
TRIANGULATION AND SHAPE-
COMPLEXITY

BERNARD CHAZELLE AND JANET INCERPI

Brown University

This paper describes a new method for triangulating a simple n-sided polygon. The algorithm runs
in time O(n log s), with s _< n. The quantity s measures the sinuosity of the polygon, that is, the
number of times the boundary alternates between complete spirals of opposite orientation. The value
of s is in practice a very small constant, even for extremely winding polygons. Our algorithm is the
first method whose performance is linear in the number of vertices, up to within a factor that depends
only on the shape-complexity of the polygon. Informally, this notion of shape-complexity measures
how entangled a polygon is, and is thus highly independent of the number of vertices. A practical
advantage of the algorithm is that it does not require sorting or the use of any balanced tree structure.
Aside from the notion of sinuosity, we are also able to characterize a large class of polygons for which
the algorithm can be proven to run in O(n log log n) time. The algorithm has been implemented,
tested, and empirical evidence has confirmed its theoretical claim to efficiency.

Categories and Subject Descriptors: F.2.2 [Analysis of Algori thms and Problem Complexity]:
Nonnumerical Algorithms and Problems--geometrical problems and computations; 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling--geometric algorithms, languages, and
systems

General Terms: Algorithms, Computational Geometry

Additional Key Words and Phrases: Divide-and-conquer, shape-complexity, triangulation

1. INTRODUCTION

T r i a n g u l a t i o n p r o b l e m s a re m a n y a n d v a r i e d [8]. One c o m m o n t h r e a d b e t w e e n

t h e m is t h e a t t e m p t to re f ine t h e n o t i o n o f neighborhood a m o n g t h e ob jec t s u n d e r

c o n s i d e r a t i o n . T h i s is qu i t e a p p a r e n t in t h e case o f p o l y g o n a l t r i a n g u l a t i o n s ,

whe re one is a s k e d to a u g m e n t t h e se t o f b o u n d a r y a d j a c e n c i e s o f a s imp le

p o l y g o n b y e x p r e s s i n g i t as a se t o f p a i r w i s e d i s j o i n t t r i ang l e s . T h e p r o b l e m is

s i m p l y s t a t e d as fol lows:

Decompose a simple polygon into a set of nonoverlapping triangles without

adding new vertices.

This research was supported in part by National Science Foundation grant MCS 8303925, and by

the Office of Naval Research and the Defense Research Projects Agency under Contract N00014-83-

K-0146 and ARPA Order No. 4786,

Authors' address: Department of Computer Science, Brown University, Providence, RI 02912

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission, r

© 1984 ACM 0730-0301/84/0400-0135 $00.75

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984, Pages 135-152.

136 • Bernard Chazelle and Janet Incerpi

The relevance of this question is twofold. On one hand, it is the basis of many
other geometrical problems (e.g., visibility, shortest-path, region-fil]ing prob-
lems); on the other hand, it raises one of the most puzzling questions of
computational geometry: Does the knowledge of a simple path between n points
allow us to break the ~2(nlogn) lower bound on the time for computing any
triangulation of these points [6]? The answer to this question is not yet known,
but a number of O(nlogn) time algorithms have already been proposed to
triangulate a simple n-sided polygon [1, 2, 4]. In this paper we propose to extend
our current knowledge of the problem by describing a new algorithm which, in
many aspects, outperforms all known methods.

Before presenting ihe main features of the algorithm, let us sumn.~arize the
most important previously obtained results. Linear-time triangulations of special
classes of polygons were found by Toussaint and Avis [9], and Schoone and van
Leeuwen [7]. In the first case, the class contained the so-called edge visible and
monotone separable polygons, and in the latter, the star-shaped polygons. Garey
et al. [2] also gave a linear algorithm for monotone polygons, as well as the first
general O(nlogn) time method for triangulating an arbitrary simple n-sided
polygon. The same time bound was achieved by Chazelle [1], using eL radically
different method. Since both of these algorithms involve sorting n numbers, their
O{nlogn) upper bound reflects the actual running time of the algorithm in a
fairly accurate fashion. Recently, Hertel and Mehlhorn [4] have described a
sweep-line based algorithm that performs all the better as the polygon has few
reflex angles. The running time of the method is O(n + r logr) , where r denotes
the number of reflex angles.

Theoretically, Hertel and Mehlhorn's algorithm is interesting because it adapts
itself to the shape of the polygon. Since beating O(nlogn) in the worst case,
seems very difficult, the natural trend of research has been to look for algorithms
that behave linearly on a large class of polygons and require on the order of n
log n operations only for fairly contrived polygonal shapes. Hertel and l~.[ehlhorn's
result takes a big step in the first direction but is unfortunately barely relevant
to the second concern. Indeed, the number of reflex angles does not reflect how
geometrically contrived a polygon is; to see this, just add n artificial vertices to
any n-sided polygon, giving their adjacent edges an infinitesimal twi~.t so as to
create n reflex angles (of 180 + e degrees). This transformation will make r, the
number of reflex angles, proportional to the input size, without altering: at all the
basic shape of the polygon.

In this paper we take a further step to achieve a time complexity that indeed
reflects the shape-complexity of the polygon. We describe a triangulation algo-
rithm that runs in time O(nlogs), with s _ n. The quantity s measures the
sinuosity of the polygon, that is, the number of times the boundary .alternates
between complete spirals of opposite orientation. The value of s is, in practice, a
very small constant, even for extremely winding polygons. Our algorithm is the
first method whose performance is linear in the number of vertices, up to within
a factor that depends only on the shape-complexity of the polygon. Informally,
this notion of shape-complexity measures how entangled a polygon is, and is thus
highly independent of the number of vertices. A practical advantage of the
algorithm is that it does not require sorting or the use of any balanced tree
structure. Aside from the notion of sinuosity, we are also able to chazacterize a

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

Triangulation and Shape-Complexity • 137

large class of polygons for which the algorithm can be proved to run in
O(n log log n) time. The algorithm has been implemented and tested, and empir-
ical evidence has confirmed its theoretical claim to efficiency.

The paper is organized as follows: In Section 2 we introduce our notation and
give a precise description of the algorithm. We analyze its complexity in Section
3, and in Section 4 we identify a class of polygons for which the algorithm runs
in 0 (n log log n) time. In Section 5 we slightly modify the algorithm and introduce
the notion of sinuosity, by means of which we express its performance. In Section
6 we report on the actual coding of the algorithm and outline the essential
components of the program. Finally, we draw various conclusions in Section 7
and indicate directions for further research.

2. DECOMPOSING A POLYGON INTO TRAPEZOIDS

2.1 The Basic Ingredients

The first and main goal of the algorithm is to compute the vertical decomposition
of the polygon P, denoted VD(P). This is the unique partition of P obtained by
drawing a vertical line through each vertex of P, extending each line as long as
it does not properly cross the boundary of the polygon (Figure 1). We show later
that it is straightforward to derive a triangulation of P once its vertical decom-
position is available. Note that for VD(P) to be well-defined, P must be a simple,
yet not necessarily closed, curve. We can extend the notion of vertical decom-
position to any simple, oriented polygonal line L. Before proceeding, we introduce
some terminology: Let t be a vertical segment with an endpoint p on L, and let
D be a disk centered at p. If the radius is chosen small enough, we can always
ensure that L subdivides D into exactly two parts, provided that p is not an
endpoint of L. Let C be the part with respect to which the orientation of L runs
clockwise. If the intersection of t with D lies completely in C, or if p happens to
be an endpoint of L, we say that p is in right-contact with L.

Next, we introduce the concept of L-extension. For any vertex p of L, extend a
vertical segment from p upward until it hits L in right-contact. Stop this process
if it generates an intersection with L which is not in right-contact. Repeat the
same process, substituting downward for upward. The segment generated is called
the L-extension ofp. In the simplest case, the L-extension ofp has one (Figure 2
[A]) or two (Figure 2 [D]) endpoints in right-contact. It may have one (Figure 2
[C]) or two endpoints at infinity. Or, it may have one or two endpoints not in
right-contact (Figure 2 [B]). In this case, the segment is stretched to infinity
past the endpoint, by convention. Finally, it may be reduced to a single point
(e.g., leftmost point in Figure 2), if extending a segment should generate an
endpoint not in right-contact. A point of L that lies on an L-extension is called
a support-vertex if it is a vertex of L, and a pseudovertex otherwise. Note that an
L-extension may not have a pseudovertex, but it always has a support-vertex.

The set of all L-extensions can be conveniently represented as a set of vertical
trapezoids, with each vertical side coinciding with the L-extension of some vertex
of L. This set defines the vertical decomposition of L, denoted VD(L). If L is not
closed, some of the trapezoids may be unbounded and there is no partitioning of
space proper, since trapezoids may actually overlap. The set of trapezoids,
however, induces a partition of the line L into line segments, called VD-edges. A

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

138 ° Bernard Chazelle and Janet Incerpi

Fig. 1. The vertical decomposition of a
simple polygon.

IDI IEI IBI Fig. 2. The notion of L-e~tensions.

VD-edge is a subsegment of an edge of L that sustains exactly one trapezoid.
Note that a bounded (respectively, unbounded) trapezoid is, in general, sustained
by two (respectively, one) VD-edges. Figure 2 illustrates most of the. relevant
configurations of VD(L). Note that although two adjacent trapezoids often share
an entire side (Figure 2 [A]), one side may be properly contained in the other
(Figure 2 [D]), one of which may actually be infinite (Figure 2 [E]).

The data structure for VD(L) provides two accessing schemes. On the one
hand, each trapezoid is represented by its boundary, kept as a doubly l:mked list,
with adjacent trapezoids pointing to each other. On the other hand, the line L is
represented as a doubly linked list of VD-edges, each of them pointing to its
sustained trapezoid. It may sometimes happen that the vertical side of a trapezoid
contains several support vertices. We resolve these singularities by introducing
extra trapezoids of null width. This will allow us to assume that each trapezoid
side contains exactly one support vertex.

2.2: Merging two VD-structures

The key step of the divide-and-conquer algorithm involves merging two ~tructures
VD(L1) and VD(L2), with L1 = {Urn, . . . , Vl}, L2 = {Wl, . . . , win}, and vl = Wl.
These lists indicate the orientation of the polygonal lines. For consistency, we
use a descending sequence for L1 so that the merge can proceed toward higher
indices for both L1 and L2. In the following, we say that a point a E! L~ is L1-
further than a point b E L1, if it is encountered after b in the course of traversing

L1 from Vl to vm. The same applies about L2. Let L = {Vm Vl, W2, .. •, Win}.
The goal is to compute VD(L) by proceeding concurrently from v~ to Vm and w~

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

Triangulation and Shape-Complexity • 139

~
,. ~ L1 . . o ° V l l W l

Fig. 3. Taking shortcuts.

to w~, reconfiguring the trapezoids on-line. The main feature of this stitching

operation is to take shortcuts whenever possible, that is, avoid traversing vertices
whose adjacent trapezoids remain unchanged. This concept of shortcuts, exten-
sively developed later on, is essential to the algorithm. Without it, any hope of
beating 0 (n log n) time would vanish. The computation will be completely guided
by two pointers, pl and p2, running concurrently through the VD-edges of L1 and
L2, respectively. The computation will ensure the following invariant:

INVARIANT. At any time during the merge of L1 and L~, the current state of

VD(L) consists of the L-extension of all the points of L1 (respectively, L2) between
vl and Pl (respectively, p2) as well as the L1- (respectively, L2-) extension of all the
other points in L1 (respectively, L2).

Figure 3 gives an example of a typical tour of p~. For simplicity, we have
represented L2 as a curved line to give a rough indication of its interaction with
L1. The trajectory ofp~ appears as a dotted line. Figure 3 shows that pl will point
to VD-edges of trapezoids in VD(L~), moving only between adjacent trapezoids.
Occasionally, pl will switch from one VD-edge of a trapezoid to another of the
same trapezoid (recall that a trapezoid has one or two VD-edges). As we shall see
shortly, VD-structures contain all the information necessary to implement the
merging without too much effort. The only difficulty resides in identifying all
possible situations and treating them in a unifying manner.

At the generic step, all the VD-edges of L1 (respectively, L2) between Vl and pl
(respectively, p2) have been processed and will never be visited again during the
merging of L1 and L2. If at time 0 the last trapezoid t, examined in VD(L2), has
been entirely processed, we must consider the "next one" in VD(L2). This new
trapezoid is referred to as the fresh trapezoid at time 8. More need be said about
this trapezoid to make it defined unambiguously; all we can now say is that since
it is adjacent to t, it can be retrieved in constant time from VD(L2). In general,
if the fresh trapezoid is provided by L2, the last trapezoid, t ' , examined in VD(L~),

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

140 • Bernard Chazelle and Janet Incerpi

will have been only partly updated at time 0, and further processing will be in
order; t ' is called the carry trapezoid at time 0. Typically, t ' is the remaining
part of a clipped trapezoid of VD(L1).

We are now ready to merge the fresh and carry trapezoids, and thus add to the
construction of VD(L). We proceed by a case-analysis, which although a bit
lengthy, is fairly straightforward. Before describing the algorithm, let us mention
some of the difficulties we shall encounter. This preview, intended only as an
illustration, will prepare the reader for the forthcoming case-analysis. One
important feature, which we have to respect carefully, is the presence of exactly
one support-vertex on each vertical side of each trapezoid. As we have seen
earlier, the multiplicity of such vertices can be easily corrected by the introduction
of null-width trapezoids. Another problem is the handling of newly appeared
vertical sides with no support-vertex at all. We solve this problem by c,3mbining
the two trapezoids adjacent to the side in question. Note also that since a
trapezoid often has two sustaining VD-edges, its updating in the course of
processing one of these edges may have the effect of upsetting the sustaining
status of the other edge; hence, updating with respect to both VD-edges will be
in order. This is required in order to satisfy the invariant. Note that one likely
effect of this updating is to modify the breakdown of L1 or/,2 into VD-edges. We
shall illustrate this type of modification later.

By construction, the carry and fresh trapezoids lie on the same side--say,
without loss of generality (wlog) on the left s ide--of the last trapezoid con-
structed. As far as the construction of the next trapezoid is conce:med, the
difference between a carry and a fresh trapezoid is immaterial. For thi[s reason,
we can assume wlog that pl stretches further to the left than P2, that is, the x-
coordinate of pl 's left endpoint does not exceed the x-coordinate of' p2's left
endpoint.

The algorithm rests on a case-analysis that can be best described plictorially.
Figures 4 illustrates all possible cases. Each of the six pairs of pictures depicts
the construction of the next trapezoid(s), represented in hashed lines in the right-
hand column. Each of the 12 pictures contains an arrow to indicate the direction
from which the next construction will take place. We represent three kinds of
trapezoids: fresh(F) and carry(C), as well as next(N), one of the trapezoids of
VD(L2) adjacent to fresh. We shall define next more precisely in each of the
cases. The trapezoids are represented very schematically. Each of them has a
VD-(lower or upper) edge currently under consideration; this edge is represented
by a continuous line, whereas the other (upper or lower) edge is repre~ented by
a dotted line. The latter edge is either sustaining or at infinity; in either case, its
position has no particular significance, unless the line is doubled up with a
continuous line (Figures 4b, e). In this case, the edge is sustaining and its relative
position is meaningful. The case-analysis is based on the relative position of p2
(= ab) and bc, the VD-edge adjacent to p2 in the direction of the con~truction.
Figures 4 (a-c) (respectively, d-f)) assume that c (respectively, b) has the least
x-coordinate among a, b, c. Here are a few remarks intended to supplement Figure
4.

(1) (Figures 4a, b) Let q be the unique support-vertex of F. From the Jordan
Curve theorem, it follows that either q = b, or q is strictly L2-further than b.

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

Triangulat ion and Shape -Complex i ty • 141

(a)

(b)

(c)

(d)

(e)

(f)

ZPl L 1
L ~ I~

c b p2~ a

c b a ' - 2

Lc_ L1
- - - ~ ~

c

.

b 1 I~ t(~. L
¢0 ~ - ~ c a 2

e 2 ~

L ~ tl

. L2~

e
2

ca ~ STOP

Fig. 4. The case-analysis.

Figures 4a and b, assume the latter case. In the direction of the construction,
there are two candidates for the role of next trapezoid from L2. Discriminating
between Figure 4a and b settles this question. In 4a (respectively, 4b), the support-
vertex lies below (respectively, above) pl.

(2) (Figures 4c, d-f) In all these cases, q = b, that is, b is the support-vertex
of the left side of F. Case 4c is the simplest and, as such, fairly self-explanatory.
In 4d, the left sides of both C and N extend to infinity downward, and therefore,
no further interaction between L1 and/_~ is to be expected; the merging is over.
If this is not the case, let el (respectively, e2) be the lower edge of C {respectively,
N). Note that one of these edges may be at infinity. Draw a segment from b
downward, until it first intersects either e~ (4e) or e2 (4f). In the former case, let
N' be the trapezoid of VD(L2) sustained by bc. We can process directly all of C
and N, declare N' fresh, and keep C as the carry. Two observations are in order:
first of all, although C is still a carry trapezoid, its sustaining edge that gives its
value to p~ will be switched from the upper to the lower edge. Also, it may be the
case that N is not properly defined as indicated in Figure 4e. This will happen
when the trapezoid of VD(L2) sustained by bc is unbounded below. We then
blithely proceed toward N', after applying the treatment depicted in Figure 4e.
Finally, in case 4f, we proceed as shown in the corresponding figure, observing
that the treatment is somewhat fairly similar to 4a and c.

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

142 • Bernard Chazelle and Janet Incerpi

L 2

(a)

L

/T(I?U::I:r::IL :

(b)

.

Fig. 5. Handl ing side-effects.

We must now deal with the various side effects mentioned earlier. When
introducing a new trapezoid, we must always check whether it can be combined
with the previous one so as to form a single trapezoid, in which case, the trapezoids
in question should be combined. In Figure 5a, for example, VD(L1) provides the
same carry for several steps, whereas VD(L2) keeps on supplying fresh trapezoids
with no support-vertex on L2. As a result, the newly created trapezoids will be
combined, one after the other. To ensure the invariant, we must also update the
remaining part of VD(L2). In the same vein, Figure 5b illustrates the notion of
side-effect updating: the creation of new trapezoids in VD(L) resets the lower
edges of a number of trapezoids in VD(L2) to -0% thus causing the loss of their
support-vertices. As a result, we must merge all these trapezoids into a single
one.Naturally, in the course of merging L1 and L2, we must set all the adjacencies
between newly created trapezoids, as prescribed in the definition of VI:)(L).

The proof of correctness relies, upon the inspection, that Figure 4 considers
all significant cases, and that the actions taken respect the invariant. The latter
can be asserted by observing that (1) the new trapezoids are valid tral.~ezoids of
VD(L), and (2) each trapezoid of VD(L~) or VD(L2) that is modified by the
computation leads to an updating of the adjacencies of all its sustaining edges.
Note that the algorithm is conceptually quite simple, and the difficulty resides
only in specifying the details correctly. For this reason, our successful i:mplemen-
tation of the algorithm is, we believe, an indispensable part of this work, as it
contains all the details left unmentioned here for the sake of clarity.

2.3. The Divide-and-Conquer Procedure

We are now ready to compute the vertical decomposition of the polygon P. Let
{p~, . . . , p,} be the vertices of P in clockwise order. Recursively, compu~e VD(L~)
and VD(L2), for L1 = { p l , . . . , pt,/2J} and L2 = {pt,/2j+~ , p,}, and fin.ally apply
the procedure described above to merge VD(L~) and VD(L2). This will produce
the vertical decomposition of P, which completes the description of the algorithm.
Here is a simple, preliminary result on the complexity of the algorithm.

THEOREM 1. The algorithm computes the vertical decomposition of a simple n-

sided polygon in O (n log n) time and O (n) space.

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

Triangulation and Shape-Complexity • 143

PROOF. Since the L-extension of a vertex of L consists of at most three points,
VD(L) requires O(I L I) storage. Merging VD(L1) and VD(L2) takes time linear
in the input size; therefore the divide-and-conquer procedure requires O(n log n)
time. []

We shall see later on that the algorithm has a much better performance than
indicated by Theorem 1. To seek any improvement, however, it is crucial to
ensure two requirements regarding the implementation.

(1) If the algorithm is implemented recursively, we should pass pointers to the
endpoints of L1 and L2 as arguments to the merge routine VD and not to the
full-fledged lists themselves.

(2) We should compute VD(L) in place by modifying existing links, allocating
new space only when necessary and freeing space after deletions.

3. THE TRIANGULATION ALGORITHM

We shall show how to transform the vertical decomposition of P into a triangu-
lation, using a variant of the algorithm of Garey et al. [2]. This algorithm involves
computing a regular decomposition of P and applying to it a simple O(n) time
procedure to produce a triangulation. A regular decomposition of a polygon P is
a partition of P into monotone polygons that does not introduce new vertices. A
polygon Q is said to be monotone if there exists a line T such that the boundary
of Q can be decomposed into two consecutive chains, each of whose orthogonal
projections on T has the same vertex-list order as its originating chain.

It is quite simple to go from a vertical to a regular decomposition of P. To do
so, we choose the x-axis as the reference line T and identify all the vertices of P
that cause the polygon not to be monotone. These are exactly the support-vertices
whose P-extension contains two pseudovertices. For each such vertex v, let t be
the unique trapezoid for wl/ich the P-extension of v coincides with a vertical side,
and let w be the other support-vertex of t. It is easy to show that connecting each
pair (v, w) in P by a straight edge will produce a regular decomposition of P
{Figure 6). We omit the proof of this elementary fact. The description of the
triangulation algorithm is now complete. Its time complexity is clearly O (n log n),
since transforming a vertical decomposition into a triangulation requires linear
time.

4. INTRODUCING THE NOTION OF NESTING NUMBER

Since the complexity of the triangulation algorithm is entirely dominated by the
construction of the vertical decomposition, we shall concentrate exclusively on
this phase of the algorithm. A quick observation shows that the upper bound of
O(nlogn) on the time complexity of the algorithm is tight {Figure 7a). The
shapes of the worst-case polygons are so contrived, however, that we can argue
that in most practical cases, the algorithm is extremely efficient--actually more
efficient than any other triangulation algorithm known to date. This feature is
due to the fact that the algorithm is highly adaptive. Indeed, by constantly
seeking shortcuts, the algorithm may often merge two large inner decompositions
in constant or near-constant time. In Figure 7b, for example, all the merges take
constant time, except for the last one, which requires linear time. The overall
running time is therefore O(n). In this section we try to characterize classes of
polygons for which the running time is linear or quasi-linear.

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

144 • Bernard Chazelle and Janet Incerpi

A 1 ;]
/ ! ,. 1 3 /

I I

To refine the crude analysis of Theorem 1, we introduce the concept of nesting
number. A vertical line D that intersects P has the effect of dividing the. boundary
of P into polygonal chains running from one point of D to another, each lying
entirely on one side of D. Consider now the polygonal lines as fences and imagine
that a dog placed initially on the line D wishes to run away to infinil;y, staying
always on one side of D. Let ml (respectively m2) be the minimum :aumber of
fences it will have to jump in order to escape through the left (respectively, right)
side, and let m = max(m1, m2). We define v(P), the nesting number of P, as the
maximum value of m for all starting positions and all lines D. In Fii~re 8, for
example, v(P) = 3.

Practical experience (with, say, graphic typesetting or pattern recognition,
where the need for efficient triangulations arises) shows that the nesting number
of a polygon is, in general, 1 and usually less than or equal to 2 or 3. Let us
assume in the following that v(P) < 4; we shall show that all the n-sided polygons
in this class can be triangulated in O(n log log n) time.

It is clear from the description of the algorithm that the running time is
proportional to the number of times L-extensions are updated. Pseudovertices
are never updated, properly speaking; they are created and possibly destroyed.
Consequently, the costs that they incur can be charged to the corresponding
support-vertices. Without loss of generality, we can concentrate on the L-
extensions that have a pseudovertex lower than their support-vertex: along the
y-axis. These extensions are called top-extensions, and their lower endpoints
(which are pseudovertices) are called the low-points of the extensions. Since a
low-point can never be set to infinity twice in a row, we can restrict our attention
to the number of times a low-point is set to a new position on the boundary of
P. These updates are called breaks. Let Pi be the support-vertex of some top-
extension. Note that, chronologically, breaks occur closer and closer to pi. The

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

Triangulation and Shape-Complexity • 145

• I

|

, J :

E__

(a)

(b)

Fig. 7. Bad and good eases.

vertex p/ is said to be right-broken (respectively, left-broken) if the break is caused
by an edge pjpj+~ with j > i (respectively, j < i). Let C(n) be an upper bound on
the total number of times a low-point is updated in the course of computing
VD(P). For reasons of symmetry, we immediately derive tha t the time necessary
to compute VD(P) is O(n + C(n)). In the following analysis we therefore consider
only left-breaks of top-extensions without further justification. We also use the
term left-break with the implicit understanding tha t it refers to top-extensions.

Let us examine how left-breaks can occur in the course of merging the vertical
decomposition of two polygonal lines L1 and L2. Let LI = { q l , . . . , qm} and L2 =
{qm+~, • . . , q2m}, with {q~, q2 } = {Pl, Pl+~, -..} for some I. For any k > 2, let
D(k) be the number of vertices in L2 tha t satisfy the three following conditions:
(1) they are left-broken in the course of merging L~ and L2 (this can happen only
once per merge), (2) they were previously left-broken exactly k - 1 times, and

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

146 • Bernard Chazelle and Janet Incerpi

!
!

Fig. 8. The not ion of nest ing number: v(P) = 3.

(3) they will be left-broken later on at least once more. We prove the following
result:

LEMMA 1. For any k <_ 2, we have D(k) <_ m/2 k-3.

PROOF. Let qi be the vertex of L2 that satisfies the three conditions above and
has the highest index i, and let B be the low point of the new top-extension of qi
right after the merge. Let {qj , qi, . . . , qi'} be the polygonal line resulting
from the merge during which qi was left-broken for the first time. Let A be the
low-point of the top-extension of qi right after its first left-break, and let q,q~+l

be the supporting edge in L2 (Figure 9a). We will show that no vertex between
qm and qj can contribute any value to D(k) . To do so, we will prove the stronger
result that no vertex between qm and qj can be actually left-broken for at least
the second time, while merging L1 and L2, with the hope of it being left-broken
later on. Assume that this is not the case, and that qh(m <- h <_ j) is left-broken
by the edge q,qu+l of L1. We distinguish between two cases:

(1) qh lies inside the polygon enclosed by {qi, A, q,+l, q,÷2 qi}. In this case,
in addition to q,q,+l, each of the following polygonal lines contribute,~ one to the
nesting number: (1) from A to qi; (2) from qh to the low-point C of the previous
top-extension of qh; (3) as a direct application of the Jordan Curve theorem, a
third polygonal line between (1) and (2) must also exist and increase qh's
contribution to the nesting number. This raises the nesting number to at least
four, and brings a contradiction (Figure 9a).

(2) If qh does not lie inside the polygon enclosed by {qi, A, q,+l, q.,+2, • . . , qi}

(Figure 9b), it will be impossible to left-break qh later on without b:dnging two

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

Triangulation and Shape-Complexity • 147

qi q=P /f-z

/ - '

qv+l qv
(a)

Fig. 9.

q l

..... - : : : : :

/ / < /@'

(b)

Counting left-breaks.

polygonal lines across Aqi, once to the left then to the right, thus bringing up the
nesting number to a prohibitive value _ 4.

It follows from this result that, since by definition of qi no vertex between qi+l
and q2m can satisfy the three conditions stated above, D (k) is dominated by the
number of vertices between qj and qi. Let L~ ~) be the Ll-argument passed to the
merge routine at the time q~ was left-broken for the lth time. The divide-and-
conquer algorithm prescribes that L~ ° contain at least twice as many vertices as
L~l-1); therefore

1 m
i - j <_ ~ I L~h-~) l <_ 2h--- 5,

which completes the proof. []

THEOREM 2. The triangulation algorithm runs in O (n log log n) time for any n-

sided polygon with nesting number less than 4.

PROOF. Since converting a vertical decomposition of a polygon into a trian-
gulation takes linear time, it suffices to show that VD(P) can be computed in
O(n log logn) time. We give a fairly intuitive counting argument. Let T denote
the computation tree. T is a complete binary tree over n leaves, with the following
trivial interpretation: a node v at level k represents the merge of two polygonal
lines of the form L~ = {qi qi+2*-'} and L2 = {qi+2,-1, . . . , qi+2,}. Each level of
T thus represents a stage of the computation. We shall evaluate the maximum
number of left-breaks by playing a pebbling game. For obvious reasons, we may
restrict our attention to the subset V consisting of vertices that are left-broken
at least three times over the entire computation. This will allow us to apply the
result of Lemma 1. We set up the following charging policy: with each vertex of

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

148 • Bernard Chazelle and Janet Incerpi

V is associated a distinct pebble, and, at any stage of the computation, we require
that if ~ has been left-broken k times so far, its pebble should be placed at level
k in the tree (by convention, leaves are at level 1). We can thus ewtluate the
number of left-breaks incurred so far at any given stage by adding up the heights
of all pebbles.

At any stage t, we update the tree by moving up the pebble of each vertex that
is left-broken at t. Let -~k designate level #k in the tree. Lemma 1 shows that, at
any stage up to within constant factors, any level -~h cannot receive more than
c = n/2 k-3 pebbles. We observe that c represents the number of nodes at level
-~k-2, which is four times the number of nodes at level -~k. Consequently, at the
end of the computation, no level will have 4(rlog2nl + 1) times more pebbles
than nodes, since there is a total of h = [log2nl + 1 stages. It is clear that the
added height of all pebbles H is maximized when all the upper levels are filled to
their maximum capacity. This means that each level -~i should be given 4h ×
size(.~/) nodes, for i = h, h - 1 , . . . , h - k. The limit k is determined by the fact
that only n pebbles are available; therefore, Y~o-_i-_k 2i(4h), that is, 2 ~+1 _ 1 +
n/4h. We thus have

H = 4 h × ~ 2 i (h - i) = 4 h ((h - k + 1)2 h + l - h - 2) ;
O<_i~_k

hence H = 0 (n log log n). This implies that C(n) = O(n log log n), which completes

the proof. []

5. PRECONDITIONING THE INPUT

As is often the case with adaptive algorithms, preprocessing the input prior to
calling the main algorithm might often lead to substantial gains. One advantage
of the algorithm is that it is based on polygonal lines rather than polygons. This
feature allows us to break down the polygon into a (preferably small) number of
polygonal lines, the vertical decompositions of which we compute separately and
merge together in a final stage. We take advantage of the fact that the algorithm
is particularly efficient on spiral-shaped inputs.

Let L = {q~,. . . , qm} be a simple polygonal line. Consider the mot!ion of the
straight line passing through qiqi+~, as i goes from 1 to m - 1. Every time the
line reaches the vertical position clockwise (respectively, counterclockwise), we
increment (respectively, decrement) a winding counter by one (the in![tial value
of the counter is irrelevant). We will say that L is spiraling (respectively anti-

spiraling) if the winding counter is never decremented (respectively, incremented)
twice in a row.

It is straightforward to decompose any simple polygon into spiraling and
antispiraling polygonal lines. This can be done in a single linear pass, and we
may omit the details. Note that we should restart a new polygonal line only when
the previous line ceases to be spiraling or antispiraling (Figure 10). At that point,
we start scanning a new polygonal line and continue the traversal as long as the
line can be classified as either spiraling or antispiraling. In general, the line will
be of both types at the start and then fall into one type. We define s, the sinuosity

of P, as the number of polygonal lines thus obtained. Note that, depending on
the starting vertex, this number may vary by one. In the following, s will refer to

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

Triangulation and Shape-Complexity . 149

A

Fig. I0. Preconditioning the input.

the larger of these numbers. Empirical evidence shows that in practice s is a
small constant. Even a fairly contrived polygon like the one depicted in Figure
10 has a sinuosity of only 5. We shall show successively that the vertical
decomposition of a spiraling or antispiraling line can be computed in linear time,
and that a simple n-sided polygon P can be triangulated in time O(n log s).

LEMMA 2. The vertical decomposition of any spiraling or antispiraling polygonal

line can be computed in linear time.

PROOF. Without loss of generality, assume that the polygonal line, which we
denote L, is spiraling. We first examine how left-breaks can occur in the course
of merging the vertical decomposition of two polygonal lines L1 and L2. Once
again, we restrict our attention to left-breaks related to top-extensions. Without
loss of generality, we may assume that L2 contains at least one vertex q that is
left-broken during the merging of L1 and L2 by an edge e, and that this is neither
the first time nor the last time that this vertex is left-broken. Let w be the value
of the winding counter at q (also referred to as the winding value of q). Since we
restrict ourselves to top-extensions, we consider only the left-breaks of vertices
whose winding value has the same parity as w. Note that any edge causing a left-
break must have a winding value equal to the winding value of the broken vertex
minus one. Since q is left-broken by edges outside of L~ both following and
preceding e, we derive immediately that w - 1 and w - 2 are the only possible
winding values in L~, and therefore L~ is totally free of left-breaks. This allows

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

150 • Bernard Chazelle and Janet Incerpi

us to charge to L1 the left-breaks incurred while merging L~ and L2. Since L1 and
L2 are of the same size, dividing the costs evenly between the vertices of L~ will
amount to charging each vertex a cost of at most one. Note that since L~ is free
of left-breaks, none of its vertices will have been charged in this manner up to
this point, and since L is not free of left-breaks, no vertex of L~ will ever be
charged in this way hereafter. We conclude the existence of at most O(n) left-
breaks during the computation of VD(P). Observing that a similar reasoning
applied to right-breaks would lead to the same findings, the proof is now
complete. []

We are now ready to prove the main result of this section.

THEOREM 3. It is possible to triangulate a simple n-sided polygon P in
O(n log s) time and O(n) space.

PROOF. It suffices to show that VD(P) can be computed in O(n log s) time.
As mentioned earlier, we will first decompose the boundary of P into k = s (or
perhaps s - 1) spiraling and/or antispiraling polygonal lines, which will take
O(n) time, and then compute the vertical decomposition of each of them. Since
merging two vertical decompositions takes time at most proportional in the total
number of vertices involved, We now face a problem similar to merging k sorted
lists together. Let wl Wk be the sizes of the k polygonal lines that partition
the boundary of P. We merge these lists according to the order given by an
optimal alphabetic binary tree constructed by the Hu-Tucker algorithm. Com-
puting the optimal tree requires O(k log k) time and O(k) space, which leads to
an added merge time of O(Y~l<_i<_k wi log(n/wi)) [5]. By elementary calculus, this
quantity is shown to be O(n log k) time, which completes the proof. []

6. CODING UP THE ALGORITHM

We mention a few details concerning the implementation of the algorithm. The
main emphasis of this section is to demonstrate how the computation is distrib-
uted hierarchically among the various parts of the algorithm, and, in particular,
what layers lie on top of the inner loop depicted in Fig. 4. We also briefly describe
the basic data structures.

The algorithm has been implemented in the C language. Polygon vertices,
supplied in clockwise order, are stored in a doubly linked list so as to handle both
clockwise and counterclockwise traversals. Along with pointers to the next and
previous vertices on the boundary, we have, associated with each vertex of the
polygon, a pointer to some trapezoid, for which it is either the top-left or bottom-
right corner. In general, each edge of the polygon has a few trapezoids hanging
from it, and the vertex vi has a pointer to the first trapezoid hanging from the
edge vivi+l when traversed in clockwise order. The vertical trapezoids are stored
by keeping the minimum and maximum x-values, along with pointers to the
polygonal edges that support the trapezoid. These pointers lead directly into the
polygon's doubly linked list. Unbounded trapezoids have null pointers. Thus, a
trapezoid is defined using two x-values and two pointers to vertices. In order to
walk around VD(L), pointers to adjacent trapezoids are also needed. As men-

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

Triangulation and Shape-Complexity • 151

tioned earlier, we assume that each side of a trapezoid contains exactly one
support-vertex; therefore, at most two trapezoids can lie on each side of a given
trapezoid. Thus, associated with each trapezoid are four pointers, two for each
side.

Initially, each edge has an infinite trapezoid associated with it. The main
procedure controls the divide-and-conquer. It sets pointers to the heads of the
polygonal lists L1 and L2. These pointers are then passed to a merge routine.
Merge is responsible for maintaining the pointers pl and P2. In the implementa-
tion, however, pl and p2 point to actual edges of the polygon and not VD-edges.
With an edge is associated a direction, clockwise or counterclockwise, depending
on its supporting polygonal line, as well as a position, above or below, to indicate
whether the trapezoids supported by the edge hang above or below the edge. Note
that this information is needed, since it is not readily available from the trapezoids
themselves. The merge routine operates the merging of VD(L1) and VD(L2). It
deals with actual edges of L~ and L2. The routine finds the starting positions of
Pl andp2 (which are not necessarily the first edges of L1 and L2). Merge determines
shortcuts; its inner loop calls a subroutine, merge VD, which carries out the actual
merging of trapezoids. When mergeVD returns, the basic invariant is satisfied
up to that point, and one of the edges, say pl, will never be considered again.
Merge will then find the next trapezoid and its supporting edge, and update p~.
While merge essentially controls the case analysis, mergeVD computes VD(L).
The routine creates new trapezoids whenever necessary, modifies links, and
operates the garbage collection. It also handles side effects, that is, combining
trapezoids whose side edges have no support-vertex. For this reason, mergeVD
does not simply combine the fresh and carry trapezoids but rather combines all
the trapezoids along one edge. The inner loop implements the case-analysis of
Figure 4. To handle the case of side-effect updating shown in Figure 5b, the
bottom of each spurious trapezoid is set to infinity and the trapezoids are merged
when the upper edge of L2 is passed to merge VD.

The length of the program is approximately 700 lines for merge and 800 lines
for mergeVD. The rest of the code includes initialization and I/O operations, and
amounts to an insignificant percentage of the total length. Debugging the algo-
rithm was greatly facilitated by using SGP, a graphics system modeled on ACM/
SIGGRAPH's CORE79 and ISO's GKS, on both a Lexidata 3400 and a Ramtek
9400. We still had to devote substantial effort to the design of the data structure
in order to make the implementation of the case-analysis simply manageable.
One of the crucial requirements was to provide the structures with enough scope
to treat special cases uniformly. With the intricate geometric setting defined by
the algorithm, such an approach was not only desirable, but absolutely manda-
tory. Following Guibas and Stolfi's methodological approach to complex geomet-
ric implementations [3], we have attempted to define a small set of powerful
primitives in order to separate the combinatorial aspects of the problem from its
purely geometrical ones. This separation is embedded in the data structure by
distinguishing geometric data types, which lie at the bottom of the hierarchical
structure of the computation, and combinatorial types, which constitute the
backbone of the algorithm.

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

152 • Bernard Chazelle and Janet Incerpi

7. CONCLUSIONS

We have presented a new triangulation algorithm for simple polygons that
contains a number of attractive features, both of theoretical and practical
nature. On the practical side, our algorithm has been implemented and has shown
to be remarkably efficient. In graphics, a common application of polygon trian-
gulation is region filling, whereby a given area is to be painted. With modern
raster graphics devices, painting a vertical trapezoid can often be accomplished
just as fast as painting a triangle, so we may use the vertical decomposition
algorithm directly without resorting to the triangulation, which is bound to save
substantial CPU time.

On the theoretical side, we have established that the algorithm runs in O(n log
s) time, where n is the input size and s is the sinuosity of the polygon. The latter
quantity is in general extremely small, but even in most of the cases where it is
large, we believe that our algorithm, being highly adaptive, will behave linearly
or quasi-linearly. We have also exhibited a large class of polygons for which the
algorithm runs in time O(n log log n). Identifying exactly the class of polygons
for which the algorithm runs in linear time is a challenging, yet very worthwhile
endeavor; indeed, we conjecture that this class is considerably larger than the
subset exhibited in this paper. The theoretical implications of our results are, in
particular, evidence that, in general, triangulating is easier than sorting, although,
in the worst case, no such statement can yet be made. Deciding on this issue
once and for all is undoubtedly one of the most outstanding open questions of
computational geometry.

REFERENCES

1. CHAZELLE, B. A theorem on polygon-cutting with applications. In Proceedings of the 23rd IEEE

Annual Symposium on Foundations of Computer Science, (Chicago, Nov. 3-5 1982). IEEE, New
York, pp. 339-349.

2. GAREY, M. R., JOHNSON, D. S., PREPARATA, F. P. AND TARJAN, R.E. Triangulating a simple
polygon. Inf. Proc. Lett. 7, 4 (June 1978), 175-180.

3. GUIBAS, L., AND STOLFI, J. Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams. In Proceedings of the 15th ACM Annual Symposium on Theory

of Computing, (Boston, April 25-27 1983) ACM, New York, pp. 221-234.
4. HERTEL, S., AND MEHLHORN, K. Fast triangulation of simple polygon. In Proceedings of the

Conference on Foundations o[Computing Theory (Borgholm, Sweden, Aug. 21-27). Springer-
Verlag, New York, 1983, 207-218.

5. KNUTH, D.E. The Art of Computer Programming: Sorting and Searching. Vol. 3, Addison-
Wesley, Reading, Mass., 1973.

6. SHAMOS, M.I. Computational geometry. PhD dissertation, Dept. of Computer Science, Yale
University, New Haven, Conn., 1978.

7. SCHOONE, A. A., AND VAN LEEUWEN, J. Triangulating a star-shaped polygon. Tech. Rep. RUV-
CS-80-3, Univ. of Utrecht, April 1980.

8. TOUSSAINT, G.T. Pattern recognition and geometrical complexity. In Proceedings of the 5th

International Conference on Pattern Recognition (Dec. 1980), pp. 1324-1347.
9. TOUSSAINT, G. T., AND AVIS, D. On a convex hull algorithm for polygons and its application

to triangulation problems. Pattern Recog. 15, 1 (1982) 23-29.

Received November 1983; accepted August 1984

ACM Transactions on Graphics, Vol. 3, No. 2, April 1984.

