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Abstract. A set P of n points in R d is called simplicial if it has dimension d and 
contains exactly d + 1 extreme points. We show that when P contains n' interior 
points, there is always one point, called a splitter, that partitions P into d + 1 
simplices, none of which contain more than dn'/(d + 1) points. A splitter can be 
found in O(d4+ rid 2) time. Using this result, we give a n  O(nd  4 log~+l/d n) algorithm 
for triangulating simplicial point sets that are in general position. In R 3 we give an 
O(n log n + k) algorithm for triangulating arbitrary point sets, where k is the number 
of simplices produced. We exhibit sets of 2n + 1 points in R 3 for which the number 
of simplices produced may vary between ( n - 1 ) 2 +  1 and 2 n - 2 .  We also exhibit 
point sets for which every triangulation contains a quadratic number of simplices. 

1. Introduction 

Unless otherwise stated we let P denote  a set o f  n points in R d which has 
dimension d. P is in general position if  each subset o f  P containing d + 1 points 
has dimension d. A simplex is a set o f  d + 1 points in general position. A 
triangulation o f  P is a partit ion o f  the interior o f  the convex hull o f  P into 
simplices, the vertices o f  which are points  o f  P. We say that P is simplicial if  P 
has exactly d + 1 extreme points. Two extreme edges o f  P are disjoint if they 
have no c o m m o n  endpoints .  For  terms not  defined here the reader is referred to 
the b o o k  by Gr i inbaum [3]. 

* Research supported by the Natural Science and Engineering Research Council grant A3013 and 
the F.C.A.R. grant EQ1678. 
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Triangulations of planar point sets are well behaved and well understood. For 
example, every triangulation of a given planar point set of n points has the same 
number of triangles, and this number depends only on the number of points on 
the convex hull. Furthermore, such a point set can be triangulated in O(n log n) 
time and this is optimal [6]. The preceding reference gives a concise survey of 
various kinds of planar triangulations. 

The triangulation problem in higher dimensions has been much less studied. 
Even in three dimensions, the situation becomes much more complicated. As 
shown in Fig. l(a) and (b) the same set of points may have triangulations using 
a different number of simplices. In fact, as will be shown in the next section, the 
same set of points P may have triangulations in which the number of simplices 
varies from a linear to quadratic number in the size of P. The example can be 
modified so that the points are in general position with the same property. One 
way of triangulating a three-dimensional set is by using the space sweep technique 
[6]. Roughly, the idea is to sweep through the points joining each new point to 
all "'visible" points "below" it. Even when the points are in general position, this 
may give a quadratic number of simplices. In case no more than a constant 
number of the points are collinear, it will be shown that P can be triangulated 
with a linear number of simplices. We will present an efficient algorithm that 
achieves this, and which generalizes to higher dimensions. When the points are 
not in general position, however, it may be that a quadratic number of simplices 
are required, as illustrated by the point set in Fig. 4. 

The algorithms to be presented in this paper are based on the following 
geometric fact that will be proved in Section 2: 

Every simplicial set P of n points in d dimensions with n '>  0 interior 
points can be partitioned into d + 1 simplices, none of which contains more 
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than dn'/(d + 1) points in its interior. The partitioning point is contained in 
P and is called a d/ (d  + 1)-splitter. It can be found in O(d4+ nd 2) time. 

Using the above fact, Section 3 describes an algorithm for triangulating 
three-dimensional simplicial point sets in O(n log n+k)  time, where k is the 
number of  simplices produced. In case the vertices are in general position, the 
algorithm is particularly simple and generalizes to all dimensions. In this case it 
is shown that k = O(n). In R 3 it is shown that k = O(n) even under the weaker 
assumption that no more than a constant number of  points are collinear (coplanar 
points are allowed). Finally, in three dimensions, we show that the assumption 
that the point sets are simplicial can be dropped and give an algorithm for 
triangulating arbitrary point sets in the same time bound. 

2. G e o m e t r i c  Resul t s  

Unless stated otherwise, we assume that P is a simplicial d-dimensional n point 
set in R d with n' interior points. Let {Pl , .  • • ,Pd+~} be the vertices of  P. Let x be 
any vertex in the interior of  P. Then P can be partitioned into d + 1 simplices 

Si  : {Pl, - • • , Pi-l,  X, Pi+l . . . . .  Pd+l} 

for i = 1 , . . . ,  d + 1. Let f (d )  be a function defined on the integers. We call x an 
f(d)-splitter if each simplex S~ contains at mostf(d)n'  points of  P in its interior. 
Figure 2 shows a planar point set and a 2/3-splitter. We call a splitter x optimal 
if it minimizes the maximum number of  points of  P contained in the interior of  
any of  its new simplices. It is easy to verify that the splitter shown in Fig. 2 is 
optimal. We will prove the following theorem. 

q 

Fig. 2. (2n/3)-splitter is best possible! 
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Theorem 2.1. Let P be an n point simplicial set in R a with n' > 0 interior points. 
Then P contains a d /  ( d + 1)-splitter which can be found in O(d4+ nd 2) time. 

Proof. Let p i  denote the n' interior points of P. The proof  involves successively 
deleting points of  P~ that are "close" to the vertices of  P. Any of the remaining 
points can act as a splitter for P. 

For each i =  1 , . . . ,  d + l ,  let hi be the unit normal of  the facet of P not 
containing vertex p~, pointing away from p~. That is, h~ points to the half-space, 
bounded by this facet, that does not contain pi. Set Qo = PZ. We formalize the 
deletion procedure mentioned above as follows. For each i = 1 . . . .  , d + 1: 

(a) For each x~  Q H  let sx=(x -p l )h i .  Observe that sx is the distance of x 
from p~ in the direction hi. 

(b) Let Yi be the [n ' / (d+ 1)]st order statistic in the ordering induced by hi. 
(c) Set 

Pi={x~  Qi-,: sx <sy,}, 

P, = {x ~ Oi_,: Sx<-- sy,}, 

Q , = { x e  Qi-l: s~-> sy,}. 

We first show that Qd+~ is nonempty. By construction, for i = 1 , . . . ,  d + 1, 

n ! 

Ie, l<d+ 1, 

and so 

i = !  

Therefore Qd+~ is nonempty. Also by construction we have 

t 

IP, l>-d+ 1. 

We claim that any z contained in Qd+~ is a d / ( d  + 1)-splitter for P. Indeed, for 
i = 1 , . . . ,  d + 1, consider the simplices 

$ i  = { P l ,  • • • ,  Pi-l,  z, P i + l , . . . ,  Pa+l}, 

created by the splitter z. Draw a hyperplane H~ with normal h~ through z. Let 
H + be the closed half-space bounded by Hi that contains p ,  and let H~- be the 
opposite open half-space containing the interior of $t. We have by construction 
that 

since 

z e Qa+l c- Q~, 
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and this implies that z is at least as far from Pi in the direction hi as y~. We may 
now conclude that 

n ~ 

IH~c~ P 'I  -> [H~c~ Pil = IP, I >-- d +  1" 

Therefore the number of interior points of P contained in the simplex S~ is 
bounded above by 

n'  dn '  ]H'~ n pt]<_n ' -  
d + l  = d + l "  

It remains to show that the time bound can be achieved. Finding a splitter for 
P involves for each i= 1 . . . .  , d + l :  

(a) Finding a normal vector ht pointing away from Pl- 
(b) Finding the [n'/(d + 1)]st order statistic in the direction he from p~. 
(c) Constructing the sets P~, Pi, and Qt. 

Consider some i in the range 1 , . . . ,  d. The normal required in step (a) can 
be calculated O(d 3) time. For step (b), consider any point x in P Its distance 
from Pi in the direction he is given by the dot product (x-p~)h~. This requires 
O(d) operations per point. Finding a one-dimensional order statistic requires 
O(n) time. Therefore this step takes O(nd) time for each i. In step (c) each of 
the sets can be constructed in O(nd) time if they are constructed explicitly, or 
in O(n) time using pointers. The total time complexity of the procedure is thus 
seen to be O(d4+nd2). [] 

We gave a different proof of the existence of a d/ (d  + 1)-splitter in [1]. This 
proof was based on an induction on d. A suitably chosen subset of  points are 
recursively projected onto a face of the simplex of one lower dimension. The 
basic for the recursion is d = 1, and at this point the algorithm returns the median 
of the one-dimensional set. Because of  the need to project points, the algorithm 
has complexity O(nd4), and so the procedure given above is preferred. 

Corollary 2.1. I f  P is also in general position, P can be triangulated into at most 
n'd + 1 simplices in O(nd 4 logl+l/a n) time. 

Proof The algorithm is as follows: 

(a) Find a d/(d + 1)-splitter for P and sets P~, i = 1 , . . . ,  d + 1, as described 
in the proof of Theorem 2.1. 

(b) Recursively apply (a) to each Pt, i = 1 , . . . ,  d +  1, that is nonempty. 

It follows from Theorem 1 that the recursion can have depth at most Iogl+l/d n. 
It thus suffices to bound the total amount of work done at any level in the 
recursion by O(nd4). Indeed, suppose at some level there are t nonempty 
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simplices, with, respectively, m ~ , . . . ,  m, vertices in their interiors. Then the total 
amount of  work at this level is 

~. ( d4 + m~d2) <_ td4 + d2n. 
i=0 

The result follows since t is bounded above by n. [] 

Theorem 2.2. For any integer t, there exist simplicial sets P with n'= t(d + 1) 
interior points in R d for which the optimal splitters is a d / ( d + 1)-splitter. 

Proof. We generalize the example of Fig. 2. Let d - 2 be fixed. For convenience 
in notation, we in fact construct an example in R a+l that has dimension d. Indeed, 
for i = 1 , . . . ,  d + 1, let Pi = ( x l , . . . ,  xa+~) where x~ = d + 1 and xj = 0 whenever j 
is different from i. Then S = {p~ , . . . ,  Pa+l} is a d-dimensional simplex containing 
the point c = ( 1 , . . . ,  1). We generate t points on each segment joining a vertex 
of  S to c. Indeed, let 

Pij = 2-Jc  + ( 1 - 2 -j)pi 

for i = 1 , . . . ,  d + 1, and j = 1 . . . . .  t. Finally, set 

P={Po: i= 1 , . . . ,  d + l ; j =  1 . . . .  , t}u  S. 

Now consider any splitter for P. By symmetry, we may assume that it has the 
label Pli for some j. It is easy to check that the simplex {plj, P2, - - -, Pa+~} contains 
the simplex {c, P 2 , . - . ,  pa+~}. However, this latter simplex contains all points Po 
with i-> 2. There are precisely dt = dn' / (d + 1) such points. [] 

Corollary 2.1 shows, for fixed dimension d, that a triangulation of  a simplicial 
point set in general postion can be constructed with a linear number of simplices. 
Intuitively, one can image inserting the interior points one at a time. Each point 
lands in exactly one simplex if the point set is in general position. This simplex 
can be retriangulated creating d + 1 new simplices. Suppose now that we relax 
the assumption of  general position. We consider the case d = 3. It is possible 
that a point is inserted into a face of the existing triangulation. This face bounds 
two simplices (unless it is an external face, in which case it lies in one simplex 
and there is no difficulty). We may now treat both simplices independently and 
retriangulate each with the new point. This partitions each of  the old simplices 
into three new simplices for a net gain of  four simplices. 

The problems caused by collinearity are more serious. Repeating our earlier 
point insertion process, suppose we insert a point into an edge of  the existing 
triangulation. As shown in Fig. 3, in a set of  n +2  points, such an edge__may lie 
in as many as n - 1 existing simplices. Inserting the point x into edge 12 in the 
figure creates an additional n -  1 simplices. If  we insert a further n -  3 points 
into edge 1"2, we create a triangulation with 2n points and (n - 1) 2 simplices. It 
can be shown that the given triangulation is unique for this point set. 

Consider the preceding example of  2n points with an additional point y on 
edge 2-3, as shown in Fig. 4. First consider a partition of  the simplex {1, 2, 3, 4} 
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into simplices {1, y, 3, 4} and {1, 2, y, 4}. Each of these simplices is similar to the 
example of  Fig. 3 and can be triangulated with only 2 n - 2  simplices. On the 
other hand, if we ignore the point y and triangulate the remaining points, we 
obtain, as before, ( n - 1 )  2 simplices. Inserting point y creates one additional 
simplex. Summarizing, we have proved the following: 

Theorem 2.3. 

(a) A simplicial point set P in R 3 with at least n >- 5 points and no 3 points 
collinear can be triangulated using at most 4 ( n -  4) simplices. 

(b) There exist 2n + 1 point sets P in R a that can be triangulated with as f e w  
as 2n - 2  and as many  as ( n - 1)2+ 1 simplices. 

n-2 

1 
n-2 

f 

3 

F'ql. 4 
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(c) There exist 2n point sets P in R 3 for which the unique triangulation requires 
(n - 1 )2 simplices. 

In a very recent paper, Rothschild and Straus [7] study the problem of which 
n point sets (not necessarily simplicial) in d space produce the minimum and 
maximum number of simplices. Firstly they characterize point sets which produce 
the minimum number n -  d of simplices. Then they consider which point sets 
give the maximum number of simplices. Using the Upper Bound Theorem they 
give bounds on the maximum number Tn of simplices that can be constructed. 
For d = 3 they show that 

( n - 3 ) ( n - 2 )  ~ T n < - ( n + l ) ( n - 2 )  4. 
2 2 

The examples achieving the minimum number of simplices are quite ditterent 
from those that obtain the maximum number. In our case, we are interested in 
those point sets that simultaneously allow both a "good" triangulation (linear) 
and a "bad"  triangulation (quadratic). 

3. Algorithms for Three Dimensions 

We will now describe an O(n log n + k) algorithm for triangulating sets in three 
dimensions. Initially we consider simplicial point sets. The heart of the algorithm 
involves finding a 3/4-splitter for P. Let {r, s, t, u} be the extreme points of P. 
The procedure SPLIT(P, r, s, t, u) returns a 3/4-splitter for P. This algorithm is 
described implicitly in the proof of Theorem 2.1 and will not be given in detail here. 

We are now ready to describe our triangulation algorithm, TRIANGU- 
LATE(P,  r, s, t, u). This algorithm takes as input a set P and four points {r, s, t, u} 
which are assumed in general position. The algorithm produces a triangulation 
of the points of P contained in the convex hull generated by these four points, 
CH(r, s, t, u). For convenience in describing the recurisve part of the algorithm 
we allow points of P not in CH(r, s, t, u). The excess points are simply discarded 
in the first step. The algorithm is a standard "divide and conquer" procedure 
based on SPLIT. A second procedure EDGE-GEN(r,  s, t, u) is used to generate 
the edges of the simplex, specified by its arguments, which is assumed to have 
empty interior. In the case where the points of P are in general position, this 
procedure is trivial and produces the obvious four edges. In the general case, 
additional points may lie on the boundary of the simplex. These "degenerate" 
points are detected in the divide phase: points lying on a dividing edge /j are 
stored in a list E0; points lying in the interior of a dividing fact i,j, k are stored 
in a list Fok. The details of  EDGE-GEN are given later. 

TRIANGULATE(P ,  r, s, t, u). 
1. Let S={r , s , t , u } .  

For all x ~ P if x ~ interior of S then 
begin 
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remove x from P 
if x lies on edge i, j of S let Ei~ = E~ u {x} 
else if x lies on face (/, j, k) of S let Fijk = Fok U {X} 

end. 
2. If tPt--- 5 then 

begin 
y = S P L I T ( P ,  r, s, t, u); T R I A N G U L A T E ( P ,  r, s, t, y); 
T R I A N G U L A T E ( P ,  r, s, y, u); T R I A N G U L A T E ( P ,  r, y, t, u); 
T R I A N G U L A T E ( P ,  y, s, t, u); 

end 
else E D G E - G E N ( r ,  s, t, u) .  

Finally we describe the procedure E D G E - G E N  which triangulates a simplex 
with no points in its interior and possibly many points on its boundary. Along 
with the simplex, the procedure receives a list Fok, for each face {/,j, k}, of all 
points interior to that face and a list Eo, for each edge i,j, of all points lying in 
the interior of that edge. 

If each of the lists F~k is empty, we proceed to the next case. Otherwise we 
triangulat~ the points in each face, excluding points lying on its edges. This 
process consists of four two-dimensional triangulation problems. Assume that 
Frs, is nonempty, and let x, y, z be the not necessarily distinct points in the 
triangulation of F,s, u {r, s, t} that are adjacent, respectively, to edges rs, st, tr (as 
illustrated in Fig. 5). We then join vertex u to all points in F,st, vertex x to all 
points in Fr, u, vertex y to all points in F~,, and vertex z is then joined to all 
points in Ft,,. These edges together with the edges generated in the four two- 
dimensional triangulation problems partition the simplex {r, s, t, u} into a set of 
simplices whose number if linearly proportional to the number of points in the 
interior of its faces. Simplices with many points on their edges are then triangulated 
separately as described in the following paragraph. 

s 

u 

t 

Fig. 5. Only triangulation of  F,~t is shown. 
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In this case we consider simplices with no points in their interiors, no points 
interior to their faces, and many points on their edges. The first step is to sort 
all the edge lists. For concreteness we use the alphabetic order of the vertices to 
determine the direction of  sorting, so that on edge ru the points are sorted from 
r to u. Consider a simplex {r, s, t, u} and let / j~, /J2, . . . , / jk ,  s be the sorted points 
along some edge /j. I f  all the points lie on two disjoint edges, say rs and tu, it 
can be shown that the only possible triangulation is: 

{r, rsl, t, tul}, {rs], rs2, t, tul}, . . . ,  {rSk,, S, t, tut}, 

{r, rSl,  ~lldl, tl,t2} , { r s l ,  rs2, tu l ,  tu2}, . . . , {rsk~, s, tu l ,  tu2}, 

{r, rs~ , tuk,~, u}, {rs l ,  rs2; tuk,,, u}, . . . , {rsk,,, s, tuk,~, u} 

which has (IE,sl+ 1)(lEvi + 1) simplices. Otherwise there exists a face, say {r, s, t}, 
with at least two nonempty edge lists. We triangulate the face {r, s, t} as shown 
in Fig. 6, and then join the opposite vertex u to all points in E,s u E,, u Et,. These 
edges partition the simplex {r, s, t, u} into a set of simplices whose number is 
linearly proportional to the number of  points in the edge lists of face {r, s, t}. 
Each of the simplices that contain edges ru, su, and tu may have nonempty edge 
lists. Since these edges cannot be disjoint, we can partition the simplices into a 
linear number of simplices. 

For a simplex S = {r, s, t, u} with empty interior, let m~ be the number of  points 
lying on the interior of  edges of  S and let mf denotes the number of points lying 
in the interior of faces of S. We say that S is degenerate  if  mr = 0 and if the 
extreme points can be labeled so that IErsl>0, IE,.l>0 and for all other edges 
is, IE, l= 0. 

Theorem 3.1. The number  o f  edges  produced by EDGE-GEN is either 

(i) O ( m ~ +  mr) i f  S is nondegenerate,  or  
(ii) S is degenerate.  

(a) (b) 

Fig. 6. (a) Two nonempty edge lists. (b) Three nonempty edge lists. 
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Triangulating points interior to the faces of an empty simplex requires 
O(mflog mr) time. After sorting the edge lists, we can triangulate an empty 
simplex with points on its edges in O(k) time, where k is the number of  output 
simplices. Since a point interior to a face is processed at most twice and the 
points on each edge list are ordered once, the total time spent in EDGE-GEN 
during the triangulation of  P is O(n log n+k). As the rest of the algorithm 
TRIANGULATE runs in time O(n log n), the overall running time is thus 
O(n log n + k) time. 

We conclude this section by describing how the assumption that the point sets 
are simplicial can be dropped. The main idea is to partition the point set into a 
collection of simplicial sets which are then processed separately by 
TRIANGULATE. 

Given an arbitrary set P of  n points in R 3, we begin by computing the convex 
hull using the O(n log n) time algorithm of  Preparata and Hong [5], [6]. Let 
CH(P) denote the subset of  P consisting of those points on the convex hull. A 
vertex x of CH(P) is chosen arbitrarily. The faces of the convex hull not 
containing x, excluding points of the set that may lie interior to these faces, are 
triangulated. Vertex x is then joined to all other points in CH(P). This results 
in a decomposition of  the convex hull into simplices, in O(n) time. Now we 
describe how to distribute the noneonvex hull vertices into the interior, faces and 
edges of  those simplices. 

Let H and H' be two nonidentical parallel planes of  support of  the convex 
hull such that H intersects the convex hull at x. Let l(y, x) denote the line through 
nonidentical points x and y. We project the convex hull vertices onto H', giving 
a set C*,  as follows: 

C* = {y': y'  -- l(y, x) n H', y ~ CH(P), and y # x} 

so that y '  denotes the projection of  a convex hull point y onto the plane H'.  
Points in C* are joined by an edge whenever they arise from convex hull vertices 
that were joined by an edge on the triangulated convex hull of P. C* forms a 
planar subdivision of a convex polygon whose interior regions are all triangles. 
A triangle on a face of the convex hull not containing x is mapped into an interior 
triangle o f  the planar subdivision, and a triangle on a face of  the convex hull 
containing x is mapped onto an edge o f  the exterior face of C*. This is illustrated 
in Fig. 7(a) and (b). Figure 7(a) shows a three-dimensional convex polyhedron 
with hidden lines dashed. The planar subdivision C* obtained by projecting from 
vertex 0 is shown in Fig. 7(b). 

We now construct a subdivision hierarchy of O(log n) height using the 
O(n log n) time and O(n) space algorithm of  Kirkpatrick [4], [6]. For each 
nonconvex hull vertex, z, we search the subdivision hierarchy for the location of 
its projection, z' = l(z, x) c~ H', in the planar subdivision C*. In the case where 
the points of the set are in general position, z' must lie in the interior of some 
triangle and is directly associated with the corresponding simplex. In the general 
case, additional tests must be performed to check whether z lies on an edge, on 
a face, or  in the interior of  a simplex. Details of these tests are as follows: 
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3 

\ 7 5 4 
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Fig. 7 

/ fz '  lies on vertex i' of C* then 
let E~ = E~, u {z} 

i f  z' lies on edge i'j' of C* then 
/ fz  lies on edge/ j  of the convex hull then 

let E# = E# u {z} 
else 

let F#x = Fox u {z} 
/ fz '  lies inside triangle i'j'k' of  C* then 

/ fz  lies on face {i,j, k} of the convex hull then 
let FOk = Fok u {z} 

else 
let Po~, = Pu~ w {z}. 

The simplices are then processed separately by TRIANGULATE.  Along with 
the points interior to each simplex, the algorithm receives as input lists of  the 
points interior to each face and lists of  points lying on each edge. 

Our splitting algorithms generalize in a straightforward way to d-dimensional 
space. Assuming the point sets are simplicial and in general position Corollary 
2.1 shows that they may be triangulated efficiently. The triangulation algorithm 
for general point sets does not, however, readily generalize due to two difficulties: 
(i) convex hulls in higher dimensions are more difficult to compute and may 
contain O(n t(a-,)/2j) faces; (ii) no general methods for point location in higher 
dimensions are known and so distributing the points into simplices is computa- 
tionally difficult. 
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4. Note 

Some of the results described in this paper have since been independently 
rediscovered b'y Edelsbrunner et al. [2]. In particular, for points sets in general 
position, they have also found an O(n log n) triangulation algorithm in three 
dimensions based on the idea of splitting. This paper also contains several 
interesting combinatorial results on extremum problems concerning triangula- 
tions, that are not covered in our paper. Warren Smith has informed the authors 
that he can improve the time complexity in Theorem 2.1 to O(ns(d)/d+ d3), 
where s(d) is the time required to multiply two d x d matrices (private communi- 
cation). 
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