n, k)| = lim

n→∞

1

nk+1
|∆̂(n, k)| = kk

(k + 1)!
,

9



which concludes the proof of the theorem.

2.2 The limiting measure. Proof of Corollary 1

(i) By Theorem 2.4.3 in Anderson et al. (2010) and the analytic properties of W , we get that the

measure µ has support in [0, e] and in (0, e] has density

f(x) = π−1 Im

( −x−1

W (−x−1)

)

.

To exclude the possibility of mass at 0, we show that the integral of f in (0, 1] is 1. First, for

δ > 0, we compute

∫ e

δ

−x−1

W (−x−1)
dx =

∫ −e−1

−δ−1

1

yW (y)
dy =

∫ −e−1

−δ−1

1 +W (y)

W (y)2
W ′(y) dy (16)

=

∫ −e−1

−δ−1

(

− 1

W (y)
+ logW (y)

)′

dy = 1 + log(−1) +
1

W (−δ−1)
− logW (−δ−1).

The second equality is true because the equation defining W easily gives that W (y) = y{1 +

W (y)}W ′(y). Now for x → −∞, we have Re(W (x)) → ∞ and | Im(W (x))| ≤ π. Thus

Im(logW (x)) → 0, and the imaginary part of the integral in (16) converges to π as δ → 0+.

So that the integral of f in (0, e] equals 1.

(ii) For z ∈ C, |z| > e, we have

S(z) = −
∞∑

k=0

1

zk+1
mk = −

∞∑

k=1

(k − 1)(k−1) (1/z)
k

k!
= −L(1/z), (17)

where L is the exponential generating function of the sequence {(k− 1)(k−1) : k ≥ 1}. It is shown
in Lemma 1 of Chauve et al. (2001) that L satisfies

L(u)− 1 = −e
u

L(u)−1

for u ∈ C, |u| < e−1 so thatG(u) := u/(L(u)−1) satisfiesG(u)eG(u) = −u. And sinceG(u) ∈ R for

u ∈ (−e−1, e−1), we have G(u) = W (−u) for all u ∈ C, |u| < e−1. Combining L(u) = 1+(u/G(u))

with (17), we get the claim for all z ∈ C, |z| > e. The rest follows form the fact that both S and

W are analytic in {z ∈ C : Im(z) > 0}.
(iii) By definition, R(z) = K(z)−z−1 where K satisfies S(K(z)) = −z. Omitting the analytic

details, we note that this is written as −1 + eW (−K(z)−1) = −z so that

−K(z)−1 = W−1(log(1− z)) = log(1− z)elog(1−z) = (1− z) log(1− z),

proving the claim. �

Proof of Remark 1. : For x > 0, let a(x) := Re(W (−x−1)), b(x) := Im(W (−x−1)). Then

fT (x) =
1

xπ

b(x)

{a(x)2 + b(x)2} . (18)
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1. Behavior near 0. By Corless et al. (1996), Section 4, limx→0+ b(x) = π, while it is an easy

exercise to see that limx→0+ a(x) = ∞ and

lim
x→0+

{a(x)−W (x−1)} = 0.

Thus the first ∼ has been proved. The second is elementary.

2. Behavior near e. Since W (−e−1) = −1, we have a(e) = 1, b(e) = 0, and the denominator

in (18) is ∼ 1 as x → e−. If we let p(z) =
√

2(1− ez−1), relation 4.22 in Corless et al. (1996)

implies that b(x) ∼ Im p(x) as x → e. But for x ∈ (0, e), p(x) = i
√

2/x
√
e− x. This proves our

claim. �

3 The largest eigenvalue. Proof of Theorem 2

Theorem 1 and Corollary 1 give that limλn
1 ≥ e. The aim of this section will be to show that

lim λn
1 ≤ e. Our proof parallels the one of the Bai-Yin theorem as given in Section 2.3 of Tao

(2012). The idea is to control a high enough moment of the maximum eigenvalue, and this is

accomplished in the next proposition.

Proposition 1. Fix C1, C2 > 0, ε ∈ (0, 1/2). There exists positive integer n0 with the following

property. For n ≥ n0, if the support of |X1,1| is contained in [−C1n
1/2−ε, C1n

1/2−ε] and k is an

integer with 1 ≤ k ≤ C2 log
2 n, then

E tr{(X(n)X(n)∗)k} ≤ 2eknk+1. (19)

Proof. Let dn := C2 log
2 n. We pick n0 so that for all n ≥ n0 it holds

(2dn)
6 < n, (20)

(1 + 2C2
1 )(2dn)

48 < n2ε. (21)

Take n, k as in the statement of the proposition. As in (15), we write

E tr{(X(n)X(n)∗)k} =
∑

1≤i1,i2,...,ik≤n
1≤j1,j2,...,jk≤n

E(Xi1,j1Xi2,j1Xi2,j2Xi3,j2 · · ·Xik,jkXi1,jk)

=
∑

i,j

E(XG(i, j))

≤
∑

i,j

E(|XG(i, j)|), (22)

where to the pair (i, j) = ((i1, i2, . . . , ik), (j1, j2, . . . , jk)) of indices, we correspond the graph

G(i, j) as in Subsection 2.1 and the term XG(i, j) := Xi1,j1Xi2,j1Xi2,j2Xi3,j2 · · ·Xik ,jkXi1,jk .

In the sum (22), we isolate the pairs (i, j) that satisfy (i), (ii), (iv) in the proof of Theorem

1. We call these pairs good, and the rest, bad. The contribution of the good pairs to the sum is
(

n

k + 1

)

kk = nk+1 kk

(k + 1)!
< nk+1ek.

11



The inequality follows by the series expansion of ek.

Now we need to bound the contribution of the bad pairs to (22). Take such a pair (i, j). The

path

(1, i1) → (2, j1) → (1, i2) → (2, j2) → · · · (1, ik) → (2, jk) → (1, i1) (23)

is a cycle that traverses the graph G1(i, j). List the edges e1, e2, . . . , es of G1(i, j) in order of

appearance in the cycle, and call a1, a2, . . . , as their multiplicities in the cycle. That is, aq is the

number or times the (undirected) edge eq appears in the cycle. If any of these multiplicities is 1,

we have E(XG(i, j)) = 0. We assume therefore that all are at least 2. Using the information about

the mean, variance, and support of |X1,1|, we get that for a ≥ 2 integer it holds E(|X1,1|a) ≤
(C1n

1/2−ε)a−2. Thus

E(|XG(i, j)|) ≤
s∏

i=1

E|Xei |ai ≤ (C1n
1/2−ε)a1+···+as−2s = (C1n

1/2−ε)2k−2s. (24)

Cycles that are generated by bad pairs we call them bad cycles. For integers s ≥ 1 and

a1, . . . , as ≥ 2, let Na1,a2,...,as be the number of bad cycles whose edges have multiplicities

a1, a2, . . . , as. The contribution of the bad pairs to (22) is at most

k∑

s=1

(C1n
1/2−ε)2k−2s

∑

a1,a2,...,as

Na1,a2,...,as . (25)

Using Lemma 3, we bound the last sum by

ek(2k)10
k∑

s=1

(C1n
1/2−ε)2k−2s(2k)36(k−s)nmin{s+1,k}

∑

a1,a2,...,as

1. (26)

The inside sum is over all s-tuples of integers greater than or equal to 2 with sum 2k. By

subtracting 2 from each ai, we get an s-tuple of non-negative integers with sum 2k − 2k. The

number of such s-tuples is
(2k−s−1

2k−2s

)
(combinations with repetition) which is at most (2k)2(k−s).

Separating the s = k term, and letting w = k − s, we get for (26) the bound

ek(2k)10

{

nk + nk+1
k−1∑

w=1

(
C2
1 (2k)

38

n2ε

)w
}

.

By the choice of n0, we have C2
1 (2k)

38/n2ε < 1/2, and the sum in the last expression is bounded

by 2C2
1 (2k)

38/n2ε. Thus, the contribution of the bad pairs to the sum (22) is at most

ek(2k)10
(

nk + nk+1−2ε2C2
1 (2k)

38
)

≤ eknk+1−2ε(1 + 2C2
1 )(2k)

48 < eknk+1.

In the last equality, we used again the choice of n0. This finishes the proof of the proposition. �

Now Theorem 2 follows by adapting the arguments of Theorems 2.3.23, 2.3.24 (the Bai-Yin

Theorem) in Tao (2012). In the rest of the section, we prove the crucial estimate we invoked in

the proof above.
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Lemma 3. Na1,a2,...,as ≤ ek(2k)36(k−s)+10nmin{s+1,k}.

Proof. Take a cycle as in (23), and label the vertices as v1 → v2 → · · · → v2k → v2k+1 = v1. Each

step in the cycle we call a leg. More formally, legs are the elements of the set {(a, (va, va+1)) :

a = 1, 2, . . . , 2k}. For 1 ≤ a < b, we say that the leg (a, (va, va+1)) is single up to b if {va, va+1} 6=
{vc, vc+1} for every c ∈ {1, 2, . . . , b−1}. We classify the 2k legs of the cycle into 4 sets T1, T2, T3, T4.

The leg (a, (va, va+1)) belongs to

T1: if va+1 /∈ {v1, . . . , va}.
T3: if there is T1 leg (b, (vb, vb+1)) with b < a so that a = min{c > b : {vc, vc+1} = {vb, vb+1}}.
T4: if it is not T1 or T3.

T2: if it is T4 and there is no b < a with {va, va+1} = {vb, vb+1}.
Moreover, a T3 leg (a, (va, va+1)) is called irregular if there is exactly one T1 leg (b, (vb, vb+1))

with b < a satisfying {vc, vc+1} 6= {vb, vb+1} for all c ∈ {1, 2, . . . , a − 1}\{b} and va ∈ {vb, vb+1}.
Otherwise the leg is called regular.

We already know that the number of edges of G1(i, j) is s. Let also

t: the number of vertices of G1(i, j).

ℓ: the number of edges that have multiplicity at least 3.

m: the number of T2 legs.

r: the number of regular T3 legs.

The number of edges with multiplicity 2 is s− ℓ. Thus,

∑

i:ai>3

ai = 2k − 2(s− ℓ). (27)

On the other hand, the same sum is at least 3ℓ. Thus ℓ ≤ 2(k − s). Lemma 2.3 in Bai and Yin

(1988) says that r ≤ 2|T4|, while for |T4| we have the bound

|T4| ≤ m+
∑

i:ai≥3

ai ≤ m+ 6(k − s). (28)

Now back to the task of bounding Na1,...,as . Given a cycle, we give each vertex an index in

{1, 2, . . . , t} which records the order of the first appearance of the vertex in the cycle.

Then, we record

• the locations of regular T3 legs in the cycle and the index of the vertex each has as a final

vertex.

• the locations of T4 legs in the cycle and the index of the vertex each has as a final vertex.

• the index of each J vertex, say (2, j), for which j ∈ {i1, i2, . . . , ik}.

Finally, a cycle defines a rooted, ordered, alternating tree with t vertices and labels {1, 2, . . . , t}.
We get this tree as follows.

13



1. Graph: In G1(i, j), we erase edges that were traveled by T2 legs in G(i, j). We thus get

a simple graph Ĝ(i, j) (i.e., with no multiple edges) which is in fact a spanning tree of

G(i, j). Indeed, it has the same set of vertices as G(i, j) and is connected because the edges

we erased connect vertices that were already connected by a different route in G(i, j). And

it is a tree because if there were a simple cycle in it, we would be able to find in it an edge

traveled by a T2 leg of G(i, j), which is false. Root of the tree is the vertex (1, i1), and the

children of each vertex are ordered according to their index.

2. Labels: Initially, to each vertex (a, b) of this tree (recall that a ∈ {1, 2}) we assign the label

b. Next, we assign new labels so that the labels of any two vertices have the same order as

before, but the labels used form an initial segment of the positive integers. Assume that

they are {1, 2, . . . , t − u} for some integer u ≥ 0. It is u > 0 exactly when u J-vertices

have label that agrees with the label of one I-vertex. We do now a final relabeling. If a

J vertex v := (2, j) has j ∈ {i1, i2, . . . , ik}, we increase by one the label of every vertex (I

or J) which has at the moment label ≥ j except v. We do this procedure sequentially by

checking equality for the label 1 and continuing upward. In the end, no two vertices will

have the same label, and the set of labels will be {1, 2, . . . , t}.

Step 1 gives an ordered rooted tree of t vertices, and Step 2 together with the property

j1 ≤ i1, i2 and j2 ≤ i2, i3, , ..., and jk ≤ ik, i1

that the indices have, gives us that the labeling is alternating (see definition in the proof of

Lemma 1) with the root larger than its children.

Having these elements, we can reconstruct the cycle up to the names of the t − u different

labels (the locations of the labels are determined by the labeled tree). Because the locations of

all legs in the cycle are either known or can be inferred. The same holds for the ending point of

each leg. Since all legs start at the ending point of some other leg, the location of the legs in the

cycle determines the starting points too.

Thus, the number of bad cycles with given t, u, r, |T4| is at most
(

n

t− u

)

(t− 1)t−1(2k)rtr(2k)|T4|t|T4|tu ≤ nt−u (t− 1)!

(t− u)!
et−1(2k)2(r+|T4|)tu (29)

≤ et−1nt

(
t2

n

)u

(2k)2(r+|T4|). (30)

We used the rough bound t ≤ 2k. By the choice of n0, we have t2 < n. Moreover, since

t ≤ s+ 1−m ≤ k + 1 and

r + |T4| ≤ 3|T4| ≤ 3m+ 18(k − s), (31)

the bound in (30) is less than

ekns+1−m(2k)6m+36(k−s) = ek(2k)36(k−s)ns+1

(
(2k)6

n

)m

≤ ek(2k)36(k−s)+6nmin{s+1,k}. (32)
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The last inequality is true because s ≤ k always, (2k)6/n < 1 by the choice on n0, and because

s = k implies m ≥ 1 as the cycle is bad. Summing the bound (32) over all possible values of

t, r, u, |T4|, which are at most 2k for each, we get the claim of the lemma. �

4 Distribution of singular values for Xθ,b(n)

Define the following sets of matrices

Tn: lower triangular n× n matrices with elements in C and diagonal elements in C\{0}.
T +
n : elements of Tn with diagonal elements in (0,∞),

Vn: diagonal n× n matrices with diagonal elements complex of modulus 1.

M+
n : positive definite n× n matrices with elements in C.

We identify the spaces Tn,T +
n ,Vn with R

n(n−1)×(R\{0})2n,Rn(n−1)×(0,∞)n, [0, 2π)n respectively,

and view M+
n as a subset of n × n Hermitian matrices, which we identify with R

n2
. Densities

of random variables with values in these spaces are meant with respect to the corresponding

Lebesgue measure.

Consider the maps g : T +
n ×Vn → Tn, h : T +

n → M+
n with g(T, V ) = TV , h(Y ) := Y Y ∗. They

are both one to one and onto. Call g−1 := (γ1, γ2), and X := Xθ,b(n). Then XX∗ = h(γ1(X))

provided that X ∈ Tn, which holds with probability 1. We will use this relation in order to find

the joint law of the elements of XX∗, and then, the law of its eigenvalues will follow from a well

known formula.

Lemma 4. The Jacobian of the map g has absolute value

n∏

j=1

tj,j.

Proof. Let X = TV and call xi,j its (i, j) element. The Jacobian matrix of g has n blocks, one

for each column. The block corresponding to column j is

∂(xRj,j, x
I
j,j, x

R
j+1,j, x

I
j+1,j, . . . , x

R
n,j , x

I
n,j)

∂(θj , tj,j, tRj+1,j, t
I
j+1,j, . . . , t

R
n,j, t

I
n,j)

,

and its determinant equals −tj,j. �

Lemma 5. The map h has Jacobian

2n
n∏

i=1

t
2(n−i)+1
i,i .

Proof. This is Proposition 3.2.6 of Forrester (2010). �
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In the following, we use the notation set in Subsection 1.4. Let C(θ, b) :=
(∏n

k=1 Γ(ck+1)
)−1

.

The density of Xθ,b(n) is

fXθ,b(n)(x) =
1

πn(n+1)/2
C(θ, b) e−

∑
1≤j≤i≤n |xi,j |2

n∏

k=1

|xk,k|2ck (33)

=
1

πn(n+1)/2
C(θ, b) e− tr(xx∗)

n∏

k=1

|xk,k|2ck (34)

for all x ∈ C
n(n+1)/2.

For an n × n matrix a = (ai,j)1≤i,j≤n and k ∈ {1, 2, . . . , n}, we denote by ak its main k × k

minor, that is, the matrix (ai,j)1≤i,j≤k.

Proposition 2. Let X := Xθ,b(n). The matrix A := XX∗ has density

fA(a) =
1

πn(n−1)/2

1
∏n

k=1 Γ(ck)
e− tr(a){det(a)}cn−1{det(a1) det(a2) · · · det(an−1)}−θ−1 (35)

for all a ∈ M+
n , and fA(a) = 0 for every Hermitian matrix not an element of M+

n .

Proof. Since XX∗ = h(γ1(X)), our first step is to find the distribution of T := γ1(X).

Claim: T has density

fT (t) = (2π)nfX(t)

n∏

j=1

tj,j.

Proof of the claim: For any positive measurable function defined on Tn, we have

E{s(T )} = E{s(γ1(X))} =

∫

s(r1(x))fX(x) dx =

∫

T +
n

∫

[0,2π)n
s(γ1(g(t, θ))fX (g(t, θ))|Jg(t, θ)| dθ dt

= (2π)n
∫

T +
n

s(t)fX(t)
n∏

j=1

tj,j dt.

In the last equality we used Lemma 4, and the fact that fX(TV ) = fX(T ) for all V of the form

diag(eiθ1 , eiθ2 , . . . , eiθn). Thus, the claim is proved.

Now, for given a ∈ M+
n , let t := h−1(a). Then

fA(a) = fT (h
−1(a))|Jh−1(a)| = (2π)nfX(h−1(a))

( n∏

j=1

tj,j

)
1

|Jh(h−1(a))|

= (2π)n
1

πn(n+1)/2
C(θ, b) e− tr(a)

n∏

j=1

|tj,j|2(cj−1) 1

2n
∏n

j=1 t
2(n−j)+1
j,j

n∏

j=1

tj,j

=
1

πn(n−1)/2
C(θ, b) e− tr(a)

( n∏

i=1

t
2(n−j−cj+1)
j,j

)−1

=
1

πn(n−1)/2
C(θ, b) e− tr(a)

( n∏

j=1

t2j,j

)cn−1( n∏

j=1

t
2(n−j)
j,j

)−(1+θ)

.
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In the third equality we used Lemma 5, and in the last equality the fact that −cj = θ(n− j)− cn

for all j ∈ {1, 2, . . . , n}. Finally, we express the products involving the variables tj,j in terms of

the variable a. Since T is lower triangular, we have ai = TiT
∗
i . Thus

det(ai) = |det(Ti)|2 = (t1,1t2,2 . . . ti,i)
2.

Multiplying these equalities for all 1 ≤ i ≤ n− 1, we get

det(a1) det(a2) · · · det(an−1) =

n∏

i=1

t
2(n−i)
i,i .

This finishes the proof of the proposition. �

Proof of Theorem 4. From relations (4.1.17), (4.1.18) in Anderson et al. (2010), and the fact that

Xθ,b(n)Xθ,b(n)∗ is positive definite, we have that the vector of the eigenvalues in decreasing order

has density

fΛn(λ) = Cn

∏

i<j

(λi − λj)
2

∫

U(n)
fA(HDλH

∗)(dH)1λ1>λ2>...>λn>0

where λ := (λ1, λ2, . . . , λn),Dλ is the diagonal matrix with diagonal λ, (dH) is the normalized

Haar measure on U(n), and the constant Cn is

Cn :=
πn(n−1)/2

∏n−1
j=1 j!

.

Thus, writing a := HDλH
∗ and taking into account Proposition 2, we get

fΛn(λ) =
C(θ, b)
∏n−1

j=1 j!

{∏

i<j

(λi − λj)
2
}

e−
∑n

j=1 λj

( n∏

j=1

λj

)cn−1

K(λ)1λ1>λ2>...>λn>0 (36)

with

K(λ) :=

∫

U(n)
{det(a1) det(a2) · · · det(an−1)}−θ−1 (dH). (37)

The computation of the last integral is given in Lemma 6. Combining that computation with

(36), we finish the proof. �

Lemma 6. For θ ≥ 0, the integral in (37) equals

K(λ) =

∏

1≤i<j≤n

∫ λi

λj
x−θ−1 dx

∏

1≤i<j≤n(λi − λj)
=

(
n∏

i=1

λi

)−θ(n−1) ∏

1≤i<j≤n

∫ λi

λj
xθ−1 dx

∏

1≤i<j≤n(λi − λj)
. (38)

Proof. To simplify the exposition, we introduce a binary relation which we denote by ≻. x ≻ y

means that there is k ∈ N
+ so that x = (x1, x2, . . . , xk+1) ∈ R

k+1, y = (y1, y2, . . . , yk) ∈ R
k, and

x1 ≥ y1 ≥ x2 ≥ y2 · · · ≥ xn ≥ yn ≥ xk+1.
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For x = (x1, x2, . . . , xk) ∈ R
k, we let Y (x) be the set of all elements (y(k−1), y(k−2), . . . , y(1)) of

R
k−1 × R

k−2 × · · · × R
2 × R that satisfy

λ ≻ y(k−1) ≻ y(k−2) ≻ · · · ≻ y(2) ≻ y(1).

One can easily verify that

Vol(Y (x)) =
∏

1≤i<j≤k

xi − xj
j − i

. (39)

We can now start the proof of the lemma. For each i = 1, 2, . . . , n−1, call x(i) = (x
(i)
1 , x

(i)
2 , · · · , x(i)i )

the vector of the eigenvalues of the symmetric matrix ai with x
(i)
1 ≥ x

(i)
2 ≥ · · · ≥ x

(i)
i . Then the

integrand in (37) is simply
n−1∏

i=1

i∏

j=1

(x
(i)
j )−θ−1.

Under (dH), the law of a is the one of an n × n GUE matrix conditioned to have eigenvalues

λ1, λ2, . . . , λn, and according to Proposition 4.7 in Baryshnikov (2001), the law of (x(n−1), x(n−2), . . . , x(1))

is the uniform on Y (λ) with respect to Lebesgue measure. Thus the integral equals

1

Vol(Y (λ))

∫ λn−1

λn

∫ λn−2

λn−1

· · ·
∫ λ1

λ2
︸ ︷︷ ︸

n− 1 integrals

∫ x
(n−1)
n−2

x
(n−1)
n−1

· · ·
∫ x

(n−1)
1

x
(n−1)
2

︸ ︷︷ ︸

n− 2 integrals

· · ·
∫ x

(2)
1

x
(2)
2

︸ ︷︷ ︸

1 integral

∏

1≤j≤i≤n−1

(x
(i)
j )−θ−1

∏

1≤j≤i≤n−1

dx
(i)
j .

(40)

Assume now that θ > 0. Let λ̃(θ) := (λ−θ
n , λ−θ

n−1, . . . , λ
−θ
1 ), and in the integral make the change

of variables y
(i)
j = (x

(i)
j )−θ for all 1 ≤ j ≤ i ≤ n− 1. Then the previous expression becomes

1

Vol(Y (λ))
(−θ)−n(n−1)/2

∫ λ−θ
n−1

λ−θ
n

∫ λ−θ
n−2

λ−θ
n−1

· · ·
∫ λ−θ

1

λ−θ
2

︸ ︷︷ ︸

n− 1 integrals

∫ y
(n−1)
n−2

y
(n−1)
n−1

· · ·
∫ y

(n−1)
1

y
(n−1)
2

︸ ︷︷ ︸

n− 2 integrals

· · ·
∫ y

(2)
1

y
(2)
2

︸ ︷︷ ︸

1 integral

n−1∏

i=1

i∏

j=1

dy
(i)
j

= θ−n(n−1)/2Vol(Y (λ̃(θ)))

Vol(Y (λ))
= θ−n(n−1)/2

∏

1≤i<j≤n(λ
−θ
j − λ−θ

i )
∏

1≤i<j≤n(λi − λj)
(41)

=

(
n∏

i=1

λi

)−θ(n−1)
θ−n(n−1)/2

∏

1≤i<j≤n(λ
θ
i − λθ

j )
∏

1≤i<j≤n(λi − λj)
. (42)

And the lemma is proved in this case. In the case θ = 0, in the integral of (40), we let y
(i)
j = log x

(i)
j

for all 1 ≤ j ≤ i ≤ n − 1 and proceed as above. Alternatively, we can take θ → 0 in the last

expression. �

5 Determinantal process. Proof of Theorem 5

Proof. (i). For each positive integer n and y1, y2, . . . , yn ∈ R, we let

∆(y1, y2, . . . , yn) := det(yj−1
k )1≤j,k≤n =

∏

1≤j<k≤n

(yk − yj).
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Equation (3.3) of Deift and Gioev (2009) gives that the determinant of G(n) is

det

(∫ ∞

0
xj(log x)ke−x dx

)

0≤j,k<n

=
1

n!

∫ ∞

0
· · ·
∫ ∞

0
det(xj−1

k )1≤j,k≤n det((log xk)
j−1)1≤j,k≤n

n∏

k=1

dxk

(43)

=
1

n!

∫ ∞

0
· · ·
∫ ∞

0
∆n(x1, . . . , xn)∆n(log x1, . . . , log xn)

n∏

k=1

dxk

(44)

The integrand is positive, thus the determinant is not zero.

(ii) Follows from part (i) and Proposition 5.8.1 of Forrester (2010). �

In the rest of the section, we discuss the structure of G(n) and compute explicitly the value of its

determinant.

Lemma 7. The matrix G := (gi,j)i,j∈N has an LU factorization G = LU with

Li,j = |s(i+ 1, j + 1)| for i ≥ j ≥ 0, (45)

Ui,j = (j)ig0,j−i for 0 ≤ i ≤ j. (46)

Here s denotes the Stirling number of the first kind.

We follow the convention (0)i = 1 for all nonnegative integers i.

Proof. We compute the exponential generating function of the sequence (gj,k)j,k∈N.

∞∑

j,k=0

uj

j!

vk

k!
gj,k =

∫ ∞

0
e−xeuxev log x dx =

∫ ∞

0
e−xe−(1−u)xxv dx = (1− u)−v−1Γ(1 + v)

=

∞∑

j=0

(v + 1)(v + 2) · · · (v + j)
uj

j!

∞∑

s=0

Γ(s)(1)

s!
vs

=
∞∑

j=0

uj

j!

j
∑

r=0

(−1)j−rs(j + 1, r + 1)vr
∞∑

s=0

Γ(s)(1)

s!
vs

=
∞∑

j,k=0

uj

j!
vk

j∧k
∑

r=0

Γ(k−r)(1)

(k − r)!
(−1)j−rs(j + 1, r + 1).

Since for m,n ∈ N the integer s(m,n), if not zero, has sign (−1)m−n and Γ(n)(1) = g0,n, we get

gj,k =

j∧k
∑

r=0

|s(j + 1, r + 1)|(k)rg0,k−r

for all j, k ∈ N. This proves the factorization G = LU . �

Since Lk,k = 1 and Uk,k = k! for all k ∈ N, we obtain

det(G(n)) = 1!2! · · · (n − 1)!.
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6 Limiting empirical distribution in the θ > 0 case

Proof of Theorem 6: We first prove the following.

Claim: The sequence
(
Xθ,b(n)/

√
n
)

n≥1
converges in ∗-moments to a DT (νθ, 1) element.

Recall the form of the diagonal elements of Xθ,b(n) in (8). Call ηn the law of the vector

(Xk,k/
√
n)1≤k≤n, η̃n its symmetrization, that is, the law of (Xπ(k),π(k)/

√
n)1≤k≤n, where π is a

random permutation of {1, 2, . . . , n} independent of the matrix, and η̃
(p)
n the projection onto the

first p coordinates of η̃n (p ∈ {1, 2, . . . , n}). According to Theorem 2.13 in Dykema and Haagerup

(2004), it is enough to show that η̃
(p)
n converges in ∗-moments to ×p

1νθ. Since the law ηn is a

product measure, it is enough to show this only for p = 1. Clearly the law of η̃
(1)
n is radially

symmetric. It suffices therefore to prove that for any function h : R → R of at most polynomial

growth, it holds that

1

n

n∑

k=1

Eh

(
Y 2
k

2n

)

→ 1

θ

∫ θ

0
h(r) dr (47)

as n → ∞. Take independent random variables (Wk)k≥1 so that W1 ∼ Γ(b, 1) and Wk ∼ Γ(θ, 1)

for all k ≥ 2. Then Y 2
k /2 has the same law as Sk := W1 +W2 + · · ·+Wk. The left hand side of

(47) is

1

n

n∑

k=1

Eh

(
Sk

k

k

n

)

. (48)

Now, Sk/k converges pointwise to θ, and satisfies a large deviations principle with speed n and

good rate function having a unique zero at θ. At the same time, h has at most polynomial growth.

It is easy then to show that (48) converges to
∫ 1
0 h(θx) dx, proving our claim.

Call x the limit mentioned in the claim. We can assume that x is an element of a von Neumann

algebra (see Remark 2.3 in Dykema and Haagerup (2004)), and thus there is a unique compactly

supported measure in R that has the same moments as xx∗ (Lemma 5.2.19 in Anderson et al.

(2010)). The theorem follows by combining this with the above claim. �

Acknowledgments: This research was carried out while I spent the fall semester of 2013

at Leiden University. I thank Frank den Hollander for the invitation, and the entire probability

group for the stimulating atmosphere.

References

G. W. Anderson, A. Guionnet, and O. Zeitouni. An introduction to random matrices, volume

118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,

2010.

Z. Bai and J. W. Silverstein. Spectral analysis of large dimensional random matri-

ces. Springer Series in Statistics. Springer, New York, second edition, 2010. URL

http://dx.doi.org/10.1007/978-1-4419-0661-8.

20

http://dx.doi.org/10.1007/978-1-4419-0661-8


Z. Bai and Yin (1988). Necessary and sufficient conditions for almost sure convergence of the

largest eigenvalue of a wigner matrix. The Annals of Probability, 16(4):1729–1741.

Y. Baryshnikov (2001). GUEs and queues. Probab. Theory Related Fields, 119(2):256–274.

A. Borodin (1999). Biorthogonal ensembles. Nuclear Phys. B, 536(3):704–732.
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