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Abstract

We quantise Whitney’s construction to prove the existence of a triangulation for any

C2 manifold, so that we get an algorithm with explicit bounds. We also give a new

elementary proof, which is completely geometric.

Keywords Triangulations · Manifolds · Coxeter triangulations

1 Introduction

The question whether every C1 manifold admits a triangulation was of great impor-

tance to topologists in the first half of the twentieth century. This question was answered

in the affirmative by Cairns [20], see also Whitehead [51]. However the first proofs

were complicated and not very geometric, let alone algorithmic. It was Whitney [52,

Chap. IV], who eventually gave an insightful geometric constructive proof. Here, we

will be reproving Theorem 12A of [52, Sect. IV.12], in a more quantitative/algorithmic

fashion for C2 manifolds:
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Theorem 1.1 Every compact n-dimensional C2 manifold M embedded in R
d admits

a triangulation.

We note that C2-manifolds have positive reach, see [37]. The reach rch M was

introduced by Federer [37], as the minimal distance between a set M (in this paper

always a manifold) and its medial axis.

By more quantitative, we mean that instead of being satisfied with the existence

of constants that are used in the construction, we want to provide explicit bounds in

terms of the reach of the manifold, which we shall assume to be positive. The medial

axis consists of points in ambient space that do not have a unique closest point on M .

Federer [37, Rem. 4.20] also mentions that manifolds are of positive reach if and only

if they are C1,1. It is not too difficult to generalise the precise quantities to the setting

where the manifold is C1,1 (instead of C2) at a small cost, see Appendix C.

Note that Theorem 1.1 implies that any C1 manifold admits a triangulation. This is

because any C1 manifold can be smoothed (see for example [38]) and Whitney’s own

embedding theorem [52, Sect. IV.1] gives a smooth embedding in R
d .

Triangulations in computational geometry and topology are most often based on

Voronoi diagrams and their dual Delaunay triangulations of the input point set, see

for example [9,11,21,24,28] for general references in low dimensions and more recent

work on manifolds embedded in higher dimensional spaces [16,23]. Whitney’s con-

struction is of a quite different nature. He uses an ambient triangulation and constructs

the triangulation of the manifold M based on the intersections of M with this triangu-

lation. In this paper, we have chosen this ambient triangulation T̃ to be (a perturbation

of) a Coxeter triangulation T of type Ãd . A Coxeter triangulation of type Ãd is Delau-

nay protected, a concept we will recall in detail in Sect. 4. Delaunay protection gives

that the triangulation is stable under perturbations. This property simplifies the proof,

which in fact was one of the motivations for our choice. Moreover, Coxeter trian-

gulations can be stored very compactly, in contrast with previous work [16,23] on

Delaunay triangulations.

The approach of the proof of correctness of the method, that we present in this paper,

focuses on proving that after perturbing the ambient triangulation the intersection of

each d-simplex in the triangulation T̃ with M is a slightly deformed n-dimensional

convex polytope, more precisely the intersection is piecewise smoothly homeomorphic

to a polytope. Proving this is the core of the homeomorphism proof in Sect. 7. The

triangulation K of M consists of a barycentric subdivision of a straightened version of

these polytopes. This may remind the reader of the general result on CW-complexes,

see [41], which was exploited by Edelsbrunner and Shah [36] for their triangulation

result.

In this paper we construct ‘normals’ and a tubular neighbourhood for K that is

compatible with the ambient triangulation T̃ and prove that the projection along

these ‘normals’ is a homeomorphism. This interpretation of Whitney’s triangulation

method is different from Whitney’s original proof where the homeomorphism is given

by the closest point projection and uses techniques which we also exploited in [15].

The homeomorphism we give in this paper is in fact piecewise smooth. We stress

that this result is stronger than if we had based our work on the closed ball property

of Edelsbrunner and Shah, with given criteria for a homeomorphism, but not for a
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piecewise linear/smooth homeomorphism nor an explicit map. We also believe that

the tubular neighbourhood we construct is of independent interest. Because we have a

bound on the size of the tubular neighbourhood of K and M lies in this neighbourhood,

we automatically bound the Hausdorff distance between the two. A bound on the

difference between the normals of K and M is also provided. Thanks to our choice of

ambient triangulation and our homeomorphism proof, this entire paper is elementary

in the sense that no topological results are needed, all arguments are geometrical.

In addition to the more quantitative/algorithmic approach, the purely geometrical

homeomorphism proof, the link with the closed ball property, the tubular neighbour-

hood for the triangulation K , and a bound on the Hausdorff distance, we also give

different proofs for a fair number of Whitney’s intermediate results.

In spite of this paper not being a review, the authors hope that it will serve to spread

awareness of the classical work by Whitney [52] in the computational geometry and

applied math communities. The main reason for this is that a large number of authors

has reintroduced (weaker) versions of Whitney’s concepts and results, without having

been aware of the original.

The marching cube algorithm and some of its variants [5,33,40,45] provide ways to

approximate a manifold that is the zeroset of a function. We will call such a manifold

an isomanifold. These algorithms use a subdivision of the ambient space into simplices

or cubes and constructing a piecewise linear approximation of the isomanifold inside

each simplex or cube. This coincides with Whitney’s approach where he subdivides

the ambient space into cubes, which he then subdivides into simplices and then approx-

imates the manifold inside each simplex. The main difference is that Whitney needs a

perturbation of the ambient triangulation to guarantee topological correctness, while

(with the exception of [12,45] in two and three dimensions) no topological correctness

(homeomorphism) is proved for the marching cube algorithms. Whitney is also more

general because he treats general manifolds and not just isomanifolds. Moreover, All-

gower and Georg [4, Thm. 15.4.1] assume that the isomanifold avoids simplices in

the ambient triangulation whose dimension is strictly less than the codimension of the

isomanifold to prove that the piecewise linear approximation of the manifold is itself

a manifold. This idea also originates from Whitney, and will be discussed in detail

below.

Whitney’s idea of using a subdivision of ambient space as a scaffold to build a

triangulation has also been adopted outside of the marching cube community, see

for example [22]. In [22] the scaffolding is based on the Voronoi diagram of a point

sample. This is unlike the ambient triangulation used by Whitney. The focus on three

dimensional ambient space and a specific type of surface, instead of general manifolds

of arbitrary dimension and codimension, further distinguishes it from Whitney’s work.

As mentioned above, the idea to use barycentric subdivision to construct a triangulation

has also been often used, e.g. in [36,41].

The part of the algorithm described in this paper that constructs the triangulation

(see part 2 of the algorithm in Sect. 2.1) and the data structure to store the ambient

triangulation have been implemented, see [17] and [39]. The implementation of the

perturbation scheme (see part 1 of the algorithm in Sect. 2.1) is not yet complete at

the moment of writing.
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Fig. 1 The two parts of the algorithm: part 1, where we perturb the vertices of the ambient triangulation, is

depicted on top. Part 2, where the triangulation is constructed from the points of intersection of M and the

edges, is depicted below

2 The Algorithm and Overview

2.1 The Algorithm (Based onWhitney’s Construction)

The algorithm takes as input an n-dimensional C2 manifold M ⊂ R
d with reach

rch M , and outputs the triangulation K of M . The algorithm based on Whitney’s

construction consists of two parts: We will refer to the first part as the perturbation

algorithm. The perturbation algorithm perturbs the vertices of the ambient triangulation

which ensures that the intersection of the ambient simplices with the manifold is nice

(the intersection is piecewise smoothly homeomorphic to a polytope as we will prove

in Sect. 7). The second part is where the triangulation is constructed and is based on

barycentric subdivision of polytopes.

Part 1 (the perturbation algorithm): This part of the algorithm outputs a perturbed ver-

sion of a Coxeter triangulation of R
d of type Ãd (see Sect. 4 for the precise definition)

and consists of two steps. In these two steps we have to carefully choose a significant
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number of parameters, which we will not discuss in detail in the global description

of the algorithm. An overview of the most important parameters and notation can be

found in Appendix A.

– Choose a Coxeter triangulation T of type Ãd of R
d that is sufficiently fine. Here by

fine we mean as determined by the longest edge length L . The longest edge length

L is linear in the reach and depends in a rather intricate manner on the thickness

(minimal altitude over longest edge length) of the top dimensional simplices in

Ãd and the dimension and codimension of the manifold. The precise expression

will be given in (11).

– Perturb the vertices of T slightly into a T̃ (with the same combinatorial structure),

such that all simplices in T̃ of dimension at most d − n − 1 are sufficiently far

away from the manifold. Here slightly is in terms of quality, protection (see Sect. 4

for the definitions) of the ambient triangulation as well as the longest edge length,

separation, and dimension; see (17) for the precise bounds. Sufficiently far means

some small fraction of the longest edge length and thus even smaller fraction of

the reach of M . The precise bound can be found in (14). This is done as follows:

One maintains a list T̃i of vertices and simplices, starting with an empty list and

adding perturbed vertices while keeping the combinatorial structure of T intact.

This means that if τ = {v j1 , . . . , v jk } is a simplex in T and ṽ j1 , . . . , ṽ jk ∈ T̃i ,

where ṽi denotes the perturbed vertex vi , then τ̃ = {ṽ j1 , . . . , ṽ jk } is a simplex

in T̃i . We shall think of T̃i simultaneously as a list, a simplicial complex, and

a triangulation of a subset of R
d . We shall think of i as the index of the vertex

that was added last. To this list T̃i , one first adds all vertices vi of T such that

d(vi ,M ) ≥ 3L/2, as well as the simplices with these vertices (see Case 1 of

Sect. 5.2). For a vertex vi such that d(vi ,M ) < 3L/2 (Case 2), one goes through

the following procedure. We first pick a point p ∈ M that is not too far from vi .

We then consider all τ ′
j ⊂ T̃i−1 of dimension at most d −n −2, such that the join1

vi ∗ τ ′
j lies in T̃i . For all such τ ′

j we consider span(τ ′
j , TpM ) and we pick our

perturbed vi , that is ṽi , so that it lies sufficiently far from the union of these spans,

but also not too far from vi (as we mentioned at the beginning). Here sufficiently

far means a very small fraction of the longest edge length, see (20). The existence

of such a point can by proved by volume estimates and is shown in Lemma 5.6.

The fact that such a perturbation ensures that the (d−n−1)-skeleton is sufficiently

far away from the manifold is non-trivial and is proved in Lemma 5.7.

We note that for a curve in two dimensions, as depicted in Fig. 1, or more generally

a manifold of codimension 1, the set of all τ ′
j ⊂ T̃i−1 of dimension at most d − n − 2

is the empty set and span(τ ′
j , TpM ) is TpM . The perturbation therefore ensures that

ṽi lies far from TpM .

Note that we only require limited knowledge of the manifold. Given a vertex vi

we need to be able to find a point on M that is close to vi or know if vi is far from

M and we need access to T M in a finite sufficiently dense set of points (so that for

1 The join of a simplex and a vertex is the convex hull of the vertices of the original simplex as well as the

new vertex. Generally, the join of two subsets A, B ⊂ R
d is defined as A ∗ B = {λa + μb | a ∈ Ab ∈ B},

where λ, μ ∈ R, λ, μ ≥ 0, and μ + λ = 1, see for example [48, Chap. 1].
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every point vi that is close to M we have a linear approximation of M ). We assume

we have two oracles for the two operations. There are no fundamental difficulties

in including small uncertainties in our knowledge of the close points or the tangent

spaces, but the analysis would be more complicated. If we can sample M densely

finding close points is algorithmically not difficult. Methods to estimate the tangent

space have been described in [2]. The same paper also describes estimates on the

curvature. The estimate of the reach is discussed in [32] in three dimensions and [1]

in high dimensions.

Complexity of part 1: The complexity of the perturbation (per vertex) of the algorithm

is dominated by the number of simplices τ ′
j that we have to consider. This number is

bounded by the number of simplices of dimension at most d − n − 2 in the star of

a vertex in a Coxeter triangulation plus 1, see (4) below. The number of simplices in

turn is bounded by (d − n)ddd−n , see Lemma 4.11. This compares favourably with

the complexity of the perturbation method in [13] for Delaunay triangulations, which

is of order O(2d2
). A full analysis of the complexity of the algorithm, including basic

operations on Coxeter triangulations, will be reported upon in a separate paper.

Part 2 (the triangulation construction): The construction of the triangulation of M

is now straightforward barycentric subdivision; for each τ k ∈ T̃ , of dimension k,

that contains a part of M , we pick a point v(τ k) in τ k , see (26). For any sequence

τ d−n ⊂ τ d−n+1 ⊂ · · · ⊂ τ d , such that all simplices in the sequence intersect M we

add a simplex {v(τ d−n), . . . , v(τ d)} to a simplicial complex K . If we have done this

for all simplices that contain M , K is a triangulation of M . For this second part we

need an oracle that is able to tell us if the intersection between M and τ d−n ∈ T̃ is

non-empty and if so, gives us the point of intersection. As we will see in Sect. 6.1,

it would in fact suffice to be able to find intersections between tangent planes and

simplices.

2.2 A Nice Byproduct

The triangulation algorithm does not only provide a triangulation of the manifold

itself, with simplices whose quality is lower bounded. It in fact immediately gives that

the barycentric subdivision of the ambient triangulation contains a triangulation of the

manifold. To ensure that the triangulation of the manifold is geometrically close to the

manifold, we need to shift (some of the) vertices to the position that is computed by the

algorithms above, see Fig. 2. Because the simplices of the triangulation of the manifold

have good quality, we find a triangulation of the ambient space whose simplices have

good quality. This byproduct may be of interest for finding numerical solutions to

partial differential equations, in particular for space time methods [6,27,49]. This also

serves as a first step in generalising the work on the triangulation of general stratifolds

in three dimensions [29–31,44,47], which may be of interest given the effort that went

into the detection of strata in arbitrary dimension, see for example [7,8,19].
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Fig. 2 The same triangulation as depicted in Fig. 1 with the addition of simplices of the barycentric

subdivision of the ambient triangulation added for the simplices that intersect the manifold

2.3 Outline and Overview of the Proof

This paper is dedicated to the correctness proof of the algorithm presented in Sect. 2.1.

After some background sections dedicated to manifolds of positive reach and Coxeter

triangulations and their stability under perturbations, we continue with the perturbation

algorithm.

In Sect. 3 we recall some results on the geometry of manifolds of positive reach.

Coxeter triangulations, Delaunay protection, and the combinatorial stability of a tri-

angulation under perturbations is the topic of Sect. 4.

In Sect. 5, we both give the details of the perturbation of the vertices and some

geometric consequences for the triangulation. In Sect. 6, the triangulation K of M

is defined and an important quality bound for the simplices is given. Section 7 is

dedicated to proving that K is a triangulation of M . The proof is quite different from

the approach Whitney described, which uses the closest point projection onto M .

Here we construct a tubular neighbourhood and ’normals’ around the triangulation K ,

which is adapted to the ambient triangulation T̃ . We then prove that the projection

using these ‘normals’ gives a piecewise smooth homeomorphism from τ d ∩ M to

τ d ∩ K , where τ d ∈ T̃ is d-dimensional. Because the construction is compatible on

the faces of d-dimensional simplices, the global result immediately follows. A more

detailed overview of the homeomorphism proof is given in Sect. 7.

3 Manifolds, Tangent Spaces, Distances, and Angles

In this section, we discuss some general results that will be of use. The manifold

M ⊂ R
d is a compact C2 manifold with reach rch M .

We adhere as much as possible to the same notation as used in [18]. The tangent

bundle will be denoted by T M , while the tangent space at a point p is written as TpM .

Similarly, NM is the normal bundle and NpM the normal space. Distances on the
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Fig. 3 The cylinder C (TpM , r1, r2), with the manifold and tangent space

manifold will be indicated by dM ( · , · ), while we write d( · , · ) for distances in

the ambient Euclidean space, and | · | for the length of vectors. A ball centred at x

with radius r is denoted by B(x, r). For a point x in the ambient space such that

d(x,M ) < rch M , the closest point projection onto M is denoted by πM (x). The

orthogonal projection onto the tangent TpM is denoted by πTpM (x).

We will use a result from [18], which improves upon previous works such as Niyogi

et al. [43]:

Lemma 3.1 ([18, Lem. 6 and Corr. 3]) Suppose that M is C2 and let p, q ∈ M ,

then

∠(TpM , TqM ) ≤ dM (p, q)

rch M
and sin

∠(TpM , TqM )

2
≤ |p − q|

2 rch M
.

In Lemma 3.2 we prove that the projection onto the tangent space is a diffeomor-

phism in a neighbourhood of size the reach of the manifold. This improves upon

previous results by Niyogi et al. [43] in terms of the size of the neighbourhood, and is

a more quantitative version of results by Whitney [52].

We first recall some notation. Similarly to [18], we let C (TpM , r1, r2) denote the

‘filled cylinder’ given by all points that project orthogonally onto a ball of radius r1

in TpM and whose distance to this ball is at most r2. We write C̊ (TpM , r1, r2) for

the open cylinder. We refer to Fig. 3 for an illustration. We now have:

Lemma 3.2 Suppose that M is C2 and p ∈ M , then for all r < rch M , the projec-

tion πTpM
onto the tangent space TpM restricted to M ∩ C̊ (TpM , r , rch M ) is a

diffeomorphism onto the open ball BTpM
(r) of radius r in TpM , centred at p.

Proof Apart from Lemma 3.1, we will be using the following results from [18]: For a

minimising geodesic γ on M with length ℓ parametrised by arc length, with γ (0) = p

and γ (ℓ) = q, we have

∠(γ̇ (0), γ̇ (t)) ≤ t

rch M
. (1)

123



394 Discrete & Computational Geometry (2021) 66:386–434

If we also write vp = γ̇ (0), we see that

〈γ (ℓ), vp〉 =
∫ ℓ

0

d

dt
〈γ (t), vp〉 dt =

∫ ℓ

0

〈γ̇ (t), t0〉 dt ≥
∫ ℓ

0

cos
t

rch M
dt (using (1))

= rch M · sin
ℓ

rch M
≥ rch M · sin ∠(TpM , TqM ) (using Lemma 3.1)

as long as ℓ < (π/2) rch M . Because vp ∈ TpM and γ (ℓ) = q, we have

|p − πTpM
(q)| ≥ rch M · sin ∠(TpM , TqM ).

This means in particular that for all q such that |p − πTpM (q)| < rch M and |q −
πTpM (q)| ≤ rch M the angle between TpM and TqM is less than 90 degrees. This

in turn implies that the Jacobian of projection map in non-degenerate. Note that the

condition on ℓ mentioned above is satisfied by a combination of Theorem 1 and Lemma

11 of [18]. ⊓⊔

It is clear by considering the sphere that this result is tight, in the sense that r cannot

be chosen equal to rch M for general manifolds. See Appendix C for some remarks

on these results in the C1,1 setting.

Definition 3.3 We shall write πp as an abbreviation for the restriction (of the domain)

of πTpM
to M ∩ C̊ (TpM , rch M , rch M ) and π−1

p for its inverse.

We now also immediately have a quantitative version of [52, Lem. IV.8a]:

Corollary 3.4 Suppose that M is C2 and p ∈ M , then for all r < rch M ,

d(p,M \ C (TpM , r , rch M )) = d
(

p,M \ π−1
p (BTpM

(r))
)

≥ r .

Proof Lemma 3.2 implies that π−1
p (BTpM

(r))) = M ∩ C (TpM , r , rch M ). By

definition of the filled cylinder we have that d(p, R
d \ C (TpM , r , rch M )) = r . The

result now follows. ⊓⊔

We shall also need the following bound on the (local) distance between a tangent

space and the manifold.

Lemma 3.5 (distance to manifold [18, Lem. 11]) Let M be a manifold of positive

reach. Suppose that w ∈ TpM and |w − p| < rch M . Let π−1
p (w) be as in Defini-

tion 3.3. Then

|π−1
p (w) − w| ≤

⎛

⎝1 −

√

1 −
( |w − p|

rch M

)2
⎞

⎠ rch M .

This is attained for the sphere of radius rch M .
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4 Coxeter Triangulations, Delaunay Protection and Stability

Coxeter triangulations [26] of Euclidean space play a significant role in our work.

They combine many of the advantages of cubes with the advantages of triangulations.

They are also attractive from the geometrical perspective, because they provide sim-

plices with very good quality and some particular Coxeter triangulations are Delaunay

protected and thus very stable Delaunay triangulations. We will now very briefly intro-

duce both the concepts of Coxeter triangulations and Delaunay protection, but refer to

[25] for more details on Coxeter triangulations and to [13,14] for Delaunay protection.

Definition 4.1 A monohedral2 triangulation is called a Coxeter triangulation if all its

d-simplices can be obtained by consecutive orthogonal reflections through facets of

the d-simplices in the triangulation and the affine hulls of facets entirely consist of

facets of d-simplices in the triangulation.

This definition imposes very strong constraints on the geometry of the simplices,

implying that there are only a small number of such triangulations in each dimension.

Most of these triangulations are part of four families for which there is one member for

(almost) every dimension d. We will focus on one such family, Ãd , which is Delaunay

protected. We refer to Fig. 4 for an illustration of the Ã2 and Ã3 triangulations.

The simplest and shortest definition of a Coxeter triangulation of type Ãd is to give

it as a triangulation of a d-dimensional linear subspace of R
d+1 by rotation.

Definition 4.2 Let P =
{

(x i ) ∈ R
d+1 |

∑

i x i = 0
}

and consider the d-simplex with

vertices uk in P .

u0 =
(

0{d+1}), uk =
((

−d + 1 − k

d + 1

){k}
,

(

k

d + 1

){d+1−k})

, k ∈ [d],

where x {k} denotes k consecutive coordinates x . The Coxeter triangulation of type Ãd

in P is found by consecutively reflecting the simplex in its faces.

Protection

Definition 4.3 The protection of a d-simplex σ in a Delaunay triangulation on a point

set P is the minimal distance of points in P \ σ to the circumscribed ball of σ :

δ(σ ) = inf
p∈P\σ

d(p, B(σ )),

where B(σ ) is the circumscribed ball of σ . The protection δ of a Delaunay triangulation

T is the infimum over the d-simplices of the triangulation: δ = infσ∈T δ(σ ). A

Delaunay triangulation with a positive protection is called protected.

The proof that Ãd triangulations are protected can be found in [25, Sect. 6]. We

shall denote the triangulation of this type by T .

2 A triangulation of R
d is called monohedral if all its d-simplices are congruent.
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Ã2 Ã3

Fig. 4 The vertex sets of the Coxeter triangulations in dimensions two and three are the triangular lattice

and the body-centred cubic lattice, respectively

Stability In the triangulation proof below we need that a perturbation T̃ of our

initial ambient triangulation (T of type Ãd ) is still a triangulation of R
d . We shall

refer to this as (combinatorial) stability. Because Whitney did not use a protected

Delaunay triangulation, he needs a non-trivial topological argument to establish this,

see [52, App. Sect. II.16]. The argument for stability of triangulations for Ã type

Coxeter triangulations is much simpler, because it is a Delaunay triangulation and

is δ-protected, see [25]. Before we can recall this result we need to introduce some

notation and a definition:

– The minimal altitude or height, denoted by min alt, is the minimum over all vertices

of the altitude, that is the distance from a vertex to the affine hull of the opposite

face. t(τ ) denotes the thickness of a simplex τ , that is the ratio of the minimal

altitude to the maximal edge length. We write t(T ) for infimum of the thickness

over all simplices in T .

– We can think of the vertices of T as an (ǫ, μ)-net. Here μ is the separation (for

Coxeter triangulations, the shortest edge length in T ), and ǫ the sampling density

(which is the circumradius of the simplices in the Coxeter triangulation). We write

μ0 for the normalised separation, that is μ0 = μ/ǫ.

– For any complex K , L(K ) denotes the longest edge length in K . We use the

abbreviations L = L(T ) and L̃ = L(T̃ ).

– A perturbation of the vertices {vi } to {ṽi } is called an ǫ-perturbation if |vi −ṽi | ≤ ǫ,

for all i .

From [13, Thm. 4.14] we immediately get:

Corollary 4.4 The triangulationT is (combinatorially) stable under a c̃L-perturbation

as long as

c̃L ≤ t(T )μ0

18d
δ. (2)

We claim the following concerning the behaviour of c̃.
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Lemma 4.5

c̃ ≤ t(T )μ0

18d
· δ

L
≤

√
2

√
d2 + 2d + 24 −

√
d2 + 2d

9d3/2(d + 1)
√

d + 2
∼

√
32

3d4
,

where ∼ denotes equality up to the leading order in the asymptotic development.

Proof Choudhary et al. [25, App. B] provide explicit values of all the quantities men-

tioned in Corollary 4.4 for a Coxeter triangulation of type Ã, with the exception of μ,

which can be easily derived from a more general result. If we fix the scale (which in

[25] we did by a convenient choice of coordinates for the vertices), we have

L(σ ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√
d + 1

2
if d is odd,

1

2

√

d (d + 2)

d + 1
if d is even,

t(σ ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

√

2

d
if d is odd,

√

2(d + 1)

d (d + 2)
if d is even,

(3)

ǫ =
√

d (d + 2)

12(d + 1)
, δ(σ ) =

√
d2 + 2d + 24 −

√
d2 + 2d√

12(d + 1)
.

The value of μ easily follows from the general expression for edge lengths (see [25,

App. B, Ãd , item 5]) and is equal to μ =
√

d/(d + 1). From (3), we get that μ0 =
μ/ǫ =

√
12/(d + 2). The bound in (2) is therefore

c̃ ≤ t(σ )μ0

18d
· δ

L
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√
2

√
d2 + 2d + 24 −

√
d2 + 2d

9d3/2(d + 1)
√

d + 2
if d is odd,

√

2(d + 1)

√
d2 + 2d + 24 −

√
d2 + 2d

9d2(d + 2)3/2
if d is even.

≤
√

2

√
d2 + 2d + 24 −

√
d2 + 2d

9d3/2(d + 1)
√

d + 2
∼

√
32

3d4
,

where we used that
√

1 + x ∼ 1 + x/2 if x is close to zero. ⊓⊔

Thickness and angles The quality of simplices and the control over the alignment

of the simplices with the manifold is an essential part of the triangulation proof, for

which we need two basic results. Similar statements can be found in [52, Sects. IV.14

and IV.15]. Let us remind the following.

Lemma 4.6 (thickness under distortion [35, Lem. 7]) Suppose that σ = {v0, . . . , vk}
and σ̃ = {ṽ0, . . . , ṽk} are two k-simplices in R

d such that ||vi − v j | − |ṽi − ṽ j || ≤
c0 L(σ ) for all 0 ≤ i < j ≤ k. If c0 ≤ t(σ )2/4, then

t(σ̃ ) ≥ 4

5
√

k

(

1 − 4c0

t(σ )2

)

t(σ ).

123



398 Discrete & Computational Geometry (2021) 66:386–434

We can now state a variation of Whitney’s angle bound result, see [52, Sect. IV.15].

Lemma 4.7 (Whitney’s angle bound) Suppose σ is a j-simplex of R
d , j < d, whose

vertices all lie within a distance dmax from a k-dimensional affine space A0 ⊂ R
d

with k ≥ j . Then

sin ∠(aff σ, A0) ≤ ( j + 1)dmax

min alt σ
.

Proof We first notice that the barycentre cb of a simplex σ j is at least a dis-

tance (min alt σ j )/( j + 1) removed from the faces of the simplex. This means

that the ball in aff σ j centred at c with radius (min alt σ j )/( j + 1), denoted by

Baff σ j (c, (min alt σ j )/( j + 1)), is contained in σ j . We now consider any diameter,

that is a line segment ℓ connecting a pair of antipodal points of ∂ Baff σ j (c, (min alt σ j )/

( j + 1)). This diameter is contained in a dmax neighbourhood of A0 and thus

sin ∠(ℓ, A0) ≤ ( j + 1)dmax

min alt σ
.

The result now follows, because ℓ is arbitrarily chosen. ⊓⊔
Simplices in a star in a triangulation of type Ãd The precise number of simplices in

the star of a vertex plays an important role in the volume estimates in Sect. 5. We will

now give an explicit bound on this number.

In general the (d −k)-faces of a Voronoi cell correspond to the k-faces in the Delau-

nay dual. The triangulation T is Delaunay and the dual of a vertex is a permutahedron,

see [25]. We recall that the permutahedron is defined as follows:

Definition 4.8 (permutahedron) A d-permutahedron is a d-dimensional polytope,

which is the convex hull P of all points in R
d+1, the coordinates of which are per-

mutations of {1, . . . , d + 1}.
We also remind the following definition, see [3], and corollary, see [42]:

Definition 4.9 Let S(d, k) be the Stirling number of the second kind, which is the

number of ways to partition a set of d elements into k non-empty subsets, that is

S(d, k) = 1

k!

k
∑

j=0

(−1) j

(

k

j

)

(k − j)d .

Corollary 4.10 ([42, Corr. 3.15]) The number of (d + 1 − k)-faces of the permutahe-

dron is k!S(d + 1, k).

By duality, the lemma immediately gives us the number Nk of k-faces that contain

a given vertex in T , Nk = k!S(d + 1, k). We also write

N≤k = 2 +
k

∑

j=1

j !S(d + 1, j), (4)
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which is an upper bound on the total number of faces of dimension less or equal to k

that contain a given vertex. We have added 2 because we want to have a safety margin

if we have to consider the empty set (as will be apparent in (18)), and have a strict

inequality. We now claim the following:

Lemma 4.11 We have N≤k � kddk .

Proof [46, Thm. 3] gives us that for d ≥ 2 and 1 ≤ j ≤ d − 1,

j2 + j + 2

2
jd− j−1 − 1 ≤ S(d, j) ≤ jd− j

2

(

d

j

)

.

Furthermore, Stirling’s theorem and the binomial theorem give that j ! ∼ j j and
∑k

j=0

(

d
j

)

� dk , respectively. We now see that

N≤k = 2 +
k

∑

j=1

j !S(d + 1, j) �

k
∑

j=1

j !
(

d + 1

j

)

jd+1− j � kd

k
∑

j=1

(

d

j

)

� kddk .

It is clear that if k is much smaller than d that then kd dominates. ⊓⊔

5 Perturbing the Ambient Triangulation

This section is dedicated to the perturbation of the Coxeter triangulation such that the

manifold is sufficiently far from the simplices of dimension at most d − n − 1 in T̃ .

– In Sect. 5.1, we prove that it is possible to perturb the points as described in the

second step of part 1 of the algorithm. This involves a significant amount of volume

estimates, which are completely quantised. We also indicate how fine the ambient

triangulation T has to be compared to rch M ; the longest edge length is linear in

terms of the reach (the dependence on the dimension and codimension is rather

complicated).

– In Sect. 5.2, we define the perturbation and prove that this in fact gives a tri-

angulation for which the low dimensional simplices lie sufficiently far from the

manifold.

The proofs of the results in Sect. 5.2 rely on Appendix B. We shall indicate the

corresponding sections in Whitney [52], when appropriate.

5.1 The Complex T̃

Before we can dive into the algorithmic construction of the perturbed complex T̃ , we

need to fix some constants and give some explicit bounds on them. This subsection

corresponds to [52, Sect. IV.18].

Balls and exclusion volumes Let Bd(r) be any ball in R
d of radius r . We now define

ρ̄1 > 0 as follows: For any two parallel (d − 1)-hyperplanes whose distance apart is
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less than 2ρ̄1r , the intersection of the slab between the two hyperplanes with the ball

Bd(r) is denoted by S . Now, ρ̄1 is the largest number such that the volume (vol) of

any S satisfies

vol S ≤ vol Bd(r)

2N≤d−n−1
,

with N≤d−n as in (4). A precise bound on ρ̄1 can be given, see Remark 5.2 below. We

will use an easier bound ρ1, at the cost of weakening the result:

Lemma 5.1 We have

ρ̄1 ≥ ρ1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

22k−2(k!)2

π(2k)!N≤d−n−1
if d = 2k,

(2k)!
22k+2k!(k − 1)!N≤d−n−1

if d = 2k − 1.

(5)

Note that

ρ1 ∼ 1√
d N≤d−n−1

.

Proof We can bound the volume of the slab S by the volume of cylinder with base

Bd−1(r) and height 2ρ1r , that is

2ρ1rd π (d−1)/2

Γ ((d + 1)/2)
.

This means that

vol S

vol Bd(r)
<

2ρ1r · vol Bd−1(r)

vol Bd(r)
= 2ρ1π

(d−1)/2/Γ ((d − 1)/2 + 1)

πd/2/Γ (d/2 + 1)

= 2ρ1Γ (d/2 + 1)√
π Γ ((d − 1)/2 + 1)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

π(2k)!
22k−1(k!)2

ρ1 if d = 2k,

22k+1k!(k − 1)!
(2k)! ρ1 if d = 2k − 1.

using the standard formulae for the volume of the ball, see for example [34, p. 622].

Note that the inequality is strict because ρ1 > 0. We see that therefore ρ1 may be

chosen to be as in (5). From Wendel’s bound on the ratio of Gamma functions [50],

we immediately see that for a fixed constant a, Γ (x + a)/Γ (x) ∼ xa . This means

that

2ρ1Γ (d/2 + 1)√
π Γ ((d − 1)/2 + 1)

∼ 2ρ√
π

(

d

2
+ 1

2

)1/2

∼
√

d.
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We now see that

ρ1 ∼ 1√
d N≤d−n−1

. ⊓⊔

Remark 5.2 Because of symmetry, the largest volume S can attain is when both

delimiting hyperplanes are equidistant to the centre of Bd(r). The volume of S is

given by the integral

rd

∫ ρ1

−ρ̄1

vol Bd−1
(

√

1 − h2
)

dh = π (d−1)/2

Γ ((d + 1)/2)
rd

∫ ρ1

−ρ1

(

√

1 − h2
)d−1

dh,

where Bd−1(r) denotes the ball of dimension d − 1 with radius r and Γ denotes the

Euler gamma function. This integral can be expressed using special functions such as

the hypergeometric function or beta functions. This gives an explicit value for ρ̄1.

The coarseness of T As mentioned, we perturb the vertices of a Coxeter triangula-

tion. The maximal distance that we allow between an unperturbed vertex vi and the

associated perturbed vertex ṽi is c̃L . We define c̃ as

c̃ = min

{

t(T )μ0δ

18d L
,

t(T )2

24

}

. (6)

The reasons for this particular choice will be discussed after (17) below. We stress

that (6) is independent of L because δ scales linearly with L . Notice that because

t(T ) ≤ 1, by definition of the thickness of a simplex, we have

c̃ ≤ 1

24
. (7)

We are now ready to introduce the demands on the triangulation of ambient space. We

start by bounding the scale of the Coxeter triangulation T by bounding the longest

edge length. We do this by giving some constants. We define α1 and αk by a recursion

relation as follows:

α1 = 4

3
ρ1c̃,

2

3
αk−1c̃ρ1 = αk, (8)

that is αk = 2k+1ρk
1 c̃k/3k . These definitions play an essential role in the volume

estimates for the perturbation of the vertices, that are necessary to guarantee quality.

Note that αk is extremely small. In particular, we shall have that

αk ≤ 1

18k
, (9)

because c̃ ≤ 1/24, as we have seen in (7). ρ1 is also very small, as a direct consequence

of Lemma 5.1. Furthermore we notice that αk < αk−1. To make sure the formulae do
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not become too big, we introduce the notation

ζ = 8

15
√

d

(

d

d − n

)

· (1 + 2c̃)

(

1 − 8c̃

t(T )2

)

t(T ). (10)

Note that ζ depends on both the ambient and intrinsic dimension, and the perturbation

parameter c̃. Because c̃ ≤ t(T )2/24 and t(T ) ≤ 1, we see that ζ ≤ 1. We set the

coarseness of the ambient triangulation by demanding that L satisfies

⎛

⎝1 −

√

1 −
(

6L(T )

rch M

)2
⎞

⎠ rch M =
α4+2n

d−n

6(n + 1)2
ζ 2n L, (11)

or equivalently

L

rch M
=

α4+2n
d−n ζ 2n/(3(n + 1)2)

(α4+2n
d−n ζ 2n/(6(n + 1)2))2 + 62

. (12)

Note that

L

rch M
<

α4+2n
d−n

54(n + 1)2
ζ n <

α2
d−n

54
,

α4+2n
d−n

6(n + 1)2
ζ 2n <

α2
d−n

3
≤ αd−n

3
, (13)

where we used that ζ ≤ 1, which will often be used below to simplify expressions.

Remark 5.3 We have to choose the right hand side in (11) very small, because the

bounds on the quality of the simplices that will make up the triangulations are very

weak. The details of these estimates can be found in Lemma 6.7.

(d − n − 1)-skeleton safe triangulations We shall denote the simplices by τ and σ .

We will use lower indices to distinguish simplices, while upper indices will stress the

dimension, for example τ k
j is a simplex of dimension k.

Definition 5.4 ((d − n − 1)-skeleton safe triangulations) We say that a perturbed

triangulation T̃ of T in R
d is (d − n − 1)-skeleton safe with respect to the n-

dimensional manifold M if

d(τ k,M ) > αk L, (14)

for all faces τ k in T̃ , with k ≤ d − n − 1, and

L̃ <
13

12
L, (15)

t(T̃ ) ≥ 4

5
√

d

(

1 − 8c̃

t(T )2

)

t(T ). (16)
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5.2 Perturbing theVertices

We now discuss the details of the perturbation scheme that we described in the algo-

rithm section. The perturbation scheme follows Whitney [52, Sect. IV.18] and is

inductive.

Construction of T̃ Let v1, v2, . . . be the vertices of T . We are going to inductively

choose new vertices ṽ1, ṽ2, . . . for T̃ , with

|vi − ṽi | ≤ c̃L = min

{

t(T )μ0δ

18d
,

t(T )2L

24

}

, (17)

using the notation of Sect. 4. With this bound we have that (15) is satisfied, because

the two vertices of an edge are perturbed by at most c̃L and thus the triangle inequality

yields L̃ ≤ (1 + 2c̃)L . We also claim the following:

Lemma 5.5 T̃ has the same combinatorial structure as T . Moreover, (16) is satisfied.

Proof Because we assume that the perturbation is sufficiently small compared to the

protection, as given in the first condition of (17), (2) is satisfied and T̃ will have

exactly the same combinatorial structure as T .

By the third condition of (17) we have a lower bound on the quality of the simplices.

To be precise, we have that for any simplex τ in T̃ ,

t(τ ) ≥ 4

5
√

d

(

1 − 8c̃

t(T )2

)

t(T ), (16)

as a consequence of Lemma 4.6, the fact that if you perturb the vertices by c̃L the

edge lengths are perturbed by 2c̃ (that is 2c̃ = c0), and the fact that if σ ⊂ τ , then

t(σ ) ≥ t(τ ). So we have established (16). ⊓⊔

We now give the scheme where the vertices are perturbed inductively. Suppose that

the vertices ṽ1, . . . , ṽi−1 have been determined, and thus the complex T̃i−1 with these

vertices. A simplex {ṽ j1 , . . . , ṽ jk } lies in T̃i−1 if and only if {v j1, . . . , v jk } lies in T .

We shall now find ṽi and thus T̃i so that for any τ k ∈ T̃i of dimension k ≤ d − n − 1,

(14) is satisfied. We distinguish two cases:

Case 1: d(vi ,M ) ≥ 3L/2. In this case we choose ṽi = vi . The inequality (14) is

established as follows: Because L̃ < (1 + 2c̃)L , which means that for any point

x in the star of ṽi = vi we have d(x, ṽi (= vi )) < (1 + 2c̃)L . By the triangle

inequality we see that d(x,M ) ≥ d(vi ,M ) − d(x, ṽi (= vi )) ≥ (1/2 − 2c̃)L .

That is, any simplex in T̃ with vertex ṽi = vi is at least distance (1/2−2c̃)L from

the manifold. Thanks to (7) we have that (1/2 − 2c̃)L > 5L/12. This means that

d(τ k,M ) > 5L/12 for any simplex in the star of ṽi = vi . This lower bound is

much larger than αk L < L/18k .

Case 2: d(vi ,M ) < 3L/2. Let p be a point in M such that d(vi , p) < 3L/2. Let

τ ′
0(= ∅), τ ′

1, . . . , τ
′
ν (18)
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be the simplices of T̃i−1 such that the joins τ j = τ ′
j ∗ ṽi are simplices of T̃ , and

dim(τ ′
j ∗ ṽi ) ≤ d − n − 1 (and thus dim τ ′

j ≤ d − n − 2), with 0 ≤ j ≤ ν. We note

that ν ≤ N≤d−n−1, with N≤k as defined in (4). We now consider the span, denoted

by span(τ ′
j , TpM ), for all 0 ≤ j ≤ ν. Note that the dimension of span(τ ′

j , TpM )

is at most (d − n − 2) + n + 1 = d − 1.

We now claim the following:

Lemma 5.6 We can pick ṽi such that it lies sufficiently far from each span(τ ′
j , TpM ),

that is

d(ṽi , span(τ ′
j , TpM )) ≥ ρ1c̃L, (19)

while it is not too far from vi , that is |ṽi − vi | ≤ c̃L.

Proof The argument is volumetric. Let us first introduce the notation U (X , r) for

the set of all points x ∈ R
d such that d(x, X) ≤ r , where X is any subset of R

d .

By definition of ρ1, see ‘Balls and exclusion volumes’ in Sect. 5.1, and because the

dimension of span(τ ′
j , TpM ) is at most d − 1, we have that

vol
(

B(vi , c̃L) ∩ U (span(τ ′
j , TpM ), ρ1c̃L)

)

≤ vol Bd(r)

2N≤d−n−1
.

It now follows that

vol

⎛

⎝B(vi , c̃L)
∖

⋃

1≤ j≤ν

U (span(τ ′
j , TpM ), ρ1c̃L)

⎞

⎠

≥ vol B(vi , c̃L) −
∑

0≤ j≤ν

vol
(

B(vi , c̃L) ∩ U (span(τ ′
j , TpM ), ρ1c̃L)

)

> vol B(vi , c̃L) −
∑

0≤ j≤ν

vol B(vi , c̃L)

2N≤d−n−1

=
(

1 − ν + 1

2N≤d−n−1

)

vol B(vi , c̃L) ≥ vol B(vi , c̃L)

2
,

where we used that ν ≤ N≤d−n−1 in the last line, by definition, as mentioned in the

description of Case 2. Because the volume is positive we know there exists a point ṽi

that satisfies

d(ṽi , span(τ ′
j , TpM )) > ρ1c̃L, (20)

for all 1 ≤ j ≤ ν. ⊓⊔

The following lemma completes Case 2:

Lemma 5.7 The triangulation T̃ is (d − n − 1)-skeleton safe, in particular (14) is

satisfied.
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Proof We first make use of the induction3 hypothesis d(τ ′
j ,M ) > αk−1L to find a

bound on the distance from τ ′
j to the tangent space TpM , then bound the distance

from ṽi ∗τ ′
j = τ j to TpM based on this. For this argument to work, we have to assume

that τ ′
j is not the empty set, that is j �= 0. This case is handled separately at the end.

If we combine

1. the induction hypothesis d(τ ′
j ,M ) > αk−1L ,

2. the fact that the ball in the tangent space BTpM
(p, r), centred at p of radius

6L = r , satisfies

BTpM (p, r) ⊂ U

(

M ,

(

1 −
√

1 −
( r

rch M

)2
)

rch M

)

,

thanks to Lemma 3.5,

we find that

d(τ ′
j , BTpM

(p, r)) > αk−1L −
(

1 −
√

1 −
( r

rch M

)2
)

rch M .

This can be simplified:

d(τ ′
j , BTpM (p, r)) > αk−1L −

(

1 −
√

1 −
( r

rch M

)2
)

rch M

> αk−1L −
α4+2n

d−n

6(n + 1)2
ζ 2n L (using (11))

> αk−1L − αd−n L

3
(using (13)) (21)

≥ 2

3
αk−1L (because αk−1 > αk).

Because d(vi , p) < 3L/2, L̃ < L + 2c̃L , and c̃ < 1/24, see (7), we have the very

coarse bound that

d(τ ′
j , p) ≤ 4L, (22)

by the triangle inequality. We thus find that

d(τ ′
j , TpM \ BTpM (p, r)) > 2L.

This means that (21) holds for the entire tangent space, that is,

d(τ ′
j , TpM ) >

2

3
αk−1L. (23)

3 In particular τ ′
j
⊂ T̃i .
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Lemma B.2, with A1 = TpM and A2 = span(τ ′
j , TpM ), now gives

d(τ j , TpM ) ≥
d(τ ′

j , TpM )d(vi , span(τ ′
j , TpM ))

L + 2c̃L
.

This can again be simplified:

d(τ j , TpM ) ≥
d(τ ′

j , TpM )d(vi , span(τ ′
j , TpM ))

L + 2c̃L

>
(2αk−1L/3)ρ1c̃L

L + 2c̃L
(thanks to (23) and (19))

>
2L/3

4L/3
αk−1ρ1c̃L (because c̃ ≤ 1/24) (24)

= 4

3
αk L. (using the relation (8) for αk)

Similarly to (22), we have that

d(τ j , p) ≤ 4L < 6L.

We can go from the distance from τ j to the tangent space, as given in (24), to the

distance to the manifold as follows. Because of Corollary 3.4 we can localise the

results and Lemma 3.5 allows us to estimate the difference in distance to the manifold

and the tangent space. This gives

d(τ j ,M ) >
4

3
αk L −

⎛

⎝1 −

√

1 −
(

6L

rch M

)2
⎞

⎠ rch M .

This can be again simplified:

d(τ j ,M ) >
4

3
αk L −

⎛

⎝1 −

√

1 −
(

6L

rch M

)2
⎞

⎠ rch M

>
4

3
αk L − αd−n L

3
(using (11) and (13))

≥ αk L. (because αk ≥ αd−n if k ≤ d−n−1 by (8))

This completes the proof for the case where j �= 0 or τ j is non-empty. For j = 0,

(20) and Lemma 3.5 yield

d(τ j ,M ) > ρ1c̃L −

⎛

⎝1 −

√

1 −
(

6L

rch M

)2
⎞

⎠ rch M .
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We simplify:

d(τ j ,M ) > ρ1c̃L −

⎛

⎝1 −

√

1 −
(

6L

rch M

)2
⎞

⎠ rch M

> ρ1c̃L − αd−n L

3
(using (11) and (13))

> α1L. (by definition of (8)) ⊓⊔

We emphasise that in the perturbation of the points it suffices to look at the tangent

spaces at specific points, making this constructive proof an algorithm.

6 Constructing the Triangulation ofM

Section 6.1 gives geometric consequences of the perturbation we discussed in the

previous section. Most importantly we shall see that a simplex σ̃ in T̃ intersects M

if and only if it intersects the tangent space TpM of M at a nearby point p close

to σ , see Lemma 6.2. Here we again rely on Appendix B. The triangulation K of M

is defined in Sect. 6.2.

6.1 The Geometry of the Intersection of Simplices in T̃ andM (the Ambient

Triangulation and theManifold)

In this section, we discuss the geometry of simplices in T̃ in relation to M . We follow

[52, Sect. IV.19], with the usual exceptions of the use of Coxeter triangulations, the

thickness, and the reach to quantify the results. The proofs also differ in a fair number

of places from the original.

For any p ∈ M we first establish a lower bound on the distance between TpM

and simplices in the (d − n − 1)-skeleton of T that are close to p.

Lemma 6.1 Let p ∈ M and suppose that τ k ∈ T̃ , with k ≤ d − n − 1, be such that

τ k ⊂ B(p, 6L). Then

d(τ k, TpM ) >
2

3
αk L.

The following proof differs from Whitney’s proof.

Proof of Lemma 6.1 Because τ k ⊂ B(p, 6L), the point in TpM that is closest to τ

lies in TpM ∩ B(p, 6L) = BTpM
(p, 6L). We now see that
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d(τ k, TpM ) ≥ d(τ k, BTpM
(p, 6L)) (first sentence of the proof)

> d(τ k,M ) −

⎛

⎝1 −

√

1 −
(

6L

rch M

)2
⎞

⎠ rch M (Lemma 3.5)

> αk L − αd−n L

3
(d(τ k,M ) > αk L and (13))

>
2

3
αk L, (αk ≥ αd−n for k ≤ d − n)

which completes the proof. ⊓⊔

We can now examine the relation between intersections with the manifold and

nearby tangent spaces.

Lemma 6.2 Suppose that M intersects τ k ∈ T̃ . Let p ∈ M be such that τ k ⊂
B(p, 6(L), then TpM intersects τ k .

Proof Let p̄ ∈ M ∩ τ k . Lemma 3.2 (and (11), (13)) gives p̄ ∈ π−1
p (BTpM (p, 6L)),

where we use the notation of Definition 3.3. Lemma 3.5 implies

d( p̄, TpM ) ≤

⎛

⎝1 −

√

1 −
(

6L

rch M

)2
⎞

⎠ rch M <
αd−n L

3
.

Let τ̌ ⊂ τ k be the face of smallest dimension such that d(τ̌ , TpM ) ≤ 2αd−n L/3. This

face exists thanks to the triangle inequality. By Lemma 6.1 we have dim τ̌ ≥ d − n.

Lemma B.1 implies that τ̌ intersects TpM . The reason for this is the following; τ̌ is

the simplex of the smallest dimension such that d(τ̌ , TpM ) ≤ 2αk L/3, meaning in

particular that d(τ̌ , TpM ) < d(∂τ̌ , TpM ). Because τ̌ is a face of τ k , clearly TpM

intersects τ k . ⊓⊔

We can now bound the angle between simplices and tangent spaces. In this case

the proof identical to original, and included for completeness.

Lemma 6.3 Suppose that M intersects τ k ∈ T̃ and τ k has dimension d − n, that is

k = d − n. Let p ∈ M be such that τ k ⊂ B(p, 6L), then

sin ∠(aff τ k, TpM ) ≥ 2d(TpM , ∂τ k)

L + 2c̃L
≥ 4αk L/3

L + 2c̃L
≥ 16

13
αk .

Proof This is an immediate consequence of Lemma B.1, (17), and the previous lem-

mas. ⊓⊔

Below we investigate the relation between intersections of tangent spaces and

simplices, and intersections between the manifold and simplices. We combine two

statements of [52, Sect. IV.19] in the following lemma. The proof differs from the

original by Whitney.
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Lemma 6.4 If p ∈ M , τ k ∈ T̃ , τ k ⊂ B(p, 6L), and moreover TpM intersects τ k ,

then k ≥ d − n and M intersects τ k . If k = d − n this point is unique, which in

particular means that every simplex of dimension d − n contains at most one point

of M .

Proof Let τ̌ be a face of smallest dimension of τ k such that d(τ̌ , TpM ) ≤ 2αn L/3.

Now Lemmas B.1 and 6.2 give that τ̌ and TpM have a unique point p̄ in common

and the dimension of τ̌ is d − n.

Thanks to Lemma 3.2, M can be written as the graph of a function f , in a neigh-

bourhood of at most size rch M . We note that f : TpM ≃ R
n → NpM ≃ R

d−n ,

where here we think of the tangent and normal spaces as embedded in R
d . Using the

identification of TpM with R
n , we now define

F : R × R
n → R

d , (λ, x) �→ (x, λ f (x)).

Note that F(0, · ) gives a parametrisation of TpM . Similarly, we can define

G : R
d−n → R

d to be a linear (orthonormal) parametrisation of aff τ̌ . We now con-

sider the difference of the two functions F − G : R × R
n × R

d−n = R × R
d → R

d .

Thanks to Lemma 6.3 we have that

sin ∠(aff τ̌ , TpM ) ≥ 16

13
αd−n .

Lemma 3.1 and (13) give that for any q ∈ B(p, 6L)

sin
∠(TpM , TqM )

2
≤ 6L

2 rch M
≤ 6

2
·
α2

d−n

54
=

α2
d−n

18
.

It is clear that this also gives an upper bound on the angle between TpM and the graph

of F(λ, ·) (denoted by graph F(λ, · )) for all λ ∈ [0, 1], due to linearity of the inner

product. Because the upper bound on the angle between the tangent spaces is much

smaller than the lower bound on ∠(aff τ k, TpM ), aff τ̌ and the tangent space to the

graph Tq graph F(λ, · ) span R
d , for any λ ∈ [0, 1] and q ∈ B(p, 6L). The implicit

function theorem and the fact that τ̌ and TpM have a unique point p̄ in common now

give that the intersection p̄λ between graph F(λ, · ) ∩ B(p, 6L) and aff τ̌ exists and

is unique, for all λ ∈ [0, 1].
We can now use Lemmas 3.2, 3.5, and 6.3, to bound | p̄ − p̄λ|. The distance from

the manifold to the tangent space is bounded from above by

α3+2n
d−n

3(n + 1)
ζ 2n L <

α2
d−n L

3
,

due to (11) and (13). The same bound holds for graph F(λ, · ). We also have that

sin ∠(aff τ̌ , TpM ) ≥ 16αd−n/13. Combining these observations gives

| p̄ − p̄λ| ≤
α2

d−n L/3

16αd−n/13
≤ αd−n L

3
.
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This distance bound is smaller than the distance bound for p̄ and the boundary of τ̌ ,

due to Lemma 6.1. This means that p̄λ ∈ τ̌ , and in particular that M intersects τ k . ⊓⊔

Finally, we study the faces of a simplex that intersects M . This is essential for the

barycentric subdivision in part 2 of the algorithm. The proof is identical to the original,

but added for completeness.

Lemma 6.5 If M intersects τ = {v0, . . . , vr } ∈ T̃ , then for each vi ∈ τ , there exists

some (d − n)-face τ ′ of τ such that vi ∈ τ ′ and τ ′ intersects M .

Proof Take p ∈ M ∩ τ . Let τ̌ k be a face of the smallest dimension of τ , with vi ∈ τ̌ k ,

that intersects TpM . Now assume that k > d − n. Let us write τ̌ k−1 for the face of

τ̌ k opposite vi . Because the dimension of τ̌ k ∩ TpM is at least 1, the intersection of

TpM and τ̌ k−1 is non-empty.

Similarly to the first argument in the proof of Lemma 6.4, we see that TpM

intersects some (d − n)-face of τ̌ k−1. Thanks to Lemma 6.3, the angle between this

(d −n)-face and TpM is bounded from below. Due to Lemma 6.1, the intersection lies

in the interior of the (d − n)-face. The angle bound and the fact that the intersection

lies in the interior gives that any simplex in T that contains this (d − n)-face has

points in the interior that lie in TpM . In particular, the interior of τ̌ k contains part

of TpM . Because both the interior of τ̌ k and τ̌ k−1 contain points of TpM , linearity

gives that TpM must intersect ∂τ̌ k \ τ̌ k−1. From this contradiction of the assumption,

we conclude that k = d − n. Lemma 6.4 finally says that M intersects τ̌ k , because

TpM does. ⊓⊔

6.2 The Triangulation ofM : The Complex K

The construction of the complex follows [52, Sect. IV.20].

In each simplex τ of T̃ that intersects M , we choose a point v(τ) and construct

a complex K with these points as vertices. The construction goes via barycentric

subdivision of general polytopes or even CW-complexes, see for example [41, Thm.

1.7 of Chapter III]. For each sequence τ0 ⊂ τ1 ⊂ . . . ⊂ τk of distinct simplices in T̃

such that τ0 intersects M ,

σ k = {v(τ0), . . . , v(τk)} (25)

will be a simplex of K . The definition of v(τ) depends on the dimension of τ :

– If τ is a simplex of dimension d − n, then there is an unique point of intersection

with M , due to Lemma 6.4. We define v(τ) to be this unique point.

– If τ has dimension greater than d − n, then we consider the faces τ d−n
1 , . . . , τ d−n

j

of τ of dimension d − n that intersect M . These faces exist thanks to Lemma 6.5.

We now define v(τ) as follows:

v(τ) =
v(τ d−n

1 ) + · · · + v(τ d−n
j )

j
. (26)
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Remark 6.6 We stress that thanks to Lemma 6.4, choosing the point v(τ d−n) to be

the point of intersection with TpM , assuming p is sufficiently close, locally gives

the same combinatorial structure as intersections with M . We also stress that for the

combinatorial structure it does not really matter where M intersects a simplex of T̃ ,

as long as it does.

We can now state the following bound on the altitudes of the simplices we con-

structed in this manner.

Lemma 6.7 Let σ n be a top dimensional simplex as defined in (25), then

min alt σ n > ζ n(αd−n−1)
n L̃,

where min alt denotes the minimal altitude or height, and we used the notation ζ as

defined in (10).

Proof This inequality relies on estimates on the barycentric coordinates and Lem-

ma 4.6. We first establish a bound on the barycentric coordinates of v(τ d−n
i ) for some

(d − n)-dimensional simplex τ d−n
i ∈ T̃ that intersects M . By Lemma 6.1, v(τ d−n

i )

lies at least a distance 2αd−n−1L/3 from the boundary ∂τ d−n
i , and the longest edge

is at most L + 2c̃L . This means that all the barycentric coordinates λl with respect to

(the vertices of) τ d−n
i are at least

λl(τ
d−n
i ) >

2

3
αd−n−1

L

L + 2 c̃ L
= 2

3
αd−n−1

1

1 + 2 c̃
. (27)

Let τ d now be a top dimensional simplex in T̃ that intersects M . Let τ d−n
1 , . . . , τ d−n

j

be the faces of τ d that intersect M . This means that d −n +1 barycentric coordinates

with respect to τ d of any v(τ d−n
i ) satisfy the bound (27), while the other n coordinates

are zero. This also means that for the barycentric coordinates with respect to τ d of

v(τ k) =
v(τ d−n

1 ) + · · · + v(τ d−n
j )

j
,

for k > d − n, we have that:

– k + 1 of the coordinates λl satisfy

λl >
2

3 j
· αd−n−1

1 + 2c̃
.

– The other d − k coordinates are zero.

Note that j ≤
(

d
d−n

)

. This means that

d(v(τ k), ∂τ k) ≥ 2αd−n−1

3

(

d

d − n

)

· (1 + 2c̃)

min alt τ d .
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p

dmin

aff    

L

h

σ ′ σ ′ 

′ 

Fig. 5 Both triangles are right angled. We stress that the projection of p onto aff σ ′ may be quite a distance

from σ ′ itself

We now have

d(v(τ k), ∂τ k) ≥ 2αd−n−1 t(T̃ ) L̃

3

(

d

d − n

)

· (1 + 2c̃)

(by definition of thickness)

≥ 2αd−n−1 t(T ) L̃

3

(

d

d − n

)

· (1 + 2c̃)

· 4

5
√

d

(

1 − 8c̃

t(T )2

)

(by the estimate (16))

≥ 8αd−n−1 t(T ) L̃

15
√

d

(

d

d − n

)

· (1 + 2c̃)

(

1 − 8c̃

t(T )2

)

. (28)

Using this estimate and the fact that σ n is defined through a sequence τ d−n
0 ⊂

τ d−n+1
1 ⊂ . . . ⊂ τ d

n , we can give a lower bound on the minimal altitude of the

simplex. We are going to use the following easy observation on the minimal altitude

simplices. Suppose that:

– The simplex σ is the join of a point p and the simplex σ ′.
– d(p, aff σ ′) ≥ dmin.

– min alt σ ′ ≥ h′.
– The maximum edge length of σ is L(σ ).

Then min alt σ ≥ h′dmin/L(σ ), as can be established by simple trigonometric argu-

ments; see Fig. 5. Applying this result n times gives that

min alt σ n ≥ h(σ n−1)dmin(σ
n)

L(σ n)
≥ h(σ n−2)dmin(σ

n)dmin(σ
n−1)

L(σ n)2

≥ dmin(σ
n) . . . dmin(σ

0)

L(σ n)n
,

(29)

where we indicated the dimensions explicitly.
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Plugging (28) (using the definition of the simplex σ n as in (25)) into (29) gives that

min alt σ n is lower bounded as follows:

min alt σ n >

⎛

⎜

⎜

⎝

8αd−n−1 t(T )

15
√

d

(

d

d − n

)

· (1 + 2c̃)

(

1 − 8c̃

t(T )2

)

⎞

⎟

⎟

⎠

n

L̃ = ζ nαn
d−n−1 L̃,

which completes the proof. ⊓⊔

7 The Triangulation Proof

Given the triangulation T̃ , we want to prove that the intersection of M ∩ τ d is

homeomorphic to the triangulated polytope described in Sect. 6.2. This immediately

gives a global homeomorphism between the triangulation and the manifold.

The homeomorphism we discuss in this section differs greatly from Whitney’s own

approach. Firstly, he used the closest point projection as a map (which does not respect

simplices, meaning that the point in the complex K (as defined in the previous section)

and its projection may lie in different simplices of T̃ . Secondly, to prove that this map

is a homeomorphism, he uses what has become known as Whitney’s lemma in much

the same way as in [15].

The great advantage of our approach to the homeomorphism proof is that it is

extremely explicit and it is elementary in the sense that it does not rely on topological

results. We also need precise bounds on the angles, which do not require deep theory,

but are quite intricate.

Because we work with an ambient triangulation of type Ã and we do not perturb

too much, the simplices of T̃ are Delaunay. The homeomorphism from M ∩τ d to the

triangulated polytope K ∩ τ d , with K as defined in Sect. 6.2 and τ d ∈ T̃ , gives that

the intersection of any simplex in T̃ with M is a topological ball of the appropriate

dimension. This may remind the reader of the closed ball property of Edelsbrunner

and Shah [36]. We stress that the homeomorphism we construct is explicit.

Overview of the homeomorphism proof The proof consists of three steps:

– For each d-simplex τ ∈ T̃ we provide a ‘tubular neighbourhood’ for K ∩ τ

adapted to τ . By this we mean that, for each point p̄ in K ∩ τ , we designate a

‘normal’ space N p̄ that has dimension equal to the codimension of M and K , and

is transversal to K ∩ τ . Moreover, these directions shall be chosen in a sufficiently

controlled and smooth way, so that every point x in τ that is sufficiently close to

K has a unique point p̄ on K ∩ τ such that x − p̄ ∈ N p̄.

– We give conditions that enforce that the ‘normal’ spaces N p̄ intersect M trans-

versely. More precisely, we prove that the angle between Ñ p̄ and NqM , for any

q ∈ M ∩ τ , is upper bounded by a quantity strictly less than 90 degrees.

– We conclude that the projection along N p̄ gives a homeomorphism from M to K .
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7.1 Constructing the Tubular Neighbourhood

We now give the construction of a ‘tubular neighbourhood’ of K . We refer to

Fig. 6 for a pictorial overview of the construction. We use two results from the previous

sections:

– The normal space is almost constant, see Lemma 3.1, near a simplex τ ∈ T̃ ,

because it is small. So T M and NM near p are well approximated by TpM

and NpM .

– The angles between the normal space and faces τ d−n
1 , . . . , τ d−n

j of τ of dimension

d − n that intersect M are bounded from below by Lemma 6.3.

As a consequence, the orthogonal projection map π
aff τ d−n

k →NpM
≡ π

τ d−n
k

from the

affine hull aff τ d−n
k to NpM is a (linear) bijection, for any p that is sufficiently close

to τ d−n
k , with k ∈ {1, . . . , j}. We will denote the inverse of this map by π−1

τ d−n
k

.

We can now define the ‘normal spaces’ for the complex K . We first do this for the

vertices v(τ), where τ has dimension d − n (these vertices lie on M ), secondly for

general vertices of K (these vertices do not necessarily lie on M ), and finally, using

barycentric coordinates, for arbitrary points in K .

We start, as mentioned, with the vertices that are associated to a simplex τ = τ d−n ∈
T̃ of dimension d −n. We stress that there is one face of τ of dimension d −n, namely

τ itself, so τ = τ d−n = τ d−n
1 . For the vertex v(τ) = v(τ d−n) = v(τ d−n

1 ) we choose

the normal space N
v(τ d−n

1 )
to be aff τ d−n

1 .

For v(τ) such that the dimension of τ is greater than d − n we make the following

construction, which is reminiscent of the construction of v(τ) in Sect. 6.2. Let p ∈ M

be such that τ ⊂ B(p, 6L). For now p is arbitrary, we will specify this later. We

consider the faces τ d−n
1 , . . . , τ d−n

j of τ of dimension d − n that intersect M . Now

consider the orthogonal projection map π
v(τ d−n

k ),p
: aff τ d−n

k → NpM . For any w ∈
NpM we define

Nτ,p(w) = 1

j

(

π−1

v(τ d−n
1 ),p

(w) + · · · + π−1

v(τ d−n
j ),p

(w)

)

. (30)

To construct the normal space at v(τ), we pick p = πM (v(τ )) and define the normal

space as Nv(τ) = span Nτ,πM (v(τ ))(w). Let σ n = {v(τ d−n
0 ), . . . , v(τ d

n )} be a simplex

of K . Now choose a point p ∈ M as before. For any point p̄ in σ n with barycentric

coordinates λ = (λ0, . . . , λn), and any w ∈ NpM , we define

N p̄,p(w) = λ0 N
τ d−n

0 ,p
(w) + · · · + λn Nτ d

n ,p(w).

We now set p = πM ( p̄). By defining N p̄ = span N p̄,πM ( p̄)(w), we get affine spaces

for each point in each σ n ∈ K .

Remark 7.1 By construction, these spaces are consistent on the faces of simplices in

K as well as with the boundaries of the d-dimensional simplices in T̃ .
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Fig. 6 The tubular neighbourhood

The tubular neighbourhood is defined as the set of all points in R
d that that lie in a

unique N p̄, with p ∈ K .

7.2 The Size of the Tubular Neighbourhoods and the Homeomorphism

In this section, we establish the size of the neighbourhood of K as defined by N p̄.

The following angle estimate is an essential part of the estimate of the size of the

neighbourhood of the triangulation K .

Lemma 7.2 Suppose that p ∈ M , τ d ⊂ B(p, 6L), and σ n ∈ K are such that

σ n ⊂ τ d , where we regard σ n and τ d as subsets of R
d . Then the angle between TpM

and aff σ n is bounded as follows:

sin ∠(aff σ n, TpM ) ≤
α4+n

d−n

6(n + 1)
ζ n .

Proof By Lemma 4.7, we have

sin ∠(aff σ n, TpM ) ≤ (n + 1)dmax

min alt σ n
,

where dmax denotes the maximum distance of the vertices of σ n to TpM . Lemma 6.7

gives us the following bound:

min alt σ n > αn
d−n−1ζ

n L̃.

Finally, dmax is bounded thanks to (11). Combining these results yields

sin ∠(aff σ n, TpM ) ≤
(n + 1)α4+2n

d−n ζ 2n L/(6(n + 1)2)

αn
d−n−1ζ

n L̃
≤

α4+n
d−nζ n

6(n + 1)
,
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because αd−n−1 < αd−n and L̃ ≥ L (there are unperturbed simplices in T̃ ). ⊓⊔

With this we can give a bound on the size of the neighbourhood of K .

Lemma 7.3 Let p̄, q̄ ∈ σ n , with barycentric coordinates λ = (λ0, . . . , λn), λ′ =
(λ′

0, . . . , λ
′
n), respectively. Suppose that N p̄ and Nq̄ are defined as in Sect. 7.1. Sup-

pose now that the intersection between p̄+N p̄ and q̄ +Nq̄ is non-empty. Here p̄+N p̄

and q̄ +Nq̄ denote the affine spaces that go through p̄, q̄ and are parallel to N p̄,Nq̄ ,

respectively. If x ∈ p̄ + N p̄ ∩ q̄ + Nq̄ , then

d(x, aff σ n) ≥
(

15

13

)2 α4
d−n

n + 1
ζ nαn

d−n−1 L̃. (31)

Because, by construction, the Np agree on the faces of the n-dimensional simplices

in K , this provides a tubular neighbourhood for K of the size indicated in the right

hand side of (31).

Proof The main idea of the proof of this lemma is the following: Given two points

p̄, q̄ ∈ σ n ⊂ K , the ‘normal’ spaces N p̄ and Nq̄ are not intersecting too close to K

if the angle between N p̄ and Nq̄ is not too large compared to the distance between p̄

and q̄ (and the angle between N p̄ and aff σ is not too small). The proof consists of

several steps. Step 0 gives some very rough estimates, mainly on the angles between

the various ‘normal’ spaces of K that we construct and NpM . Steps 1, 2, and 3 work

from these very naïve bounds to fairly sharp estimates on ∠(N p̄,Nq̄). In the fourth

and final step the bound on ∠(N p̄,Nq̄) is used to give a lower bound on the size of

the tubular neighbourhood.

Step 0: preliminary estimates. Lemma 6.3 gives that for each τ d−n

sin ∠(aff τ d−n, TpM ) ≥ 16

13
αd−n or cos ∠(aff τ d−n, NpM ) ≥ 16

13
αd−n,

so that for u ∈ NpM of unit length,

cos ∠
(

π−1

v(τ d−n
k ),p

(u), u
)

≥ 16

13
αd−n,

with π
v(τ d−n

k ),p
: aff τ d−n

k → NpM the orthogonal projection map. This means that
∣

∣π−1

v(τ d−n
k ),p

(u)
∣

∣ ≤ 13/(16αd−n). Together with the triangle inequality this yields that

|Nτ,p(u)|, |N p̄(u
′)| ≤ 13

16αd−n

, (32)

for any u ∈ NpM and u′ ∈ NπM ( p̄)M of unit length. By construction, the component

of Nτ,p(u) in the u direction is u and the component of N p̄(u
′) in the u′ direction is
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also u′. This in turn gives us that

∠(Nτ,p(u), u), ∠(N p̄(u
′), u′) ≤ arccos

16αd−n

13
. (33)

Thus

∠

(

span
u∈NpM

Nτ,p(u), NpM

)

, ∠(N p̄, NπM ( p̄)M ) ≤ arccos
16αd−n

13
. (34)

If we want to compare the two different normal spaces NpM and NqM , with |p−q| ≤
4L , we again invoke Lemma 3.1 and (13) to see that

sin
∠(NpM , NqM )

2
≤ 2L

rch M
<

α4+2n
d−n

29(n + 1)2
ζ n .

Using (9) and the fact that ζ is small, we can further simplify:

sin
∠(NpM , NqM )

2
<

αd−n

183 · 29
= αd−n

169128
.

The triangle inequality for angles (or points on the sphere) now implies that

∠

(

span
u∈NpM

Nτ,p(u), span
u∈NqM

Nτ,q(u)

)

, ∠(N p̄,Nq̄)

< 2 arccos
16αd−n

13
+ arcsin

αd−n

183 · 29
.

Overview steps 1, 2, and 3: angle estimates. Having established some preliminary

estimates, we will tighten this result for ∠(N p̄,Nq̄). The angle between these two

terms is determined by both p and p̄ in N p̄,p(u). We will examine the effects of both

separately.

Step 1: Bounding ∠(N p̄,p(u), Nq̄,p(u)). We start by fixing p and varying p̄. We

now consider

N p̄,p(u) = λ0 N
τ d−n

0 ,p
(u) + · · · + λn Nτ d

n ,p(u) and

Nq̄,p(u) = λ′
0 N

τ d−n
0 ,p

(u) + · · · + λ′
n Nτ d

n ,p(u).

We are now going to estimate the angle between these vectors and thus the angle

between spanu N p̄,p(u) and spanu Nq̄,p(u) in terms of the barycentric coordinates.

The u components of N p̄,p(u) and Nq̄,p(u) are u by construction as we mentioned

before. We are going to compare this with the length of N p̄,p(u) and Nq̄,p(u), and

the length of their difference. For estimates on these lengths we need to introduce the

following notation:
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≤ 13
√
n+ 1

16�d−n
|� −� ′|

1
≥ 1

�0

�0

Fig. 7 The worst case for the angle between the vectors N p̄(e j ) and Nq̄ (e j ). We write φ0 for an upper

bound on ∠(N p̄(e j ), Nq̄ (e j )). Moreover θ0 ≥ arcsin (16αd−n/10). The length or bound on the length of

two of the edges is also indicated in the figure

–
(

N
τ d−n

0 ,p
(u) . . . Nτ d

n ,p(u)
)

denotes the matrix whose columns are N
τ d−n

0 ,p
(u), . . . ,

Nτ d
n ,p(u),

– ‖ · ‖2 denotes the operator 2-norm,

– ‖ · ‖F is the Frobenius norm.

With this notation, we can now derive the following bound:

∣

∣

∣
λ0 N

τ d−n
0 ,p

(u) + · · · + λn Nτ d
n ,p(u) −

(

λ′
0 N

τ d−n
0 ,p

(u) + · · · + λ′
n Nτ d

n ,p(u)

)
∣

∣

∣

=
∣

∣

∣
(λ0 − λ′

0)N
τ d−n

0 ,p
(u) + · · · + (λn − λ′

n)Nτ d
n ,p(u)

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

(

N
τ d−n

0 ,p
(u). . .Nτ d

n ,p(u)

)

⎛

⎜

⎝

λ0 − λ′
0

...

λn − λ′
n

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

≤
∥

∥

∥

(

N
τ d−n

0 ,p
(u). . .Nτ d

n ,p(u)

)
∥

∥

∥

2
|λ − λ′| (35)

≤
∥

∥

∥

(

N
τ d−n

0 ,p
(u). . .Nτ d

n ,p(u)

)
∥

∥

∥

F
|λ − λ′| (because ‖ · ‖2 ≤ ‖ · ‖F)

=
√

∣

∣N
τ d−n

0 ,p
(u)

∣

∣

2 + · · · +
∣

∣Nτ d
n ,p(u)

∣

∣

2 · |λ − λ′| (by definition of ‖ · ‖F)

≤ 13
√

n + 1

16αd−n

|λ − λ′|. (by (32))

We now turn our attention to the triangle with edges N p̄,p(u), Nq̄,p(u), and N p̄,p(u)−
Nq̄,p(u), as depicted in Fig. 7. We apply the sine rule to this triangle, using (33)

and (35), to find

sin ∠(N p̄,p(u), Nq̄,p(u)) ≤ sin φ0 = 13
√

n + 1

16αd−n

· |λ − λ′| · 13

16αd−n

=
(

13

16αd−n

)2√
n + 1 · |λ − λ′|.

(36)
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Note that this can be tightened a fair bit at the cost of complicating the bound. We

conclude from (36) that

sin ∠
(

span
u

N p̄,p(u), span
u

Nq̄,p(u)

)

≤
(

13

16αd−n

)2√
n + 1 · |λ − λ′|. (37)

Step 2: bounding ∠
(

spanu∈NpM
N p̄,p(u), spanu∈NqM N p̄,q(u)

)

. We now want to

bound the angle between spanu∈NpM
N p̄,p(u) and spanu∈NqM N p̄,q(u) based on the

distance between the points p and q in M . We use the fact that p and q are such that

τ ⊂ B(p, 6L), B(q, 6L), so the conditions of Lemma 6.3 hold. This also means that

p and q are close, so the angle between NqM and NpM is very small. This gives

that the projection πNqM→NpM
induces a (linear) bijection from NqM to NpM , so

that the inverse π−1
NqM→NpM

makes sense. Having established this map, we see that

∠

(

span
u∈NpM

N p̄,p(u), span
u∈NqM

N p̄,q(u)

)

≤ sup
u∈NpM

∠
(

N p̄,p(u), N p̄,q

(

π−1
NqM→NpM

(u)
))

.

(38)

To bound this angle, we look at the individual terms in (30), that is π−1

v(τ d−n
k ),p

(u)

and π−1

v(τ d−n
1 ),q

(

π−1
NqM→NpM

(u)
)

. See Fig. 8 for an illustration. We can write

π−1
NqM→NpM

(u) = u + w̄q,p, with w̄q,p ∈ TpM , |w̄q,p| ≤ tan ∠(NpM , NqM ),

and

|u + w̄q,p| ≤ 1

cos ∠(NpM , NqM )
.

Similarly, π−1

v(τ d−n
k ),p

(u) can be written as u + w̄k,p, with w̄k,p ∈ TpM , and

|w̄k,p| ≤ tan ∠(aff τ d−n
k , NpM ).

Likewise, π−1

v(τ d−n
k ),q

(u + w̄q,p) can be written as u + w̄q,p + w̄k,q , with w̄k,q ∈ TqM ,

and

|w̄k,q | ≤
tan ∠(aff τ d−n

k , NqM )

cos ∠(NpM , NqM )
.
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aff   k

π – 1
(  

k

d – n), q

π – 1 π –1

(  
k

d – n), p

(u +    
q,p 

)–

(u) u N
p

N
p

N
q

N
q

(u) = u +    
q,p

–
→

w

w

M M

M M

τ

τ

τ

v

v

Fig. 8 Note that the two-dimensional nature of the figure is slightly misleading

The distance from π−1

v(τ d−n
k ),q

(u + w̄q,p) to the translation of TpM that goes through

u is at most

tan ∠(aff τ d−n
k , NqM ) sin ∠(TpM , TqM )

cos ∠(NpM , NqM )

=
tan ∠(aff τ d−n

k , NqM ) sin ∠(NpM , NqM )

cos ∠(NpM , NqM )
.

By definition of the projection map π
v(τ d−n

k ),p
the point π−1

v(τ d−n
k ),p

(u) lies in the

translation of TpM that goes through u. Because, also by definition, π−1

v(τ d−n
k ),p

(u)

and π−1

v(τ d−n
k ),q

(u + w̄q,p) = π−1
NqM→NpM

(u) are both contained in aff τ d−n
k , we have

that

∣

∣

∣
π−1

v(τ d−n
k ),p

(u) − π−1

v(τ d−n
k ),q

(u + w̄q,p)

∣

∣

∣

=
∣

∣

∣
π−1

v(τ d−n
k ),p

(u) − π−1

v(τ d−n
k ),q

(

π−1
NqM→NpM

(u)
)

∣

∣

∣

≤
tan ∠(aff τ d−n

k , NqM ) sin ∠(NpM , NqM )

cos ∠(NpM , NqM ) sin ∠(aff τ d−n
k , TpM )

(39)

=
tan ∠(aff τ d−n

k , NqM ) sin ∠(NpM , NqM )

cos ∠(NpM , NqM ) cos ∠(aff τ d−n
k , NpM )

=
tan ∠(aff τ d−n

k , NqM ) tan ∠(NpM , NqM )

cos ∠(aff τ d−n
k , NpM )

.

Lemma 6.3 gives us that sin ∠(aff τ d−n
k , TpM ), sin ∠(aff τ d−n

k , TqM ) ≥ 16αd−n/13,

so cos ∠(aff τ d−n
k , TqM ) ≥ 16αd−n/13 and

tan ∠(aff τ d−n
k , NqM ) ≤ 1 − (16αd−n/13)2

16αd−n/13
.
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By Lemma 3.1

sin
∠(TpM , TqM )

2
≤ |p − q|

2 rch M
,

so that, using the identity tan (2 arcsin x) = 2x
√

1 − x2/(1 − 2x2),

tan ∠(NpM , NqM ) ≤

|p − q|
rch M

√

1 − |p − q|2
4(rch M )2

1 − |p − q|2
2(rch M )2

.

This means that (39) yields

∣

∣

∣
π−1

v(τ d−n
k ),p

(u) − π−1

v(τ d−n
k ),q

(

π−1
NqM→NpM

(u)
)

∣

∣

∣

≤
1 −

(

16

13
αd−n

)2

(

16

13
αd−n

)2
·

|p − q|
rch M

√

1 − |p − q|2
4(rch M )2

1 − |p − q|2
2(rch M )2

.

(40)

By the triangle inequality (applied to the terms in the sum in the definition (30)), this

gives

∣

∣N p̄,p(u) − N p̄,q

(

π−1
NqM→NpM

(u)
)
∣

∣ ≤ the right hand side of (40).

Because the u component of N p̄,p(u)) is u and its length is at least 1, we find that also

sin ∠
(

Nq̄,p(u), Nq̄,q

(

π−1
NqM→NpM

(u)
))

≤ the right hand side of (40).

Because p and q are very close (in fact, they lie in an L neighbourhood of τ , which is

small due to (13))

√

1 − |p − q|2
4(rch M )2

1 − |p − q|2
2(rch M )2

≤ 2,

as can verified using the fact that
√

1 − x2/(1 − 2x2) is monotone increasing for

sufficiently small x . This means we can simplify the result further:

sin ∠
(

Nq̄,p(u), Nq̄,q

(

π−1
NqM→NpM

(u)
))

≤
(

10

16αd−n

)2 |p − q|
rch M

.
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Thanks to (38), we now have

∠

(

span
u∈NpM

Nq̄,p(u), span
u∈NqM

Nq̄,q(u)

)

≤ arcsin

((

13

16αd−n

)2 |p − q|
rch M

)

. (41)

Step 3: Combining into a bound on ∠(N p̄,Nq̄). Combining (41), (37), and the

triangle inequality, we see that

∠

(

span
u∈NpM

N p̄,p(u), span
u∈NqM

Nq̄,q(u)

)

≤ ∠

(

span
u∈NpM

N p̄,p(u), span
u∈NpM

Nq̄,p(u)

)

+ ∠

(

span
u∈NpM

Nq̄,p(u), span
u∈NqM

Nq̄,q(u)

)

≤ arcsin

((

13

16αd−n

)2√
n + 1 · |λ − λ′|

)

+ arcsin

((

13

16αd−n

)2 |p − q|
rch M

)

.

Because we need estimates on ∠(N p̄,Nq̄) we have to set p = πM ( p̄) and

q = πM (q̄). To estimate the distance between the two points, we first note that

| p̄ − q̄| ≤ |λ − λ′| L̃ , because p̄ and q̄ have barycentric coordinates λ and λ′. Thanks

to [37, Theorem 4.8 (8)], we have that if d(x,M ), d(y,M ) ≤ (rch M )/2, then

|πM (x) − πM (y)| ≤ 2|x − y|. This means that

∠(N p̄,Nq̄) = ∠

(

span
u∈NπM ( p̄)

M N p̄,πM ( p̄)(u), span
u∈NπM (q̄)M

Nq̄,πM (q̄)(u)

)

≤ arcsin

((

13

16αd−n

)2√
n + 1 · |λ − λ′|

)

+ arcsin

((

13

16αd−n

)2 2|λ − λ′| L̃
rch M

)

.

Since sin (arcsin x + arcsin y) = y
√

1 − x2 + x
√

1 − y2 ≤ x + y, we see that

sin ∠(N p̄,Nq̄) ≤
(

13

16αd−n

)2√
n + 1 · |λ − λ′| +

(

13

16αd−n

)2 2|λ − λ′| L̃
rch M

.

Because of (13) and (7),

(

13

16αd−n

)2 2|λ − λ′| L̃
rch M

≤
(

13

16αd−n

)2

4|λ − λ′|
α4+2n

d−n

54(n + 1)2

≤ 6

100
|λ − λ′|α2

d−n .
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Thanks to (9), the first term in the following sum is by far the larger one:

sin ∠(N p̄,Nq̄) ≤
(

13

16αd−n

)2√
n + 1 · |λ − λ′| + 6

100
|λ − λ′|α2

d−n .

We finally arrive at the following simple, but weaker bound:

sin ∠(N p̄,Nq̄) ≤
(

13

15αd−n

)2√
n + 1 · |λ − λ′|. (42)

Step 4: From angles to a lower bound on the neighbourhood size. We now con-

sider the triangle p̄q̄x and we estimate | p̄x | and |q̄x |. Recall that in the statement

of the lemma we defined x as the point where the normal spaces N p̄ and Nq̄ first

intersect. The estimate will use:

1. the sine rule;

2. the fact that the distance between p̄ and q̄ is at least |λ − λ′| min alt σ/
√

n, thanks

to [10, Lem. 5.12];

3. Lemma 6.7 to bound min alt σ ;

4. inequality (42), which gives a bound on the angle ∠ p̄xq̄ , namely φ0.

5. Lemma 7.2 gives that

∠(NpM , (aff σ n)⊥) ≤ arcsin
α4+n

d−nζ n

6(n + 1)
≤ arcsin

α4
d−n

6
,

where (aff σ n)⊥ denotes the space perpendicular to aff σ n . Because e j ∈ NpM ,

combining this with Lemma 6.3 and the triangle inequality for angles yields

∠(N p̄′(e j ), (aff σ n)⊥) ≤ ∠(N p̄′(e j ), e j ) + ∠(NpM , (aff σ n)⊥)

≤ arccos
16αd−n

13
+ arcsin

α4
d−n

6
.

(43)

We need a lower bound on sin ∠ p̄q̄x and sin ∠q̄ p̄x , that is

sin ∠(N p̄′(e j ), aff σ n) = cos ∠(N p̄′(e j ), (aff σ n)⊥).

We also recall the trigonometric identity

cos (arccos a + arcsin b) = a
√

1 − b2 − b
√

1 − a2.
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Using (43) now gives

sin ∠(N p̄′(e j ), aff σ n) ≥ cos

(

arccos
16αd−n

13
+ arcsin

α4
d−n

6

)

= 16αd−n

13

√

1 −
α8

d−n

62
−

α4
d−n

6

√

1 −
(

16αd−n

13

)2

≥ 16αd−n

13
− 16αd−n

13
·
α8

d−n

62
−

α4
d−n

6
(44)

≥ 16αd−n

13
− αd−n

183
(as αk ≤ 1/18k by (9))

≥ αd−n .

This completes the fifth point.

The considerations we summed up yield

| p̄x |, |q̄x | ≥ αd−n|λ − λ′| · min alt σ/
√

n

(10/(15αd−n))2 ·
√

n + 1 · |λ − λ′|

≥ αd−n(15αd−n/10)2 · min alt σ

n + 1
≥ αd−n(15αd−n/13)2

n + 1
(ζαd−n−1)

n L̃.

Using (44) again yields that the distance from x to aff σ n is bounded from below by

d(x, aff σ n) ≥
α2

d−n(15αd−n/13)2

n + 1
(ζαd−n−1)

n L̃.

This completes the proof. ⊓⊔

Lemma 7.4 Suppose that τ d ∈ T̃ and M ∩ τ d �= ∅. Then, M ∩ τ d lies in the tubular

neighbourhood of K ∩ τ d as defined in Sect. 7.1 (whose size is lower bounded by

Lemma 7.3).

Proof Consider v(τ d) ⊂ K ∩ τ d , where we use the definition (26), and choose an

arbitrary n-dimensional simplex σ n ⊂ K ∩ τ d . Note that v(τ d) ∈ K ∩ τ d . Thanks to

Lemma 7.2,

sin ∠(aff σ n, TvM ) ≤
α4+n

d−n

6(n + 1)
ζ n .

From this bound we conclude that

dH

(

TvM ∩ B(v, 2L), aff σ n ∩ B(v, 2L)
)

≤ 2
α4+n

d−n

6(n + 1)
ζ n L,
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where dH denotes the Hausdorff distance. Because of Lemma 3.5 and (11), we have

that

dH

(

TvM ∩ B(v, 2L), π−1
v (BTvM

(v, 2L))
)

≤
α4+2n

d−n

6(n + 1)2
ζ 2n L,

where BTvM (v, 2L) denotes the ball in TvM with centre v and radius 2L . This gives

us

dH

(

aff σ n ∩ B(v, 2L), π−1
v (BTvM (v, 2L))

)

≤ 2
α4+n

d−n

6(n + 1)
ζ n L +

α4+2n
d−n

6(n + 1)2
ζ 2n L (by the triangle inequality)

≤
α4+n

d−nζ n

n + 1
L.

Because M ∩ τ ⊂ π−1
v (BTvM (v, 2L)) and the distance between M ∩ τ and aff σ n is

small compared to the size of the neighbourhood of K given in Lemma 7.3, that is

α4+n
d−nζ n

n + 1
L ≤

(15/13)2α4
d−n

n + 1
ζ nαn

d−n−1 L̃,

M ∩ τ is contained in this neighbourhood of K . ⊓⊔

Having established that M lies in the tubular neighbourhood around K , it is mean-

ingful to speak about the projection from M to K along the direction N . Because we

also have that the projection from M to K in the direction N (as defined in Sect. 7.1)

is transversal (because π/2 minus the angle between N p̄ and NpM , see (34), is

much bigger than the variation of the tangent/normal space as bounded by Lemma

3.1 and (12)), we see that M ∩ τ d is homeomorphic to K ∩ τ d . By construction the

projection map is compatible on the boundaries of τ d , so we also immediately have

an explicit homeomorphism between M and K . Moreover, this homeomorphism is

piecewise smooth and not just continuous. This completes the proof of Theorem 1.1.

We emphasise that along the way we have also given bounds on

– the Hausdorff distance between M and K , see Lemmas 7.4 and 7.3,

– the quality of simplices, see Lemma 6.7,

– the variation of the tangent spaces, see Lemma 3.1, (34), and (12).
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Appendix A: Notation

In the following table we give an overview of the notation used in this paper and

compare it to Whitney’s notation.

Notation Definition Whitney’s notation (if relevant)

Ai Affine subspaces P , P ′ and Q

aff The affine hull

Bd (c, r) A ball in R
d with centre c and radius r , if we

do not need to emphasise the centre or

radius or they are to be determined, these

are suppressed from the notation

Ur (c)

BTpM (c, r) A ball in TpM , using the same conventions

as for Bd (c, r)

C̊(TpM , r1, r2) Open cylinder given by all points that project

orthogonally onto an open ball of radius r1

in TpM and whose distance to this ball is

at most r2

c̃L Perturbation radius of the vertices of T ρ

c̃ Normalised perturbation radius ρ∗

d Ambient dimension (Rd ) m

d( · , · ) Euclidean distance between sets

dM ( · , · ) Distance on M

δ Protection

ǫ The sampling density as in an (ǫ, μ)-net (the

circumradius of the simplices in the

Coxeter triangulation)

K Triangulation of M K

L( · ) Longest edge length δ is the longest edge length of the

ambient triangulation L

L L = L(T )

L̃ L̃ = L(T̃ )

λ barycentric coordinates

M The manifold M

μ Separation as in an (ǫ, μ)-net (the shortest

edge length in T for Coxeter

triangulations)

μ0 The normalised separation, that is μ = μ0ǫ

n Dimension of M n

NM , NpM The normal bundle and normal space at p

N≤k An upper bound on the total number of faces

of dimension less or equal to k that contain

a given vertex

Whitney does not distinguish

dimensions and uses N as an

upper bound (no value given)
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Notation Definition Whitney’s notation (if relevant)

Nv(τ)(ei ) See (30)

N p̄ The ‘normal’ space of K at p̄, that is

span N p̄(ei )

πM Closest point projection on M π∗
πTpM Orthogonal projection on the tangent

spaces TpM

π−1
p See Definition 3.3

π
aff τd−n

k
→NpM

=
π

τd−n
k

The orthogonal projection map from the

affine hull aff τd−n
i

to NpM

rch M The reach to the manifold M

ρ̄1 Volume fraction of the part of a ball inside a

slab

ρ1

ρ1 Lower bound on ρ̄1, see (5)

S Slab between two hyperplanes intersected

with a ball

Q′

T M , TpM The tangent bundle and the tangent space at p Pp

T The ambient Coxeter triangulation of type Ã L is the ambient triangulation, but

is not a Coxeter triangulation

T̃ Perturbed ambient triangulation L∗
τ, σ Simplices. We have tried to reserve τ for T

or T̃ and σ for K . However, for arbitrary

simplices (such as in Appendix B) we use

arbitrary choices. Subscripts are used for

indices and superscripts for the dimension.

Same

t(σ ) Thickness of σ

U (X , r) A neighbourhood of radius r of a set X Ur (X)

vi Vertices of T pi

v∗
i

Vertices of T̃ p∗
i

Overview of theMost Important Bounds

We recall here for the reader’s convenience the most important bounds and constants

used in the paper.

The constant ρ̄1 > 0 (depending only on d) is defined as follows: For any two

parallel (d − 1)-hyperplanes whose distance apart is less than 2ρ̄1r , the intersection

of the slab between the two hyperplanes with the ball Bd(r) is denoted by S . Now,

ρ̄1 is the largest number such that the volume (vol) of any S satisfies

vol S ≤ vol Bd(r)

2N≤d−n−1
,

where N≤k is an upper bound on the total number of faces of dimension less or equal

to k that contain a given vertex, see (4).

α1 and αk have been defined by a recursion relation as follows:

α1 = 4

3
ρ1c̃,

2

3
αk−1c̃ρ1 = αk, (8)
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and thus αk = 2k+1ρk
1 c̃k/3k . In particular, we have the bound

αk ≤ 1

18k
. (9)

L satisfies

(

1 −

√

1 −
(

6L(T )

rch M

)2)

rch M =
α4+2n

d−n

6(n + 1)2
ζ 2n L (11)

or equivalently

L

rch M
=

2
α4+2n

d−n

6(n + 1)2
ζ 2n

(

α4+2n
d−n

6(n + 1)2 ζ 2n

)2

+ 62

, (12)

with

ζ =
8

(

1 − 8c̃

t(T )2

)

t(T )

15
√

d

(

d

d − n

)

· (1 + 2c̃)

. (10)

We often use

L

rch M
<

α4+2n
d−n

54(n + 1)2
ζ n <

α2
d−n

54
,

α4+2n
d−n

6(n + 1)2
ζ 2n <

α2
d−n

3
≤ αd−n

3
. (13)

The normalised perturbation radius c̃ satisfies

|vi − ṽi | ≤ c̃L = min

{

t(T )μ0

18d
δ,

t(T )2L

24

}

, (17)

from which it follows that

c̃ ≤ 1

24
. (7)

Appendix B: Some Properties of Affine Spaces

In this appendix, we discuss two variants of lemmas from [52, App. II.14] that are

essential in the building of the triangulation, see Sect. 6.1 in particular. Both lemmas

are due to Whitney. However, in both cases, the statement is different, because we

prefer to work directly with angles and use the thickness as our quality measure. In the
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aff 

(aff   , A
0
)

A
0

@

σ

σ

σ

σ

Fig. 9 An illustration of the notation of Lemma B.1

first case, the proof we provide differs significantly from the original. The first lemma

will allow us to prove that if TpM intersects a simplex τ ∈ T and p and τ are not too

far from each other then M intersects τ and vice versa. The second result is essential

in proving that the perturbation of the vertices as described in Sect. 2.1, part 1, gives a

triangulation for which the low dimensional simplices are sufficiently far away from

the manifold.

We start with a variation on Lemma 14a from [52, App. II.14].

Lemma B.1 Let σ be an s-simplex and A0 an affine n-dimensional subspace in R
d .

Assume that s + n ≥ d and

d(A0, σ ) < d(A0, ∂σ ).

Then s + n = d, A0 intersects σ in a single point, and

sin ∠(aff σ, A0) ≥ 2d(A0, ∂σ )

L(σ )
.

The notation is illustrated in Fig. 9.

Proof Choose p ∈ σ and q ∈ A0 such that

|p − q| = d(A0, σ ).

Now suppose that there is a vector v �= 0 that lies in the intersection of aff σ and A0.

Then there exists some c ∈ R such that p+cv ∈ ∂σ . Because v lies in the intersection

of aff σ and A0, we have that q + cv ∈ A0. As translation leaves distances invariant,

d(A0, σ ) = |p − q| = |(p + cv) − (q + cv)| ≥ d(A0, ∂σ ),

which clearly contradicts the assumption. This means we can conclude that there is

no such v and therefore s + n = d.
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Because there is no v in the intersection of aff σ and A0, there is a unique point p̄

in this intersection. We will now show that p̄ ∈ σ . We will assume that p̄ /∈ σ . This

means in particular that q �= p̄. Because d(A0, σ ) < d(A0, ∂σ ), p − q is normal

to aff σ and p ∈ σ \ ∂σ . Now consider the line from q to p̄, which lies in A0. The

distance from a point on this line to σ decreases (at least at first) as you go from q

toward p̄. This contradicts the definition of q. We conclude that p̄ ∈ σ .

Now suppose that l0 is a line in A0 that goes though p̄. In order to derive a contra-

diction, we assume that

sin φ <
2d(A0, ∂σ )

L(σ )
,

where sin φ denotes the angle between l0 and aff σ . Denote by πaff σ (l0) the orthog-

onal/closest point projection on aff σ of l0. Because p̄ ∈ σ , πaff(σ )(l0) intersects ∂σ

at a point q̄ and we may assume that | p̄ − q̄| ≤ L(σ )/2 so that l0 contains a point of

distance

L(σ ) sin φ

2
<

L(σ )

2
· 2d(A0, ∂σ )

L(σ )
= d(A0, ∂σ )

from ∂σ , a contradiction. Because l0 was an arbitrary line in A0 the result now follows.

⊓⊔

The following is a variation on Lemma 14b from [52, App. II.14]. The proof pre-

sented here is almost identical to the original.

Lemma B.2 Let A1 and A2 be two affine subspaces in R
d , with A1 ⊂ A2. Let τ be a

simplex in A2, and let v be a point in R
d \ τ . Define J to be the join of τ and v. Then

d(J , A1) ≥ d(τ, A1) d(v, A2)

L(J )
, (45)

where the distances between sets are defined as d(B, C) = infx∈B,y∈C |x − y| and

L(J ) denotes the longest edge length of an edge in J .

The notation is illustrated in Fig. 10.

Proof Let us suppose that (45) is false. Let J c be the truncated cone that consists of all

half lines that start at a point of τ and pass through v. Then we may choose pJ ∈ J c

and a1 ∈ A1 so that

|pJ − a1| = d(J c, A1);

by the definition of J c and the hypothesis we also have

d(J c, A1) ≤ d(J , A1) <
d(τ, A1) d(v, A2)

L(J )
. (46)
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A2

A1

τ
J

Jc

πL( )

L

pJ

a1

v

v

w

Fig. 10 Notation for the proof of Lemma B.2

Now suppose that pJ lies on the half line that starts at w ∈ τ and goes through v.

Because τ ⊂ A2, we see that d(v, A2) ≤ Le(J ). This means that (46) gives that

d(J c, A1) < d(τ, A1), so pJ �= w. We now immediately see that the line segment

a1 pJ is orthogonal to the line that goes through w and v, which extends the half line

we mentioned above. Let ℓ now be the line that goes through a1 and w, and πℓ(v) ∈ ℓ

the point that is closest to v. It follows that πℓ(v)w is perpendicular to ℓ. Because

a1 is nearer to pJ than w, a1 and πℓ(v) are on the same side of w in ℓ. This means,

because two of the angles are the same (and thus the third), that the triangles pJ wa1

and πℓ(v)wv are similar. We now have that

d(J c, A1) = |pJ − a1| = |a1 − w| · |v − πℓ(v)|
|v − w| ≥ d(τ, A1) d(v, A2)

L(J )
,

contradicting the hypothesis and thus proving the lemma. ⊓⊔

Appendix C: Remark on the C1,1 case

We now first discuss a simpler version of Lemma 3.2 before going in to the C1,1

setting. The result in this case is weaker, but can be easily extended to the C1,1 setting

as we shall see below. The following consequence of Lemma 3.1 is a stronger version

of [43, Lem. 5.4]:
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Corollary C.1 Suppose M is C2 and p ∈ M , then for all 0 < r < (rch M )/
√

2

the projection πTpM onto the tangent space TpM , restricted to M ∩ B(p, r), is a

diffeomorphism onto its image.

Proof Let q ∈ M be such that |p −q| ≤ r , then the differential of the projection map

πTpM at q is non-degenerate, because, by Lemma 3.1, the angle ∠(TpM , TqM ) is

less than π/2. Because M ∩ B(p, r) is a topological ball of the right dimension by

[18, Prop. 1], the result now follows. ⊓⊔

Similarly to Lemma 3.1 we have for C1,1 manifolds that:

Lemma C.2 ([18, Thm. 3]) Now suppose that M has positive reach, that is M is at

least C1,1, and let |p − q| ≤ (rch M )/3. Then

sin
∠(TpM , TqM )

2
≤ 1 −

√
1 − α2

√

α2/4 − (α2/2 + 1 −
√

1 − α2)2

,

where α = |p − q|/ rch M .

This lemma gives us a corollary, which is the equivalent of Corollary C.1:

Corollary C.3 Suppose M is C1,1 and p ∈ M , then for all r < (rch M )/3, the

projection πTpM onto the tangent space TpM , restricted to M ∩ B(p, r), is a dif-

feomorphism onto its image.

These are in fact all the fundamental results that are needed to be able to extend to

the C1,1 setting.

Assuming the manifold is C1,1 would lead to minor changes in the calculations in

the proof of Lemma 6.4 and would in theory influence the final conclusion in Sect. 7.2.

However, because we have a significant margin in the difference between π/2 and the

angle between N p̄ and NpM , we would not need to change the constants in Sect. 7.2.

Because we use the projection on the manifold, which is only Lipschitz, the map is a

homeomorphism which is no longer piecewise smooth, but just Lipschitz. The rest of

proofs hold verbatim.
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