University of Wollongong

Research Online

University of Wollongong Thesis Collection 1954-2016

University of Wollongong Thesis Collections

2006

Triaxial behaviour of ballast and the role of confining pressure under cyclic loading

Joanne Lackenby University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Lackenby, Joanne, Triaxial behaviour of ballast and the role of confining pressure under cyclic loading, PhD thesis, School of Civil Mining and Environmental Engineering, University of Wollongong, 2006. http://ro.uow.edu.au/theses/516

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

TRIAXIAL BEHAVIOUR OF BALLAST AND THE ROLE OF CONFINING PRESSURE UNDER CYCLIC LOADING

A thesis submitted in fulfilment of the

requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

JOANNE LACKENBY

BE Engineering (Environmental)

FACULTY OF ENGINEERING

2006

CERTIFICATION

I, Joanne Lackenby, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Civil, Mining and Environmental Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

The following publications are related to the research work conducted in this study:

Indraratna, B., Lackenby, J., and Christie, D., (2005). "Effect of Confining Pressure on the Degradation of Ballast under Cyclic Loading." *Géotechnique*, 55 (4), pp. 325–328.

Lackenby, J., Indraratna, B., McDowell, G., and Christie, D., (2006). "Triaxial Behaviour of Ballast and the Role of Confining Pressure under Cyclic Loading." Submitted to *Géotechnique* for review in September 2005.

Lackenby, J., and Premaratne, P., (2005). "Method of Noise Removal for the Calculation of Resilient Strain and Resilient Modulus." Chapter in "Mechanics of Ballasted Rail Tracks – A Geotechnical Prospective" by B. Indraratna and W. Salim, Taylor and Francis Group/ Balkema, The Netherlands.

Indraratna, B., Khabbaz, H., Salim, W., Lackenby, J., and Christie, D., (2004). "Ballast Characteristics and the Effects of Geosynthetics on Rail Track Deformation." International Conference on Geosynthetics and Geoenvironmental Engineering, ICGGE, Bombay, India, pp. 3-12.

Lackenby, J., and Indraratna, B. (2004). "The Effect of Confining Pressure on the Behaviour of Railway Ballast under Cyclic Loading." *Proceedings of the 6th Australia New Zealand Young Geotechnical Professionals Conference*, July, Gold Coast, Australia, pp. 115-120.

Joanne Lackenby

5 June, 2006

ABSTRACT

Traditional railway foundations or substructures, consisting of one or two granular layers overlying a subgrade or natural formation, have become increasingly overloaded in recent years due to the utilisation of faster and heavier trains. During this period, there has been little, if any, re-engineering of the substructure in Australia, resulting in maintenance cycles becoming more frequent and increasingly expensive. Finding economical and practical techniques for enhancing the stability and safety of the substructure, thereby ensuring a capacity for supporting further increases in load, is vital in securing the long-term viability of the railway industry.

The load bearing ballast is located directly below the sleepers and is responsible for limiting the stresses projected onto the weaker subgrade and preventing train-induced sleeper movement. Two significant ballast problems arising from increasing axle loads are differential settlement and degradation. It is thought that substructure enhancement can be attained and these problems largely curtailed through the manipulation of the level of effective confining pressure supporting the ballast layer.

To investigate this possibility, a series of large-scale, high-frequency, drained, cyclic triaxial tests were conducted to examine the deformation (permanent and resilient) and degradation response of railway ballast. It was identified that the level of lateral confining pressure should be considered as an important design parameter. Two of the major benefits arising from increased confinement are reduced lateral movement (spreading) and vertical settlement resulting in improved line and level, and superior track stiffness and associated enhancements in ride comfort for passengers. The major

drawback in the event of excessive confinement is unacceptable levels of particle breakage. The experimental results indicated, however, that insufficient confining pressure is as damaging in terms of particle breakdown as excessive pressure, and that minimal degradation will be achieved at some intermediate value. For maximum deviator stress magnitudes of 230, 500 and 750 kPa, 'optimum' breakage conditions were encountered within the confining pressure ranges 15 - 65, 25 - 95, and 50 - 140 kPa, respectively.

Practical methods of increasing the in-situ track confinement are suggested and evaluated in terms of ease of installation, effectiveness and cost. It is concluded that the more superior methods of achieving increased confining pressure are by reinforcing the ballast using geosynthetics, or by increasing the effective overburden pressure through increased shoulder and/or crib height or via the achievement of a higher initial ballast density (greater compaction).

ACKNOWLEDGMENTS

First and foremost, a big thank you to my supervisor Prof. Buddhima Indraratna for all his support, academic guidance, and enthusiasm towards my postgraduate studies at the University of Wollongong.

Grateful appreciation is also expressed to my co-supervisors, Dr. Hadi Khabbaz and Dr. Mohamed Shahin, for their assistance and constructive comments. I also wish to thank David Christie from the RailCRC for his technical input, and Dr. Prashan Premaratne of the Faculty of Informatics, University of Wollongong, for his help with the signal processing.

Without sponsorship from the RailCRC this research project would not have been possible. The financial support of the RailCRC, and the technical support and direction offered by the Theme 2 Project 6 steering committee is greatly appreciated.

Thanks to the technical staff at the University of Wollongong, Alan, Bob, Ian, Ian and Kenny, for keeping me sane in the laboratory and for letting me use their radio.

Thanks to my parents Margaret and Philip for all the free food donated to me when I didn't have time to go shopping, and for all their encouragement and moral support. Gratitude is also expressed to my friends and fellow students at UOW for keeping the study atmosphere enjoyable and pleasant.

Last but not least, a big thank you to my best friend and soul mate Melissa-Ann Dunn for all her encouragement and patience, for providing timely distractions and adventures in times of stress, and for actually volunteering to read this thesis.

TABLE OF CONTENTS

CERTIFICATION	i
ABSTRACT	iii
ACKNOWLEDGMENTS	v
TABLE OF CONTENTS	vii
LIST OF FIGURES	xi
LIST OF TABLES	XV
LIST OF NOTATION	xvii

PTER 1 - INTRODUCTION	. 1
General Background	. 1
Statement of the Problem	.3
Objectives and Scope of Research	.4
Thesis Outline	.6
	PTER 1 - INTRODUCTION General Background Statement of the Problem Objectives and Scope of Research Thesis Outline

CHA	APTER	2 - LITERATURE REVIEW	8
2.1	Introduction		
2.2	Track	Components – The Superstructure and Substructure	8
	2.2.1	The Ballast Layer	10
	2.2.2	The Subballast (Capping) Layer	12
	2.2.3	The Subgrade Layer	14
2.3	Train	Loading and Track Forces	15
	2.3.1	Estimation of the Rail Seat Load	15
	2.3.2	Dynamic Impact Factors	. 16
	2.3.3	Effective Sleeper Contact Area	17
	2.3.4	Maximum Allowable Ballast Pressure	. 18
	2.3.5	Estimates of Lateral Confining Pressure	. 18
2.4	Track	Substructure Problems	20
	2.4.1	Ballast Degradation	21
	2.4.2	Differential Track Settlement	22
	2.4.3	Track Fouling	24
2.5	Effect	of Loading Characteristics on Permanent Deformation under Cyclic	
	Loadir	1g	25
	2.5.1	Deformation Mechanisms in Granular Materials	26
	2.5.2	Effect of Maximum Cyclic Load	27
	2.5.3	Effect of Minimum Cyclic Load	29
	2.5.4	Frequency	29
	2.5.5	Effect of Loading Path and Stress History	30
	2.5.6	Effect of Number of Cycles	30
2.6	Degrae	dation Behaviour of Single Rocks and Granular Materials under Static an	d
	Cyclic	Loading	32
	2.6.1	Degradation Mechanisms of Single Rock Particles	33
	2.6.2	Degradation Mechanisms of Granular Materials	35
	2.6.3	Deformation and Degradation Phases under Monotonic (Static) Loading	g 37

	2.6.4	Deformation and Degradation Phases under Constant Amplitude Cyclic	2
	Loadin	g	38
2.7	Factor	s Affecting the Degradation of Granular Materials	39
	2.7.1	Particle Shape, Size and Grading	40
	2.7.2	Loading Magnitude, Type and Number of Loading Cycles	42
	2.7.3	Confining Pressure	43
2.8	Latera	Pressures Induced in Granular Materials	47
	2.8.1	Horizontal Stress Accumulation During Compaction	48
	2.8.2	Horizontal Stress Accumulation During Traffic Loading	49
2.9	Effect	of Confining Pressure on Permanent Deformation Behaviour of Granula	ır
	Materi	als	52
	2.9.1	Static Loading Behaviour	52
	2.9.2	Cyclic Loading Behaviour	53
2.10	Resilie	nt Behaviour of Granular Materials	54
	2.10.1	Factors Affecting the Resilient Deformation of Granular Materials	56
	2.10.2	Aggregate Type and Geometry (Shape and Texture)	56
	2.10.3	Aggregate Grading and Size	57
	2.10.4	Placement Density	58
	2.10.5	Stress History and Stress Sequence	59
	2.10.6	Number of Loading Cycles	59
	2.10.7	State of Stress	61
	2.10.8	Resilient Modulus Relationships	62
	2.10.9	Effects of In-Situ Ballast Resilient Modulus	64

3.1 3.2 3.3 3.4 3.5 3.6 3.6.1 3.6.2 3.6.3 3.7

CHAPTER 4 - PERMANENT AND RESILIENT STRAIN BEHAVIOUR OF

BAI	LLAST	UNDER CYCLIC LOADING	
4.1	Introd	uction	
4.2	Specin	nen 'Failure' under Constant Amplitude Cyclic Loading	
4.3	Perma	nent Axial (Shear) Strain Response	
4.4	Perma	nent Volumetric Strain Response	
4.5	Comp	arison between Static (Monotonic) and Cyclic Behaviour of	Latite Basalt100
4.6	Effect	of Particle Size Distribution on Straining Behaviour	
4.7	Resili	ent Deformation Response (Resilient Modulus)	
	4.7.1	Resilient Strain Behaviour	
	4.7.2	Resilient Modulus	
	4.7.3	Accuracy of Existing Resilient Modulus Relationships	119

	4.7.4	Empirical Resilient Modulus Relationship	
4.8	Chapte	er Summary	

CHA	APTER	5 - BALLAST DEGRADATION UNDER CYCLIC LOADING	.129
5.1	Introd	uction	. 129
5.2	Review	w of Ballast Degradation under Static Loading	.130
5.3	Effect	of the Number of Loading Cycles on Ballast Degradation	.131
5.4	Effect	of Stress State (Confining Pressure and Deviator Stress Magnitude) on	
	Ballas	t Degradation under Cyclic Loading	.135
	5.4.1	The Dilatant Unstable Degradation Zone (DUDZ)	.138
	5.4.2	The Optimum Degradation Zone (ODZ)	.141
	5.4.3	The Compressive Stable Degradation Zone (CSDZ)	.142
	5.4.4	Effect of Deviator Stress Magnitude on Ballast Breakage	.143
	5.4.5	Summary of the Degradation Zones	.143
	5.4.6	Expected Breakage Behaviour at Elevated Confining Pressures	.144
5.5	Effect	of Aggregate Particle Size Distribution on Breakage	.146
5.6	Other	Characteristics of Ballast Breakage	.147
	5.6.1	Influence of Coordination Number on Ballast Breakage	.148
	5.6.2	Particle Sizes Most Vulnerable to Degradation	. 149
	5.6.3	Effect of Breakage on Resilient Modulus	.150
	5.6.4	Influence of Breakage Type on Track Behaviour	.151
5.7	Chapte	er Summary	.151

CHAPTER 6 - BEHAVIOUR OF BALLAST UNDER STEPWISE (VARIABLE

AM	PLITUDE) LOADING	
6.1	Introduction	
6.2	Method of Load Application	
6.3	Ballast Response to Stepwise Loading	
6.4	Effect of the Number of Cycles per Interval on Ballast Response	
6.5	Comparison between Static and Cyclic Loading Response	
6.6	Chapter Summary	

CHAPTER 7 - PRACTICAL METHODS AND IMPLICATIONS OF ALTERING THE IN SITU EFFECTIVE DALLAST CONFINING PRESSURE 161

THE	1N-SII	U EFFECTIVE BALLAST CONFINING PRESSURE	.161
7.1	Introdu	action	.161
7.2	Summ	ary of Experimental Findings	.162
7.3	Consec	quences of Altering the In-Situ Effective Confining Pressure	. 165
	7.3.1	Track Response Corresponding to a Decrease in Lateral Confinement .	.166
	7.3.2	Track Response Corresponding to an Increase in Lateral Confinement.	.166
7.4	Metho	ds of Increasing the Effective In-Situ Confining Pressure	.168
	7.4.1	Lateral Restraints	.168
	7.4.2	Geosynthetics	. 169
	7.4.2.1	Confinement Mechanisms Offered by Geosynthetics	.171
	7.4.2.2	Optimum Operational Environments	.172
	7.4.2.3	Benefits to the Track Substructure	.172
	7.4.2.4	Design Considerations	.174
	7.4.3	Sleeper Characteristics (Shape, Spacing, Friction)	.175

7.4.4	Effective Overburden Pressures	
7.4.5	Summary of Improvement Methods	
7.5 Chapt	er Summary	

CHA	APTER 8 - CONCLUSIONS AND RECOMMENDATIONS	
8.1	Introduction	
8.2	Permanent (Plastic) Deformation Behaviour	
8.3	Recoverable (Resilient) Deformation Behaviour	
8.4	Degradation Behaviour	
8.5	Stepwise Loading Behaviour	
8.6	Practical Implications	
8.7	Recommendations for Further Study	

REFERENCES	190
APPENDIX A - DYNAMIC IMPACT FACTORS	213
APPENDIX B - BREAKAGE QUANTIFICATION METHODS	216
APPENDIX C - PROPERTIES AND CHARACTERISTICS OF THE DYNAMIC	
ACTUATOR	222
APPENDIX D - METHOD OF NOISE REMOVAL FOR THE CALCULATION (ЭF
RESILIENT MODULUS	225
APPENDIX E - CURVE FITTING PROCEDURE TO FIND THE RELATIONSH	IP
BETWEEN RESILIENT MODULUS AND VOLUMETRIC STR	AIN
	234

LIST OF FIGURES

Figure 1.1 Australia's railway network (after Salim, 2004)2
Figure 2.1 Superstructure and substructure components of a railway line (a) lateral
view, and (b) longitudinal view (after Selig and Waters, 1994)
Figure 2.2 Ballast particle size distributions currently employed by railway
organisations
Figure 2.3 Typical in-track wheel load distribution (after Selig and Waters, 1994) 16
Figure 2.4 Lateral ballast spreading due to low ballast confinement (after Baessler and
Ruecker, 2003)
Figure 2.5 Inadequate lateral confinement can contribute to track buckling
Figure 2.6 Tracks suffering from inadequate drainage
Figure 2.7 Track suffering from ballast degradation
Figure 2.8 Track suffering from differential track settlement (after Suiker, 1997)23
Figure 2.9 Contribution of ballast to track settlement, and the influence of tamping
(after Brown and Selig, 1991)23
Figure 2.10 Sources of ballast fouling (after Selig and Waters, 1994)25
Figure 2.11 Effect of deviator stress magnitude on axial and volumetric strain (after
Olowokere, 1975)
Figure 2.12 Material responses under cyclic loading (after Collins and Boulbibane,
2000)
Figure 2.13 Failure modes of brittle rock cylinders under axial compression σ_1' as a
function of confining pressure $\sigma_{3'}$, (a) Low $\sigma_{3'}$, (b) intermediate $\sigma_{3'}$, (c) high
σ_3' , and (d) low σ_3' (after Sammis and Ashby, 1986)
Figure 2.14 Relationship between breakage (increase in surface area) and number of
cycles (after Miura and O'Hara, 1979)44
Figure 2.15 Effect of number of cycles on percentage of broken particles for potassium
sulphate (after Goder <i>et al.</i> , 2002)
Figure 2.16 Effect of confining pressure on the breakage of dense Cambria sand during
drained high pressure triaxial tests (after Lade <i>et al.</i> , 1996)45
Figure 2.1 / Effect of confining pressure on breakage of dolomite ballast during cyclic
Eigune 2.18 Effect of combined evaluation and williams, 1978)
Figure 2.18 Effect of applied cyclic stress ratio and contining pressure on breakage of silico cond (after Hyodo et al. 2002)
Figure 2.10 Poheviour of soil during plate shrinkage and confined compression tests. (a)
Phases of deformation and (b) Effect of axial pressure on induced lateral
stresses (after Earl 1907)
Figure 2 20 Effect of maximum vertical stress amplitude and number of cycles on
residual lateral stresses (after Sawicki and Swidzinski 1995) 50
Figure 2.21 Effect of horizontal to vertical stress ratio v on lateral pressure with lateral
distance from the loading plate (after Freeman and Harr 2004) 51
Figure 2.22 Effect of number of cycles on horizontal stresses in ballast (after Norman
and Selig. 1983)
Figure 2.23 Effect of confining pressure on the permanent strain behaviour of crushed
granite (after Brown, 1974)
Figure 2.24 Permanent and resilient deformation components of granular materials
under cyclic loading (after Selig and Alva-Hurtado, 1982)

Figure 2.25	5 Relationship between resilient modulus and mean grain size (after Janardhanam and Desai, 1983)	58
Figure 2.26	6 Effect of large-scale permanent deformation on the resilient response of granular materials (after Raad and Figueroa, 1980)	60
Figure 2.27	7 Evolution of resilient modulus with number of cycles (after Khedr, 1985)	60
Figure 2.28	8 Effect of deviator stress and number of cycles on the evolution of resilient modulus (after Brown and Selig, 1991)	t 61
Figure 2.29	9 Effect of deviator stress and confining pressure on resilient modulus, (a)	
	after Zeghal (2004), and (b) after Brown (1974)	62
Figure 2.30	D Effect of increased granular layer stiffness on deviator stress levels in the subgrade (after Brown and Selig, 1991)	65
Figure 2.31	1 Effect of bulk stress on resilient modulus of granite ballast, subballast and	l
-	subgrade (after Selig and Alva-Hurtado, 1982).	65
Figure 3.1	Large-scale triaxial apparatus, (a) Schematic, and (b) Photograph	67
Figure 3.2	Additional details of the testing apparatus, (a) The triaxial chamber and membrane, (b) The dynamic actuator, (c) The confining pressure system, a	nd
	(d) The volume change measurement device	70
Figure 3.3	Physical appearance of latite basalt	71
Figure 3.4 Γ^{-} 2.5	Specimen particle size distribution, and current industry distributions	72
Figure 3.5	Particle size distributions used to investigate the effect of grading	13
Figure 3.6	Cyclic stress state and loading path in the current tests	//
Figure 3./	Evaluation of the Ballast Breakage Index (BBI)	81
Figure 4.1	Axial strain ε_a as a function of the number of cycles N	89
Figure 4.2	Rate of axial strain ε_a accumulation $d\varepsilon_a/dN$, (a) natural scale, and (b)	
	logarithmic scale, for $q_{max,cyc} = 750$ kPa and selected confining pressures σ	3'
		90
Figure 4.3	Effect of deviator stress magnitude $q_{max,cyc}$ on axial strain ε_a for $\sigma_3' = 30$, 6 120 and 240 kPa	0, 91
Figure 4.4	Axial strain ε_a values at the end of 500000 cycles	92
Figure 4.5	Relationship between coefficient C and the number of cycles N	94
Figure 4.6	Relationship between coefficient D and the number of cycles N	94
Figure 4.7	Correlation between the measured (lines with symbols) and predicted (solil lines) axial strain ε_a values for selected specimens for maximum deviator	d
	stress $a = 230 \text{ kPa}$	06

	$Sucss q_{max,cvc} = 230 \text{ Kr} a$	J
Figure 4.8	Correlation between the measured (lines with symbols) and predicted (solid	
	lines) axial strain ε_a values for selected specimens for maximum deviator	
	stress $q_{max,cyc} = 500 \text{ kPa}$	6
Eiguro 40	Correlation between the managered (lines with symbols) and predicted (solid	

Figure 4.12	2 Effect of deviator stress magnitude $q_{max,cyc}$ on volumetric strain ε_v behaviour 101
Figure 4.13	3 Final volumetric strain ε_v values after 500000 cycles
Figure 4.14	Effect of confining pressure σ_3' on the static peak deviator stress at failure
	$q_{peak,sta}$ for latite basalt, and the volumetric strain ϵ_v at $q_{peak,sta}$ and $\epsilon_a = 20\%$
	(data from Indraratna et al., 1998 and Salim, 2004)102
Figure 4.15	5ψ values for the current cyclic triaxial tests
Figure 4.16	5 Final strain values after 500000 cycles and ψ and $q_{max,cyc}/p'$ contours as a
	function of $q_{max,cyc}$ for: (a) Axial strain ε_a , (b) Radial strain ε_r , and (c)
	Volumetric strain ε_v
Figure 4.17	dolomite ballast (after Raymond and Williams, 1978)
Figure 4.18	B Prediction of axial strain ε_a based on the ratio ψ 107
Figure 4.19	Axial ε_a versus volumetric ε_v strain behaviour for monotonic loading of latite basalt (data replotted from Indraratna <i>et al.</i> , 1998)107
Figure 4.20) Axial ε_a versus volumetric ε_v strain behaviour for cyclic loading of latite basalt
Figure 4.21	Effect of specimen particle size distribution on axial strain ε_a behaviour. 111
Figure 4.22	2 Effect of specimen particle size distribution on volumetric strain ε_v behaviour
Figure 4.23	Effect of confining pressure σ_3' and the number of cycles N on the resilient (recoverable) strain $\varepsilon_{a rec}$ for selected specimens
Figure 4.24	Effect of deviator stress magnitude $q_{max,cyc}$ (Δq_{cyc}) on the resilient strain $\varepsilon_{a,rec}$ 114
Figure 4.25	5 Final resilient strain $\varepsilon_{a,rec}$ after 500000 cycles as a function of the effective confining pressure σ_3'
Figure 4.26	5 Effect of confining pressure σ_3 ' and the number of cycles N on the resilient modulus M _R for selected specimens
Figure 4.27	7 Estimation of the coefficient g in Equation 4.10
Figure 4.28	B Estimation of the coefficient <i>h</i> in Equation 4.10
Figure 4.29) Effect of deviator stress magnitude $q_{max,cyc}$ (Δq_{cyc}) on the resilient modulus M_R as a function of the number of loading cycles N
Figure 4.30) Final resilient modulus M _R values after 500000 cycles as a function of the
	effective confining pressure σ_3'
Figure 4.31	Relationship between coefficient G and the number of cycles N
Figure 4.32	2 Relationship between coefficient H and the number of cycles N
Figure 5.1	Review of the method of calculation of the ballast breakage index BBI 132
Figure 5.2	Effect of the number of loading cycles N on (a) Axial strain ε_a (b)
	Volumetric strain ε_v (c) Radial strain ε_r (d) Ballast breakage index BBI, and (e) Resilient modulus M_R
Figure 5.3	Relationships between volumetric strain ε_v , BBI and N, (a) ε_v and BBI as a function of N and (b) BBI as a function of s. (after Indraratna <i>et al.</i> 2005)
	134
Figure 5.4	Effect of the number of loading cycles N on the change in surface area Λ SA
0	for a decomposed granite soil (data replotted from Miura and O'Hara, 1979)

Figure 5.5	Effect of confining pressure σ_{3}' and maximum deviator stress $q_{max,cyc}$ on the
	ballast breakage index BBI
Figure 5.6	Relationship between ψ (= $q_{max,cyc}/q_{peak,sta}$) and confining pressure σ_3' , and
	the location of the breakage zones DUDZ, ODZ and CSDZ142
Figure 5.7	Effect of maximum cyclic deviator stress q _{max,cyc} on the ballast breakage
	index BBI
Figure 5.8	Predicted breakage behaviour BBI at confining pressures beyond the range
	considered in the current study (conceptual only)146
Figure 5.9	Effect of aggregate particle size distribution (C _u , coefficient of uniformity)
	on breakage using (a) Area A, (b) B _r (Hardin, 1985), (c) B _g (Marsal, 1973),
	and (d) BBI (Indraratna et al., 2005)148
Figure 5.1	0 Examples of ballast breakage, (a) particle splitting in the CSDZ, and (b)
	corner degradation from the DUDZ149

Figure 7.1 Conceptual diagram illustrating the effect of increasing confining pressure
σ_{3}' on axial strain ε_{a} , volumetric strain ε_{v} , ballast breakage BBI, and resilient
modulus M _R 163
Figure 7.2 Conceptual diagram illustrating the effect of increasing deviator stress
magnitude $q_{max,cyc}$ on axial strain ε_a , volumetric strain ε_v , ballast breakage BBI, and resilient modulus M_R
Figure 7.3 Increasing the lateral confining pressure using intermittent lateral restraints
(after Indraratna <i>et al.</i> , 2004)
Figure 7.4 In-track installation of geosynthetics (after Selig and Waters, 1996)
Figure 7.5 Reduction in settlement due to various types of geosynthetics (after Salim,
2004)
Figure 7.6 Increasing the lateral confining pressure using (a) tapered, or (b) winged
sleepers (after Indraratna et al., 2005) (not to scale)
Figure 7.7 Example of roughening of the sleeper base for increased friction between
sleeper and ballast (after Profillidis, 1995)
Figure 7.8 Increasing lateral resistance by the incorporation of sleeper anchors (after
Profillidis, 1995)178
Figure 7.9 Effect of sleeper spacing on the degree of lateral track resistance (after
Profillidis, 1995)178
Figure 7.10 Lateral track resistance at the sleeper ends based on the geometrical
characteristics of the shoulder ballast (after Profillidis, 1995)
Figure 7.11 Effect of the number of cycles and crib compaction on the level of lateral
(transverse) resistance (after Profillidis, 1995)

LIST OF TABLES

Table 2.1 Ballast specifications in Australia, Canada and the USA
Table 2.2 Variables that affect sleeper-ballast contact pressures (FIP, 1987; Jeffs and
Tew, 1991; Standards Australia, 1997a)
Table 2.3 Empirical relationships used to calculate the maximum rail seat load (adapted
from Jeffs and Tew (1991) with additional data added)
Table 2.4 Phases of deformation and degradation under gradually increasing loads 37
Table 2.5 Phases of deformation and degradation under constant amplitude cyclic
loading (data from Ionescu et al., 1998)
Table 2.6 Factors affecting particle breakage in granular materials
Table 2.7 Factors affecting the resilient modulus of granular materials
Table 2.8 Non-linear models relating resilient modulus to stress state
Table 2.9 Typical ballast and subgrade resilient modulus values for railway lines (after
Li and Selig, 1998)65
Table 3.1 Physical and durability characteristics of latite basalt (after Indraratna <i>et al.</i> ,
1998 and Salim and Indraratna, 2002)
Table 3.2 Particle size distribution used in most tests, and industry practice upper and
Iower bounds (Standards Australia, 1996)
Table 3.3 Particle size distributions used to examine the effects of grading
1 able 3.4 Summary of triaxial tests
Table 4.1 Regression coefficients from Equation 4.1 for the effect of confining pressure
σ_2 on axial strain s
Table 4.2 Values of coefficients C and D and the coefficient of determination \mathbb{R}^2 with
evolving N 93
Table 4.3 Example of the stress levels required for preconditioning of granular unbound
pavement materials (after Standards Australia, 1995)
Table 4.4 Results of the curve fitting procedure for the relationship between volumetric
strain ε_v and resilient modulus M _R
Table 4.5 Models tested for suitability for use in predicting resilient modulus M_R
response during high speed drained cyclic loading of ballast
Table 4.6 Results of the evaluation of the Uzan (1985) model
Table 4.7 Results of the evaluation of the Brown et al. (1975) model
Table 4.8 Results of the evaluation of the Shackel (1973b) model
Table 4.9 Results of the evaluation of the Elliott and David (1989) model
Table 4.10 Example of calculated coefficients G and H for $q_{max cvc} = 500$ kPa at 2000
loading cycles
Table 4.11 G and H values for $q_{max cyc} = 230$ kPa
Table 4.12 G and H values for $q_{max,cyc} = 500 \text{ kPa}$
Table 4.13 G and H values for $q_{max,cyc} = 750$ kPa
Table 4.14 Relationships between deviator stress, coefficient G and N, and deviator
stress, coefficient H and N

Table 5.1 Upper confining pressure σ_3' bounds of the DUDZ and ODZ for each	
respective deviator stress magnitude q _{max,cyc}	139
Table 5.2 q _{max,cyc} /p' ratios for the DUDZ, ODZ and CSDZ degradation zones	139
Table 5.3 Expected types of degradation for the three breakage zones, the DUDZ,	ODZ
and CSDZ, for a typical ballast section	145
Table 5.4 Relationship between the degradation zones and other investigated parameters	meters
	146

Table 6.1 Various ψ and q/p'	ratios for the $\sigma_{3}' = 60$ kPa and $N_{int} = 5000$ specimen 159
Table 6.2 Various ψ and q/p^\prime	ratios for the σ_{3} ' = 120 kPa and N _{int} = 5000 specimen159
Table 6.3 Various ψ and q/p^\prime	ratios for the σ_{3} ' = 120 kPa and N_{int} = 10000 specimen 159

Table 7.1 Benefits and pitfalls associated with increasing or decreasing the effec	tive
lateral in-situ ballast confining pressure	165
Table 7.2 Relative comparison of the various potential methods of increasing the	lateral
confining pressure	181

LIST OF NOTATION

θ	bulk stress = $\sigma_1' + \sigma_2' + \sigma_3'$
ν	coefficient of lateral stress
φ	friction angle
ψ	ratio of cyclic deviator stress to peak static deviator stress
η	speed factor
δ	track condition descriptor
β	train loading state
α′	coefficient
β′	coefficient
γ'	coefficient
φ'	dynamic impact factor
$(\sigma_1{}'\!/\!\sigma_3{}')_p$	peak stress ratio
γο	coefficient
ε ₁	axial strain after first loading cycle
γ1	coefficient
σ_1'	major principal stress
σ_1' - σ_3'	deviator stress magnitude
σ_2'	intermediate effective stress
σ_3'	effective confining pressure
ε _a	axial strain
E _{a,rec}	recoverable portion of axial strain
σ_d	magnitude of deviator stress
γ_b	specimen unit weight
Ψfailure	ψ ratio at failure during a stepwise cyclic test
Ψ_{final}	ψ ratio at 20% axial strain during a stepwise cyclic test
$\epsilon_{\rm N}$	axial strain after a particular number of cycles
τ_{oct}	= $\sqrt{2}/3(\sigma_1' - \sigma_3')$ (axisymmetric conditions)
σ_{oct}	$= 1/3(\theta)$
Δq_{cyc}	difference between the maximum and minimum cyclic load
ε _r	radial strain

ΔS	change in total particle surface area
ε _s	shear strain
ϵ_{v}	volumetric strain
ΔW_k	difference between W_{ki} and W_{kf}
A	area between particle size distribution curves before and after loading
a	asperity diameter
А	material constant
a	regression coefficient
a'	settlement after one cycle
a_0	coefficient
В	material constant
b	regression coefficient
В	area between final particle size distribution and the arbitrary boundary of
	maximum breakage
<i>b</i> ′	sleeper breadth
b_0	coefficient
BBI	ballast breakage index
Bg	breakage index
b _p	breakage potential
B _p	total breakage potential
b_{pl}	values of b _p after loading
b_{po}	values of b _p before loading
B _r	relative breakage
B _t	total breakage
С	regression coefficient
c'	coefficient
CSDZ	compressive stable degradation zone
C _u	coefficient of uniformity
D	particle diameter
D	regression coefficient
$d\epsilon_a/dN$	rate of axial strain
d_1	diameter of largest particle retained on a particular sieve
d ₂	diameter of smallest particle retained on a particular sieve

d ₉₅	95% of the maximum sieve aperture d_{max}
DFT	discrete Fourier transform
$d_{\rm h}$	horizontal distance between rail centres
DIF	dynamic impact factor
d _m	mean particle diameter
d _{max}	maximum sieve aperture
\mathbf{d}_{\min}	minimum sieve aperture
ds	superelevation deficiency
DUDZ	dilatant unstable degradation zone
Ε	regression coefficient
e ₀	initial void ratio
Er	rail modulus
F	axial force
F	regression coefficient
g	distance between rail centres
G	gap grading
g	regression coefficient
G	regression coefficient
Gs	specific gravity
Н	regression coefficient
h	regression coefficient
h	vertical distance from rail top to vehicle centre of mass
Ir	rail moment of inertia
k	regression coefficient
K_0	coefficient of earth pressure at rest
\mathbf{k}_0	initial permeability
k_1	material constant
k ₂	material constant
k ₃	material constant
l	total sleeper length
L	effective sleeper length
Μ	moderate grading
т	regression coefficient
M _R	resilient modulus

n	ballast porosity
Ν	number of loading cycles
п	regression coefficient
n_1	regression coefficient
N _{int}	number of loading cycles per interval
ODZ	optimum degradation zone
Р	static wheel load
р	regression constant
p'	mean effective stress
PSD	particle size distribution
Q	wheel load
$q_{max,cyc}\!/p'$	stress ratio
$q/p'_{failure}$	stress ratio at failure during a stepwise cyclic test
q/p^{\prime}_{final}	stress ratio at 20% axial strain during a stepwise cyclic test
$q/p'_{peak,sta}$	peak stress ratio during a static test
q _{max,cyc}	maximum cyclic load
q _{min,cyc}	minimum cyclic load
q _{peak,sta}	static peak deviator stress
q _r	actual load transmitted to sleeper from static wheel
R	constant
R	ratio of cyclic deviator stress to static failure deviator stress
R^2	coefficient of determination
S	surface area
S	regression coefficient
SA	surface area
\mathbf{S}_{N}	settlement after a particular number of cycles
S_{w}	specific surface area
t	probability of maximum allowable rail deflection not being exceeded
t	regression coefficient
t'	sleeper thickness
u	material constant
U	uniform grading
u′	track modulus

v	material constant
V	train speed
V′	volume
VU	very uniform grading
W_{kf}	percentage by weight retained on each sieve after loading
W _{ki}	percentage by weight retained on each sieve before loading
X	empirical coefficient
Y	coefficient
y _r	rail deflection