
Mon. Not. R. Astron. Soc. 385, 647–666 (2008) doi:10.1111/j.1365-2966.2008.12874.x

Triaxial orbit based galaxy models with an application to the (apparent)

decoupled core galaxy NGC 4365

R. C. E. van den Bosch,1⋆ G. van de Ven,1,2,3† E. K. Verolme,1,4 M. Cappellari1,5

and P. T. de Zeeuw1,6

1Sterrewacht Leiden, Universiteit Leiden, Postbus 9513, 2300 RA Leiden, the Netherlands
2Department of Astrophysical Sciences, Peyton Hall, Princeton, NJ 08544, USA
3Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
4TNO Defense, Security and Safety, Lange Kleiweg 137, 2280 AA, Rijswijk, the Netherlands
5Sub-Department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH
6European Southern Observatory, D-85748 Garching bei München, Germany

Accepted 2007 December 14. Received 2007 December 3; in original form 2006 November 29

ABSTRACT

We present a flexible and efficient method to construct triaxial dynamical models of galaxies

with a central black hole, using Schwarzschild’s orbital superposition approach. Our method is

general and can deal with realistic luminosity distributions, which project to surface brightness

distributions that may show position angle twists and ellipticity variations. The models are fit to

measurements of the full line-of-sight velocity distribution (wherever available). We verify that

our method is able to reproduce theoretical predictions of a three-integral triaxial Abel model.

In a companion paper by Ven, de Zeeuw & van den Bosch, we demonstrate that the method

recovers the phase-space distribution function. We apply our method to two-dimensional ob-

servations of the E3 galaxy NGC 4365, obtained with the integral-field spectrograph SAURON,

and study its internal structure, showing that the observed kinematically decoupled core is not

physically distinct from the main body and the inner region is close to oblate axisymmetric.

Key words: galaxies: elliptical and lenticular, cD – galaxies: kinematics and dynamics –

galaxies: structure.

1 I N T RO D U C T I O N

Binney (1976, 1978) argued convincingly that elliptical galaxies

may well have triaxial intrinsic shapes, based on the observed

slow rotation of the stars (Bertola & Capaccioli 1975; Illingworth

1977), the presence of isophote twists in the surface brightness (SB)

distribution (e.g. Williams & Schwarzschild 1979), the presence

of velocity gradients along the apparent minor axis (‘minor-axis

rotation’, Schechter & Gunn 1978), and evidence from N-body sim-

ulations (Aarseth & Binney 1978). Schwarzschild’s (1979, 1982)

numerical models demonstrated that such systems can be in dy-

namical equilibrium, and suggested that their observed kinematics

can be rich (see also e.g. Statler 1991). This is supported by the dis-

covery of kinematically decoupled cores (KDCs) in the late 1980s

(Bender 1988; Franx & Illingworth 1988) and, more recently, by

observations with integral-field spectrographs such as SAURON,

which reveal that some ellipticals have point symmetric rather than

bisymmetric velocity fields, and often contain kinematically decou-

pled components (e.g. Emsellem et al. 2004). This means that these

galaxies are not axisymmetric.

⋆E-mail: bosch@strw.leidenuniv.nl

†Hubble Fellow.

Subsequent work on triaxial dynamical models focused mostly

on models with a cusp in the central density profile, on the effect of

a central black hole, and on the range of shapes for which triaxial

models could be in dynamical equilibrium (e.g. Gerhard & Binney

1985; Levison & Richstone 1987; Statler 1987; Hunter & de Zeeuw

1992; Schwarzschild 1993; Merritt & Fridman 1996; Siopis 1998;

Terzić 2002). With the exception of studies of the Galactic bulge

(Zhao 1996; Häfner et al. 2000), most of this work was restricted to

finding (numerical) distribution functions (DFs) consistent with a

given triaxial density. This showed that many different DFs may re-

produce the same triaxial density, and that these dynamical models

all have different observable kinematic properties, but detailed com-

parison to observations received little attention (Arnold, de Zeeuw

& Hunter 1994; Mathieu & Dejonghe 1999). Ad hoc kinematic

models were used to constrain the distribution of intrinsic shapes

(Binney 1985; Franx, Illingworth & de Zeeuw 1991) or of individ-

ual objects (Tenjes et al. 1993; Statler 1994b; Statler, Dejonghe &

Smecker-Hane 1999; Statler 2001; Statler et al. 2004).

The possibility to measure accurate line-of-sight velocity distri-

butions (LOSVDs) in elliptical galaxies from observations of the

stellar absorption lines (e.g. Bender 1990; van der Marel & Franx

1993), and the realization that these are the only way to distinguish

radial variations in mass-to-light ratio M/L from radial variations in

the anisotropy of the orbital structure (Dejonghe 1987; Gerhard
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648 R. C. E. van den Bosch et al.

1993), led to the development of detailed spherical, and subse-

quently axisymmetric, numerical dynamical models aimed to fit

all these kinematic measurements. These are generally constructed

with a variant of Schwarzschild’s (1979) orbit superposition method,

in which occupation numbers are found for a representative library

of orbits calculated in the gravitational potential of the galaxy. The

aim is to measure the mass of the central black holes (van der Marel

et al. 1998; Gebhardt et al. 2003; Valluri, Merritt & Emsellem 2004;

Valluri et al. 2005; Shapiro et al. 2006; van den Bosch et al. 2006),

to deduce the properties of dark haloes (e.g. Rix et al. 1997; Cretton

et al. 1999; Gerhard et al. 2001; Thomas et al. 2005), and to derive the

internal orbital structure and intrinsic shape (Cappellari et al. 2002;

Verolme et al. 2002; Krajnović et al. 2005; Cappellari et al. 2006;

van de Ven et al. 2006). Some galaxies display significant signatures

of non-axisymmetry, suggesting they are intrinsically triaxial.

The logical next step is to construct realistic triaxial mod-

els, which fit the details of the observed SB, including isophote

twists, nuclear stellar discs and a central cusp, as well as the two-

dimensional kinematic measurements. This is a non-trivial under-

taking, as the parameter range to be explored for a given model is

significantly larger than in axisymmetric geometry, and the internal

dynamical structure is more complicated, as it includes four major

orbit families, a host of minor families and chaotic orbits. However,

the ability to construct such models will make it possible to derive

reliable intrinsic parameters for giant elliptical galaxies, and opens

the way for a systematic exploration of their properties. In this paper,

we describe a practical method for doing this, and report an appli-

cation which accurately reproduces the two-dimensional kinematic

measurements of the triaxial E3 galaxy NGC 4365, obtained with

SAURON. In the companion paper (van de Ven, de Zeeuw & van

den Bosch 2008, hereafter vdV08) we apply the method to analyti-

cal triaxial three-integral models and show that it reliably recovers

the input three-integral DF.

We start with a short section on Schwarzschild’s method (Sec-

tion 2), which includes a brief overview of our implementation. We

then give a step-by-step description of the main properties of our

formalism (Sections 3–5). In Section 6 we test the method, includ-

ing the ability to recover the global input parameters. We construct

a triaxial model for NGC 4365 in Section 7, and we summarize our

conclusions in Section 8.

2 S C H WA R Z S C H I L D ’ S M E T H O D

2.1 Brief historical overview

Schwarzschild’s (1979) orbit superposition method is a flexible

method to build dynamical models of early-type galaxies. The

original implementation was aimed at reproducing a given triax-

ial density distribution. Subsequently, it was applied to a large

variety of density distributions, from spherically and axially sym-

metric (Richstone 1980, 1982, 1984; Richstone & Tremaine 1984;

Levison & Richstone 1985; Valluri et al. 2004) to triaxial shapes

(e.g. Schwarzschild 1982; Vietri 1986; Levison & Richstone 1987;

Statler 1987; Schwarzschild 1993; Merritt & Fridman 1996; Häfner

et al. 2000; Siopis & Kandrup 2000).

Pfenniger (1984) showed that it is possible to include measure-

ments of the mean line-of-sight velocity and the second velocity

moment, provided that the true second velocity moment 〈v2〉 is used

and not the velocity dispersion σ 2 = 〈v2〉 − 〈v〉2. The reason for this

requirement is that the dispersion depends quadratically on the first

velocity moment and can therefore not be included in a linear orbit

superposition method (but see Dejonghe 1989). Zhao (1996) used

this principle to build triaxial models of the Galactic bulge. At the

same time, theoretical (Dejonghe 1987) and observational (Franx

& Illingworth 1988) investigations showed that LOSVDs are gen-

erally not Gaussian-shaped and higher order velocity moments are

required to describe the true profile. This stimulated the use of the

so-called Gauss–Hermite (GH) moments (Gerhard 1993; van der

Marel & Franx 1993).

The first implementations of Schwarzschild’s method that used

additional kinematic information were designed for the modelling

of spherical galaxies (Richstone & Tremaine 1984; Rix et al. 1997).

Orbits in these models obey four integrals of motion: the energy E

and all three components of the angular momentum L = (Lx , Ly ,

Lz). While useful, this software was still of limited applicability, as

most galaxies are not round, but axisymmetric or triaxial. Orbits

in oblate axisymmetric galaxies conserve at least the two classical

integrals E and Lz (which is the component of the angular momen-

tum along the short axis), while it has been known for a long time

that most orbits in our Galaxy conserve an additional non-classical

third integral of motion (e.g. Contopoulos 1960; Ollongren 1962).

A more general version of the Schwarzschild software was there-

fore developed to model axisymmetric galaxies with three-integral

DFs (van der Marel et al. 1998; Cretton et al. 1999; Thomas et al.

2005). Results that were obtained with the extended Schwarzschild

method indeed showed that the third integral is an essential ingre-

dient of realistic axisymmetric galaxy models (van der Marel et al.

1998; Verolme et al. 2002), that we can derive information on the

phase-space structure of galaxies (Cappellari et al. 2002; Krajnović

et al. 2005), that we can use the method to measure the mass of

the central black hole in galaxies (Gebhardt et al. 2003) and that

proper motion kinematic observations can be used (van de Ven et al.

2006), provided that the models have sufficient internal freedom,

e.g. the total number of orbits is large enough (Cretton & Emsellem

2004; Thomas et al. 2004; Richstone et al. 2004; Valluri et al. 2004;

Magorrian 2006).

2.2 Generalization to triaxial geometry

The method described here uses many of the ideas and algorithms

described in Rix et al. (1997), van der Marel et al. (1998), Cretton

et al. (1999), Verolme et al. (2002) and Cappellari et al. (2006). The

computer program for triaxial geometry was written largely from

scratch.

The standard implementation of the extended Schwarzschild

method starts from a SB distribution, which we parametrize with

a sum of Gaussians (Section 3.1). The intrinsic mass distribution

and potential are then obtained by deprojecting the surface density,

which requires a choice for the viewing angle(s) along which the ob-

ject is observed (Section 3.3). The potential calculation is outlined

in Section 3.8.

In the potential, the initial conditions for a representative orbit

library are found (Section 4). These orbital components must include

all types of orbits that the potential supports, to avoid any bias

(e.g. Thomas et al. 2004).

Schwarzschild’s method tries to find a steady-state model of a

galaxy, requiring orbital building blocks to be time independent.

We integrate the orbits for a fixed time of 200 times the period of a

closed elliptical orbit with the same energy.

During orbit integration, the intrinsic and projected properties

are stored on grids, in order to allow for comparison with the data

(Section 4.5). The quantities that will be compared to observations

are spatially convolved with the same point spread function (PSF)

as the observations.
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Triaxial orbit based models 649

After orbit integration, the superposition of orbits whose proper-

ties best match the observational data is determined. The superpo-

sition can be constructed by using linear or quadratic programming

(Schwarzschild 1979, 1982; Vandervoort 1984; Dejonghe 1989;

Schwarzschild 1993), maximum entropy methods (Richstone &

Tremaine 1988; Gebhardt et al. 2003; Thomas et al. 2004) or with a

least-squares solver as was used in many of the axisymmetric three-

integral implementations (Rix et al. 1997; van der Marel et al. 1998;

Cappellari et al. 2006). Here we use a quadratic programming solver

as it finds the best-fitting superposition in a least-squares sense,

while allowing for additional constraints (Section 5.1).

3 M A S S PA R A M E T R I Z AT I O N , P OT E N T I A L

A N D AC C E L E R AT I O N S

In this section, we describe the method that we use to obtain a

triaxial mass model from the observed SB. We describe a convenient

mass parametrization and derive the corresponding potential and

accelerations. A summary of symbols introduced in this section is

given in Table 1.

3.1 The MGE parametrization

In order to derive the intrinsic luminosity density from the observed

galaxy SB, a deprojection is required. For a spherical galaxy, this

leads to a unique solution (Binney & Tremaine 1987). This is not the

case for an axisymmetric object, unless it is seen edge-on (Rybicki

1987). This non-uniqueness is even stronger for triaxial shapes,

where the deprojection is not unique from any viewing direction

(e.g. Gerhard 1996). For this reason, the assumption that an object

is triaxial is not sufficient to uniquely recover the intrinsic luminosity

density from an observed image, and additional assumptions have

to be made.

The simplest option is to assume that the intrinsic density is strat-

ified on similar triaxial ellipsoids. The isophotes that are produced

by such a mass model are similar coaxial ellipses (Contopoulos

1956; Stark 1977), which is approximately consistent with obser-

vations of some galaxies. However, many objects display position

angle twists and ellipticity variations, which cannot be reproduced

by these simple models. More flexible mass models are therefore

required to reproduce these observed features.

A general approach to the triaxial deprojection problem would

be to use fully non-parametric methods (e.g. Scott 1992). This has

already been done in the axisymmetric case by Romanowsky &

Kochanek (1997) and in the triaxial case by Bissantz & Gerhard

(2002). Unfortunately, these methods are complicated, require a

Table 1. Summary symbols introduced in Section 3.

Symbol Definition

(x, y, z) Intrinsic coordinate system

(x′, y′, z′) Projected coordinate system

(ϑ , ϕ, ψ) Viewing angles

(p, q, u) Intrinsic shape parameters

q′ Averaged projected flattening

Lj, σ ′
j, q′

j Projected luminosity, dispersion, flattening

of individual Gaussians

(pj, qj, uj) Shape parameters of individual Gaussians

σ j Intrinsic dispersion of individual Gaussians

ψ ′
j Misalignment angle of individual Gaussians

�ψ ′
j Isophotal twist of individual Gaussians

significant amount of time before convergence is reached, and do

not always provide a global solution.

We therefore decided to parametrize the mass distribution

by using a multi-Gaussian expansion (MGE; Monnet, Bacon &

Emsellem 1992; Emsellem, Monnet & Bacon 1994; Cappellari

2002). We assume that the intrinsic density can be described as

a sum of coaxial triaxial Gaussian distributions. The Gaussians do

not constitute a complete basis of functions and therefore cannot re-

produce any arbitrary positive density distribution. However, MGE

models can reproduce a large variety of densities, which appears re-

alistic when projected along any viewing direction, including mass

models with radially varying triaxiality, multiple photometric com-

ponents and discs.

Accordingly, we write the triaxial MGE luminosity density as

ρ(x, y, z) =
N

∑

j=1

(M/L)
L j

(σ j

√
2π)3 p j q j

× exp

[

−
1

2σ 2
j

(

x2+
y2

p2
j

+
z2

q2
j

)]

, (1)

where N is the number of required Gaussian components, Lj is the

luminosity of the jth Gaussian, pj and qj are the axial ratios and σ j is

the corresponding dispersion along the x-axis. Moreover, M/L is the

mass-to-light ratio, and (x, y, z) is a system of coordinates centred on

the common origin of the Gaussians and aligned with the common

principal axes of the Gaussians.

3.2 Transformation from intrinsic to projected coordinates

To be able to compute the projection of the density in equation (1)

on the sky plane, we introduce a new coordinate system, (x′, y′, z′)

as defined in Binney (1985). Here, z′ is located along the line of

sight and x′ is in the (x, y) plane.

To go between these coordinate systems two transformations are

needed. First, a projection to the sky plane given by a projection

matrix

P =

⎛

⎜

⎝

− sin ϕ cos ϕ 0

− cos ϑ cos ϕ − cos ϑ sin ϕ sin ϑ

sin ϑ cos ϕ sin ϑ sin ϕ cos ϑ

⎞

⎟

⎠
, (2)

where the two usual spherical coordinates (ϑ , ϕ) define the orien-

tation of the line of sight with respect to the principal axes of the

object. For example, (90◦, 0◦), (90◦, 90◦), (0◦, 0◦, . . . , 90◦) are

the views down the long, intermediate and short axis, respectively.

Secondly, a rotation on the sky plane is given by the matrix

R =

⎛

⎜

⎝

sin ψ − cos ψ 0

cos ψ sin ψ 0

0 0 1

⎞

⎟

⎠
. (3)

The angle ψ is required to specify the rotation of the object around

the line of sight. The rotation ψ is chosen to align the major axis of

the projected ellipse (of the innermost MGE component, see equa-

tion 6 below) with the x′-axis. For an oblate axisymmetric intrinsic

shape ψ equals 90◦.
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650 R. C. E. van den Bosch et al.

3.3 The observed surface brightness of an MGE

The projected SB that corresponds to the density of equation (1) can

be written as a sum of two-dimensional Gaussians of the form

SB(R′, θ ′) =
N

∑

j=1

L j

2πσ ′2
j q ′

j

exp

[

−
1

2σ ′2
j

(

x ′2
j +

y′2
j

q ′2
j

)]

, (4)

with

x ′
j = R′ sin(θ ′ − ψ ′

j ) and y′
j = R′ cos(θ ′ − ψ ′

j ), (5)

where (R′, θ ′) are polar coordinates on the sky plane. The Gaussian

components have axial ratio 0 � q′
j � 1, dispersion σ ′

j along the

major axis, and position angle ψ ′
j, measured counterclockwise from

the y′-axis to the major axis of each Gaussian. The misalignment

angle ψ ′
j cannot be measured directly as the position of the intrinsic

y′-axis is not observable. We define

ψ ′
j = ψ + �ψ ′

j with �ψ ′
1 ≡ 0, (6)

where �ψ ′
j is the isophotal twist of each Gaussian, which can be

measured directly.

3.4 From projected to intrinsic shape

To determine the parameters of the Gaussians in equation (1), we

fit the two-dimensional MGE model of equation (4) to the observed

SB. After assuming the space orientation (ϑ , ϕ, ψ) of the galaxy,

the relations between the observed quantities (σ ′
j, q′

j, ψ ′
j) and the

intrinsic ones (σ j, pj, qj) are given by Cappellari et al. (2002; for a

different formalism see Monnet et al. 1992):

1−q2
j =

δ′
j

[

2 cos2ψ ′
j +sin2ψ ′

j (sec ϑ cot ϕ−cos ϑ tan ϕ)
]

2 sin2ϑ
[

δ′
j cos ψ ′

j (cos ψ ′
j +cot ϕ sec ϑ sin ψ ′

j )−1
] , (7)

p2
j −q2

j =
δ′

j

[

2 cos2ψ ′
j +sin2ψ ′

j (cos ϑ cot ϕ−sec ϑ tan ϕ)
]

2 sin2ϑ
[

δ′
j cos ψ ′

j (cos ψ ′
j +cot ϕ sec ϑ sin ψ ′

j )−1
] , (8)

u2
j =

1

q ′
j

√

p2
j cos2ϑ+q2

j sin2ϑ(p2
j cos2ϕ + sin2ϕ), (9)

where δ′
j = 1 − q′

j
2, and uj ≡ σ ′

j/σ j, the scalelength projection com-

pression factor, which together with the dimensionaless parameters

pj and qj define the intrinsic shape. The mathematical constraint qj >

0 and pj > 0 (or the stronger and more physical constraint qj > 0.2

and pj > 0.4, which gives the range of reasonable axis ratios for an

elliptical galaxy, Binney & de Vaucouleurs 1981) implies that each

Gaussian can be deprojected only for a limited range of orientations

(see also Monnet et al. 1992). The orientations for which the whole

MGE model can be deprojected are located in the intersection of the

regions that are allowed by the individual Gaussian components.

3.5 Constructing a realistic triaxial MGE

The individual Gaussian components have no direct physical sig-

nificance, but their parameters provide constraints on other, more

important quantities. We must therefore be careful that the MGE

model does not result in spurious conditions on the physical prop-

erties of the galaxy. The allowed intrinsic orientation of the galaxy

depends on the axis ratios of the Gaussians in the superposition. It

can be easily verified numerically that the region in the space of the

rotation angles (ϑ , ϕ, ψ ′
j) for which a Gaussian with a given observed

flattening q′
j can be deprojected increases with q′

j: a round Gaussian

(q′
j = 1) can be deprojected for any assumed intrinsic orientation,

Figure 1. Contours of the deprojectable volume of a hypothetical MGE

as a function of the observed isophotal twist and flattening. The horizontal

axis shows the minimum projected flattening and the vertical axis the maxi-

mum isophotal twist of all the Gaussians in the MGE. The labels denote the

percentage of Euler angle space that can be deprojected.

while an extremely flat one (q′
j ≪ 1) can only be deprojected when

the object is observed along one of its principal planes. Moreover,

when a Gaussian has an photometric twist �ψ ′
j with respect to the

other Gaussians in the MGE, than the allowed deprojection region

(ϑ , ϕ, ψ ′
j) becomes even smaller.

The Gaussians in a given MGE superposition generally have dif-

ferent values of q′
j and ψ ′

j. This means that the MGE model as a

whole can only be deprojected for angles that appear in the intersec-

tion of the allowed individual regions (ϑ , ϕ, ψ ′
j) of the deprojection

of the individual Gaussians. The largest deprojectable volume is

obtained by maximizing min {q′
j} and minimizing max{|�ψ ′

j |},

while still fitting the photometry within a certain accuracy (see also

Cappellari 2002). This is verified numerically in Fig. 1 which shows

contours of the allowed volume available for deprojection, for given

minimum flattening and isophotal twist of an MGE model.

The MGE models that are obtained in this way have, by construc-

tion, the largest set of orientations for which a triaxial deprojection

is possible. For any given orientation, the roundest projection on

the sky corresponds to the roundest triaxial intrinsic density. This

means that this MGE model will be the roundest one that fits the

observations for any given intrinsic orientation of the galaxy. Very

boxy or very discy models are therefore excluded.

3.6 Light to mass

At this stage it is possible to add the contribution of invisible mass

to the gravitational potential of the model. This can be done by

creating two MGE models for the galaxy: one for the gravitating

matter and the other for the visible light. The matter MGE is then

used for the calculation of the potential and the light MGE is used to

reproduce the intrinsic and observed light distribution. To simulate a

radial M/L profile one can construct a matter MGE by multiplying

the luminosity of each Gaussian of the light distribution with the

desired (M/L)j at that radius, see e.g. van den Bosch et al. (2006).

In this way, it is possible to construct a large range of potentials or

SB distributions, as long as the matter and light distributions can be
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Triaxial orbit based models 651

represented by Gaussians. Alternatively one could make (M/L) in

equation (1) a function of (x, y, z).

3.7 Deprojection

The parameter range that has to be explored when fitting general

triaxial models to observations of elliptical galaxies is large. Two

axis ratios and three angles are needed to specify the intrinsic shape

and orientation of a triaxial ellipsoid, while only the projected flat-

tening q′
j and the relative position angle �ψ ′

j of the projected major

axis can be deduced from photometric observations. As there is a

relation between q′
j, the viewing angles and the intrinsic shape pa-

rameters of the galaxy, the allowed range of intrinsic shapes can be

constrained to some degree, but a large freedom remains. In some

cases, additional information, such as the value of the kinematic

offset angle or the relative position of a gas disc or dust lane, can

provide further constraints (e.g. Bertola et al. 1991). However, un-

less two perpendicular gas discs are observed, no unique intrinsic

shape can be deduced directly from the observations. The method to

obtain triaxial MGE mass models from SB data that were described

in the above does not solve these problems. However, it produces a

range of regular, searchable and well-behaved triaxial density dis-

tributions that are consistent with the observed SB, while being easy

to handle computationally.

The shape of the reconstructed potential used in our models is di-

rectly related to the viewing angles by equations (7)–(9). By chang-

ing the viewing angles the potential of the model changes with it.

However, the intrinsic shape parameters are much more natural pa-

rameters than the viewing angles (ϑ , ϕ, ψ), as they influence the

appearance of the orbits, and thus the kinematics they represent,

much more directly. For example, for an axisymmetric deprojection

of the SB the angle ϕ has no meaning, as rotating along the symme-

try axis does not change anything. Therefore we choose to study the

effects of the deprojection in terms of the intrinsic shape parameters

(p, q, u), which can be computed from the viewing angles (ϑ , ϕ, ψ)

given the averaged flattening q′ of the galaxy. The conversion from

the intrinsic shape parameters to viewing angles (which is the input

for the models) is given by1

cos2 ϑ =
(u2 − q2)(q ′2u2 − q2)

(1 − q2)(p2 − q2)
,

tan2 ϕ =
(u2 − p2)(p2 − q ′2u2)(1 − q2)

(1 − u2)(1 − q ′2u2)(p2 − q2)
,

tan2 ψ =
(1 − q ′2u2)(p2 − q ′2u2)(u2 − q2)

(1 − u2)(u2 − p2)(q ′2u2 − q2)
, (10)

valid for q � p � 1, q � q′ and max (q/q′, p) � u � min (p/q′, 1).

Four of the eight possible solutions are unphysical or have q > p.

The valid solutions are

{ ϑ , −ϕ , ψ },
{ π − ϑ , ϕ , ψ },
{ ϑ , ϕ , −ψ },
{ π − ϑ , −ϕ , −ψ }.

(11)

They represent the same intrinsic shape only seen from the oppo-

site side and mirror images. They are thus identical and need not

be modelled separately. However, for Gaussians in the MGE with

1 The quantities u2 and u2q′2 are recognized as the conical coordinates μ

and ν, with which the projected properties of a triaxial ellipsoid of axis ratios

p and q can be evaluated in an elegant manner (e.g. Franx 1988).

isophotal twist (|�ψ ′
j | > 0) the intrinsic shape of the models with

viewing angle ψ and −ψ are not the same, since the �ψ ′
j offset

deprojects (equations 7–9) them to a different (pj, qj, uj), and thus

a different intrinsic shape. Hence, in the case of isophotal twist we

have to consider one solution from the first two lines in (11), and

one from the last two lines.

To convert from (p, q, u) to (pj, qj, uj) one uses equation (10) and

the averaged flattening q′ to go to (ϑ , ϕ, ψ), and then equation (6)

(and the observed isophotal twists) to go to ψ ′
j. From there one uses

q′
j and equations (7)–(9) to go to (pj, qj, uj).

To find the best-fitting intrinsic shape and corresponding viewing

angles for an observed galaxy the parameter space has to be searched

effectively. Since the models are computationally expensive the

number of models cannot be too large. The MGE parametrization of

the SB already excludes some viewing angles since their deprojec-

tion is unphysical (p < 0.4 or q < 0.4). Especially an isophotal twist

reduces the allowed viewing angles. But also the sampling in the in-

trinsic shape, instead of viewing angles, helps reducing the number

of models required, as this will avoid having models with (nearly)

the same intrinsic shape. Overall, for galaxies which are mildly flat-

tened approximately 100 distinct models are needed when sampling

(p, q, u) in steps of 0.05.

3.8 Potential and accelerations

The next step is to calculate the potential that corresponds to the

mass distribution of equation (1). This is done by using the classical

Chandrasekhar (1969) formula for the potential that corresponds to

a density stratified on similar concentric ellipsoids. This results in

(Emsellem et al. 1994)

V (x, y, z) = −
N

∑

j=1

V0, j

∫ 1

0

dτ F(x, y, z, τ ), (12)

with

V0, j = (M/L)

√

2

π

GL j

σ j

(13)

and

F(x, y, z, τ ) =
exp

[

−
τ 2

2 σ 2
j

(

x2 +
y2

1 − δ jτ 2
+

z2

1 − ǫ jτ 2

)]

√

(1 − δ jτ 2)(1 − ǫ jτ 2)
,

(14)

where

δ j = 1 − p2
j and ǫ j = 1 − q2

j . (15)

Here, G is the gravitational constant and M/L is the mass-to-light

ratio. Equation (12) has no simple analytic expression and must

be evaluated numerically. The integrand is badly behaved in the

central and outermost regions. It is therefore more efficient to replace

equation (12) by analytical approximations in those regions.

The central density of each Gaussian can be expanded as

ρ j (x, y, z) = ρ0, j

∞
∑

n=0

αn m2n, (16)

with m2 = x2 + y2/p2 + z2/q2 and

αn =
1

n!

(

−
1

2σ 2
j

)n

. (17)
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652 R. C. E. van den Bosch et al.

This expansion generates a potential (e.g. equation 29 of de Zeeuw

& Lynden-Bell 1985)

V j (x, y, z) = −
V0, j√

ǫ j

[

F j −
1

2σ 2
j

(

A1, j x
2 + A2, j y2 + A3, j z

2
)

+
1

8σ 4
j

(

A11, j x
4 + A22, j y4 + A33, j z

4

+2A12, j x
2 y2 + 2A13, j x

2z2 + 2A23, j y2z2
)

+ · · ·

]

(18)

The index symbols Ai and Ail are given in Chandrasekhar (1969).

For a moderately triaxial model, the expression (18) differs less than

10−4 from the exact potential for r < 0.1 σ j, with r2 ≡ x2 + y2 +
z2. A higher order Taylor expansion does not extend this limiting

radius significantly.

The potential outside r>45σ j can be approximated to within 10−4

by the monopole term in a multipole expansion, which corresponds

to the potential of a central point mass with mass equal to that of

the Gaussian

V j (x, y, z) = −(M/L)
G L j

√

x2 + y2 + z2
. (19)

Higher order multipole terms hardly extend the range of applicabil-

ity. Using equations (18) and (19), numerical integrations only have

to be performed over the range 0.1σ j < r < 45σ j, which speeds up

the orbit integration significantly.

The contribution of a central supermassive black hole is repre-

sented by a Plummer potential

V•(x, y, z) = −
G M•

√

r 2
s + x2 + y2 + z2

, (20)

in which M• is the mass of the black hole and rs is a softening length,

which can be set to a non-zero value to prevent the central poten-

tial to be infinite. In most applications, this smoothing is used, and

rs is chosen to be significantly smaller than the smallest kinematic

aperture. The black hole potential is added to V(x, y, z) from equa-

tion (12) to obtain the total galaxy potential. A separate dark halo

potential can also be added at this stage, using either the MGE (see

Section 3.6) or another, specific, expression.

The orbit integration is performed in Cartesian coordinates. The

stellar accelerations are given by the derivatives of equation (12)

with respect to x, y and z. Similar to what is done for the poten-

tial, the numerical calculation of the accelerations in the central and

outer regions of the model are replaced by, respectively, a Taylor ex-

pansion and the dipole approximation. If we differentiate the terms

in equation (18), we obtain as first-order approximations

ax, j =
xV0, j

σ 2
j

√
ǫ j

[

A1, j −
1

2σ 2
j

(

A11, j x
2+ A12, j y2+ A13, j z

2
)

]

,

ay, j =
yV0, j

σ 2
j

√
ǫ j

[

A2, j −
1

2σ 2
j

(

A21, j x
2+ A22, j y2+ A23, j z

2
)

]

,

az, j =
zV0, j

σ 2
j

√
ǫ j

[

A3, j −
1

2σ 2
j

(

A31, j x
2+ A32, j y2+ A33, j z

2
)

]

, (21)

where we have suppressed the dependence of the left-hand side of

the equations on (x, y, z). These expressions differ less than a factor

of 10−4 from the exact accelerations inside r < 0.1σ j. As before,

outside r > 45σ j the accelerations can be approximated to within

10−4 via the monopole term

a j,ξ = (M/L)
ξ G L j

√

(x2 + y2 + z2)3
, ξ = x, y, z. (22)

Similarly, the accelerations due to the black hole are given by

a•,ξ =
ξ G M•

√

(r 2
s + x2 + y2 + z2)3

, ξ = x, y, z. (23)

To make accurate and fast orbit integration possible, we interpolate

the total accelerations (ax, ay, az) on to a three-dimensional polar

grid linearly in [log(r), θ , φ]. For each grid point (r, θ , φ) we store

[log(−ax/x), log(−ay/y), log(−az/z)]. We can then compute the ac-

celerations (ax, ay, az) at point (r, θ , φ) with trilinear interpolation.

After the interpolation grid has been computed we ensure that the

minimum relative accuracy is better than 10−4.

4 O R B I T S

Schwarzschild’s method tries to find a numerical representation of

the DF of a galaxy by assigning weights to a set of orbits. To avoid

any bias and to allow for the maximum degree of freedom, the

sample of orbits that the fitting routine can choose from must be

as general as possible and ‘representative’ of the potential. In this

section, we describe how this is achieved. We first introduce a triaxial

Abel model from the companion paper (vdV08) that we use to test

our method. We then discuss the orbit structure in separable and

more general triaxial potentials. We continue with a description of

the orbital initial conditions, orbit integration and storage grids that

are used in our method.

4.1 Separable test models

The Abel models with a separable potential from the companion

paper are a generalization of the spherical Osipkov–Merritt models,

introduced by Dejonghe & Laurent (1991) and extended by Mathieu

& Dejonghe (1999). These models have a DF that depends on three

integrals of motions, contain a central core, and allow for a large

range of (triaxial) shapes. The observables of these models, includ-

ing the LOSVD, can be calculated efficiently and they can be used

to generate test models that simulate realistic wide-field imaging

and integral-field spectrograph kinematics of galaxies. These mock

observations serve as input for the triaxial Schwarzschild method

presented in this paper.

We use the triaxial test model from section 4.3 of vdV08, which

has an isochrone Stäckel potential. This model resembles a triaxial

1011 M⊙ galaxy at 20 Mpc with a kinematically decoupled com-

ponent. We infer the potential from the MGE fit to the projected

(total) surface mass density. To obtain the luminous mass density,

we use a separate MGE that fits the SB [assuming a constant (stellar)

mass-to-light ratio of M/L = 4 M⊙/L⊙]. The kinematics are con-

structed in such a way that they resemble SAURON observations

(Bacon et al. 2001).

We will use this test model to demonstrate our method. More

details and tests of the recovery of global parameters are given in

Section 6 of this paper, whereas tests of the recovery of the internal

structure and the DF can be found in the companion paper.

4.2 Orbit structure

In a separable triaxial potential, all orbits are regular and conserve

three integrals of motion E, I2 and I3, which can be calculated analyt-

ically. Four different orbit families exist: three types of tube orbits,
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Triaxial orbit based models 653

Figure 2. The (x, z) plane of a triaxial galaxy with a separable potential, for

a value of the energy E that is large enough that all orbit families appear. The

figure shows the equipotential that corresponds to E, the focal hyperbola,

the curve at which I2 = 0, and the location of the thin orbits. The regions

where the different orbit families cross the (x, z) plane perpendicularly are

indicated: ‘B’ denotes box orbits, ‘S’ corresponds to short-axis tubes and

‘I’ and ‘O’ label inner and outer long-axis tubes. It can be seen that all

tube orbits cross the (x, z) plane perpendicularly in two points: once in the

region outside the thin orbit curve and once inside. This means that the (grey)

region between the thin orbit curves comprises all orbits just once, which is

important for the orbital sampling (Schwarzschild 1993).

which avoid the centre and are therefore sometimes referred to as

‘centrophobic’, and a set of orbits that can cross the centre, usually

referred to as boxes or ‘centrophilic’ orbits (e.g. Kuzmin 1973; de

Zeeuw 1985; Statler 1987). These different orbit families conserve

unique combinations of these integrals and can therefore be linked to

distinct volumes in phase space. May be even more remarkably, all

four orbit families in a separable potential cross the (x, z) plane per-

pendicularly in well-defined regions (Fig. 2; Schwarzschild 1993).

Similar to axisymmetry, all tubes except the so-called thin orbits (in

which the inner and outer radial turning points coincide) cross the

(x, z) plane perpendicularly twice. At a given energy, these points are

located in two distinct areas, separated by the line that connects the

points of the thin orbits. This line can be parametrized analytically

in a separable potential.

These properties are summarized in Fig. 2, where we have used

the isochrone separable potential of the triaxial Abel model. The

figure shows the (x, z) plane for a value of the energy that is large

enough that all orbit families are populated. The thick outermost

curve is the equipotential at this energy, the innermost and outermost

decreasing curves inside the equipotential connect the points where

the thin orbits cross the (x, z) plane perpendicularly, the intermediate

decreasing curve corresponds to I2 = 0, and the rising curve is the

focal hyperbola. The four areas corresponding to the different orbit

families are also indicated (see section 5.4 of vdV08 for further

details).

This orbital structure depends crucially on the presence of a cen-

tral core and is (partially) destroyed by the addition of a super-

massive black hole and/or a central cusp (Gerhard & Binney 1985).

Some orbits in these non-separable potentials do not conserve global

integrals of motion other than the energy E and may not all cross

the (x, z) plane perpendicularly. The three types of tube orbits, in-

cluding the thin tubes, are still supported (cf. Schwarzschild 1993).

Most box orbits are transformed into boxlets (Miralda-Escudé &

Schwarzschild 1989) and orbits that occupy certain parts of phase

space become chaotic. The amount of chaotic motion and the radial

range inside which it is present depends on the central cusp slope

(see Section 4.6).

4.3 Initial conditions

The orbits in our models are more complicated than those in a sep-

arable potential, as we use a more realistic MGE potential with a

supermassive black hole. Still, we use the properties of separable

models in our sampling of initial conditions. We sample the orbital

energy implicitly through a logarithmic grid in radius. When the

model has to reproduce observational data, it is important to sample

the orbital energy on a grid with a minimum radius that is at least an

order of magnitude smaller than the pixel size of the observations.

In the case of Hubble Space Telescope (HST) data, this typically

corresponds to ∼10−2 arcsec. The outer grid radius is determined

by our constraint that the grid must include �99.9 per cent of the

mass.

Each of the grid radii ri is linked to an energy by calculating

the potential at (x, y, z) = (ri , 0, 0). The orbital initial conditions

are then sampled from a dense grid in the (x, z) plane. Since most

orbits cross the (x, z) plane perpendicularly twice above z > 0 it is

not necessary to sample the whole plane. The double countings are

avoided by finding the location of the thin orbit curves iteratively:

we launch orbits at different radii [keeping θ = arctan(x/z) fixed]

until the width of the orbit is minimal. This is similar to what was

done in the axisymmetric three-integral models, where all orbits are

short-axis tubes.

The starting points (x, z) are selected from a linear open polar

grid (R, θ ) in between the thin orbit and the equipotential (the grey

area in Fig. 2). The initial velocity in the y direction is determined

from v2
y,0 = 2[V(x0, 0, z0) − Ei] and (vx , vz) = (0, 0). This three-

dimensional set (E, R, θ ) of starting conditions is commonly referred

to as the ‘(x, z) start space’ (Schwarzschild 1993). It is sufficient to

launch orbits in only one direction when the density (or another

quantity that is even in the velocity, such as the second moment)

has to be reproduced. When the velocity (and odd higher order

velocity moments of the DF) is fitted in the model, the direction

of the orbital motion is also important. This information could be

taken into account directly by launching orbits in both the positive

and negative y direction. However, the trajectories of the prograde

and retrograde orbits are identical, which means it is much more

efficient to include the counter-rotating orbits only at the fitting

stage by reversing the velocity sign appropriately. This is only valid

when figure rotation is ignored (cf. Schwarzschild 1982).

Since boxes are essential for the support of the triaxial shape

(Schwarzschild 1979; Hunter & de Zeeuw 1992), a library with

relatively few of them cannot be expected to reproduce a triaxial

mass model. The (x, z) start space has few box orbits, especially

at large radii (see Fig. 3). To make sure that the orbit library pro-

vides enough freedom in the outer parts of the model, we add ad-

ditional box orbits, like Schwarzschild (1993). Box orbits always

touch the equipotential (Schwarzschild 1979). We therefore sample

start points on (successive) equipotential curves, using linear steps

in the two spherical angles θ and φ. At each combination of (θ , φ)
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654 R. C. E. van den Bosch et al.

Figure 3. Representation of the (x, z) and the stationary start space and their symmetries for the triaxial Abel model from vdV08. The panels show the orbital

starting points for increasing energies (denoted at the top), from an inner shell of the model (top left-hand diagram) to an outer shell (bottom right-hand diagram).

The symbols represent the position of the orbits in the start spaces. The orbits in the inner right-hand quarter are in the (x, z) start space and the orbits placed in

the outer right-hand quarter are in the stationary start space (Section 4.3). The thick black line represents the equipotential (cf. Fig. 2). The orbits in the inner

left-hand quarter are the orbits from the (x, z) start space with reversed angular momentum and the orbits placed in the outer left-hand quarter is identical to the

outer right-hand quarter and are only drawn to make the panels symmetric. The symbols show the result of the orbit classification (based on angular momentum

conservation, Section 4.5): the crosses are box orbits, the stars correspond to short-axis tubes and the diamonds correspond to (both types of) long-axis tubes.

We have also overplotted the analytical curves that separate the different type of orbits (see also Fig. 2 and vdV08). The solid rising curve is the focal hyperbola,

with above it the long-axis tubes and below it the short-axis tubes and boxes. The crossing solid declining curve separates, respectively, between the inner and

outer long-axis tubes, and between the short-axis tubes and boxes. The thin curves indicate the location of the corresponding thin tube orbits.

and E, we use bisection to find the corresponding value of r0 that is

located on the equipotential. This three-dimensional set (E, θ , φ) of

start conditions, the ‘stationary start space’ (Schwarzschild 1993),

results in box orbits or boxlets only. Tube orbits always conserve

the sign of at least one component of the angular momentum and

therefore never reach zero velocity. Since the direction of the orbits

in this start space is not important it is not necessary to add velocity

mirrored copies of them during the fit.

By design the set of energies E and angles in θ in both start

spaces are identical, so that the orbits on the equipotential bound-

ary of the (x, z) start space have obvious neighbours in stationary

start space. While not necessary, the size of the third dimension

of the start spaces is chosen to be the same for consistency. Both

sets of orbits can be represented in a single figure, by graphically

connecting the corresponding starting spaces at the equipotential, as

shown in Fig. 3, where selected energies of the triaxial Abel model

(Section 4.1) are shown. In this figure we have overplotted the same

lines from Fig. 2, which shows that our numerical scheme to locate

the thin orbits indeed results in an orbit sampling from the correct

region. The stationary start space intersects with the xz start space

at the equipotential. In the figure all the orbits in the stationary start

space that are nearest to the equipotential are plotted just outside the

equipotential. Subsequent rows in the stationary start space are plot-

ted radially outwards. A mirror image of the stationary start space

is also plotted for symmetry.

4.4 Dithered orbit integration

The orbits in the start space are integrated numerically and their

properties stored. The integration is done in Cartesian coordinates,

using an explicit Runga–Kutta method of order 5(4) (DOPRI5 rou-

tine by Hairer, Norsett & Wanner 1993). With this method, the

majority of the orbits can be integrated with energy accuracies of

better than one part in 105. This routine is capable of dense output,

which enables you to get an interpolated position and velocity at

any time in current time-step during the integration.

To ensure numerical precision the Runga–Kutta integrator uses

more steps where the orbital trajectory changes direction quickly.

Since this usually happens when the ‘star’ is travelling with a

high velocity, the integrated time-steps do not represent the time-

averaged path of the orbit. To make sure this is not a problem we

use the dense output of the integrator, to sample the orbit on equal

time intervals, ensuring that the orbits are properly time weighted.

Single orbits correspond to delta-functions in integral space,

while the DF of a (partially) phase-mixed galaxy is expected to vary

smoothly (Tremaine, Henon & Lynden-Bell 1986). This limitation

may be reduced by combining nearby orbits (Richstone & Tremaine

1988; Rix et al. 1997). Here we extend this method by ‘dithering’

orbits in all three dimensions in the initial starting space. We do

this by taking a bundle of 53 orbits with different, but adjacent, ini-

tial conditions and sum their observables. This method is also used

in the construction of axisymmetric models (see Cappellari et al.

2006).

When calculating the starting spaces for the orbits we create more

starting points for the dithering. We enlarge the sampling three-

dimensional (E, θ , φ) start spaces five times in each direction. This

leads to 125 orbits per bundle. The odd number five was chosen

so that each bundle has a clearly defined central orbit (see fig. 6 in

Cappellari et al. 2006). The orbital properties of each of the orbits in

each bundle are simply co-added. As an alternative, it is be possible

to apply some form of (Gaussian) weighting. In this way the orbit

bundles could be made to overlap, but the effects of this have not

been studied.

Effectively, the model thus contains 125 times more orbits. The

dithering causes the orbital building blocks to be smoother, eliminat-

ing aliasing effects, especially when modelling spatially extended
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Triaxial orbit based models 655

kinematic data. We found that this dithering is essential to obtain

smooth orbital observables and remove numerical noise, using a

limited amount of orbits.

4.5 Storage grids and symmetries

For spherical galaxies, it is in principle sufficient to store the orbital

properties in one dimension, along a line. The three-dimensional

model can be reconstructed afterwards by deprojecting the radial

profile back on to the sphere. Similarly, axial symmetry allows one

to carry out the calculations in the meridional plane only. Revolu-

tion of the model around the intrinsic short axis returns the three-

dimensional intrinsic properties. As we restrict ourselves to station-

ary, non-rotating galaxies that are symmetric in the three principal

planes, all orbital properties have to be calculated in only one octant.

The properties in the other octants follow by symmetry.

The density of every orbit in the library is stored on a spherical grid

in (rg, θg, φg) [θ g = 0 corresponds to the short axis and (θ g = π/2,

φg = 0) to the long axis]. The radial sampling is logarithmic with

the inner and outer boundary set to zero and infinity. The angular

grids θg and φg are sampled linearly between 0 and π/2. The grid

has Nrg = 15, Nθg = 4 and Nφg = 5. This leads to 20 bins per

radius and 300 bins in total, which is enough to ensure that the mass

is reproduced well and the model is self-consistent. When fitting the

model, the intrinsic mass grid is used as a constraint and is fitted

everywhere with an accuracy of 2 per cent (see Section 5).

Similar to the intrinsic symmetries, the projected properties of

spherical galaxies are one-dimensional and those of axisymmetric

galaxies are symmetric in the projected axes. It is therefore suffi-

cient to store the projected properties of spherical galaxies in one

dimension and those of axisymmetric objects in one quadrant of the

sky. The projected properties of triaxial galaxies are at most point

symmetric, with respect to the projected centre, which implies that

the model-data comparison must be done in one half (or more) of

the sky plane.

To convert the intrinsic coordinates (x, y, z) to the projected co-

ordinates (x′, y′, z′) we use equations (2) and (3). After this step the

PSF is included by randomly perturbing the projected coordinates

(x′, y′) with a probability described by the MGE PSF, before being

included into the observational apertures (identical to Cappellari

et al. 2006). We use a three-dimensional rectangular storage grid in

the projected Cartesian coordinates x′ and y′ and the line-of-sight

velocity v in the sky plane. The resolution and rotation of this grid

is adapted to the kinematical data that have to be reproduced. Op-

tionally, the observational apertures can be binned as a final step to

match any observational binning.

Only orbits with the correct degree of symmetry can be used to

reproduce the density and potential. All orbits in a separable poten-

tial are indeed eightfold symmetric, but this need not be the case

for resonant and irregular orbits in more general potentials. These

orbits can therefore not be used directly in the reconstruction of the

potential and density that we are interested in. This does not mean

that they are useless, as we can enforce the required symmetries by

apply a folding scheme to these orbits. Again, this scheme is sim-

ilar to what is done for axisymmetric potentials, except that only

orbits that are not symmetric with respect to the z = 0 plane have

to be corrected in that case [e.g. 1:1 (R, z) resonances, Richstone

1982].

The folding scheme is based on the fact that a given asymmetric

orbit has up to seven mirror images that are obtained by reflection

in the principal planes (see the first column of Table 2). These mir-

ror images are also supported by the potential, but do not appear in

Table 2. The recipe that is used to mirror orbits in the three principal planes.

Long-axis tubes are abbreviated by L-tube and short-axis tubes by S-tube.

Position Box L-tube S-tube

(x, y, z) (vx, vy, vz) (vx, vy, vz) (vx, vy, vz)

(−x, y, z) (−vx, vy, vz) (−vx, vy, vz) (vx, −vy, vz)

(x, −y, z) (vx, −vy, vz) (vx, vy, −vz) (−vx, vy, vz)

(x, y, −z) (vx, vy, −vz) (vx, −vy, vz) (vx, vy, −vz)

(−x, −y, z) (−vx, −vy, vz) (−vx, vy, −vz) (−vx, −vy, vz)

(−x, y, −z) (−vx, vy, −vz) (−vx, −vy, vz) (vx, −vy, −vz)

(x, −y, −z) (vx, −vy, −vz) (vx, −vy, −vz) (−vx, vy, −vz)

(−x, −y, −z) (−vx, −vy, −vz) (−vx, −vy, −vz) (−vx, −vy, −vz)

the library because we sample orbital initial conditions only from

one octant. All eight mirror orbits have identical properties and are

equally useful for the model. We may therefore add these eight or-

bits to obtain an orbit that has three planes of symmetry. In practice,

this is done as follows. During orbit integration, the orbital weight

that corresponds to a given point (x, y, z) is equally distributed over

the eight mirror points. The contributions to both the intrinsic and

projected density of all eight points are added up into one orbital

building block. In this way, orbits that are asymmetric are included

correctly, while orbits that already are eightfold symmetric are sim-

ply sampled more densely.

More attention is required when calculating the kinematical ob-

servables of the orbital building blocks. If we reflect the velocities in

the same way as the coordinates, the total orbital building block has

no net angular momentum. This is only correct for box orbits, while

tube orbits, which are essential when fitting to the observed velocity

field, conserve the sign of at least one component of the angular

momentum vector. Therefore, the sign of the angular momentum of

these orbits must be preserved also in the total orbital building block.

This is ensured by classifying the orbits on the basis of their angular

momentum properties. Box orbits oscillate in all three directions, so

that no components of the angular momentum are conserved, while

long-axis and short-axis tubes conserve the sign of the angular mo-

mentum parallel to the long and short axis, respectively. This allows

us to distinguish orbits by checking for which angular momentum

component(s), if any, the sign is conserved during orbit integration.

In doing this, inner and outer long-axis tubes cannot be recognized

separately. This is, however, not a problem for the present applica-

tion (cf. Schwarzschild 1979). As can be seen from Fig. 3, where

we have plotted the different orbital types with different symbols,

the numerical classification agrees with the analytical calculations.

We then apply the following scheme for reflections in the principal

planes (see Table 2). Box orbits: the average angular momentum is

zero, which allows us to reflect the velocity components in exactly

the same manner as the coordinates. Long-axis tube orbits: the sign

of the angular momentum around the long axis, Lx = y vz − z vy ,

is conserved, which means that Lx must be the same for all eight

mirror points. Short-axis tube orbits: the sign of Lz = x vy − y vx is

conserved.

4.6 The influence of a central mass concentration

Central mass concentrations have considerable influence on the or-

bital structure of the galaxy as a whole and may induce chaotic

behaviour. In an axisymmetric potential, the non-integrable regions

of phase space (usually referred to as the Arnold web) are not con-

nected. This means that the diffusion of chaotic orbits is limited and
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656 R. C. E. van den Bosch et al.

their influence on the model is probably not significant, which jus-

tifies the fact that chaotic orbits are not treated in a special manner

in axisymmetric models. Realistic triaxial potentials can support a

much larger fraction of chaotic orbits. The overall amount of chaotic

motion depends on the cusp slope and on the mass of the central

mass concentration (Gerhard & Binney 1985; Merritt & Fridman

1996; Valluri & Merritt 1998), but the different orbit families ex-

perience fundamentally different effects, due to the central mass

concentration.

The box orbits that are started from the inner most equipotentials

are very difficult to integrate numerically. The central accelerations

are large and the time-steps that are required to conserve the integra-

tion accuracy are correspondingly small, resulting in prohibitively

long orbital integration times. This effect can be reduced by using

a non-zero value for the softening length that was introduced in

Section 3.8. The DOPRI5 routine that we use to integrate the orbits

varies the time-steps to match the desired accuracy. We found that

even orbits that pass close to the black hole can be integrated with an

accuracy of 10−5 in a reasonable time. The softening length that we

used is typically two orders of magnitudes smaller than the radius of

the sphere of influence of the black hole. This sphere of influence is

defined as R• = GM/σ 2, which is the radius inside which the black

hole potential dominates.

Test particles that are dropped from equipotentials at somewhat

larger distances from the black hole are scattered off their orig-

inal (box) orbits and may become chaotic (Gerhard & Binney

1985). The trajectories of such particles can be described by a

series of regular segments and, given enough time, will fill most

of the equipotential that corresponds to the orbital energy. Since

equipotentials are rounder than equidensity curves and box or-

bits are the backbone of the triaxial shape, this process may de-

stroy the triaxial shape from the inside out (e.g. Poon & Merritt

2002).

Chaotic orbits are not time independent, since their orbital den-

sities do not average out on physical time-scales. In principle, this

means that a Schwarzschild model with an orbit library that includes

irregular orbits is not stationary. However, evolutionary studies of

models that include chaotic orbits (Schwarzschild 1993) and N-

body simulations (Merritt & Fridman 1996; Holley-Bockelmann

et al. 2002) display no dramatic shape changes, even after very

long times. This means that a model with chaotic orbits may be

stationary for as long as a Hubble time and Schwarzschild so-

lutions can be constructed also for models that contain chaotic

orbits.

The use of dithered orbital components (Section 2.2) is critical to

create nearly time-independent models. In fact orbits started from

similar initial conditions can follow very different trajectories. Be-

cause the dithering single ‘sticky’ chaotic orbits do not play a major

role, since orbits are always bundled with nearby orbits.

The influence of a central mass concentration on tube orbits is

radically different. Low-energy tubes, which orbit at large radii,

never approach the central mass concentration close enough to be

significantly disturbed. Tubes that are launched from the principal

planes close to the radius of influence of the black hole turn into

precessing ellipses. Depending on the shape of the volume that the

ellipse eventually fills, they may be labelled as pyramid orbits (Poon

& Merritt 2002) or lens orbits (Sridhar & Touma 1999; Sambhus &

Sridhar 2000). The precession rate of the ellipse is determined by the

ratio of the stellar mass that is enclosed by the orbit and the central

black hole mass. The integration time that is required for conver-

gence of the orbital properties is therefore inversely proportional to

the orbital radius.

4.7 Number of orbits

To summarize, we use two start spaces with three dimensions (E, θ ,

R) and (E, θ , φ), which are connected at the equipotential boundary

of every energy. The total number of orbits in the fit, excluding

dithering, is three times the number of orbits in the one start space,

as the (x, z) start space is used twice and the stationary start space

once. The number of orbits is denoted as 3 × NE × Nθ × NR.

Because of the dithering each effective orbit consists of 125 orbits,

significantly smoothing the orbital component. The total number of

orbits necessary to make a model is dependent on several factors:

the number and spatial distribution of the observed kinematics, the

size of the galaxy model and the shape of the potential.

The effect of the number of orbits can be studied by determin-

ing the quality-of-fit χ 2 of the model as a function of the number

of orbits. With increasing orbit numbers the χ2 decreases. When

enough orbits are present, the model does not improve anymore and

the χ2 does not decrease anymore. In our test cases we find that the

model does not improve considerably when the orbit library consists

of 2000 orbits or more. Self-consistent models with smaller orbit

libraries have significantly larger χ2, due to the fact that there are

not enough orbits to reproduce the mass, especially at larger radii.

We therefore decided to use an orbital sampling of 21 equipotential

shells with 8 × 7(θ , R) starting points each, totalling 3528 (×125)

orbits.

5 S U P E R P O S I T I O N A N D R E G U L A R I Z AT I O N

To make a model with the computed orbits we need to combine the

orbits in such a way that they fit the observations, while reproduc-

ing the (intrinsic) mass distribution for self-consistency. Here we

describe the construction of the orbital superposition and a way to

ensure that our numerical solution is realistic.

5.1 Finding the orbital weights

The model has two components that need to be fitted: the kinematic

observations and the (intrinsic and projected) mass distribution. The

kinematics are fitted using linearly superposed mass-weighted GH

moments (Rix et al. 1997). The fit is done by combining the orbits

linearly by assigning each orbit an orbital weight (γ i). These orbital

weights directly represent the mass in each orbit and must therefore

be positive (γ i � 0).

The intrinsic mass grid (Section 4.5) and the aperture masses

(the total amount of mass in each observed aperture: the zeroth

GH moment) must be added to the fit to ensure that the model is

self-consistent with the density in which the orbits were calculated.

Often this is done by including them in the fit as an ‘observable’

(e.g. van der Marel et al. 1998; Valluri et al. 2004). However, they

are not actually observed and therefore it is difficult to assign an

error. To include them into the fit they are usually assigned a hand-

tuned fractional error so that the mass is reproduced well without

influencing the fit of the kinematics. Here we use a different ap-

proach by including them as ‘constraints’ with bounds in the fit

(similar to Richstone & Tremaine 1988). This means that the orbital

superposition reproduces the intrinsic and aperture masses to within

2 per cent at all times, while finding the best-fitting kinematics. The

total normalized mass of all the orbital weights is fixed using an

equality constraint. The reason for including constraints is that the

mass can almost always be reproduced up to numerical precision

(van der Marel et al. 1998; Poon & Merritt 2002) and is thus not

relevant for finding the best-fitting solution. We only want the mass
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Triaxial orbit based models 657

to be reproduced to within 2 per cent, because this is the typical

accuracy of (the MGE of) the observed SB. Within these bounds the

solver allows the mass to vary to find the best-fitting kinematics in

the least-squares sense.

We use the sparse quadratic programming solver QPB from the

GALAHAD library (Gould, Orban & Toint 2003) to make the su-

perposition, as this algorithm is capable of fitting the kinematics

in the least-squares sense while satisfying mass constraints. This

algorithm optimizes the orbital weight γ in the least-squares sense:

min
γ∈Rn

‖Aγ − b‖2 (24)

subject to the positivity constraint

γ � 0, (25)

and the linear constraints,

0.98 p � Mγ � 1.02 p. (26)

Here A is the m × n projection matrix whose n columns give the

model contribution of every orbit to the m kinematical observables

b. The matrix M is a projection matrix giving the model contribution

of the orbits to the mass in the various apertures and p is the mass

derived by integrating the MGE model over the projected apertures

and intrinsic mass grid. The total number of constraints in the fit

(p) is 300 (intrinsic mass grid) + 1 (total mass) + the number of

apertures (aperture masses).

The quality of the model is determined by measuring the discrep-

ancy between the model and the observations for different values of

the input parameters. This is done by calculating the χ2, defined as

χ 2 =
Nd

∑

i=1

(

D∗
i − Di

�Di

)2

, (27)

in which Nd is the number of observables (the number of apertures

times the GH moments), Di is the observation for the ith observ-

able, D∗
i is the model prediction and � Di is the uncertainty that is

associated with this value (the observational error).

5.2 Regularization scheme

The quadratic programming problem to be solved is ill conditioned

in most applications, due to (close to) degenerate orbits. As a con-

sequence, the orbital weight distribution for the solution with the

smallest χ 2 may be a rapidly varying function, which is not likely

to be realistic (Merritt 1993; Verolme & de Zeeuw 2002). This ef-

fect can be reduced by adding linear regularization equations to the

problem (e.g. Zhao 1996; Rix et al. 1997), which is also known as

‘damping’ in the field of linear programming. Such regularization

terms can be added to force the orbital weights towards a smoother

function by minimizing their higher order derivatives.

Our two start spaces are sampled in three dimensions (E, R, θ )

and (E, θ , φ) and they are connected at the equipotential boundary.

The three dimensions of the (x, z) start space roughly correspond to

the three integrals of motion (in a separable potential). We can thus

enforce smoothness of our solution by adding regularization terms

to our minimization routine in each of the three directions (k, l, m)

of our start space. We adopt the second-order finite differencing

(Press et al. 1992) regularization from Cretton et al. (1999), so for

each orbit we add three equations to the array A given above, and

minimizes them in a least-squares sense:

λ(2ξkγ(k,l,m) − ξk−1γ(k−1,l,m) − ξk+1γ(k+1,l,m)) = 0,

λ(2ξkγ(k,l,m) − ξkγ(k,l−1,m) − ξkγ(k,l+1,m)) = 0,

λ(2ξkγ(k,l,m) − ξkγ(k,l,m−1) − ξkγ(k,l,m+1)) = 0,

(28)

where γ (k,l,m) represents the orbital weight at position (k, l, m) in

the start space grid. The ξ k weights are added to include the radial

energy dependence of the model. It is estimated, a priori, as the

normalized mass enclosed by each radial shell in the start space:

1

ξk

=
1

No

∫ ∫ ∫

ρ dx dy dz

∫ ∫

R(k+1)
∫

R(k−1)

ρ(x, y, z) dx dy dz, (29)

where No is the number of orbits. The regularization error λ de-

termines how much smoothing is performed. Increasing λ increases

the amount of smoothing. The optimal value of this λ is usually time

consuming to determine (see e.g. Cretton et al. 1999). However, it

has been shown elsewhere that a theoretical axisymmetric galaxy

with a two-integral DF can be accurately reproduced by using this

approach (Verolme et al. 2002; Cretton & Emsellem 2004). Appli-

cations of the axisymmetric Schwarzschild method have often used

a value of 1/� ≡ λ = 0.25 as regularization (Cappellari et al. 2002;

Krajnović et al. 2005). As we will show in the next section it is also

acceptable for the triaxial method.

5.3 Testing the regularization

In the companion paper the DF of the triaxial test model is compared

directly in terms of the integrals of motion (section 5.4.3 in vdV08)

and we find that the recovery of the DF is consistent with the quality

of the input kinematics (figs 12 and 13 in vdV08). The triaxial test

model is ideally suited to test regularization. To do this we compare

the orbital mass weights directly. The top row in Fig. 4 displays

the computed orbital weights and kinematics for the triaxial Abel

model from vdV08. The other rows show the orbital weights and

kinematics for the best-fitting Schwarzschild model with decreasing

regularization from top to bottom. The orbits at the radius of 2 and

33 arcsec are outside the range where they are constrained by the

kinematics, and as such the orbital weights for the Schwarzschild

models are not expected to compare well with those of the Abel

model.

The distribution of (analytical) orbital weights for the Abel

model is smooth with some sharp peaks. The reconstructed orbital

weights from the Schwarzschild agree well with the analytical or-

bital weights, except for high values of λ, which corresponds to

strong regularization. The orbital weights of strongly regularized

models are distributed more smoothly; adjacent orbits receive sim-

ilar weight and the kinematics start to change. From Fig. 4, we see

that the kinematics is affected by the regularization at λ � 0.2, and

thus the optimal regularization in this case has to be chosen to be

λ � 0.2. This will give satisfactory orbital weights, and kinematics

that are consistent with the observations. The comparison is best for

a λ ∼ 0.1.

There are many reasons why the reconstructed orbital weights

do not exactly match the analytical orbital weights. Most of them

are minor numerical and discretization effects, as discussed in the

following. (i) The Schwarzschild method samples the galaxy with

discrete orbits (computed in the reconstructed potential), which are

related to the DF via their phase-space volume (Vandervoort 1984).

The resulting orbital mass weights are evaluated in an approximated

and numerical way (section 5.4 in vdV08). (ii) Some symmetric

orbits appear twice (or more often) in the orbit library. Without

regularization the (quadratic) solver ignores the second identical

copy of this orbit, as they do not improve the fit. However, these

orbits do get assigned weight in the test case. A good example of

this are the box orbits in the (x, z) start space, as they are added twice
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658 R. C. E. van den Bosch et al.

Figure 4. The effect of regularization on the models. The top row shows the triaxial Abel from van de vdV08, while the other rows show the best-fitting

Schwarzschild models with decreasing regularization, from top to bottom. (For a detailed comparison of the DF see vdV08.) The left-hand columns show the

orbital weights of the models in the same configuration as Fig. 3, whereas the two rightmost columns show the velocity and velocity dispersion fields.

to the fit [like all (x, z) orbits]. These differences are only visible in

this direct comparison of the orbital weights.

To estimate the effect of regularization on the kinematical fit

more quantitatively, we investigated the χ2 difference between the

models with different values of the regularization λ. For the best-

fitting model with 2370 kinematical observables the total χ 2 is 2588.

Adding regularization does increase the χ 2 of the model. With λ =
0.01 (little regularization) it does not affect the fit to the kinematics

(�χ 2 ∼ 1). When increasing λ further to 0.2 or even 4 (very strong

regularization), the �χ 2 changes to ∼200 and ∼1000, respectively.

These numbers reflect what one sees in Fig. 4: for λ � 0.2 the kine-

matical fit does not change visibly, whereas for higher λ (stronger

regularization) the kinematical fit becomes rapidly worse.

One other important question is whether the regularization

changes the recovered input parameters, including the viewing an-

gles, mass-to-light ratio, anisotropy and black hole mass. This is

nearly impossible to test with real galaxies, as their properties are

unknown. The Abel model has known parameters and was used to

test the recovery. We found that there is no difference in the best-

fitting parameters when a regularization of λ = 0.2 was chosen. The

confidence intervals of the parameters do become smaller by using

regularization. This is expected, as the added regularization terms

decrease the freedom of the model and therefore increase the χ 2.

A notable exception, that we do not test here, is the recovery of

the black hole mass. There are often few observables in the models

near the sphere of influence. The number of mass bins near the black

hole is extremely limited and the kinematical observations inside the

sphere of influence of the black hole is very limited, usually less than

10 observables. In this scenario it is conceivable that regularization

is needed, as the model might otherwise adapt the orbital structure

to be able to accommodate the black hole (see also e.g. Magorrian

2006). Recovery of the black hole mass using regularization will be

presented elsewhere.

6 T E S T S O N T H E T R I A X I A L A B E L M O D E L

We test our method on the triaxial Abel model from the compan-

ion paper vdV08, introduced in Section 4.1 and already used in

Section 5.3 above. Here, we outline further tests done on the Abel

model.
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Triaxial orbit based models 659

Figure 5. Schwarzschild models with different intrinsic shapes fitted to the observables of the triaxial Abel model from vdV08, reveal that the kinematics vary

significantly by changing the axis ratios p and q. The panels on the left-hand side show the velocity field of the Schwarzschild model for each value for p and

q, while the input velocity field from the Abel model is shown in the top left-hand corner. The panels on the right-hand side show the same for the velocity

dispersion. The input model has axis ratios (p, q) = (0.82, 0.67).

6.1 Internal orbital structure and DF recovery

In vdV08 the best-fitting triaxial Schwarzschild model to the input

triaxial Abel is presented. The Schwarzschild method only uses

the information that can be observed in real galaxies, i.e. the two-

dimensional SB and the two dimensional stellar kinematics. The

resulting best-fitting model is an excellent fit and has a (reduced)

χ 2 per degree of freedom (d.o.f.) of ∼1.1.

Since Schwarzschild models only fit the projected observables it

is not obvious that these models can recover the three-integral DF

and the internal structure of the test model. By comparing the mass

weights of the Schwarzschild model to the DF of the test model,

vdV08 demonstrate that both the internal orbital structure and DF

are recovered with an accuracy similar to the typical (simulated)

errors on the kinematics.

6.2 Recovering the global parameters

When constructing Schwarzschild models of the Abel model, we

expect the kinematics of the Schwarzschild model to vary when

changing intrinsic shape parameters (p, q, u), and thus the viewing

angles (ϑ , ϕ, ψ). The most obvious are the change of the zero-

velocity curve as the projected axes change on the sky. Also, the

characteristics of the orbits in the model are dependent on the shape

of the potential. These effects are shown in Fig. 5, by showing

models of the analytic test data in linear steps of 0.05 in p or q. The

models become significantly worse when changing the parameters

away from the correct values. This shows that different intrinsic

shapes support different orbits and that one cannot expect a model

with the wrong potential to be able to fit the kinematics in all cases.

To search the global parameters we sample the parameter space,

by making linear steps of 0.1 M⊙/L⊙ in M/L, and 0.05 in p, q

and u (resulting in 100 different intrinsic shapes). For each corre-

sponding Schwarzschild model, the changes are quantified by the

goodness-of-fit parameter �χ 2. To visualize this four-dimensional

parameter space, we calculate for a pair of parameters, say p and q,

the minimum �χ 2 as a function of the remaining parameters, u and

M/L in this case. The contour plots of the resulting marginalized

�χ 2 for all different parameters for the Schwarzschild models fitted

to the observables of the Abel model are shown in Fig. 6. Since we

sampled in intrinsic shape and not in viewing direction, the viewing

angle sampling is not uniform. In particular the very round models,

which are independent of φ are not represented properly. To this end,

we create a dense grid in (p, q, u) and interpolate the χ2 linearly over

this dense grid, resulting in the contour plots of (ϑ , ϕ, ψ) in Fig. 6.

The input parameters for which the simulated observables of the

Abel model were obtained are M/L = 4 M⊙/L⊙ and (ϑ , ϕ, ψ) =
(70◦, 30◦, 101◦). As outlined in Section 3.7, the latter viewing angles

convert to the intrinsic shape parameters (p, q, u)= (0.82, 0.67, 0.88),

given the average projected flattening q′ = 0.76 of (the MGE model

of) the SB. These input parameters are denoted by a red diamond in

the contour plots of Fig. 6. We find that the input M/L and (p, q, u)

(and hence also the viewing angles) of the Abel model are accurately

recovered, with a typical uncertainty of 10 per cent or less.

Krajnović et al. (2005) suggested that the recovery of the inclina-

tion for axisymmetric models is degenerate, which seems in conflict

with our recovery of the intrinsic shape. However, the kinematics

of the Abel model have a significant feature, namely a orthogonal

decoupled core, and this makes it plausible that the viewing angles

are constrained quite strongly. We verified that for galaxies with no

such distinguished kinematic feature, e.g. in the case of a (nearly)

zero mean velocity map like for M87, the intrinsic shape is not well

constrained.
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660 R. C. E. van den Bosch et al.

Figure 6. Marginalized contours maps of the Schwarzschild models fitted

to the observables of the triaxial Abel model for different intrinsic shapes.

The contours denote 2, 4 (thick line) 8 and 32σ confidence levels. Areas for

which the MGE cannot be deprojected are left blank. The six upper panels

show the intrinsic shape parameters (p, q, u) and mass-to-light ratio M/L;

the three lower panels show the viewing angles (ϑ , ϕ, ψ). The combination

of ϑ and ϕ is shown in a Lambert equal-area projection, seen down the north

pole (z-axis). The x, y and z symbols give the location of views down those

axis. The red diamond in each panel indicates the input parameters from the

Abel model.

7 A P P L I C AT I O N TO N G C 4 3 6 5

We now apply our method to NGC 4365, one of the prototypical

galaxies with a KDC. It is a giant E3 elliptical and it was one of the

first objects in which minor axis rotation was discovered (Wagner,

Bender & Moellenhoff 1988; Bender, Saglia & Gerhard 1994). The

Figure 7. SAURON observations of NGC 4365. Top panels: from left- to right-hand side: the mean velocity, velocity dispersion and GH moments h3 and h4

of NGC 4365, as observed with the integral-field spectrograph SAURON. The pixel scale of the observations is 0.8 arcsec. Middle panels: point-symmetrized

kinematics with respect to the galaxy centre. Non-symmetric deviations cannot be reproduced by a triaxial model anyway and the symmetrization guides the

eye. Bottom panels: kinematic maps of the best-fitting Schwarzschild model, obtained by adding the weighted contributions of the best-fitting set of orbits. The

same colour levels are used for both data and model.

peculiar velocity structure of this galaxy was partially unravelled by

multiple long-slit observations (Surma & Bender 1995), but the full

two-dimensional kinematical structure was only revealed with the

integral-field spectrograph SAURON (Davies et al. 2001).

KDCs can be the result of a merger event, but can also occur

when the galaxy is triaxial and supports different orbital types in

the core and main body (Statler 1991). Davies et al. (2001) stud-

ied the first option and investigated the link between the kinematics

and the line-strength distribution of NGC 4365. They found that

the core and the main body are of similar age and that any mergers

that led to the formation of the KDC must have occurred at least

12 Gyr ago, as otherwise younger stellar populations would have

been detected. The orbital structure that supports the KDC and the

main body cannot be observed directly and must be inferred from

dynamical models. Statler et al. (2004) studied the viewing angles

and triaxiality of the system using an approach developed by Statler

(1994a), which uses Bayesian analysis to fit analytic solutions of

the continuity equation to an observed velocity field. They found

NGC 4365 to be strongly triaxial and seen almost along the long

axis. The triaxial Schwarzschild method that was presented in the

previous sections allows us to build comprehensive dynamical mod-

els of this galaxy and investigate its intrinsic structure.

7.1 Observations

NGC 4365 was observed with SAURON on the nights of 2000

March 29 and 30 for two different pointings, with an overlap in the

central region. The exposures were combined and rebinned into a

map with a slightly better spatial sampling (0.8 arcsec, compared

to 0.94 arcsec for the individual lenslets) and a coverage of 33 ×
63 arcsec2. Davies et al. (2001) give a full description of the obser-

vations.

To increase the signal-to-noise ratio (S/N) to sufficient levels for

accurate determination of the kinematics, the data cube was spatially

binned into 964 non-overlapping bins using the two-dimensional

Voronoi binning of Cappellari & Copin (2003). A minimum S/N

of 100 per spectral element was imposed. However, many of the

spectra have a much higher S/N value (up to ∼300), and more than
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Triaxial orbit based models 661

Table 3. The parameters of the 11 Gaussians in the MGE fit to the com-

bined HST/WFPC2/F814W and the ground-based image of NGC 4365.

The columns give for each Gaussian, respectively, its number j, amplitude

SB0 = L/(2πσ ′2q′), dispersion σ ′, projected flattening q′ and position angle

offset �ψ ′, as defined in equation (4).

j log SB 0(L⊙,I pc−2) log σ ′ (arcsec) q′ �ψ ′ (◦)

1 3.424 −1.024 0.800 0.0

2 3.319 −0.727 0.800 0.0

3 3.238 −0.320 0.800 0.0

4 3.435 −0.027 0.670 0.0

5 3.820 0.138 0.709 0.5

6 3.740 0.402 0.698 0.8

7 3.576 0.648 0.798 0.0

8 3.106 0.955 0.737 0.0

9 2.874 1.224 0.739 0.0

10 2.400 1.499 0.741 3.5

11 2.122 1.833 0.775 3.6

12 1.329 2.362 0.670 4.5

one quarter of the spectral elements remain unbinned. The stellar

kinematics where extracted using the penalized pixel-fitting method

(pPXF) of Cappellari & Emsellem (2004). For every Voronoi bin

we extracted the velocity V, velocity dispersion σ and the higher

order GH moments h3 and h4 of the stellar LOSVD.

The SAURON spectra have very high S/N so that the LOSVD can

be reliably extracted from the data; however, care has to be taken

to minimize the effect of template mismatch, which dominates the

error budget in the bright, high-S/N central regions of the galaxy. To

this end an accurate template was determined during the pPXF fit

using the ∼1000 stars of the MILES library (Sánchez-Blázquez et al.

2006), which span a large range of stellar atmospheric parameters.

Out of the MILES stars, only 14 are selected by pPXF to provide

an accurate match to the observed average galaxy spectrum, with an

rms scatter in the residuals of only 0.17 per cent. From the observed

residuals and fig. B3 of Emsellem et al. (2004), we infer an upper

limit of �0.02 on the systematic error of the GH moments, due to

any remaining template mismatch.

The rereduced kinematics, shown in Fig. 7, are a significant im-

provement over the kinematics shown in Davies et al. (2001). They

show a core in the inner ∼6 arcsec that rotates around the minor

axis. At larger radii the stars rotate around an axis offset by 82◦,

which is evidence that the system is intrinsically triaxial. The peak

mean streaming velocities are 55 km s−1. The dispersion peaks at a

value of ∼260 km s−1.

7.2 Mass model

We used an HST/WFPC2/F814W image and a ground-based image

of NGC 4365 obtained with the 1.3-m McGraw-Hill at the MDM

observatory (from Falcón-Barroso et al., in preparation) to make

an MGE (mass) model, using the software by Cappellari (2002).

We ensure that the model is the roundest that is consistent with the

observations. This is done by setting a lower limit to the allowed

projected flattening of 0.67 and an upper limit of 45 on the difference

in position angle between the individual Gaussians. The modest

difference between the rms error of the free model (0.99 per cent)

and the constrained MGE model (1.02 per cent) suggests that these

constraints do not lead to systematic errors in the mass model. The

parameters of the MGE model are given in Table 3, the SB map and

the MGE model fit are shown in Fig. 8.

Figure 8. Top: the contours of HST/WFPC2/F814W image of NGC 4365,

overplotted with (smooth) contours of the best-fitting MGE. Bottom: the

contours of the ground-based image of NGC 4365 obtained with the 1.3-m

McGraw–Hill telescope and the best-fitting MGE.

7.3 Dynamical models

We calculate triaxial Schwarzschild models using orbit libraries of

3 × 1176 orbits, 2352 of which are started in the (x, z) plane, the

remaining are dropped from the equipotential. We assume a distance

of 23 Mpc for NGC 4365 (Mei et al. 2005). The assumed distance

does not influence our conclusions about the internal structure of

the galaxy, but lengths and masses scale linearly with the distance,

while mass-to-light ratios are inversely proportional to the distance.

A given triaxial model is determined by the mass-to-light ratio

M/L, the shape parameters (p, q, u) – or equivalently, the viewing

angles (ϑ , ϕ, ψ) – and the mass M• of the central black hole. We fix

the latter to M• = 3.6 × 108 M⊙, consistent with the black hole–σ
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662 R. C. E. van den Bosch et al.

Figure 9. The panels show the kinematics of the best-fitting model of

NGC 4365. The lines (with error bounds, shown as black dots) are the

(sorted) observations, while the red dots show the model predictions.

relation (Tremaine et al. 2002), as the SAURON observations do

not have enough spatial resolution to resolve the radius of influence

of the black hole and therefore cannot constrain the mass directly.

Given a typical flattening of q′ = 0.74 of the Gaussians in the MGE

model (Table 3), we sample (p, q, u) linearly in steps of 0.06. This

results in 96 different intrinsic shapes which we combine with M/L

values sampled linearly in 11 steps, from 3.0 to 5.0 in solar units.

This results in a total of 1056 Schwarzschild models, for each of

which we compute the goodness of fit to the observations via χ2.

The resulting models show a smooth gradient in χ 2 as can be seen

in the �χ 2 contours in Fig. 10. As before (see Section 6.2), to avoid

an incomplete sampling in viewing angle space, we oversample in

(p, q, u) before computing the corresponding �χ2 contours in (ϑ ,

ϕ, ψ).

7.4 Best-fitting model

The best-fitting model (the model with the lowest χ 2) is shown in

Fig. 7. To be able to estimate the quality of the fit, Fig. 9 shows the

residuals per velocity moment. Each panel shows a moment sorted in

order of increasing value. The observed moment is indicated by the

black line, with errors shown as black dots. The red dots represent

the corresponding values from the best-fitting model, which is in

good agreement with the data. The corresponding χ2 = 4295, which

implies a χ 2 per d.o.f. of 1.1. Statistically the standard deviation of

the χ2 is
√

2(Nobs − Npar). Given that we have 3856 observables in

our model and less than 10 parameters (Npar), the expected scatter

Figure 10. Marginalized contours maps of the models of NGC 4365 for

different mass-to-light ratios, shape parameters and (corresponding) viewing

angles. The layout is identical to that of Fig. 6. See Section 7.4 for discussion.

Figure 11. Intrinsic axis ratios of the density distribution of the best-fitting

model of NGC 4365 as a function of radius. The inner 35 arcsec is nearly

oblate axisymmetric (p > 0.95), whereas the outer part is much more triaxial

(T > 0.2). The kinematic observations extend to ∼35 arcsec.

in the χ2 is much larger than the customary �χ2 = 1 criterion. We

therefore treat �χ 2 <
√

2Nobs as a 1σ (68 per cent) result. The best-

fitting parameters are then M/L = (3.5 ± 0.2) M⊙/L⊙ (in I band)

and the intrinsic shape parameters (p, q, u) = (0.97+0.03
−0.05, 0.70+0.03

−0.03,

0.99+0.01
−0.04).

The best-fitting M/L is just consistent with the value of (4.3 ±
0.4) M⊙/L⊙ predicted by the M/L–σ relation derived from

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 385, 647–666

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
8
5
/2

/6
4
7
/1

0
6
8
4
3
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Triaxial orbit based models 663

axisymmetric models by Cappellari et al. (2006), using a σ e =
231 km s−1 for this galaxy.2 It is interesting to see that the best-

fitting M/L does not vary significantly with any of the other model

parameters as can be seen in the �χ2 contour plots in Fig. 10. For

example, even for models with a non-optimal value of p, q or u, still

the best-fitting M/L ∼ 3.5 M⊙/L⊙. The total mass of the model,

obtained by converting the total luminosity to mass using the best-

fitting M/L value is 4.8 × 1011 M⊙.

7.5 Intrinsic shape

In Fig. 11, we show the intrinsic shape parameters as a function

of radius of our best-fitting model. Inside the central 35 arcsec,

where we have the kinematic observations, the shape of NGC 4365

is fairly oblate, with p = b/a � 0.95, 0.65 < q = c/a < 0.75 and

the triaxiality parameter T ≡ (1 − p2)/(1 − q2) < 0.2. Further out

– outside of the area where observed kinematics are available – the

reconstructed density becomes more prolate. This is caused by the

drop in p to ∼0.85, while q stays approximately the same. As a

result the triaxiality T rises with increasing radius to ∼0.6.

The axis ratios found by Statler et al. (2004) using velocity field

fitting of the SAURON data are 〈p〉 ∼ 0.84, 〈q〉 ∼ 0.60 which are just

outside our 99 per cent confidence, and do not agree with their claim

of strong triaxiality (〈T〉 ∼ 0.45) inside 35 arcsec of the galaxy. Their

lower limit on the triaxiality is not consistent with our measurement

in the centre. We will return to this later.

The corresponding best-fitting viewing angles are (ϑ , ϕ, ψ) =
(68◦, 73◦, 91◦). To give an indication of the uncertainty of these val-

ues we show a Lambert azimuthal equal-area projection of ϑ and ϕ

in Fig. 10. This is comparable to a similar projection in Statler et al.

(2004, their fig. 4). Our best-fitting viewing angle is also not consis-

tent with theirs. The velocity field fitting (VF) fitting method does

not include the dispersion and other higher order velocity moments

and assumes a plausible solution of the continuity equation, while

our Schwarzschild method does fit higher moments up to al least h4

and does not enforce any constraints on the DF.

The effect of the higher moments on the inferred shape can be

studied by making models without them. We find that excluding

h4 has no significant effect on the recovered shape. Removing h3

and/or lower moments h2 and h1 (representing the dispersion and

mean velocity) changes the best-fitting shape significantly and the

reconstructed LOSVD of these models show significant deviations

from Gaussian. These models are therefore not a good representation

of the observed LOSVD. This tests show that the Schwarzschild

models need at least h3 to accurately recover the inferred shape and

observed LOSVD.

To compare our modelling to the VF method directly, we made

models where we only fit the mean velocity. We find that these mod-

els are completely degenerate and no minimum could be found.

Instead of our least-squares approach a likelihood method could

be used to find a solution in the probabilistic sense; however, such

methods are unpractical for Schwarzschild models, because of the

many iterations required. The VF method does use Bayesian anal-

ysis, with a prior on the dispersion.

For NGC 4365 to be a pure long-axis rotator with a KDC that con-

sists purely of short-axis tubes, we expect a best-fitting misalignment

angle ψ that coincides with the observed kinematic misalignment

2 The velocity dispersion σ e is derived from the SAURON kinematics by

luminosity-weighting all the spectra within one effective (half-light) radius

and fitting a single Gaussian LOSVD.

Figure 12. Properties of the orbital distribution. Left-hand panel: balance

of prograde and retrograde rotation as a function of radius. The balance is a

fraction of the total mass at that radius. The black vertical line represents the

radius beyond which we do not have kinematic observations from SAURON.

Right-hand panel: cumulative fraction of orbit type as function of their start

radius.

of 82◦ ± 2◦ (or the symmetric 98◦). In fact, all the models with

|ψ − 90| > 5◦ are strongly ruled out and we conclude that

NGC 4365 is not consistent with a pure long-axis rotator.

7.6 The orbital structure

The observed kinematics that go out to ∼35 arcsec show that

NGC 4365 must be intrinsically triaxial, due to the KDC and the

misaligned large-scale rotation. This seems to be in conflict with

the (nearly) oblate axisymmetric shape inside 30 arcsec of our best-

fitting model (Fig. 11), as this shape does not support the rotation

around the major axis seen in the observed kinematics.

Fig. 12 shows the cumulative mass per orbit type as a function of

intrinsic radius. As expected from the shape in the inner region

the stars on short-axis tube orbits are dominant, accounting for

75 per cent of the mass inside 30 arcsec. The stars on long-axis

tubes become significant in the model only outside 30 arcsec.

To understand the rotation seen in the observations we look at the

balance of stars on prograde and retrograde orbits, shown in Fig. 12.

It shows that the stars in the KDC are on prograde short-axis orbits

inside 6 arcsec, while up to 30 arcsec the stars on short-axis orbits

do not have a preferred rotation direction. Only 15 per cent of the

stars inside 30 arcsec move on long-axis orbits, but nearly all of

them move in the retrograde direction, and thus contribute to the

observed mean velocity.

To make the link between the orbital structure and the observa-

tions, we show the unbinned kinematics of the stars on each type of

orbit individually, extrapolated over a region larger than the original

observations in Fig. 13. The mass fraction, velocity and dispersion

fields are shown for (i) all stars, (ii) stars on prograde short-axis or-

bits, (iii) stars on retrograde short-axis orbits, (iv) stars on prograde

and retrograde short-axis orbits combined and (v) stars on long-axis

and box orbits combined.

In the decomposition of Fig. 13 the stars on prograde and retro-

grade short-axis orbits have large velocities (|vmax| > 150 km s−1,

|σ | ∼ 160 km s−1) in opposite directions and the combination of

them lead to a velocity field with very little rotation (|vmax| <

60 km s−1) and a high dispersion field (|σ | ∼ 220 km s−1). The

stars on long-axis orbits also rotate quickly (|vmax| > 150 km s−1)

and although they contribute only ∼20 per cent of the mass, the
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664 R. C. E. van den Bosch et al.

Figure 13. Extrapolated kinematics of the model of NGC 4365, showing

(from top to bottom) the contribution from all stars, from stars on prograde,

retrograde and combined short-axis orbits, and from stars on long-axis and

box orbits. The contours show equal flux and the box shows the rectangle

inside the SAURON observations.

large velocity adds significantly to the large-scale rotation seen in

the observations.

Two other galaxies NGC 4550 and 4473 show very similar fea-

tures to NGC 4365, both have unusually high σ along the major axis

(Emsellem et al. 2004). They both consist of two counter-rotating

discs, similar to the two main components in NGC 4365: the pro-

grade and retrograde short-axis orbits (Rix et al. 1992; Cappellari

et al. 2007).

The KDC is not very distinct in the decomposition (Fig. 13) and

is perhaps only an appearance. The only way to really disentangle

the KDC is through the unbalance of the central stars on prograde

short-axis orbits (Fig. 12). However, in the orbital weights (Fig. 14)

the KDC seems an integral part of all the stars on prograde short-

axis tube orbits as these stars are continuously distributed in orbital

weights. It is therefore difficult to see the KDC as a distinct kinematic

component.

8 D I S C U S S I O N A N D C O N C L U S I O N

We have presented a flexible method to build dynamical models of

triaxial early-type galaxies, allowing for position angle twist and el-

lipticity variation in their SB, as well as a central supermassive black

hole. The method is based on Schwarzschild’s orbit superposition

technique and uses the observed SB distribution and observed kine-

matics to make a triaxial model of the observed galaxy. Our models

can be constrained by observations of the full LOSVD.

We discussed tests of our method on the triaxial Abel model with

a separable potential from vdV08, which illustrates the accuracy of

our orbit classification method and the effect of regularization. Tests

with the viewing angles showed that we can constrain the intrinsic

shape of galaxies with significant structure in their velocity field.

We also presented results of an application on two-dimensional

data of the E3 galaxy NGC 4365, obtained with the integral-field

spectrograph SAURON. We showed that our method is capable of

reproducing the main observational features to within the errors. We

found a best-fitting (I-band) stellar mass-to-light ratio of 3.5 ± 0.2

in solar units and best-fitting viewing angles of (ϑ , ϕ, ψ)= (68◦,

73◦, 91◦). The characteristic axis ratios are p � 0.95, 0.65 < q <

0.75 inside 35 arcsec. By applying a simple regularization scheme,

we were able to determine the distribution of orbital weights, which

provided us with a view on the orbit structure of this galaxy. We

find the inner part to be nearly oblate axisymmetric, with most of

the stars equally divided on prograde and retrograde short-axis tube

orbits. Further out the galaxy becomes more triaxial, and the stars

orbit on both long-axis and short-axis tubes. The KDC seen in the

observations is not dynamically distinct from the main body of the

galaxy. More evidence for the idea that the ‘decoupled core’ is part of

the main body of the galaxy, comes from the stellar ages determined

by Davies et al. (2001). The ages of the stars where determined to be

at least ∼12 Gyr and they do not show a strong dependence which

radius. Overall our orbital structure is consistent with the results

from Statler (1991) and Arnold et al. (1994).

An important consideration is the stability of triaxial galaxies.

A significant fraction of the centrophilic box orbits can become

chaotic in the presence of a central cusp or a supermassive black hole

(Gerhard & Binney 1985; Valluri & Merritt 1998). As box orbits are

crucial for supporting the triaxial shape, it is not evident whether

a triaxial object with a central black hole can retain its shape over

a Hubble time (Lake & Norman 1983). Earlier N-body simulations

of triaxial galaxies in which a central mass concentration is grown

indeed show a fairly rapid evolution towards a rounder shape in the

inner parts (e.g. Merritt & Quinlan 1998; Valluri & Merritt 1998),

but these results were challenged recently (Holley-Bockelmann et al.

2002; Poon & Merritt 2002). The intrinsic shape of our best-fitting

model is nearly oblate axisymmetric in the centre, and more triaxial

further out. This might be a sign of evolution towards an axisymmet-

ric shape, induced by the central massive black hole from the inside

out. Clearly, we need to obtain a better understanding of whether

triaxial galaxies can reach stationary equilibrium and if not, what

the time-scale of the transition towards a nearly spheroidal shape

is.

The extension from an axisymmetric to a triaxial implementation

of Schwarzschild’s method opens up a wide range of applications.

For example, while the mass of the central black hole seems to be

correlated with other properties of the galaxy (Ferrarese & Merritt
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Triaxial orbit based models 665

Figure 14. The orbits that receive weight in the best-fitting model of NGC 4365. The top part of each panel is the same as in Fig. 4 and the bottom half is as

in Fig. 3. L, S, B and T denote long-axis tubes, short-axis tubes, boxes and percentage of total mass, respectively. For each panel, the corresponding radius is

given at the lower right-hand side, in units of arcsec.

2000; Gebhardt et al. 2000; Tremaine et al. 2002), nearly all black

hole estimates were derived with dynamical models of (edge-on)

axisymmetric models. In such models, the increase in line-of-sight

motion towards the centre that is seen in high-resolution observa-

tions of many nearby galaxies can indeed only be explained by a

black hole. In triaxial systems, box orbits provide an alternative way

of creating motion along the line of sight (depending on the viewing

angles, see e.g. Gerhard 1988). As a result, a given observed veloc-

ity profile may require a different black hole mass when the galaxy

is allowed to be triaxial, which in turn may influence the black hole

mass correlations if the intrinsic shape correlates with luminosity,

as has been suggested.

Another area of interest is the validation of predictions on the

halo shapes from galaxy merger (e.g. Wechsler et al. 2002) and

�CDM cosmology simulations (e.g. Navarro & Steinmetz 2000).

They predict the existence of strongly triaxial haloes as a result

of merging. To confirm these simulations, our method can be used

to measure the halo shapes of a representative sample of galaxies,

using kinematical observation at large radii, where the halo mass

dominates.

Our method can be further extended in a number of aspects. For

example, we assumed that the galaxy as a whole is non-rotating. The

reason for this is that inclusion of figure rotation further complicates

matters (Heisler, Merritt & Schwarzschild 1982; Schwarzschild

1982), while it may not be crucial for the modelling of existing

observations of giant elliptical galaxies. The fitting of kinematics

can be improved by fitting the LOSVD directly or by using eigenve-

locity profiles (Houghton et al. 2006). Additionally, the method can

be enhanced to include line-strength information and multiple stellar

populations, to study the distribution of stellar ages and metallici-

ties within galaxies. Even without additional extensions, the triaxial

Schwarzschild method allows us to investigate the intrinsic structure

and orbital make-up of early-type galaxies.
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