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Abstract. In [1] a generalization of Hall’s theorem was proved for families of hyper-
graphs. The proof used Sperner’s lemma. In [5] Meshulam proved an extension of this
result, using homology and the nerve theorem. In this paper we show how the triangulations
method can be used to derive Meshulam’s results. As in [1], the proof is based on results
on extensions of triangulations from the sphere to the full ball. A typical result of this
type is that any triangulation of the (d − 1)-dimensional sphere Sd−1 can be extended to a
triangulation of the ball Bd , by adding one point at a time, having degree at most 2d to its
predecessors.

1. Introduction

Recently Haxell and the first author of this paper [1] generalized Hall’s theorem, which
concerns families of sets, to families of hypergraphs. The generalization provides a
sufficient condition for the existence of systems of disjoint representatives (SDRs) in
families of hypergraphs. The proof used Sperner’s lemma and the existence of particular
triangulations of the n-dimensional simplex, satisfying certain special conditions.

Later, Meshulam [5] proved an extension of this result, an interpolation between it
and another known sufficient condition for the existence of SDRs (implicitly proved in
[4]). His proof used homology and the nerve theorem.

The present paper re-proves Meshulam’s results, using again the more elementary
approach of triangulations.

The lemma used in [1] for the inductive construction of the special triagulations was:

Lemma 1.1. Any triangulation T of the sphere Sd−1 can be extended to a triangulation
T ′ of the ball Bd , such that the points of T ′\T all lie in the interior of the ball, and each
of them is connected to at most d points of T .
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The main tool used in the present paper is a family of extensions of this lemma. These
are results concerning the extendability of triangulations from the sphere to the ball, in
a way which maintains certain degree conditions on the points added. Lemma 1.1 is at
one end of the spectrum of these results. At the other end of the spectrum is:

Lemma 1.2. Any triangulation T of the sphere Sd−1 has an extension to a triangulation
T ′ of the ball Bd , obtained by adding one point in the interior of the ball at a time, having
degree at most 2d to its predecessors.

We start with a few notions from the theory of simplicial complexes. We often use
complexes and graphs in the same context, and, hence, to avoid confusion, we call the
vertices of complexes “points” (so that the word “vertex” is reserved for graphs). In
particular, the vertices of a simplex are called its extreme points.

For a simplicial complex C we denote by ‖C‖ its underlying space. For a complex C
and a point x we write C∗x for the join of C and x , namely, the complex C∪{σ ∪{x}: σ ∈
C}. Given a complex C and a point v in it, the link of v in C , denoted by lkC(v), is the
set of simplices in C not containing v, whose union with v belongs to C .

As is well known (see, e.g., [2]), if C is a triangulation of a sphere Sd , then lkC(v) is
a triangulation of Sd−1 for any vertex v of C .

A coloring of points of a subdivision T of the m-dimensional simplex �m is called
a Sperner coloring of T if the extreme points of �m are assigned different colors, and
for every τ ∈ �m the points in T ∩ ‖τ‖ are assigned colors from among those given to
the extreme points of τ . Sperner’s lemma [3] asserts that in such a coloring there always
exists a simplex belonging to T whose extreme points are assigned different colors.

2. Extending Triangulations of the Sphere

In this section we prove a family of common generalizations of Lemmas 1.1 and 1.2.
These generalizations interpolate between the two lemmas, in a way analogous to the
interpolation of [5] between two conditions for connectivity of the clique complex of a
graph.

For any t we denote by �t the graph on 2(t + 1) vertices, which is the complement
of a perfect matching. We also refer to �−1—it is the empty graph, namely, having no
vertices.

Let T be a triangulation of Sd−1. Consider a sequence of complexes T = T0 ⊂ T1 ⊂
· · · ⊂ Tm = T ′, such that T ′ is a triangulation of the ball Bd , and Ti is obtained from
Ti−1 by the addition of one point vi in the interior of the ball. For each 0 < i ≤ m we
say that an edge (vi , u) is t-permissible if u �∈ T and the link of (vi , u) in Ti contains a
copy of �t−1. (Thus, for example, every edge disjoint from T is 0-permissible.)

We say that the sequence T = T0 ⊂ T1 ⊂ · · · ⊂ Tm is (k, t)-filling if each vi

is connected by at most k non-t-permissible edges to points of Ti−1. If there exists a
(k, t)-filling sequence starting with T , we say that T is (k, t)-fillable.

Since every interior edge is 0-permissible, being (k, 0)-fillable means being extend-
able to a triangulation of Bd by adding points in the interior, each connected to at most
k points of T . Since no edge is d-permissible in a sequence of complexes as above, T
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being (k, d)-fillable means that it can be extended to a triangulation of Bd by adding one
point at a time, having degree at most k to its predecessors.

Thus Lemmas 1.1 and 1.2 are both special cases of the following:

Lemma 2.1. For any t ≤ d , every triangulation of Sd−1-sphere is (d + t, t)-fillable.

Proof. The proof is by induction on d + t . The basis of induction, the case d + t = 1, is
trivial. For the step of induction, fix d + t ≥ 2 and a triangulation T of Sd−1. We extend
T to a triangulation of Bd in two stages. In the first we triangulate a shell of the ball,
having T and (say) R as triangulations of its two boundaries. What is then left for the
second stage is to extend R to a triangulation of the “inner” ball. The advantage is then
that all points of R are interior points of the original ball, making easier the application
of the definition of t-permissibility.

Stage I: Triangulating a shell. Let v be a point of T . Its link L in T is a triangulation
of Sd−2. Thus we can apply to it the induction hypothesis with parameters d − 1 and t ,
which yields the existence of a sequence L j (0 ≤ j ≤ p) of complexes, each obtained
from its predecessor by the addition of a point uj , and such that (1) L0 = L , L p is a
triangulation of Bd−1, and (2) uj is joined by at most d − 1 + t non-t-permissible edges
to points in L j−1. Let L ′

j = L j ∗ v ∪ T .
The addition of the edge (uj , v) adds 1 to the degree of uj in L ′

j relatively to its degree
in L j . Note that any t-permissible edge in the sequence

L0 ⊂ L1 ⊂ · · · ⊂ L p

remains t-permissible for the sequence

L ′
0 ⊂ L ′

1 ⊂ · · · ⊂ L ′
p.

Hence each L ′
j is obtained from its predecessor by adding a point connected to at

most d + t non-t-permissible edges to points in L ′
j−1.

The complex L ′
p consists of T together with a “cap” having v as its tip, triangulated

by L p ∗ v. The complex L ′
p − v obtained by “excising” this cap is a triangulation of

Sd−1. Its points are those of T , with v deleted and with some new points added in the
interior of the sphere triangulated by L (see Fig. 1).

We now choose a point of L ′
p − v belonging to T , and in a similar manner excise a

triangulated cap having it as a tip. In finitely many steps of this type we eliminate all
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Fig. 1. Excision of caps with tips v1 and v2.



226 R. Aharoni, M. Chudnovsky, and A. Kotlov

points of T . The union of all the excised caps is then a triangulation of a shell, having T
as one boundary and a triangulation R disjoint from T as the other boundary.

What remains now is to triangulate the ball inside R.

Remark. In the case of t = 0, namely, in that of Lemma 1.1, the remaining task is
easy. Any triangulation of the ball will do, since the only conditions are on the degree
of interior points to the points of T .

Stage II: Triangulating the inner ball. Pick a point z in the interior of the ball bounded
by R (namely, in the bounded component of R

d\‖R‖). Let v be a point of R. The link M
of v in R is a triangulation of Sd−2. By the inductive hypothesis, with parameters d − 1
and t − 1, there exists a sequence Mj (0 ≤ j ≤ q) of complexes, each obtained from its
predecessor by the addition of a point uj , and such that (1) M0 = M , Mq is a triangulation
of Bd−1, and (2) uj is joined by at most d −1+ t −1 = d + t −2 non-(t −1)-permissible
(for the sequence Mk) edges to points in Mj−1. Let M ′

j = Mj ∗ v ∪ (Mj − M) ∗ z ∪ T .
Let (uj , x) be a (t − 1)-permissible edge for the sequence Mk (0 ≤ k ≤ q). By the

definition of permissibility, this means that its link in Mj−1 contains a copy X of �t−2.
Since all points of X are connected in M ′

j to v and to z, the complex X ∗ v ∪ X ∗ z
is a copy of �t−1, contained in the link of (uj , x) in M ′

j−1. This means that (uj , x) is
t-permissible for the sequence M ′

k (0 ≤ k ≤ q).
Thus all non-t-permissible edges connecting uj to points in Mj−1 for the sequence

M ′
k are also non-(t − 1)-permissible for the sequence Mk , and hence there are at most

d + t − 2 of them. Together with the two edges joining uj to v and to z, this gives at
most d + t non-t-permissible edges connecting uj to points in M ′

j−1.
The complex M ′

q is similar to the complex named L ′
p in the first stage: it consists of

T together with a cap having v as its tip, triangulated by Mq ∗ v. The difference is that
there is added to it the cone (M ′

q − M) ∗ z.
We now pick a point in M ′

q ∩ T , and repeat the procedure to “excise” a cap having it
as a tip. This is done just as in stage I, the difference being, again, that the points added
are connected also to z.

As in stage I, once all points of T are eliminated, a shell has been triangulated, one
of its boundaries being R. Let W be its other (inner) boundary. Then in the complex
obtained, z is connected to all points of W . This means that the complex obtained is a
triangulation of the ball Bd .

3. Meshulam’s Theorem

In this section we show how the results on extendability of triangulations imply a theorem
of Meshulam [5]. We do not use Lemma 2.1 itself, but the steps of the proof will be the
same. This part is then implemented into a proof scheme used in [1].

Throughout the rest of the paper, let G be a graph on a vertex set V with a loop at each
vertex, so that its complement, H , has no loops. As usual, G[A] denotes the induced
subgraph of G spanned by A ⊆ V . For a vertex v ∈ V we denote by �(v) the set of
neighbors of v in G. (Note that v ∈ �(v)).
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We say that G is k-narrow with respect to a set A of vertices if every k vertices of G
has a common neighbor in A. If A = V we say just that G is k-narrow. (The measure
of narrowness of the complement of a graph is the domination number of the graph. In
[1] the domination number of the line graph of a hypergraph is called the width of the
hypergraph, hence the “narrowness” terminology.)

A set A of vertices is called t-free if G[A] does not contain �t as an induced subgraph.
A graph is called (k, t)-narrow if it is k-narrow with respect to a t-free set A. We say

then that it is also (k, t)-narrow with respect to A.
The following is obvious:

Observation 3.1.

(1) If G is (k, t)-narrow with respect to A, then G[�(v)] is (k − 1, t)-narrow with
respect to A for any vertex v.

(2) If G is (k, t)-narrow with respect to A, then for any pair u, v of nonadjacent
vertices of A, the graph G[�(u) ∩ �(v)] is (k − 2, t − 1)-narrow with respect to
A ∩ �(u) ∩ �(v).

Lemma 3.2. Let T be a triangulation of Sd−1 and let ϕ be a homomorphism (an edge-
preserving map) from T to a graph G. If G is either 2d-narrow or (d + t, t)-narrow for
some t ≤ d , then there exist an extension T̂ of T to a triangulation of the ball Bd and
an extension ϕ̂: T̂ → G of ϕ.

Proof. We prove the case that G is (d + t, t)-narrow with respect to some set of vertices
A. The proof of the case of 2d-narrowness is similar. The proof is by induction on d + t .
We shall strengthen the inductive hypothesis, to include the condition that ϕ̂[T̂ \T ] ⊆ A.

We construct T̂ along the same lines as in the proof of Lemma 2.1. That is, we do it
in two stages, in the first of which a shell is constructed, and in the second the ball inside
the shell is filled.

Let v be a point of T . Its link L in T is a triangulation of Sd−2. By Observation 3.1
G ′ = G[�(v)] is (d − 1 + t, t)-narrow with respect to A ∩ �(ϕ(v)). Hence we can
apply the induction hypothesis with parameters d − 1 and t , to obtain a triangulation L̂
of Bd−1 extending L , and a homomorphism θ : L̂ → G ′ extending ϕ � L . Then ϕ ∪ θ

is a homomorphism of T ∪ L̂ ∗ v into G, where T ∪ L̂ ∗ v is a triangulation T ′ of a
sphere together with a cap, having v as the tip. The triangulation T ′ may have additional
points to those of T , but they are all inside the ball circumscribed by T , while it does
not contain the point v of T .

As in the proof of Lemma 2.1, we now proceed to choose a point of T ′ belonging to
T , and repeat the same procedure with it replacing v. In finitely many steps we extend
T to a triangulation of a shell having T as the outer boundary, and (say) R as the inner
boundary, and we extend ϕ to the new triangulation. For convenience, we still denote
the extended homomorphism by ϕ. Our aim is to extend T to the ball circumscribed by
R, and extend ϕ to it.

To do this, we choose a point z in the interior of the ball bounded by R, and define
ϕ(z) = a, where a is any chosen vertex in A. Let Y be the set of points v of T such that
(a, ϕ(v)) �∈ E(G), and order Y as y1, y2, . . . , yq .
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Fig. 2. Triangulation of the inner ball with Y = {v1, v2}.

The link M1 of y1 in R is a triangulation of Sd−2. By Observation 3.1 G ′ =
G[�(ϕ(y1))∩�(a)] is (d −1+ t −1, t −1)-narrow with respect to A∩�(ϕ(y1))∩�(a).
Hence we can apply the induction hypothesis with parameters d − 1 and t − 1, to obtain
a triangulation M̂1 of Bd−1 extending M1, and a homomorphism θ : M̂1 → G ′ extending
ϕ � M1. Then ϕ ∪ θ is a homomorphism of T1 = T ∪ M̂1 ∗ y1 ∪ M̂1 ∗ z into G, where
T1 is a triangulation of a sphere together with two cones, having y1 and z as tips.

The link of y2 in T1 is again a (d − 2)-sphere, and we can apply the inductive
hypothesis to it as we did with y1. In q = |Y | steps we obtain a triangulation of a shell
inside R, where the only points not connected to z are those of R − Y . Adding all edges
(z, r), r ∈ R − Y yields a triangulation of the ball inside R, on which the qth extension
of ϕ is a homomorphism into G, as desired (see Fig. 2).

Let V1∪̇ · · · ∪̇Vm be a fixed partition of V into m nonempty sets. A subgraph K of G
is colored if K ∩ Vi �= ∅ for all i ∈ {1, . . . , m}. The following is the main result of [5].

Theorem 3.3 [5]. Suppose that for each nonempty σ ⊆ {1, . . . , m} either the graph
Gσ := G[

⋃
i∈σ Vi ] is 2dσ -narrow (where dσ := |σ | − 1) or there exists tσ < dσ such

that Gσ is (dσ + tσ , tσ )-narrow. Then G contains a colored clique.

Proof. The proof follows the outline of the proof in [1]. Let � be the (m − 1)-
dimensional simplex, on the vertex set X = {x1, . . . , xm}. Define a homomorphism
ϕ: �(0) → G by letting ϕ(xi ) be any vertex in Vi (1 ≤ i ≤ m).

Using Lemma 3.2 we now construct inductively triangulations T k (0 ≤ k < m)

(where T 0 is the trivial triangulation, having only the singletons {xi } as simplices) each
extending its predecessor and refining �(k), and we extend ϕ to homomorphisms (still
denoted by ϕ) on T k , such that ϕ[T k ∩ ‖σ‖] ⊆ ⋃

i∈σ Vi for every σ ⊆ {1, . . . , m}.
Coloring each point v of T m−1 with color i if ϕ(v) ∈ Vi , we get a Sperner coloring.
Applying Sperner’s lemma we obtain a multicolored simplex, whose image by ϕ is a
colored clique.
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