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Summary. The box orbits that form the backbone of a triaxial elliptical galaxy
carry stars arbitrarily close to the centre. In this paper we investigate how these
orbits are affected if either (i) a massive black hole lurks at the centre, or (ii) the
stellar density becomes arbitrarily large near the centre.

Elementary considerations show that a point mass at the centre will eventually
disrupt the crucial box orbits by subjecting stars on these orbits to large-angle
deflections. Numerical experiments show that the time-scale for disruption of box
orbits by weaker encounters is comparable with the time for disruption by these
hard encounters, and that the disruptive effect of the central mass can be
modelled by a series of discrete scattering events.

We argue that over a Hubble time a central black hole with 2 per cent of the
core mass will disrupt most box orbits with apocentres interior to about 1kpc.
This may lead to an abrupt loss of triaxiality throughout the galaxy, but a simple
calculation suggests that the loss of triaxiality will be confined to the centre.

We calculate that a 108 M,, black hole at the centre of a typical giant elliptical is
currently disrupting stars at a rate =4x107% M, yr~! if the galaxy is triaxial, and
=2x10"7 Mo yr~ ! if it is axisymmetric.

We show that regular box orbits persist in systems with singular central
densities such as that implied by carrying the '/# law all the way to r=0. Indeed,
atlow energies, Schwarzschild’s model allows fewer box orbits than a model with
the same axis ratios in which the central density diverges at the centre as in the
standard r*/* model.

1 Introduction

In recent years it has been widely argued that elliptical galaxies are triaxial bodies (e.g. Binney
1982a and references therein). Observational evidence (Evans 1952; King 1978; Illingworth 1977,
Binney 1985) that many elliptical galaxies cannot be rotationally flattened oblate axisymmetric
bodies, has been strongly supported by n-body simulations (Aarseth & Binney 1978; Hohl &
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Zang 1979; Wilkinson & James 1981; Gerhard 1983) and orbit integrations in fixed gravitational
potentials (Schwarzschild 1979, 1982) which have demonstrated that self-consistent triaxial
stellar systems are dynamically possible. However, existing theoretical models cannot represent
real elliptical galaxies in one important respect; the models have homogeneous cores in which the
gravitational potential is an approximately quadratic function of the coordinates, while giant
ellipticals often have central cusps of brightness (Schweizer 1979; Lauer 1985), and may
additionally contain massive black holes in their nuclei (Lynden-Bell 1969; Sargent et al. 1978;
Rees 1984). Simple arguments suggest that such feature may be incompatible with existing
theories of triaxial stellar systems (Norman & Silk 1983).

In Section 2 we summarize our understanding of the dynamics of triaxial elliptical systems and
indicate why the failure of existing triaxial galaxy models to include a central density cusp or
compact object may have important dynamical consequences. In Sections 3 and 4 we examine the
consequences of placing a massive black hole at the centre of a triaxial galaxy. This problem has
recently been treated by Norman, May & van Albada (1985), and some features of our discussion
parallel theirs. However, we concentrate on analysis of orbits in given potentials, rather than
discussing n-body models, since Norman, May & van Albada show that unwanted discreteness
effects drive spurious relaxation in current n-body models. In Section 3 we study the breakdown
of the all-important box orbits under the influence of a central massive body, through a series of
surfaces of section, and construct a simple scattering model of our results that enables us to
predict the time required to disrupt most box orbits of any given scale. In Section 4 we discuss the
effect this disruption will have on the shape of an initially triaxial system, and estimate the rate at
which a black hole at the centre of a triaxial galaxy can tidally shred stars.

In Section 5 we compare orbits in models having homogeneous cores with orbits in models in
which the density diverges at small radii, and conclude that triaxial systems can have singular
central densities of the type predicted by carrying de Vaucouleurs’ 7/ law right into the centre,
but that a central cusp so pronounced that the circular speed diverges as the centre is approached
eliminates the box orbits.

2 Stellar orbits and triaxiality

If elliptical galaxies are triaxial, the smoothness of their brightness profiles out to several effective
radii strongly suggests that the major rotation-related resonances, for example the inner Lindblad
and corotation resonances, lie well outside the main bodies of these galaxies. Hence the figures of
elliptical galaxies can rotate slowly, if at all, and the main features of triaxial elliptical galaxies are
probably accurately represented by models whose figures do not rotate.

Schwarzschild (1979) constructed a self-consistent triaxial model in a non-rotating potential.
Most orbits in his system are of three types: box orbits, long-axis tubes and short-axis tubes. All
these orbits respect three effective isolating integrals. We call such orbits regular. Orbits
respecting fewer than three effective isolating integrals we call irregular. The most heavily
populated orbits in Schwarzschild’s model are the elongated box orbits. Indeed it is these orbits
which provide the backbone of the system in the sense that it is these orbits which keep the overall
density high along the longest and intermediate axes by comparison with the shortest axis. By
contrast, the fat box orbits and orbits of the two tube families always enhance the density more
parallel to one of the shorter two axes than they do parallel to the longer two axes. Thus it seems
likely that a triaxial galaxy can be constructed around a non-rotating triaxial potential only if the
potential admits a range of elongated box orbits that can be selectively populated to form the
backbone of the galaxy.

Stars on box orbits repeatedly pass close to the centre, and eventually reach arbitrarily small
radii. At points near the centre of the potential, the elongated box orbits of the galaxy’s backbone
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differ from fat box orbits of the same energy by the directions of their velocity vectors. A feature
in the galaxy’s potential that can scatter stars will shift them from one box orbit to another and
thus tend to populate all box orbits equally. The consequent depopulation of the elongated box
orbits must then dissolve the galaxy’s backbone. Candidate features include the potentials of
black holes and central density cusps.

3 Effect of central compact object on box orbits

It is likely that black holes or other compact objects which once powered radio galaxies and
quasars, lurk at the centres of many giant elliptical galaxies. A variety of arguments suggest that
these objects have masses of the order of 10® M, (Begelman, Blandford & Rees 1984). By
comparison the formal ‘core mass’ (Kormendy 1982) of a typical giant elliptical is of order
5%10° M,. Hence in this section we ask how orbits in a triaxial elliptical galaxy are affected by the
introduction at the centre of a compact object containing of order 2 per cent of the total mass of
the galaxy core.

3.1 ANALYTIC ESTIMATES

For simplicity we assume that the underlying galaxy potential ® has a harmonic core, and we
neglect the gravitational attraction of the cusp of stars that is expected to accumulate around the
central compact object; from the work of Young (1978, 1980) one may verify that for parameters
of interest, the mass of such a cusp is much smaller than the mass of the central object. With these
approximations, the gravitational force generated by the core material rises linearly with radius 7;

vZ
Fo=—r (r<r) (1)

re

where v is the circular speed at the edge r=r_ of the core. The gravitational force Fy, generated by

the central compact object of mass m varies as r™2.

Gm

r

Hence the attraction of the compact object dominates the force field interior to*

rh=l41/ 3rc 3
where
_ Gm _m . @
rve M.
Here
M= 12 5)
G

is the core mass. We are interested in the response of orbits to the introduction of central masses
such that u=0.02.

* Note that r, as defined here is larger than the quantity Ry, defined by Frank & Rees (1976) and by Norman, May &
van Albada (1985) by a factor of order (r./m)>.
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Astar on a box orbitin a non-rotating potential eventually passes arbitrarily close to the centre
of the galaxy. Hence at some time it will enter the region r<r, in which the central object
dominates the force-field. Inside r=ry, the orbit is effectively Keplerian. Let vy, be the star’s speed
at r,. Then v is made up of a contribution from the basic galaxy potential ®, and a contribution
from the potential of m. Since at r>r,, ® provides the greater force,

vp=\[2{Pc(a) ~ Pg(rn)}] (6)

where ais the maximum distance to which a star of the given energy can go down the galaxy’s long
axis. There are two cases to consider:

(i) a=ry: In this case (1/2) vi<Gm/r, and the Kepler orbit is bound. Essentially all orbits in
this regime are loop orbits rather than the nearly simple-harmonic box orbits that in the absence
of the central object dominate motion in the core of the galaxy.

(ii) @>r,: Now (1/2) v§>Gm/ry, and the orbit is hyperbolic. Inside r, it may be approximated
by a pure Keplerian orbit with asymptotic speed vy,. The star’s deflection along the orbit is large if
the orbit is near parabolic, that is, if the effective impact parameter b of the encounter is less than
the value

Gm v \?
bl——- __2‘=,Lt — ) re (7)
Uh Un

associated with deflection through 90°. On each crossing of the galaxy core, the star has to pass
through the narrow waist of its box orbit. Let the area of this waist be A, and assume that the orbit
passes through each part of A with equal probability. (Numerical integrations presented below
approximately verify the analogous assumption for planar orbits.) We then expect the star to be
scattered through a large angle after A/mb7 passages through the centre. As Fig. 1 indicates, this
scattering may be thought of as moving the star to a new box orbit, from which a second scattering
will move it to a third box orbit, and so on. These scattering events will tend to undermine the
triaxiality of the galaxy by distributing stars uniformly amongst the box orbits. Note also that
repeated shifts from one quasi-periodic motion to another are characteristic of irregular orbits.
Hence we expect even a small central mass to destroy the regularity of all box orbits.

The following simple example will illustrate these ideas. Let @ be the logarithmic potential

1 2472
P, = 7U{In(x2+ Y 7 +r<2:) , (8)

where v} is the characteristic speed of large loop orbits. Since at x=r, we have vi=120v},
equations (6) and (7) yield

5 e
T 2n{(@+r)/ (241}

9)

When 4=0.02, a=0.9r., we obtain b;=0.96ur., and when #=0.02, a=7r. we find b;=0.13ur..

A typical giant elliptical galaxy might have a central velocity dispersion o, =240kms~!. For an
isothermal core, this corresponds to v.~300kms™!, and using Kormendy’s (1982) correlation
of core properties, r.=240pc, and M.~5X10° M,. The time between passages through the
nucleus is the dynamical time

2a ¢
Taggn=—=1.6X10°—yr. (10)

c rC
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L

Figure 1. Two planar box orbits of the same energy (corresponding to a=7r,) in the logarithmic potential (8). The

effect of scattering by a central object is to move the star from one such orbit to another.

Typical box orbits have waists that are about 2r; on a side. Hence the time 7,
encounters with the central object is

(2re)?

r.a
z,s——rdy,,zz.omoﬁ(—) yr. (11)
b? b?

between hard

Thus 7,(a=0.9r.)=2.0x 106/u2yr and 7/(a=7r.)=8.3x10%/u? yr. Notice that since byocu, Tyocp ™2
and there is a critical mass pq;5(a) that is capable of destroying by hard encounters most box orbits
of scale a by the present epoch. Numerically p4;(0.97.)=0.014 and Mais(7r.)=0.29.

Thus although hard encounters with a central object are in principle capable of scattering stars
from an box orbit, stars on orbits that extend well out of the core of the galaxy are unlikely to have
suffered a large-angle deflection by the present epoch unless the central mass is rather larger
(m=10° M) than one might have anticipated from studies of quasars and radio galaxies.

3.2 NUMERICAL INTEGRATIONS

3.2.1 Surfaces of section

The arguments just presented provide upper limits to the time during which box orbits may
appear regular in the presence of a central compact object, but they cannot demonstrate that
box orbits remain regular in the face of repeated weak encounters with a central black hole.

Therefore we now present the results of numerical integrations of box orbits in the logarithmic
potential (8) with g=0.9.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny |z uo 1senb Aq Z088E0L/L9t/2/91.Z/2101E/SEIUW/ WO dNO D|WSpEoE//:SA)Y WOl POPEOjUMOQ


http://adsabs.harvard.edu/abs/1985MNRAS.216..467G

FT9BSWNRAS, Z16- ~467C!

472 O. E. Gerhardand J. Binney

Some care is called for when integrating these orbits since stars on such orbits are subject to
large accelerations when they pass close to the central object. We have employed a fourth-order
Runge-Kutta algorithm with time-step length At determined as described in the Appendix. As
discussed in the Appendix, we have tested the reliability of this algorithm by integrating highly
eccentric orbits in a Kepler potential and comparing the numerical and analytic solutions.

Schwarzschild (1979) and de Zeeuw (1985a) have shown that general box orbits may be
thought of as developments of those box orbits which are confined to the plane of the system
containing the longest and intermediate axes of the potential. [Following Schwarzschild (1979)
we refer to this as the plane z=0.] If these planar box orbits are irregular, more general box orbits
are unlikely to be regular. Hence in this paper we concentrate on the structure of orbits in the
plane z=0.

P S
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(a)
Figure 2. (x, k) surfaces of section for motion in the potential of a central Plummer model, mass m=u M., scale-length
€ added to the potential @ defined by equation (8). All three surfaces of section are at energy corresponding to
a=0.97.. The parameters of the central body are: (a) 4 =0; (b) u=0.02, £ =0.07r; (c) 4 =0.02, £==0.05r.. For clarity,
in this and all subsequent surfaces of section, the ordinate is not x but In (1+ Y4x).
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Triaxial galaxies with massive black holes 473
We take the central object to be a Plummer model with potential
-Gm
T o

where ¢ is a free parameter set to zero for a point mass.

Orbits inside the core. Fig. 2a shows the (x, ¥) surface of section at the energy corresponding to
a=0.9r, when u=0. Short-axis tube orbits generate the two bull’s eyes while box orbits generate
curves that encircle both bull’s eyes. Most of the surface of section is occupied by box orbits. Fig.
2b shows the same surface of section when 4 =0.02 and £ =0.07r,. One sees that the central object
has transformed many box orbits into loops. (Quantitatively, loop orbits occupy 7 per cent of the
total phase-space volume at this energy for u=0, and 42 per cent for £ =0.02; see Section 5 for
more details of phase-space volumes.) Little or no irregularity is evident. However, if we harden
the Plummer model to ¢=0.05r, irregularity starts to develop (Fig. 2c). When £<0.037, the

¢h=

\
)
[}

(b)

Figure 2 — continued
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entire box region forms a single stochastic sea and an individual stochastic orbit fills the available
area in the surface of section rather quickly. By equation (9) when a=0.9r. and £=0.02, the
maximum impact parameter that leads to large-angle scattering by a point mass is b;=0.019r..
Since this is of the order of the softening radius € at which most of the box orbits become irregular,
this irregularity must be attributed to encounters with impact parameters equal to a few times b;.

For a=0.6r, the situation is very similar. However, just outside the radius of influence of the
central point mass (r,=0.27r for u=0.02), at a=0.3r,, most orbits are either loops or belong to
the resonant 2:1 family of ‘banana’ orbits (e.g. Binney 1982c).

Orbits outside the core. Fig. 3a and b show for a=7r, results equivalent to those shown in Figs 2a
and b for =0.9r,. Since much of the surface of section is now occupied by loop orbits even when
u=0, the introduction of a softened central object now alters the structure of the surface of
section much less markedly than when a=0.9r.. However, Fig. 4a shows that a point (¢ =0) mass
with u =0.02 seriously disturbs the box orbits. Several families of resonant orbits persist, but most
of the area in the surface of section is again occupied by stochastic orbits.
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Figure 2 — continued
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3.2.2 Interpretation in terms of scattering

We next investigate the relative importance of strong and weak encounters and the distribution of
impact parameters with respect to the central mass. Figs 4b and ¢ show the surfaces of section
generated by two irregular orbits in the same potential as for Fig. 4a (#=0.02, £=0). These
surfaces of section contain about 50 points per orbit. The symbols marking the points change after
the three closest passages past the centre. The respective impact parameters are 11b;, 5b; and
2.5b;1in Fig. 4b, and 7b;, 0.8b; and 115, in Fig. 4c. At the energy of these orbits, a hard encounter
with the central object requires impact parameter b<<b;=2.6X107°r.. Figs 4b and ¢ demonstrate
the following:

(i) The computed orbits appear to be made up of a series of nearly regular segments, joined by
discrete scattering events. The regular segments include segments of thin and fat box orbits, as
well as highly eccentric loop orbits of either sense of rotation.

(ii) Fig. 4b shows an example of a hard (b=2.5b;) encounter which dramatically changes the
nature of the orbit, whereas Fig. 4c shows another (b=0.8b;) which does not. The reason for this
is presumably that at any spatial point a discrete set (usually four) of velocity vectors generate the
same regular orbit. Clearly, if a star is scattered from one of these velocities to another, its orbit is
unchanged.

(iii) Weak encounters can be important. The fact that a small scattering, for example that at
11b,in Fig. 4c, can cause a star to move between very different orbits, shows the complexity of the
perturbed phase space.

Fig. 5 shows the distribution of impact parameters for a number of stochastic orbits at three
different energies for a central mass 4 =0.02. Here the impact parameter is determined as the star
enters ry, the radius of influence of the central object, or is taken as the minimum central distance
when this is larger than r,. Fig. 5a is based on approximately 150 core crossings per orbit, and
confirms that the number of impacts with parameters less than b, N(<b), rises approximately
linearly with b as expected for a planar orbit. Slight variations exist between orbits of different
energies, and even stochastic orbits at the same energy may differ from each other. In Fig. 5b one
orbit has been integrated for a much longer time in order to resolve smaller impact parameters.
At the energy of this orbit, a=0.67,, b;/bynax=2.14r/bax=0.21. The fact that N(<b)x<b for
these planar orbits down to less than b; strongly suggests that correspondingly N(<b) o« b? for
three-dimensional box orbits. We shall lean heavily on this result in Sections 3.3 and 4.

As an additional check on our numerical integrations, and as a preliminary to the
determination of the disruption time-scale for box orbits in the next subsection, we now show how
one may understand the absolute values of N(<b) in Fig. 5.

Estimating N(<b) from the elapsed time and an argument like that on which equation (11) is
based, assumes that the width of the waist of a box orbit is independent of energy. In the separable
Stickel potentials, box orbits are bounded by coordinate surfaces of a global coordinate system
(de Zeeuw 1985a). Thin and thick boxes are bounded by different coordinate surfaces and so
have different waists, but orbits enclosed by the same surfaces have central widths that are
independent of energy. As a consequence of this, there is a maximum central width for box orbits
of all energies, which turns out to be of order of the potential’s core radius. In a non-separable
potential like the potential (8) studied here, we no longer have a global coordinate system
bounding the box orbits and the last two results no longer apply. In Fig. 6 we plot the width
of the central waist r,, of box orbits in the logarithmic potential (8). ry is largest for the fattest box
orbits; we take its maximum value r,,, to be a factor sin 90°/sin 60°=1.15 larger than the value
obtained for a box orbit of the same energy, but having corners on rays inclined at 60° to the long
axis of the potential. (The exact value of r,y, is difficult to determine because orbits with corners
near the potential’s short axis are often irregular.)
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(a)
Figure 3. (a) (x, ¥) surface of section as in Fig. 2a, but with a=7r.. (b) as in (a), but with z=0.02 and £=0.01r..

We have seen that box orbits in the presence of a central mass may be considered to be
sequences of segments of unperturbed box orbits. Each segment is characterized by a different
value of r,,. The star moves from one orbital segment to another after encountering the hole with
impact parameter b<3b,. Hence on a given orbital segment we assume the probability of
large-angle scattering to be

3b,

Tw

(13)

per dynamical time. Repeated scattering will eventually establish a uniform distribution of stars
within each element d*xd?v of phase space that is accessible to box orbits of given energy E. If we
replace (x, v) by the angle-action coordinates of these orbits, it is trivial to integrate over all
orbital phases, and to conclude that after repeated scattering, the number of stars with energy E
and different values of the angular action J,, is proportional to dJ, /w, (Binney, Gerhard & Hut
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(b)

Figure 3 - continued

1985), where w,(E, J,) is the radial frequency, and we follow de Zeeuw (1985a) in calling the
relevant angular action J,. Hence we have that over a long period, the time spent by a given star
on each orbital segment is

dl,(ry
dt(ry) o< Mocrwdrw. . (14)

a)r
Here we have evaluated J, and y, in terms of r,, in the approximation that the motion is
near-harmonic. Integrating the encounter rate with respect to ¢, we obtain for r,,,>3b;

3b; Fwm
redr,+ f 3b,dr,,
T Jo 3b, 6b; T
N(<3b)=— . = (15)
Tdyn f er dr Twm Tdyn
0
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FT9BSWNRAS Z16:

Figure 4. (a) (x, %) surface of section as in Fig. 2, but for =7r_ and a point mass (£ =0.02, £=0). Loop orbits-and
resonant orbits (dots) are separated by stochastic regions, in which points generated by distinct orbits are marked by
different symbols. (b) The history of a single irregular orbit as in (a) but for 4 =0.02. The star is initially on a
double-loop orbit (+). An encounter at 115, does not alter the orbit’s nature (V), but it becomes a fat box orbit after a
5b; encounter with the centre (X). It converts to a thin box after a 2.5b, encounter (). (c) History of a second
stochastic orbit as in (b). Initially a box (+), it shifts to a different box (V) after a 7b; encounter, changes very little
after a 0.8b; encounter (), and finally moves to a double-loop orbit after an 11b; encounter (§).

where T is the total time interval considered. For the orbits with a= (0.6r, 0.9r, 7r.) plotted in
Fig. 5, we find N(<3b;)=(100, 52, 2.2). This is in excellent agreement with the empirical values
(116, 52, 3). In fact, for the lowest energy orbits, the agreement must be considered partly
fortuitous, since such orbits are dominated by the hole much of the time.

3.2.3 Summary of the numerical results

(i) When a point mass with about 2 per cent of the galaxy’s core mass is placed at the centre of
the galaxy, box orbits at low and intermediate energies become highly stochastic. Inside the core
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Figure 4 — continued

radius, some box orbits are transformed into loops, but most become stochastic. Only a small
fraction of the box orbits reaching out to several galaxy core radii avoid disruption by being
trapped in orbital resonances.

(if) Irregular orbits at energies corresponding to several core radii can be described as
sequences of segments of regular box orbits.
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Figure 5. Distribution of impact parameters for orbits of several energies in the logarithmic potential (8) and a point
mass 1 =0.02. Results are shown for two orbits at each energy.
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Figure 6. The width of the central waist of box orbits and the effect of rotation. @y is the potential defined by equation
(8), while ®s is the de Zeeuw & Merritt (1983) approximation to Schwarzschild’s (1979) potential. The filled circles
show, for orbits in a rotating potential of the form (8), the quantity y, defined in the text.
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(iii) Encounters with the central object closer than about 3b; give rise to transitions between
orbital segments.

(iv) In the planar case, all impact parameters up to the width r,, of the waist of a given segment
are equally probable.

3.3 TIME-SCALE FOR DISRUPTION OF 3-DIMENSIONAL BOX ORBITS

In the last subsection, we analysed planar box orbits in the combined potential of a central black
hole and the logarithmic model (8), and concluded that these orbits can be understood in terms of
simple scattering by the hole. We found that although weak encounters contribute to the
evolution of a typical orbit, the dominant contribution to any orbit’s evolution seems to come
from encounters at b<<3b,. Since a general three-dimensional box orbit may be thought of as a
development of a planar orbit like those discussed in the last subsection, it is likely that
three-dimensional box orbits in the presence of a hole can likewise be understood as box orbits
that are repeatedly scattered by the hole. Moreover, although in three dimensions weak
encounters are relatively more numerous than in two, and one might be concerned that the
cumulative effect of weak encounters might exceed that of encounters at b<<3b,, it seems likely
that in three dimensions close encounters still dominate because (i) the half-width of the waist of
any orbital segment imposes a clear upper limit on the impact parameters that need be
considered, and (ii) our experiments with softened central objects suggest that distant encounters
are ineffective generators of irregularity. Therefore we now use our picture of orbital evolution
‘powered by encounters at b<3b, to estimate the time-scale for disruption by a central hole of the
three-dimensional box orbits of a triaxial galaxy.

For definiteness we use Schwarszchild’s (1979) potential. The density distribution that
generates this potential is constant on similar concentric ellipsotds with axis ratios 1:0.625:0.5.
The density on each ellipsoid depends on the ellipsoid’s semi-major axis length in the same way as
the density of the modified Hubble model,

Q(r)=90{1+ (—r—)z}_3/2 (16a)

depends on radius r. Hence the monopole component of Schwarzschild’s potential is
approximately

®(r)=— 905(-3) In [L + {1+ (—r—)z}lﬂ], (16b)

where we have used King’s (1962) approximate formula
903

4 Gr?

Oo= (16¢)

to eliminate g in favour of the central velocity dispersion oy. The core mass (equation 5) of this

model is

reag

Mc=1.57 = —=. ‘ (16d)

Thus the impact parameter b, for large-angle deflection may be written (see equation 7)
GuM, re
_ HM ~07 U ’
2{®g(a)— g ()} fla)

(17)

b,
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where
T2
In{a+(1+a*)}
f(a)zs.4[1— tat1tar) ] (18)
a

is chosen such that f(1)=1. Here a is the dimensionless orbital amplitude a=a/r., and equations
(17) apply only for a>ry, ry<r.. Finally, the dynamical time in this model is

a 12 2 r a? 12
GM(a)] =—_[ln{a+\[(1+a2)}—a/v’(1+a2)

For small orbital amplitudes a, Tqyn(a)=2r./({309) as expected for an isothermal core, and for
large a, tayn(a)=(2r./ 300)\/(a3/1n @) increases faster than in an isothermal sphere {zayn(a)<a}
because of the more rapidly falling density profile.

The plane x =0 cuts the waist of a three-dimensional box orbit in an approximately rectangular
region. So if, by analogy with the planar case, at any passage through x=0 all impact parameters
in the rectangle (|y | <yw, | z| < zy) are equally likely, and we have no prior information about the
orbital phase, the expectation value of the time to first scattering on a given orbit is

(19)

rdyn(a) =2 [

30'0

4ywZy
T1(Yw» Zw; @)= Wfdyn(a)- (20)
)

We obtain the mean time to first encounters for all stars on box orbits of a given energy by
averaging 7; over y,, and z,,. Let the galaxy have distribution function f(E, J,, Jv) depending on
energy and the two angular actions J, and J,. Then

f frudl,dl,

Tas(@)=———. (21)
f fdJj, dJ,

By analogy with the three-dimensional harmonic oscillator, we assume J, « y%v, J,xz2 and

integrate over the rectangular region of the (J,, J,) plane (yw<rwm, Zw<rwm). In the absence of
any knowledge of the distribution function we take f to be the step function,

=fo (Yw<Y2rym, zw<Y2rym),

22

/ =0 otherwise. 22)

Then

Tais(a)= & (T 2‘[ (a) (23)
dis 817 b[ dyn\“).

We assume ry,,=1.15r,(60°) as above, where r,(60°) is the width of the waist of the planar orbit
started by releasing a star in de Zeeuw & Merritt’s (1983) approximation to Schwarzschild’s
potential® from the intersection of the zero-velocity curve and a line inclined at 60° to the x-axis.
Fig. 6 shows r,(60°) and r,,(30°) as functions of orbital scale a. One sees that the restriction of f to
(Yw» zw)<Varym corresponds to allowing only orbits with opening angles smaller than 30°. An
approximate fit to ry, is

a \375)-1/5
rwm(a)=0.76a{1+( ) } . (24)

1.87,

*The value of ¢4 given by de Zeeuw & Merritt (1983) is in error. The correct value is c,=0.48068.
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Figure 7. The dimensionless function g(a).

While the increase of ryp, for a>r. is purely empirical, arising from the non-separable nature of
Schwarzschild’s potential, the dependence ryy,*a for a<r, is a consequence of the shrinking
zero-velocity curve inside r, being essentially filled by the Cartesian box orbit.

Equation (23), with equations (17), (19) and (24), now yields

6.4 107( £ )_2( . )( % )—1 (@) (25a)
Tgis==6.4X a)yr a
¢ 0.02) \240pc)\240kms 1) &Y

where g(a) is the dimensionless function plotted in Fig. 7. g(a) rises rapidly inside the core a<1,
to g(1)=1, and has asymptotic behaviour g(a)>xa? for large a. Again there is a critical mass
Hais(a) capable of destroying most box orbits with apocentres at a’<a in 10'%yr: for example, for
the typical core parameters given above, pq;s(7.)=1.6X107>. However, the steep rise of g(a) at
large a protects the high-energy box orbits; for u=0.02, t4=10"yr for a=3.5r,, and even for
©=0.1 only orbits out to 127, are affected by scattering. High-energy box orbits can therefore
only know of a central massive body indirectly, through the collective changes in the core. A
useful alternative form of equation (25a) gives the scale ay; out to which scattering by a black hole
of mass m has been effective up to the present epoch;

s00(—— | (L) (2" 5 25b)
Agis== ¢ dis=ITe)-
d (IOSMG)(24Opc) (240kms‘1) P (@ : (

3.4 FIGURE ROTATION OF THE POTENTIAL

As was discussed in Section 2, the figures of elliptical galaxies can rotate slowly if at all. However
the spheroids of disc galaxies may be tumbling triaxial systems, so it is of interest to enquire how
our conclusions are affected by rotation of the figure of the potential.

We assume that the potential rotates about its smallest principal axis. The closed long-axial
orbits that are the parents of the all-important box [or ‘x; orbits’ in the notation of Contopoulos &
Papayannopoulos (1980)] are then prograde orbits which no longer pass through the exact centre
of the galaxy. The distance yq, at which these orbits pass the centre as they cross the intermediate
axis of the potential, increases with orbital energy and with the angular speed w at which the
potential rotates; y, becomes comparable to the orbit’s scale a as a approaches the corotation
radius dcoror.
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Clearly, if a substantial fraction of the box orbits of scale a never come within b, of the centre, a
self-consistent bar of that scale may persist indefinitely. This condition will be approximately
satisfied if yp=rym, Where ryp(a) is the maximum central width of a box orbit in the absence of
figure rotation or black hole. y,is plotted in Fig. 6 for the logarithmic potential (8) and an angular
speed w that places a0 at 507.. It is clear that while figure rotation is capable of preserving box
orbits with scales a>10r., i.e. orbits that reach out to at least a quarter of the corotation radius, it
cannot prevent the dissolution of box orbits in the core of the galaxy.

4 Effect of orbit disruption on the galaxy and the hole

Two important questions are raised by the possibility that black holes sometimes form at the
centres of triaxial spheroidal components:

(1) How does triaxiality of the spheroid affect the rate at which the hole is fed with material that
it can accrete?
(i1) Is the spheroid’s triaxiality ultimately destroyed by the growth of the hole?

These questions were discussed by Norman & Silk (1983) and by Lake & Norman (1983), but the
results of the last section enable us to give a more satisfactory treatment of these questions here.

4.1 DESTRUCTION OF TRIAXIALITY

In Sections 2 and 3 we have argued that in the absence of significant figure rotation, a stellar
system can be triaxial only if at most energies, the phase-space density of stars is highest in the
portion of phase space occupied by the box orbits. Moreover, since it is only the more elongated
box orbits which support the bar, a self-consistent system can be triaxial only if in it these orbits
are considerably more heavily populated than the fatter boxes.

By scattering stars on box orbits, a central massive object will tend to establish -a uniform
distribution of stars amongst all box orbits. As the fatter box orbits are populated at the expense
of the elongated box orbits, the galaxy’s potential becomes rounder. This has the effect of making
all box orbits, at given actions, fatter, and of converting some of the fattest box orbits into tube
orbits, which always oppose the galaxy’s bar. Furthermore, as the galactic potential evolves some
orbits are first trapped into and then released from families of resonant box- and tube orbits
(Binney & Spergel 1984), with the overall effect of further homogenizing the stellar distribution
over orbits. Hence scattering of stars on box orbits must eventually lead to the breakdown of
triaxiality.

What is less certain is whether the destruction of triaxiality occurs abruptly in the manner of a
phase change, or proceeds at a steady and unspectacular rate. The possibility of a steady change
arises because 74;5(@) is a rapidly increasing function of a. Hence, in a fixed potential, the smaller
box orbits are disrupted much before the larger ones and axisymmetry may spread gradually from
the centre as the dissolution of box orbits of each scale a approaches completion. Alternatively,
the onset of axisymmetry may occur abruptly because, in a self-consistent system, the early
disruption of the small box orbits so undermines the triaxiality of the potential that the larger box
orbits immediately convert to tube orbits, and the galaxy becomes axisymmetric forthwith.

Clearly, orbit integrations in a given potential such as we present here, do not suffice for a
definitive determination of whether the onset of axisymmetry is gradual or abrupt. At some stage
n-body models may be able to settle this question, but recent work by Norman, May & van
Albada (1985) indicates that individual orbits in #n-body models are currently not integrated with
sufficient accuracy for one to have confidence in results obtained with triaxial n-body systems
containing massive central objects. However, the following simple calculation strongly suggests
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Figure 8. The ratio F,/F; of the tangential to the radial force on a star as a function of distance 2 down a line inclined at
45° to the long axis of prolate hubble-type body with axis ratios a:b:c equal to (A) 1:0.6:0.6 and (B) as specified by
equation (26).

that triaxiality will be lost gradually, from the centre outwards, rather than suddenly in the
manner of a phase change.

Fig. 8 shows the ratio F,/F; of the tangential to the radial forces on stars in two prolate galaxies
when the stars lie along lines inclined at 45° to the major axes of the systems. Since it is the
tangential force F; which every few dynamical times reverses the angular momentum of stars on
box orbits, the ratio F,/F, at radius a is likely to be a good indicator of the fraction of orbits with
apocentres near a which are box orbits. Hence the destruction of triaxiality in the core is likely to
undermine the triaxiality further out only if the adoption of a spherical shape by the core
significantly diminishes the tangential force F, further out. One of the systems of Fig. 8, system A,
has at all radii axis ratios 1:0.6:0.6 similar to those (1:0.625:0.5) of Schwarzschild’s model. One
sees that for this system F,/F; rises from 11 per cent at 10 core radii to 30 per cent in the core, in
line with the increase in the box orbit fraction (see Fig. 10). The second system for which F,/F; is
plotted in Fig. 8, system B, has axis ratios 1:q(a):q(a), where

q(a)=1—0.2{tanh(a/;C;5)+1}. (26)

Hence, in system B, g(a)=1for a<3.5r,, and ¢(a)=0.6 fora>6.5r.. Now F,/F, rises from 6.3 per
centat 10r., to 6.5 per cent at 5.5r, and then falls roughly linearly with a to less than 0.4 per cent in
the core.™ Thus allowing the core to become spherical, as in system B, has little effect on the
triaxiality of the potential further out. This suggests that at time ¢=14(a), a triaxial galaxy will
approach axisymmetry at radii r<<a, and be markedly triaxial at r>a.

If triaxiality really is lost gradually, triaxial galaxies with central massive objects should tend to
appear rounder near their centres than further out. The work of Di Tullio (1979), Lauer (1985)
and others suggests that many giant ellipticals have such ellipticity profiles. However, it should be
borne in mind that at certain projection angles, the reverse effect will be observed, so this
prediction is intrinsically of a statistical nature.

*Itis perhaps worth noting that F,(10r.) in system B equals 0.971x F,(10r.) in system A; at 10r., F,/F, is significantly
smaller in system B only because this system has more matter at small radii.
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4.2 FEEDING THE MONSTER

A star of mass m* and radius r* will be tidally disrupted if it comes within radius

1/3 5 m_\13
r=2(m/m,)" r,=2.1x10" pc (27)
t ( * * 108 M@
of a nucleus of mass m. We assume that the central mass accretes all the material of shredded
stars, and hence grows at a rate equal to the rate at which stars come within r, of the galaxy centre.
Clearly many stars are on orbits that do not carry them within 7, of the centre. This is most easily
understood in the case of an axisymmetric galaxy, when only stars with angular momenta

Gm

2 12
L<LtErtv=rt[ +2{E—<I)0(rt)}] =(2Gmr)!/? (28)

Ty
come closer than r,. In the case of a triaxial galaxy, a similar condition applies; only the box orbits
and the most eccentric long- and short-axis tube orbits pass close to the nucleus, and the condition
(28) is replaced by similar conditions on the angular actions J, and J, that take the place of angular
momentum for orbits in a non-rotating triaxial potential. However, we are not simply interested
in how many stars are in principle subject to shredding by a central hole: we need to know the rate
at which the hole shreds stars. Here there is a sharp distinction to be drawn between the
axisymmetric and the triaxial cases.

In the axisymmetric case only a very small proportion of the phase space at most energies is
associated with orbits that expose stars to shredding, and these orbits carry stars past the hole
once per orbital time. Consequently these orbits are soon depopulated, and the hole
subsequently feeds only as fast as collisional processes scatter stars on to the depopulated orbits
(Frank & Rees 1976; Lightman & Shapiro 1977). In the triaxial case, by contrast, a large
proportion of the phase space at all energies is associated with orbits that expose stars to
shredding, and these orbits may well carry the bulk of the mass of the entire galaxy (Schwarzschild
1979). However, stars on these orbits pass within r, of the hole much more rarely that once per
dynamical time. Hence the hole may be expected to feed on the bulk of the galactic mass, but only
over many galactic dynamical times.

For a star of given energy, or equivalently of the ratio a=a/r, there is evidently a minimum
impact parameter b, at which the star can enter the region of radius r, within which the hole
dominates the net gravitational force-field, and yet escape shredding by the hole. If

vp=[2{DPg(a) — dc(rs) }1"*

is the speed of the star at ry,, energy and angular momentum conservation for this critical
trajectory yield for 2Gm/r>vi>2Gm/n,

(2Gmr)'/? 400 kms™! m \*3
b=—"—=0.011 » )( ) pc>r,. (29)
Uy Un 108 M@

We saw in Section 3 that the hole tends to disrupt box orbits after a time t4; of the order of that
required for the star to encounter the hole with impact parameter smaller than three times the
value b, given by equation (7). Clearly, if b;> b,, the majority of box orbits will be disrupted by the
hole before the stars on them have been shredded. Eliminating Gm/vj between equations (7) and
(29), we have

b, 2r

— = 30
Yy (30)
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Hence b,<b;, and only a small fraction=(b,/b;)* of stars on vulnerable orbits are captured before
their orbits are disrupted.
If the hole accretes all the matter of shredded stars, its mass # grows at a rate

dm fEdiS( b, )2 dM dE
3bl dE tdis(E)’

dt 0 D

where Eg(f) is the energy of box orbits for which 745=¢, and M(E) is the mass in stars with
energies E'<E. Binney & Petrou (1985) show that M(E) is largely determined by the radial
density profile of the galaxy. Hence an accurate estimate of M(E) for Schwarzschild’s model may
be obtained by using Eddington’s (1916) formula for the distribution function f(E) that

Table 1. Dynamical quantities for a system with density @ =[1+r?{1+(r/100)?}]"*2. For r<70 this system has the
same radial profile as Schwarzschild’s model. The fourth column gives E=|®(r)|, the fifth the value of the
self-consistent distribution function, and the third the total mass on orbits with binding energies E' >E. The sixth and
seventh columns give estimates for Schwarzschild’s model of the time-scales (19) and (23) when this model is scaled to
r.=240pc, 09=240kms ™. The last column gives the accretion rate from equation (31) for a 108 M, black hole at the
centre of Schwarzschild’s model scaled thus. The values of 74;s given in column 7 are slightly more accurate than those
given by equation (25a).

logr  M(r) M(E) E A(E) Tayn/Y1 Tais/ YT M/(Mayr")

-1.0 4.15E-03 1.62E—-06 1.23E+01 3.70E-02 1.14E+06 1.14E+06

-0.9 8.24E-03 3.42E-06 1.23E+01 3.71E-02 1.14E+06 1.14E+06

-0.8 1.63E-02 1.86E—-05 1.23E+01 3.69E-02 1.14E+06 1.14E+06

-0.7 3.21E-02 9.66E—05 1.22E+01 3.61E-02 1.15E+06 1.15E+06

~-0.6  6.28E-02 4.31E-04 1.22E+01 3.49E-02 1.16E+06 1.16E+06

-0.5 1.22E-01 1.72E-03 1.21E+01 3.32E-02 1.18E+06 1.18E+06 1.10E-04

-04 231E-01 6.33E-03 1.20E+01 3.05E~-02 1.21E+06 1.21E+06 1.09E—04

-0.3  4.30E-01 2.14E-02 1.19E+01 2.69E—-02 1.25E+06 1.25E+06 1.04E-04

-0.2  7.74E-01 6.61E-02 1.16E+01 2.25E~02 1.32E+06 3.11E+06 8.65E-05

-0.1  1.34E+00 1.82E-01 1.13E+01 1.76E-02 - 1.42E+06 1.34E+07 6.65E~05
0.0 2.19E+00 4.45E-01 1.08E+01 1.28E-02 1.57E4+06  5.13E+07  4.83E-05
0.1  3.39E+00 9.55E-01 1.03E+01 8.59E-03 1.78E+06 1.77E+08 3.35E-05
0.2 4.97E+00 1.81E+00 9.60E+00  5.43E-03 2.07E+06 5.43E+08 2.26E-05
0.3  6.88E+00 3.05E+00 8.84E+00 3.27E-03 2.49E+06 1.47E+09 1.49E~-05
0.4  9.08E+00 4.68E+00 8.03E+00 1.91E-03 3.06E+06 3.48E+09 9.78E—06
0.5 1.15E+01 6.64E+00 7.19E+00 1.10E-03 3.84E-06  7.49E+09 6.33E-06
0.6 1.41E+01 8.87E+00 6.36E+00  6.31E-04 4.90E+06 1.50E+10 4.06E—-06
0.7 1.67E+01 1.13E+01 5.57E+00  3.65E—04 6.36E+06  2.85E+10 2.59E-06
0.8 1.95E+01 1.39E+01 4.82E+00 2.13E-04 831E+06  5.19E+10 1.65E—06
0.9 2.23E+01 1.65E+01 4.14E+00 1.26E-04 1.10E+07 9.19E+10 1.04E-06
1.0 251E+01 1.92E+01 3.53E+00  7.53E-05 1.46E+07 1.59E+11 6.57E-07
1.1 2.79E+01 2.20E+01 2.99E+00  4.57E-05 1.96E+07  2.71E+11 4.13E-07
1.2 3.07E+01 2.48E+01 2.51E+00  2.80E~05 2.64E+07  4.53E+11 2.59E-07
1.3 3.34E+01 2.76E+01 2.09E+00 1.74E-05 3.57E+07  7.48E+11 1.61E-07
1.4  3.61E+01 3.04E+01 1.73E+00 1.09E-05 4.85E+07 1.22E+12 9.93E-08
1.5 3.87E+01 3.32E+01 1.43E+00 6.85E-06  6.62E+07 1.98E+12 6.02E—-08
1.6 4.11E+01 3.59E+01 1.17E+00  4.33E-06  9.07E+07  3.20E+12 3.56E-08
1.7 433E+01 3.86E+01 9.51E-01 2.73E-06 1.25E+08 5.14E+12 2.04E-08
1.8 4.52E+01 4.11E+01 7.69E~01 1.70E-06 1.73E+08 8.23E+12 1.12E-08
1.9 4.68E+01 4.34E+01 6.19E-01 1.02E-06 2.40E+08 1.32E+13 5.75E-09
2.0 4.80E+01 4.54E+01 4.96E-01 5.82E-07 3.34E+08  2.10E+13 2.75E-09
2.1  4.88E+01 4.70E+01 3.96E-01 3.08E-07  4.68E+08 3.36E+13 1.21E-09
22 4.94E+01 4.81E+01 3.16E-01 1.50E-07 6.57E+08  5.37E+13 4.93E-10
23 497E+01 4.89E+01 2.51E-01 6.74E—-08 9.26E+08  8.58E+13 1.87E-10
2.4 4.99E+01 4.93E+01 2.00E-01 2.83E-08 1.31E+09 1.37E+14 6.72E—-11
2.5 S5.01E+01 4.96E+01 1.59E-01 1.13E-08 1.84E+09 2.18E+14 2.31E-11
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self-consistently generates a suitably truncated form of the density profile (16a), and then
multiplying this by the volume of phase space associated with energies in the range (E+dE, E)
(e.g. Binney 1982b). In Table 1 we give this estimate of M (E) for Schwarzschild’s model, together
with the mass M(r) interior to radius r. Notice that at large binding energy E, M(E) < (Epn.x—E)?,
where E,,, is the absolute value (4x) of the central gravitational potential, and that at small
binding energies, M(E)— M{r(E)}, where r(E) is the radius at which the absolute value of the
potential is E. Table 1 also gives the distribution function f(E) that self-consistently generates a
truncated form of (16a), and estimates of the dynamical and dissolution times 74y, and 7g; in
Schwarzschild’s model when the latter is scaled to r.=240 pc and 0,=240 kms ™! and contains a
central object of mass m=0.02M.=10% M,. From the table, Tais=10'"yr for a=3.5r..

In Fig. 9 we plot from equation (31) for five values of u, the accretion rate m(E) in
Schwarzschild’s model scaled in the standard way. The results of Fig. 9 can be scaled to other
values of r. and o, by shifting the curves by log;(r./0) to the right, and by log,o(03"/3r:%/3/240°%)
upwards. Notice that although the initial accretion rate scales as u*>, the current rate is a
declining function of u when ¢ >0.02, because large central objects have already either eaten or
scared away all their most accessible prey. The maximum current accretion rate,
m=5%10"% M, yr~!, occurs for u=0.02.

Itisinteresting to compare this accretion rate with the value expected in the case of a spherical
galaxy (Frank & Rees 1976; Lightman & Shapiro 1977; Frank 1978). The rate at which a black
hole at the centre of a spherical system accretes stars is given by the rate at which two-body
encounters scatter stars into the so-called ‘loss cone’ of low-angular momentum orbits. This
process is characterized by the angle

10In N 0o -1 . \-12
<A/[—|=2.1x107* rad, (32)
N 240kms™!/ \240pc

where N is the effective number of stars in the core, through which two-body encounters typically
deflect the velocity vectors of core stars in one dynamical time. This angle in turn defines the
radius

P L T 33
et " AG (108M®) (240pc) pe (33)
-40
=
O]
= 50
E
on
3
0.001
-s.o_\\
70 8.0 9.0 10.0
log (t/yr)

Figure 9. The accretion rate riz predicted by equation (31) for a black hole with mass u M, placed at the centre of a
standard triaxial galaxy.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny |z uo 1senb Aq Z088E0L/L9t/2/91.Z/2101E/SEIUW/ WO dNO D|WSpEoE//:SA)Y WOl POPEOjUMOQ


http://adsabs.harvard.edu/abs/1985MNRAS.216..467G

FT9BSWNRAS, Z16- ~467C!

Triaxial galaxies with massive black holes 489

beyond which zero-angular momentum orbits begin to be heavily populated. For r;, comparable
with 7., a reasonable estimate of the hole’s accretion rate is

Mc(rcrit/rc)3
Ir In (2/00)

L m O\ 7 re \-52 .
=1.9%10 S - Moyr™, (34)
10°M,/ \240kms 240 pc

where 6.=b,/r.; is the loss-cone angle at r.; and tg is the standard Spitzer & Harm (1958)
relaxation time. Thus at the present epoch the accretion rate of a 108 M, black hole at the centre
of a triaxial galaxy is at least an order of magnitude larger than that of an identical hole in a similar
spherical galaxy.

nmy

5 Central density cusps

In the last few years much controversy has been excited by the question of whether stellar
densities tend to flatten off close to the centres of giant elliptical galaxies, or whether the density
is continuing to rise at the smallest radii (r=200 pc) accessible to ground-based observations.
Recent work by Lauer (1985) and Kormendy (1985, in preparation) has tended to confirm the
view articulated earlier by Schweizer (1979) that the stellar density in many giant elliptical
galaxies is still rising at small radii. In the light of the conclusion of the last section, that a massive
central object will in the long run destroy triaxiality, it is clearly important to determine whether
triaxiality is compatible with central density cusps of the type observed. Hence in this section we
investigate the orbital structures of systems with density distributions of the form

0p(r)=00a™” (35a)

where
2+z2\12

a(r)s(x2+y . ) (35b)
9o

and

D a<10r,
= . 35¢
P {4 a=10r, (359

These density distributions form prolate bodies with axis ratio g,<1. The axisymmetry of these
systems is entirely a matter of convenience in solving for the required potentials; in the plane z=0
in which we compute orbits, the potentials of these axisymmetric bodies do not differ greatly from
those of the triaxial bodies that we actually wish to study.

At a=10r, the density distribution (35) falls off in the manner roughly characteristic of an r*/*
model at radii exceeding the effective radius (Young 1976; Jaffe 1983). At a<10r. the density (35)
declines as the p™ power of radius; an 7'/* model is approximated by setting p=0.75 (Young
1976).

In the spherical case g, =1, the mass contained within radius r is

47
M(r)= : 0o

PP (r<10r,). (36)

Hence three ranges of p should be distinguished:

(C1) p<1: The radial force Focr!~? tends to zero at small r, as in a model with a homogeneous
core.
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(C2) 1<p<2: F diverges at small r, but the circular speed v.r>"? does not.
(C3) 2<p: Both F and v, diverge at small r as in the case of Keplerian motion about a point
mass.

For any value of p we obtain the corresponding gravitational potential as a sum of terms
involving Legendre polynomials P,(cos 8), where 8 is the angle between the radius vector r and
the long axis of the potential. In our orbit calculations, we have included polynomials up to and
including Pg.

We wish to compare the orbital structure supported by the potential associated with the density
distributions (35) for p in each of the three ranges (C1) to (C3) above with the orbital structures
associated with density distributions which remain finite as r— 0. In particular we study:

(H1) Motion in the approximation of de Zeeuw & Merritt (1983) to Schwarzschild’s (1979)
potential.

(H2) Motion in the logarithmic potential (8) ®g,.

(H3) Motionin a Stackel potential (Landau & Lifshitz 1975; de Zeeuw 1985a, b; Gerhard 1985)

Aln(A+r2)—uIn(u+r?)

Dgy.= = (37)

where A and u are confocal ellipsoidal coordinates (A=).
(H4) Motion in the Stickel potential

fA)-f(w)

Dgg=—""— (38a)
with
A+p) +/11/2(/1+2ﬂ)1/2} ) (
+arcsin

f@)=ﬁ“2v/2[ln{

A—p
p )— Vzn]
B +8

B \12 A \1/2
~2A {1 - (—;) } arctan {(?) }, (38b)

B+ |2 (u+2B)"? _(u+B
(ﬁ1/2+|,u|1/2)2 } rcsm(

This corresponds to a prolate system with density along the minor axis o =o{8/(z*+8)}*/?, and
was calculated via Kuzmin’s theorem (de Zeeuw 1985b), with 27 Goof=1.

For the potentials generated by the density distributions (35) we have set the axis ratio
do=0.625 for comparison with Schwarzschild’s potential. In the logarithmic potential (8) the
choice ¢=0.83 corresponds to a density distribution with g,=0.625 for r>5r,, slowly rising to
do=0.75 near r=0. The Stackel potential (37) has a radial density profile p<r~2, and the
interfocal length (5 of the coordinate system has been adjusted to give an axis ratio g,=0.625
within the core; outside the core the isodensity surfaces rapidly become round {g,(3r.)=0.75;
qo(107;)=0.98}. Finally, the potential (38) corresponds to gocr ™3, with ¢,=0.78 in the core,
4o (3r:)=0.84, and g, (10r.)=0.91.

flwy=|Bu|"” 2[ln{ )—’/m] —2u. (38¢)

5.1 LOOP-ORBIT FRACTION

For each of the potentials (C1)—(H4) we study the structure of orbits confined to the plane z=0.
Many such orbits are loop orbits; i.e. orbits on which stars have a definite sense of circulation
about the centre and avoid a neighbourhood of the origin. These orbits all generate density
distributions aligned perpendicular to the bar. Hence a self-consistent system will be exceedingly
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Figure 10. The loop orbit fraction y defined by equation (39) as a function of apocentric radius a in the potentials of
(a) four models with homogeneous cores, and (b) three two-power-law density distributions defined by equations
(35). When a curve has upper and lower branches, the upper branch includes resonant loop orbits and associated
stochastic orbits.

hard to construct if most of phase space is occupied by the loop orbits: if dz, is the volume of phase
space available to all orbits with energies in some small range, and d,is the volume of phase space
occupied by the loop orbits with energies in the same range, then a self-consistent bar is probably
feasible only if the quantity
dTl
Y(E)=—— (39)
dr,

is significantly less than unity over a wide range of energies E.
The total phase-space volume dr, may be obtained from the integral

d
i 2 J. dx dy (40)
dE
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(a)
Figure 11. (x, x) surface of section for motion at the energy corresponding to apocentre distance a=15r in (a) the
Stéckel potential (37), and (b) Schwarzschild’s potential.

where the integration is over all values of the coordinates for which v?=2(E—®)>0. The
corresponding volume dt; occupied by the loop orbits is harder to evaluate. If we denote the
radial action of a loop orbit by J; and its angular frequency by w,,, we have (Binney et al. 1985)

d‘l’[ Jr(max) 4] r
— =2(27)* J — (41)
dE 0 Wy

where J(max) is the radial action of the most eccentric loop orbit and the first factor 2 accounts
for the two possible senses of circulation of loop orbits. We have obtained the actions J; and
frequencies w, of loop orbits in the potentials studied by the spectral technique of Binney &
Spergel (1984). Analytic expressions are available (e.g. Gerhard 1985) for the actions and
frequencies of orbits in the Stickel potentials (37) and (38). We find that the values of J, and w,
obtained by spectral analysis of orbits in the potential (37) agree to within 2 per cent with the
analytic values.
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(b)

Figure 11 - continued

Fig. 10 shows plots for each of the potentials studied here of the loop orbit fraction y versus the
furthest distance a that the orbit’s energy allows it to go down the long axis of the potential. The
plotted values of y are accurate to =3 per cent except for the inner parts of the p=2.25 curve in
Fig. 10b, which may be rather more than 5 per cent in error. In some potentials, the curve y(a) is
split through a range of a; in these cases the upper branch shows the result of including the
phase-space volume of a band of resonant and semi-stochastic loop orbits, while the lower branch
shows the loop fraction less these orbits.

Fig. 10a shows y for the four models with homogeneous cores. In each case the loop-orbit
fraction is zero for very small @ because in an harmonic potential all orbits are box orbits. y
increases rapidly as a increases through a=2r, and the star begins to perceive a more nearly
central potential. In the logarithmic potential (8), y—55 per cent at large a, while in
Schwarzschild’s potential, y=60 per cent and is still rising at 100r... In the Stéckel potentials (37)
and (38), y=1 at 100, essentially independently of the slope of the density profile, or of the
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(2)

Figure 12. (x, x) surface of section in the potential of the two-power approximation (35) to an r/* model for
apocentric distance (a) a=18r., and (b) a=1.8r..

central axis ratio of the underlying density distribution; only the detailed shape of the curve y(a)
between y(r.)=0 and y(100r.)=1 depends on the form of the potential.

Fig. 10b shows the corresponding results for potentials generated by the density distributions
(35) for three values of p. The choice p=0.75 which yields the best two-power-law approximation
to an r'/4 model, gives a loop fraction y which is very small (=4 per cent) for a<107,, and rises to
y=45 per cent at large a. Thus a large portion of phase space is available to box orbits in this
potential. When we set p=1.25, which corresponds to a singular central force but a non-divergent
central circular speed, we still find that less than half of phase space is occupied by loop orbits at
low energies, although y(a<10r.)=26 per cent is more than 5 times larger than the corresponding
number for the case p=0.75. When p =2.25 a large proportion of phase space is occupied by loop
orbits at all energies.
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(b)

Figure 12 - continued

5.2 NON-LOOP ORBITS

Since loop orbits in a non-rotating potential all have density distributions that tend to oppose the
bar, these orbits cannot be heavily populated in any self-consistent stellar bar. Hence we next
examine the non-loop orbits.

In the Stickel potentials (37) and (38), all the non-loop orbits are regular box orbits (Fig. 11a).
In Schwarzschild’s potential and the logarithmic potential (8) most, but not all, non-loop orbits
are boxes: In addition to the standard box orbits these potentials support a few small families of
resonant box orbits and some stochastic orbits. The resonant families generate the chains of
islands visible in Fig. 11b, which is a surface of section of motion in Schwarzschild’s potential.

Fig. 12a is a surface of section for motion at a comparable energy in the r'/*like potential
obtained from (35) when p=0.75. The general appearance of this diagram is very similar to that of
Fig. 11b except for the chain of islands surrounding the loops, and a large stochastic layer. At the
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Figure 13. (x, x) surface of section for motion with @ =18r. in the potential of the model obtained by setting p =1.25 in
equation (35). This system generates a singular central force.

energy of Fig. 12a, near that associated with the power-law break in (35) at r=10r., the
irregularity of the orbits is maximal. Surfaces of section at lower energies look much more regular
(Fig. 12b); notice that in the range 2<a/r.<10, box orbits are significantly more prominent in the
r'/4like potential than in Schwarzschild’s potential. These box orbits have waists of non-zero
width.

From Fig. 12 we conclude that the planar orbit structure of potentials generated by bodies with
r'/%.like central density cusps is characterized by the same box- and loop-orbit families that are
supported by Schwarzschild’s potential. In particular, thin box orbits with waists of finite width
exist at all energies, so there seems every reason to believe that self-consistent triaxial models can
be constructed that have the radial density profile of the r'/4 model.

Fig. 13 shows a surface of section equivalent to Fig. 12a for the case p=1.25, in which the
central force diverges as the centre is approached. Loop and box orbits may again be dis-
tinguished. However, the largest families of resonant box orbits occupy more of the surface of
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section associated with the more centrally concentrated potential with p=1.25 than in the case
p=0.75. The stochastic layer between the loops and the boxes is even somewhat thinner when
p=1.25. Increasing p to 2.25 substantially eliminates the box orbits; most orbits now appear to
belong to resonant families whose members avoid the origin.

It is natural to enquire whether even in the absence of a black hole, the harmonic core of a
potential with such a core can generate stochasticity by acting as a scattering centre for orbits of
sufficiently high energy. We know analytically that in Stackel potentials such as (37) and (38), all
orbits are strictly regular. Fig. 14 shows surfaces of section for motion at high energies in the
logarithmic potential (8) and in Schwarzschild’s potential. Fig. 14a shows that orbits in the
logarithmic potential remain regular at high energies, while high-energy non-loop orbits in
Schwarzschild’s potential tend to be irregular (Fig. 14b). From Fig. 14a one sees that the
explanation for this very different behaviour is that at high energies many non-loop orbits in the
logarithmic potential tend to be trapped by 4:3, 3:2 and 1:2 resonances. Such orbits avoid the
very centre of the potential, and thus avoid being scattered. In Schwarzschild’s potential these
resonances compete less successfully with numerous other resonances, or interact more strongly
between themselves (Chirikov 1979). Irregularity may then be thought of as arising either
because orbits are scattered by the core, or as a consequence of competition between different
resonances.

6 Conclusions

In time, the box orbits that form the backbone of a triaxial elliptical galaxy carry stars arbitrarily
close to the centre. Analytic (de Zeeuw 1985a) and numerical (Aarseth & Binney 1978;
Schwarzschild 1979) models of triaxial ellipticals assume that these systems have homogeneous
cores in which the gravitational potential is approximately quadratic in the coordinates, and it has
often been suggested (e.g. de Zeeuw & Merritt 1983) that box orbits are a natural consequence of
this form of potential. In this paper we have investigated the consequences for box orbits and
triaxiality of placing a compact object or a density cusp at the galactic centre, thus eliminating the
region in which the potential is a quadratic function of the coordinates.

Analytic estimates and numerical orbit integrations have been used to study the effect of a
central massive body with =2 per cent of the mass of the core on the orbital structure of the
underlying galaxy. We find that such a massive central object turns over to the loop orbits much of
phase space at energies such that stars are confined to the core. If the central object is soft, box
orbits persist outside the radius within which the object dominates the gravitational field, but as
the object is hardened, resonances and associated stochastic layers begin to break up the region of
phase space formerly occupied by regular boxes. For a softening radius smaller than about twice
the impact parameter for large-angle deflection by the central body, this region forms a single
stochastic sea.

While any point mass at the galactic centre makes all non-resonant box orbits strictly speaking
irregular, these orbits often closely resemble regular box orbits for many dynamical times. In
particular, in the presence of a point mass, a single stellar trajectory can be represented by a
sequence of segments of regular box orbits, joined by relatively close encounters of the star with
the central body. We find that the probability that a stellar trajectory shifts from one regular box
segment to another on a given passage by the centre is approximately equal to the probability that
the star encounters the nucleus at an impact parameter smaller than three times the impact
parameter for a 90° deflection. Thus the total cross-section for such scattering encounters is much
larger than the cross-section for hard encounters.

The rate at which a star experiences scattering encounters with a central object is a rapidly
decreasing function of increasing apocentric radius a. There are three contributions to this

17
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Figure 14. (x, x) surfaces of section for motion at high energies (a=100r.) in potentials with harmonic cores. (a) The
logarithmic potential (8), and (b) Schwarzschild’s potential. At these energies regular non-resonant box orbits have
been replaced by 3:2, 4:3 and 2:1 resonant orbits, and irregular orbits. The logarithmic potential supports many
regular resonant orbits, while most orbits in Schwarzschild’s potential are highly irregular. In each case the crosses
are generated by a single stochastic orbit.

decrease: (i) The dynamical time increases with a. (ii) The area of the waist of a typical box orbit
increases with a. (iii) The impact parameter for a hard encounter decreases with a. In a typical
giant elliptical galaxy, most stars on box orbits with apocentric radii a <1 kpc would by now have
suffered at least one scattering encounter with a central object containing =2 per cent of the
galaxy’s core mass, while the majority of stars on larger box orbits would still be on their first
regular orbital segment. The smaller the galaxy’s core radius, the larger is the radius ag; out to
which a central object of given mass will have scattered most box orbits; ag; o< 7z 208> for fixed m
and ag>57..

Unless the gravitational potentials of elliptical galaxies rotate much more rapidly than is
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(b)
Figure 14 - continued

currently thought possible (e.g. Binney 1982a; Schwarzschild 1982), these results for non-rotating
potentials will be unaffected by realistic rates of figure rotation.

Repeated scattering of stars from one box orbit to another will tend to establish a uniform
distribution of stars within the region of phase space that is accessible to box orbits of given
energy. Such a distribution is almost certainly incapable of self-consistently sustaining a triaxial
figure. Hence a central black hole must in the long run destroy a non-rotating bar. A simple
estimate of the degree to which triaxiality of the potential at radius a depends on the triaxility of
the density at the same radius, suggests that scattering of stars by a central object will gradually
eliminate a self-consistent bar, from the inside outwards. In a typical elliptical galaxy, a central
object with 2 per cent of the core mass would have markedly reduced triaxiality interior to
a=1kpc by the present epoch. In nearby galaxies this effect may be detectable from the ground.
In this connection it is interesting that Hummel, Kotanyi & Ekers (1983) and Disney, Sparks &
Wall (1984) have claimed that radio-loud ellipticals, which are probably powered by massive
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black holes in their nuclei (Lynden-Bell 1969; Rees 1984), are systematically rounder than similar
radio-quiet ellipticals (but see also Dressel 1981). However, very massive central objects
(m>10° M,) and very small core radii (r.<10 pc) must be postulated if this effect, which pertains
to the ellipticity at Rys, is to be interpreted as due to the destruction of triaxiality by a central black
hole.

The calculations on which these results are based have been restricted in two important
respects; (i) we have only considered two-dimensional orbits, and (ii) we have only calculated
orbits in fixed potentials. Norman, May & van Albada (1985) report fully three-dimensional
calculations in fixed and self-consistent potentials. Their conclusions are broadly similar to ours,
although they consider only very massive central objects (0.08<u<0.4), and in all their
self-consistent field calculations the central object is extremely soft (¢=0.27r.). Our study
complements their work by using surfaces of section to show how any central point mass destroys
the regular box orbits that form the backbone of a triaxial elliptical, and to develop a quantitative
description of the diffusion of stars through phase space to which scattering of stars by a central
mass gives rise. Our analysis enables us to estimate the rates at which a central object (i) destroys
triaxiality, and (ii) tidally disrupts stars. The rates at which the models of Norman, May & van
Albada (1985) grow round are only partly determined by their central objects, being in part
determined by deficiencies inherent in currently available n-body programs, but their rates are
broadly in agreement with our results.

As Norman & Silk (1983) and Duncan & Shapiro (1983) have remarked, a triaxial potential is
capable of feeding stars on to a central black hole more rapidly than two-body encounters in an
axisymmetric potential. We have used the scattering picture developed in Section 3 to estimate
the rate ri(t) at which a 108 M, black hole at the centre of a typical triaxial elliptical disrupts stars.
We find this rate to be a rapidly decreasing function of time, but the current rate for a 10% M, hole,
m=5x10"% M, yr~!, is still more than an order of magnitude greater than the rate at which an
identical hole in an axisymmetric galaxy would disrupt stars. The accretion rate of a hole at the
centre of a triaxial system is clearly inadequate as an energy source for a luminous quasar. If
Seyfert galaxies and radio galaxies can be powered by accretion on to spinning holes at rates as
low as 1073 Mo yr ™! (Rees 1984), it is just conceivable that these objects feed by disrupting stars
on box orbits. However, accretion rates as large as 107> M, yr~! can be achieved only very briefly,
and for abnormally small core radii r.. Furthermore, the current rate is a decreasing function of
increasing black hole mass. Thus the conclusion seems inescapable that these systems are fuelled
by loose gas, rather than stars. However, triaxiality of the central gravitational potential may
nevertheless play a role, by enhancing the rate at which gas spirals towards the nucleus.

N-body simulations (van Albada 1983; McGlynn 1984; Villumsen 1984) suggest that violent
relaxation from cold, irregular initial conditions leads to stellar systems more akin to the r'/*
model than a lowered isothermal, and there is some observational evidence that many giant
ellipticals do indeed have central density cusps (Schweizer 1979; Lauer 1985). In Section 5 we
showed that contrary to what one might expect by a naive extrapolation of our results for compact
central objects, such systems do support box orbits at all energies. Indeed, a two-power-law
approximation to the r'/* model supports more regular box orbits at all energies than
Schwarzschild’s potential. A central density cusp eliminates regular box orbits only if it gives rise
to a circular speed which diverges as the centre is approached. Thus there is every reason to
believe that triaxial systems can be constructed that have realistic central density cusps.
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Appendix: Integration methods and tests

The numerical integrations described in this paper have employed a fourth-order Runge—Kutta
algorithm combined with Richardson’s extrapolation method (e.g. Carnahan, Luther & Wilkes
1969) for the determination of the time-step length. In this method, the set of first-order
differential equations for the phase-space variables x; is first integrated for two time steps of
length At. The equations are then integrated from the same initial conditions for a single time step
oflength 2A¢. The difference between the results of these two integrations yields estimates A x; of
the truncation errors in the coordinates obtained with two steps of length At:

1
Axi:T5—|x,-(t+At+At)—xi(t+2Af)| (A1

assuming Ax;(At)°. Any pair of integration steps is rejected, and the integration repeated with
smaller time steps, if one of the Ax; exceeds a specified tolerance J. The size of the new time steps
is determined from the current Ax; through

= min (221 A2
At—{mm(Z;)} At. (A2)

This procedure requires six force evaluations per step. In problems in which the time steps change
rapidly and by large factors, the extra expense involved in Richardson’s method over a simpler
algorithm for choosing step lengths is often marginal, since effort is expended exactly where it is
most necessary.

The relation between the cumulative integration error for an orbit and the specified tolerance
0, depends on the stability of the orbit integrated. We have investigated this relation by
integrating eccentric elliptic orbits in a Kepler potential. We set §=10'°, and checked energy,
angular momentum, phase and time lag against analytic solutions. After 80 orbital periods, the
relative errors in energy for orbits with principal axes b and a were [log(AE/E), b/al=[-7.1,
0.7]; [-6.6, 0.4]; [-6.2, 0.2]; [-5.6, 0.07]; [-5.1, 0.02]. Angular momentum is typically better
conserved than energy. Phase and time lags were checked by evaluating the errors At and Ar in
the time and radial coordinates when the particle returned to its initial angular position ; we find
0.01Ar/r=At/t=AE/E at the end of the calculation. Thus for the calculations reported here
AE/Eis agood indicator of accuracy. For the integrations reported in Section 3 we have typically
accepted a cumulative error AE/E<1077.
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