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ABSTRACT

Traditional railway foundations or substructures, consisting of one or two granular
layers overlying a subgrade or natural formation, have become increasingly overloaded
in recent years due to the utilisation of faster and heavier trains. During this period,
there has been little, if any, re-engineering of the substructure in Australia, resulting in
maintenance cycles becoming more frequent and increasingly expensive. Finding
economical and practical techniques for enhancing the stability and safety of the
substructure, thereby ensuring a capacity for supporting further increases in load, is vital

in securing the long-term viability of the railway industry.

The load bearing ballast is located directly below the sleepers and is responsible for
limiting the stresses projected onto the weaker subgrade and preventing train-induced
sleeper movement. Two significant ballast problems arising from increasing axle loads
are differential settlement and degradation. It is thought that substructure enhancement
can be attained and these problems largely curtailed through the manipulation of the

level of effective confining pressure supporting the ballast layer.

To investigate this possibility, a series of large-scale, high-frequency, drained, cyclic
triaxial tests were conducted to examine the deformation (permanent and resilient) and
degradation response of railway ballast. It was identified that the level of lateral
confining pressure should be considered as an important design parameter. Two of the
major benefits arising from increased confinement are reduced lateral movement
(spreading) and vertical settlement resulting in improved line and level, and superior

track stiffness and associated enhancements in ride comfort for passengers. The major

il



drawback in the event of excessive confinement is unacceptable levels of particle
breakage. The experimental results indicated, however, that insufficient confining
pressure is as damaging in terms of particle breakdown as excessive pressure, and that
minimal degradation will be achieved at some intermediate value. For maximum
deviator stress magnitudes of 230, 500 and 750 kPa, ‘optimum’ breakage conditions
were encountered within the confining pressure ranges 15 — 65, 25 — 95, and 50 — 140

kPa, respectively.

Practical methods of increasing the in-situ track confinement are suggested and
evaluated in terms of ease of installation, effectiveness and cost. It is concluded that the
more superior methods of achieving increased confining pressure are by reinforcing the
ballast using geosynthetics, or by increasing the effective overburden pressure through
increased shoulder and/or crib height or via the achievement of a higher initial ballast

density (greater compaction).
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