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And then I felt sorry. I don't want to hurt anybody and especially I don't 
want to hurt poor Emmy Noether. I thought about it repeatedly and 

finally I decided that, after all, it was not one hundred per cent my fault. 
She should have answered: "And a mathematician who can only specialise 
is like a monkey who can only climb DOWN a tree." 

In fact, neither the up, nor the down, monkey is a viable creature. A real 

monkey must find food and escape his enemies and so he must incessantly 
climb up and down, up and down. A real mathematician must be able to 

generalise and to specialise. 
A particular mathematical fact behind which there is no perspective of 

generalisation is uninteresting. On the other hand, the world is anxious to 
admire that apex and culmination of modern mathematics: a theorem so 

perfectly general that no particular application of it is possible. 
There is, I think, a moral for the teacher. A teacher of traditional mathe- 

matics is in danger of becoming a down monkey, and a teacher of modern 
maths an up monkey. The down teacher dishing out one routine problem 
after the other may never get off the ground, never attain any general idea. 
And the up teacher dishing out one definition after the other may never 
climb down from his verbiage, may never get down to solid ground, to some- 

thing of tangible interest for his pupils. It seems to me that the quality of 
disservice to the pupils and to the taxpayers is very much the same in both 
cases. 

What is desirable? To look for generality behind the particular case, to 
look for significant particular cases in the general statement. "The union of 

passionate interest in the detailed facts with equal devotion to abstract 

generalisation" said A. N. Whitehead ([1], p. 3). 
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1. Introduction 

By a triangulated n-gon we mean a partition of a polygon PoP1...P-_ 
(not necessarily regular) into n - 2 triangles by means of n -3 non-crossing 
diagonals. Let a, denote the number of triangles at P,. Clearly 

ao + a + + an_ =3(n - 2), 1 a,<n-2, 

and if n > 3, at least two of the as are equal to 1 but no two consecutive as 
can take this value. While developing a set of problems and solutions, we 

And then I felt sorry. I don't want to hurt anybody and especially I don't 
want to hurt poor Emmy Noether. I thought about it repeatedly and 

finally I decided that, after all, it was not one hundred per cent my fault. 
She should have answered: "And a mathematician who can only specialise 
is like a monkey who can only climb DOWN a tree." 

In fact, neither the up, nor the down, monkey is a viable creature. A real 

monkey must find food and escape his enemies and so he must incessantly 
climb up and down, up and down. A real mathematician must be able to 

generalise and to specialise. 
A particular mathematical fact behind which there is no perspective of 

generalisation is uninteresting. On the other hand, the world is anxious to 
admire that apex and culmination of modern mathematics: a theorem so 

perfectly general that no particular application of it is possible. 
There is, I think, a moral for the teacher. A teacher of traditional mathe- 

matics is in danger of becoming a down monkey, and a teacher of modern 
maths an up monkey. The down teacher dishing out one routine problem 
after the other may never get off the ground, never attain any general idea. 
And the up teacher dishing out one definition after the other may never 
climb down from his verbiage, may never get down to solid ground, to some- 

thing of tangible interest for his pupils. It seems to me that the quality of 
disservice to the pupils and to the taxpayers is very much the same in both 
cases. 

What is desirable? To look for generality behind the particular case, to 
look for significant particular cases in the general statement. "The union of 

passionate interest in the detailed facts with equal devotion to abstract 

generalisation" said A. N. Whitehead ([1], p. 3). 

Reference 

1. A. N. Whitehead, Science and the Modern World. Cambridge University Press (1926). 

Stanford University, California 94306, USA G. POLYA 

Triangulated polygons and frieze patterns 

J. H. CONWAY AND H. S. M. COXETER 

1. Introduction 

By a triangulated n-gon we mean a partition of a polygon PoP1...P-_ 
(not necessarily regular) into n - 2 triangles by means of n -3 non-crossing 
diagonals. Let a, denote the number of triangles at P,. Clearly 

ao + a + + an_ =3(n - 2), 1 a,<n-2, 

and if n > 3, at least two of the as are equal to 1 but no two consecutive as 
can take this value. While developing a set of problems and solutions, we 

87 87 



THE MATHEMATICAL GAZETTE 

shall find other properties of this cycle of numbers and exhibit it as the second 
row of a frieze pattern 

1 1 1 ... 1 1 

ao al ... an-_ ao 

But let us first decide what we shall mean by a "frieze pattern". 

2. Problems about frieze patterns 

From the standpoint of symmetry, every infinitely long frieze belongs to 
one of seven types ([12], p. 88): 

(i) b...b b b b b ... or .. L L L L L ... 
(ii) .b p b p b ... or .... L L r L ... 
(iii) ... b d b d b ... or ... V V V V V ... 
(iv) ... b q b q b ... or ... N N N N ... 
(v) ... b d p q b ... or ... V A V A V ... 

(vi) ... c c c c c ... or ... D D D D D ... 

(vii) ...o o o o o ... or ... H H H H ... 

All these patterns can be shifted a certain distance to the right or left 
without being changed: they are symmetrical by translations (or slides). In 
case (i) these are the only symmetries. But in case (iii) there are also reflections 
(orflips) about some vertical lines, and in case (iv) there are some half-turns: 
the pattern looks the same when the page has been turned upside down. In 
case (v) there are both reflections and half-turns. The combination orproduct 
of a reflection and a half-turn is a glide (which takes the b to thep) like the 
relation between successive footprints when one walks along a straight path 
covered with snow. This glide appeared by itself (without the component 
reflection and half-turn) in case (ii). Case (vi) is like (i) but with an extra 
reflection (flip) about a horizontal line. 

(1) What happens in case (vii)? 

(2) Which are the types of the following patterns of Roman numerals ? 

(a) ...I I I I .. (b) I I I I ... 
... I I I I 

(c) I I I I ... (d) I I I I I I 
... I II I II ... I I II II II III 

I I I I ... II II I III I II... 
...I I I I I I 

Roman numerals I, II, III have been used because they are symmetrical 
by reflections and half-turns. If we agree to overlook the 'accidental' fact 
that ordinary numerals lack symmetry, we can re-write (d) in the form 
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1 1 1 1 1 1 ... 
... 3 1 2 2 1 3 

2 2 1 3 1 2... 
... 1 1 1 1 1 1 

and regard it still as being of type (v). 
Of which types are the following three patterns ? 

(3) 1 1 1 1 1 1 
... 1 3 1 3 1 ... 

2 2 2 2 2 2 
...3 1 3 1 3 ... 

1 1 1 1 1 1 

(4) 1 1 1 1 1 1 
... 1 2 3 1 2 ... 

2 1 5 2 1 5 
...1 2 3 1 2 ... 

1 1 1 1 1 1 

(5) 1 1 1 1 1 1 1 1 
... 1 3 2 2 1 4 2 ... 

1 2 5 3 1 3 7 1 
... 1 3 7 1 2 5 3 ... 

2 1 4 2 1 3 2 2 
... 1 1 1 1 1 1 1 ... 

(6) What arithmetical rule (concerning multiplication and addition) is 
satisfied by each of these numerical patterns ? Hint: Look at the 'diamond' 

shapes such as 
2 5 

5 3 3 7 
7 4 

This rule may conveniently be called the unimodular rule. 

(7) How should the pattern 

1 1 1 1 1 1 1 1 1 ... 
1 

1 
3 

2 
1 

2 
... 1 1 1 1 1 1 1 ... 

be continued ? What is its type ? 
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For a reason that will soon become clear, a pattern with n - 1 rows (the 
first and last consisting entirely of ones) is said to be of order n. Thus (3) and 

(4) are of order six, (5) is of order seven, and (7) is of order nine. Trivially, a 

single row of ones, as in 2(a), may be called a pattern of order two. 

(8) What does Gauss's identity 

a{(1 + a - fy) - (1 + fi- 8)} = (1 + y)(1 + 6 - a) - (1 + 6)(1 + y - ca) 

tell us about the pattern of order five that begins 

1 1 1 1 1 1 
a fP y 

3 E 
1 1 1 1 

([5], p. 298)? 

(9) The structure of the pattern 

1 1 1 1 1 
Uo U2 U4 

Ul U3 

1 1 1 1 ... 

(where every u,r 0) suggests that the equations [10] 

UoU2 - 1 + U, u1 3 1 + U2, U24 =1 + , UU3 U = 1 + u4 

imply Uo = u5. Give a simpler proof than Gauss's (all on one line). 

(10) Is a frieze pattern of positive numbers determined as soon as one 

diagonal is filled up? 

(11) If the restriction to positive numbers is temporarily abandoned, how 
should a frieze pattern be extended by two extra rows above, and two 
extra rows below, so that the unimodular rule continues to hold? 

(12) If the top row of ones is still called the first row, can it happen that two 
consecutive ones occur also in the second row? 

(13) In a frieze pattern 

1 1 1 1 1 

ao a, ao a 
1 1 1 1 1 

of order four, can it happen that ao = a1 ? 
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(14) If 
1 1 1 1 1 

T T T T . 

T T T T T 

1 1 1 1 ... 

is a frieze pattern (of order five), what is the value of X ? Have you seen this 
number in any other connection? 

(15) It is proved in books on geometry that, when a simple quadrangle ABCD 
is inscribed in a circle, its sides and diagonals satisfy Ptolemy's theorem 

AB x CD + BC x DA - AC x BD 

([14], p. 206). What does this tell us about the diagonal AC(=BD) of a 

regular pentagon ABCDE of side AB = 1 ? 

(16) Form the analogous frieze pattern based on the sides and diagonals of a 

regular hexagon. 
Remark. As a limiting case, one may consider the infinitely tall pattern 

1 1 1 1 1 
2 2 2 2 

3 3 3 3 3 
4 4 4 4 

5 5 5 5 5 

of type (iii). 

(17) Returning to the general frieze pattern of order n, let the numbers in 
the second row be 

ao, al, a2, ... 

and let those in the 'south-east' diagonal through ao be 

f-l = O, fO = 1, fi = aO, ..., fn-2 c1 f,n-i = O, 

so that the pattern begins with 

1 1 1 1 ... 1 1 1 

fi al a2 ... al a, 

f2 

fn-3 

1 1 1 1 

Express a3 as a function of thefs. 

(18) Expressf, as a function of ao, a, ..., a,_4. 
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(19) The unimodular rule tells us that 

alr-1 >0 
1 a, 

except when every a, = 1. What analogous inequalities hold for sequences 
of three or more as ? 

(20) What equation relates ao, a, ..., a,_3 ? 

(21) In an obvious sense, the pattern (3) is ofperiodtwo, while (7) is of period 
three and (14) is of period one. We see from (9) and (14) that every pattern of 
order five is of period one or five. Is it always true that a, = a ? In other 

words, does every pattern of order n have period n or a divisor of n ? 

(22) For which values of n is the period always strictly less than n ? 

(23) Suppose... t u v w ... is part of the second row (cycle of as) of a frieze 

pattern of order n. What happens if the cycle is changed so that this part is 

replaced by ... t u + 1 1 v+ 1 w ... ? 

(24) What relation (involving addition and divisibility) must hold for any 
three consecutive entries in a diagonal (such asf_1, f,, f.r+) if the pattern is 
to consist entirely of integers? 

3. Problems about triangulated polygons 

Let us now carefully consider the problem of finding all possible cycles of 

integers ar that yield frieze patterns of integers. Lacking any perfectly 
descriptive name, we will call them quiddity cycles. 

(25) Does every quiddity cycle include at least one 1 ? 

(26) Can every quiddity cycle of order n + 1 be derived from one of order n 

by means of the rule described in (23)? 

(27) Applying rule (23) to the 'cycle' 0 0 of order two, we obtain 1 1 1 of 
order three, then 1 2 1 2 of order four, 1 3 1 2 2 of order five, 

141222, 132132, 131313, 231231 

of order six, and so on. Have you seen such cycles in any other connection? 

(28) Is there just one frieze pattern of integers for each triangulated polygon ? 

(29) Is there just one triangulated polygon for each frieze pattern of integers ? 
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(30) Draw the triangulated enneagon corresponding to the frieze pat- 
tern (7). Why is this interesting when regarded as a graph? 

(31) Is the number of integral frieze patterns finite for each value of n ? 

(32) Let a frieze pattern of integers be bordered by two rows of Ps, thus: 

Po Pi P2 P3 ... Pn- Po P 
1 1 1 1 1 1 1 1 1 

2 1 4 2 1 3 2 2 
3 1 3 7 1 2 5 3 1 

1 2 5 3 1 3 7 1 
2 1 3 2 2 1 4 2 1 

1 1 1 1 1 1 1 1 

P3 ... Pn-l PO PI P2 P3 

and let (r, s) denote the entry where a south-east diagonal P,P, meets a 

north-east diagonal PPs,, or vice versa. What happens to the polygon 
PoP ...P,-I whenever (r, s) = 1 ? 

(33) Does the 'fundamental region' 

2 1 4 2 1 

1 3 7 1 
2 5 3 

3 2 

(which is repeated upside down, between the upper and lower rows of ones) 

always contain just n - 3 ones and the same number of twos? 

(34) One simple way to triangulate a polygon is by means of diagonals 

forming a zigzag. Does this yield a frieze pattern consisting entirely of 

Fibonacci numbers? 

(35) Can we go one step farther and assert that everyfriezepattern of integers 
either contains a 4 or consists entirely of Fibonacci numbers ? 

[Section 4 (Solutions) will appear in the next issue of the Gazette. The 

references given below apply also to that section.] 
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