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Abstract 

 A new serie of anti-tumor triazene prodrugs was synthesized and evaluated 

concerning their potential application in melanocyte-directed enzyme prodrug therapy 

(MDEPT). MDEPT strategy emerged to overcome the selectivity and toxicity problems 

associated with melanoma chemotherapy and is based on the use of non-toxic prodrugs 

that will be selectively activated by tyrosinase overexpressed in malignant melanocytes, 

releasing a potent cytotoxic agent inside tumour cells. The synthesized prodrugs 21 are 

formed by an alkylating agent, the monomethyltriazene 23 (MMT), linked to a 

tyrosinase substrate, the hydroxyphenylpropionic acid 24, by an amide linkage.     

 In the synthesis of prodrugs 21, the amide-bond formation was tried with 

different methodologies, which involved carboxylic acid activation. The most efficient 

methods were O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluroniumtetrafluoroborate 

(TBTU) assisted by microwave irradiation (20% yield) and N,N'-

Dicyclohexylcarbodiimide/4-dimethylaminopyridine (DCC/DMAP) (15% yield). 

Prodrug synthesis was achieved with yields that did not exceed 20 %.  

 All prodrugs 21 revealed to be chemically stable in isotonic phosphate buffer 

(PBS) at physiologic pH (60 ≤ t1/2 (h) ≤ 123), and most of them showed to be slowly 

hydrolyzed in human plasma (3 ≤ t1/2 (h) ≤ 49). Only prodrugs 21c-f (3-(4-

hydroxyphenyl)propionic acid derivatives) revealed to be excellent tyrosinase substrates 

(1.5 ≤ t1/2 (min) ≤ 5) with a fast release of MMT 23 after 250 seconds of tyrosinase 

activation.  

 The maximum percentage of glutathione depletion (GSHdepletion (%)) induced by 

prodrugs 21, when they were metabolized into cytotoxic quinones by rat liver 

microsomes, ranged from 34.6 ± 8.6 to 43.6 ± 2.0 for prodrugs 21c-f and was 45.7 ± 5.0 

and 63.5 ± 5.0 for prodrugs 21a,b (3-(3-hydroxyphenyl)propionic acid derivatives), 

respectively. Prodrugs 21c-f revealed to be less hepatotoxic than prodrugs 21a,b. 



  

 

  

iv 

Prodrugs 21c-f are also less hepatotoxic than similar compounds described in the 

literature, which were evaluated by the same type of assay.  

 Triazene prodrugs 21c-f are promising for application in MDEPT strategy, as 

they have a great stability, an excellent tyrosinase affinity, an efficient mechanism of 

MMT 23 release and a moderate hepatotoxicity.  

 

Keywords: Melanoma; Tyrosinase; Prodrug; Triazene; MDEPT; Hepatotoxicity 
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Resumo 

 O cancro de pele pode-se manifestar de diversas formas, sendo o melanoma a 

forma mais agressiva deste tipo de cancro. Apesar do melanoma representar apenas 

11% de todos os cancros de pele diagnosticados, é responsável por 90% das mortes 

associadas a este tipo de cancro. Segundo o Institute of Cancer Research a incidência do 

melanoma tem tendência a triplicar nos próximos 30 anos, sendo a mudança climática, a 

principal causa deste aumento. A taxa de mortalidade do melanoma é tão elevada, pelo 

facto de este ter a capacidade de metastizar e invadir diversas partes do corpo. Este 

processo de metástase dificulta muito o desenvolvimento de uma terapêutica eficaz para 

o melanoma.  

 O aparecimento do melanoma deve-se à transformação dos melanócitos normais 

em malignos. O risco de ocorrer esta transformação pode ser aumentado devido a 

factores genéticos (ex: mutação num gene supressor de tumores) ou ambientais (ex: 

exposição a radiação ultravioleta A e B). Nos melanócitos malignos, o processo de 

melanogénese encontra-se aumentado e os níveis da enzima tirosinase, que é essencial 

neste processo, estão muito acima dos níveis detectados nos melanócitos normais. 

Tendo em conta que a tirosinase só se encontra nos melanócitos, e que está sobre-

expressa nos melanócitos malignos, esta tem sido considerada como um possível alvo 

para uma quimioterapia mais selectiva e menos tóxica. 

 A tirosinase tem como principais substratos os monofenóis e os o-difenóis, mas 

também tem a capacidade de oxidar outros tipos de compostos fenólicos e até não 

fenólicos. Alguns compostos aromáticos como por exemplo as o-diaminas, os o-

aminofenóis e até as anilinas são referidos como substratos desta enzima.  

 Encontram-se descritas na literatura, duas abordagens para o tratamento de 

melanoma, onde a tirosinase é responsável pela libertação/formação de um agente 

citotóxico no tumor. Uma dessas abordagens é a melanocyte-directed enzyme prodrug 

therapy (MDEPT). A estratégia MDEPT envolve o uso de pró-fármacos não tóxicos, 
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formados pelo fármaco citotóxico ligado a um substrato da enzima tirosinase. Deste 

modo o pró-fármaco só é activado na presença da tirosinase, libertando-se assim o 

agente citotóxico em grande quantidade no tecido tumoral. 

 A dacarbazina 1 (DTIC) foi aprovada em 1975 pela Food and Drug 

Administration (FDA) para o tratamento do melanoma, e actualmente ainda é o 

composto mais efectivo em monoterapia para o tratamento deste cancro. A DTIC 1 

pertence à classe dos triazenos, mais especificamente aos 1-aril-3,3-dialquiltriazenos, e 

o seu mecanismo de citotoxicidade envolve a formação de uma espécie alquilante, o ião 

metildiazónio, que vai alquilar as bases púricas e pirimídicas do ácido 

desoxirribonucleico (ADN) e assim induzir a morte celular. 

 Nesta tese de mestrado, uma nova serie de pró-fármacos de triazenos anti-

tumorais foi sintetizada e avaliada em termos de potencial aplicação na estratégia 

MDEPT. Os pró-fármacos sintetizados 21 são constituídos pelo ácido 

hidroxifenilpropanóico 24 ligado através de uma função amida ao monometiltriazeno 23 

(MMT). A escolha do ácido hidroxifenilpropanóico 24 deveu-se ao facto deste ácido ser 

um bom substrato da tirosinase. O MMT 23 foi escolhido, uma vez que o seu 

mecanismo de citotoxicidade envolve o ião metildiazónio, que é o mesmo agente 

alquilante responsável pela citotoxicidade da DTIC 1. A função amida tem como 

objectivo dar estabilidade química aos pró-fármacos 21 de modo a manter a 

citotoxicidade do MMT 23 inactiva até a enzima tirosinase actuar nos pró-fármacos 21.   

 A síntese dos pró-fármacos 21 envolveu a formação de uma ligação amida entre 

a amina secundária do MMT 23 e o grupo ácido carboxílico do ácido 

hidroxifenilpropanóico 24. Em geral, as funções amida são sintetizadas a partir da 

junção de ácidos carboxílicos com aminas, no entanto esta união é muitas vezes um 

processo difícil e complexo. De modo a superar estas dificuldades, têm sido 

desenvolvidos vários métodos, nos quais a acilação da amida ocorre com ácidos 

carboxílicos previamente activados. Usualmente esta activação é realizada através do 

uso de agentes de acoplamento. Neste trabalho de investigação, a activação do ácido 
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carboxílico 24 foi efectuada com recurso a diversos agentes de acoplamento. Os agentes 

de acoplamento utilizados foram: N,N'-diciclohexilcarbodiimida/4-dimetilaminopiridina 

(DCC/DMAP), tetrafluoroborato de O-(benzotriazol-1-il)-N,N,N’,N’-tetrametilurónio  

(TBTU), cloreto de 4-(4,6-dimetoxi-1,3,5-triazin-2-il)-4-metilmorfolina (DMTMM) e 

cloreto de tionilo. A formação da ligação amida foi também realizada recorrendo ao uso 

de irradiação por microondas. Os métodos mais eficientes foram DCC/DMAP e TBTU 

(irradiação por microondas) com rendimentos de 15% e 20% respectivamente. Os pró-

fármacos 21 foram sintetizados com rendimentos que não excederam os 20%. Apesar 

dos baixos rendimentos, os pró-fármacos 21 foram obtidos com um elevado grau de 

pureza e em quantidades que possibilitaram a análise dos mesmos para aplicação na 

estratégia MDEPT. 

 Com o intuito de avaliar os compostos 21 como potenciais pró-fármacos para 

aplicação na estratégia MDEPT, foram realizados três tipos de ensaios de estabilidade a 

37 ºC. O primeiro ensaio foi efectuado em tampão fosfato isotónico (PBS) pH 7,4, no 

qual se analisou a hidrólise química dos pró-fármacos 21 a pH fisiológico. Todos os 

pró-fármacos 21 revelaram ser quimicamente estáveis com semi-vidas que variaram 

entre as 60 e as 123 horas. O ensaio seguinte consistiu no estudo da hidrólise dos pró-

fármacos 21 em plasma humano, visto que este contém um conjunto de enzimas que 

catalisam a hidrólise da função amida. Todos os pró-fármacos 21, com a excepção do 

21b (t1/2 ≈ 3 horas), revelaram ser hidrolisados lentamente com semi-vidas que variaram 

entre as 6 e as 49 horas. Com os resultados obtidos nestes dois ensaios é de esperar que 

a maioria dos pró-fármacos 21 alcance o tumor sem sofrer uma prematura 

decomposição. No último ensaio foi avaliada a afinidade dos pró-fármacos 21 para a 

enzima tirosinase de cogumelo, que serve de modelo para a tirosinase humana, e foi 

também analisada a eficácia dos compostos 21 no processo de libertação do agente 

citotóxico MMT 23 após activação pela tirosinase. Os resultados obtidos neste ensaio, 

revelaram que os pró-fármacos 21a,b (derivados do ácido 3-(3-hidroxifenil)propanóico) 

têm uma fraca afinidade para a tirosinase com semi-vidas (t1/2 ≈ 20 horas) demasiado 

longas para terem interesse como pró-fármacos para aplicação na estratégia MDEPT. Já 
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os pró-fármacos 21c-f (derivados do ácido 3-(4-hidroxifenil)propanóico) demonstraram 

ser excelentes substratos da tirosinase com semi-vidas que variaram entre 1,5 e 5 

minutos. A libertação do agente citotóxico MMT 23 foi confirmada, sendo bastante 

rápida para os pró-fármacos 21c-f, nos quais foi detectada após 250 segundos de 

exposição destes compostos 21c-f à enzima tirosinase. 

 Os pró-fármacos 21 contêm na sua estrutura uma função fenólica que pode ser 

oxidada nos hepatócitos por enzimas do citocromo P450, originando quinonas. As 

quinonas são espécies extremamente reactivas que se ligam facilmente a nucleófilos, 

tais como a glutationa (GSH), induzindo a sua depleção e promovendo fenómenos de 

hepatotoxicidade. A avaliação de hepatotoxicidade destes pró-fármacos 21 foi realizada 

através de um ensaio a 37ºC em que se calculou a percentagem de depleção da GSH 

(GSHdepleção (%)). Os resultados obtidos revelaram que os pró-fármacos 21a,b 

(GSHdepleção (%) = 45,7 ± 5,0 e 63,5 ± 5,0, respectivamente) são mais hepatotóxicos que 

os pró-fármacos 21c-f (34,6 ± 8,6 ≤ GSHdepleção (%) ≤ 43,6 ± 2,0). Observou-se também 

que a hepatotoxicidade induzida pelos pró-fármacos 21c-f é inferior à observada para a 

maioria dos compostos análogos que se encontram descritos na literatura, e que foram 

analisados pelo mesmo tipo de ensaio.     

 Os pró-fármacos 21c-f possuem uma boa estabilidade química, uma excelente 

afinidade para a tirosinase, um mecanismo rápido para a libertação do MMT 23 e uma 

hepatotoxicidade moderada, para poderem ser considerados promissores para aplicação 

na estratégia MDEPT. 

 

Palavras-Chave: Melanoma; Tirosinase; Pró-fármaco; Triazeno; MDEPT; 

Hepatotoxicidade.  
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 MGMT  Methyl-guanine methyl-transferase 

 min   Minute(s) 

 MMR  Mismatch repair system 

 MMT  Monomethyltriazene 

 MTIC  5-(3-methyl-1-triazenyl)imidazole-4-carboxamide 

 MW   Molecular weight 



  

 

  

xxi 

 n   Number of moles 

 nd   Not detected 

 nm   Nanometer 

 NMR  Nuclear magnetic resonance 

 o-   Ortho 

 p-   Para 

 PBS   Phosphate buffered saline 

 ppm   Parts-per-million 

 s   Singlet 

 Sat.   Saturated 

 Sol.   Solution 

 t   Triplet 

 TBTU  O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium   

   tetrafluoroborate 

 TEA   Triethylamine 

 THF   Tetrahydrofuran 

 TLC   Thin layer chromatography 

 TMZ   Temozolomide 

 Tris   Tris(hydroxymethyl)aminomethane 

 t1/2   Half-live 
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Figure 1 – Skin layers and some groups of skin 
cells. Adapted from [3]. 

 

1.1 – Melanoma disease 

 Skin cancer represents one third of all 

diagnosed cancers and its incidence is, at the 

moment, in expansion especially in young adults. 

This type of cancer can emerge in different types 

of skin cells (figure 1), being the most frequent the 

basal cell carcinoma, the squamous cell carcinoma 

and the malignant melanoma [1-3]. 

 

 The most aggressive form of skin cancer is the melanoma, which despite of only 

representing 11% of all skin cancer occurrences, is responsible for 90% of the deaths 

associated with skin cancer. According to the Institute of Cancer Research, the 

incidence of melanoma will triple in the next 30 years, due mainly, to climate change. In 

Portugal there are 700 new cases of malignant melanoma every year. Melanoma 

mortality rate is extremely high because this is the only form of skin cancer that has the 

ability to spread to secondary sites in the body via metastasis (figure 2). This metastasis 

ability is the major problem in the development of an efficient treatment for advanced 

metastatic melanoma [1,4,5]. 

 

 

 

 

Figure 2 – Metastatic process in melanoma. Adapted from [6]. 
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 Malignant melanoma arises from malignant transformation of normal 

melanocytes [4]. The main risk factors for malignant transformation are: 

 Genetic predisposition 

 Families with a history of melanoma, have mutations on certain genes (e.g: 

tumor suppressor genes), which increase the risk of malignant transformation.  

 Environmental stressors 

 Exposure to ultraviolet radiation (UVA and UVB), which is responsible for 

genetic modifications in skin cells, increasing the production of growth factors and 

inducing the generation of reactive oxygen species that will damage the 

deoxyribonucleic acid (DNA) inside the melanocytes [6,7]. 

 When malignant melanoma is diagnosed in early stages, it is highly curable, 

since it can be surgically removed. However in later stages, after metastasis and 

spreading to other locations, it is very difficult to treat and the options for medical 

treatment are restricted to biotherapy and chemotherapy. Standard chemotherapy agents 

are listed in table 1 [4,8]. 

  

  

 

 

 

 

 

Table 1 – Current chemotherapy agents for melanoma. Adapted from [4]. 
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Figure 3 – Biosynthesis of melanins. Adapted from [4]. 

 In malignant melanocytes, the melanogenesis process is up-regulated and 

tyrosinase expression is noticed to increase during tumorigenesis. Due to this over-

expression, tyrosinase has been considered as an exploitable target enzyme to search for 

selective and less toxic chemotherapeutic approaches for melanoma treatment [4,9,10].  

 

 

1.2 – Tyrosinase 

 Tyrosinase (Monophenol monooxygenase, Enzyme Commission (EC) 1.14.18.1) 

is located within the melanosomes, which are organelles inside the melanocytes. This is 

a copper enzyme essential to the biosynthesis of melanins (figure 3). This 

oxidoreductase is able to bind dioxygen and is responsible for the catalysis of two 

different types of reactions [4,11,12]: 

 Hydroxylation of monophenols to o-diphenols (monophenolase or cresolase 

activity, EC 1.14.18.1); 

 Oxidation of o-diphenols to o-quinones (diphenolase or catechol oxidase 

activity, EC 1.10.3.1). 
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Figure 4 – Active site of Streptomyces castaneoglobisporus tyrosinase. Legend: 
Copper – magenta; Oxygen – red; HIS residues – green. Adapted from [14]. 

 The active site of mammalian tyrosinase contains a binuclear copper cluster and 

is similar in mushroom tyrosinase (Agaricus bisporus). This fact explains why 

mushroom enzyme has been widely used as a model for mammalian enzyme [13]. 

 An important feature of this active site is the 

coordination between the binuclear copper and the six histidine 

(HIS) residues (figure 4). This coordination is fundamental to 

enable the binding of molecular oxygen [4,14]. 

 

 The enzymatic activity of tyrosinase can be described by two interpenetrating 

reactive cycles. In these cycles, tyrosinase active site can be in three different functional 

states, met-tyrosinase, oxy-tyrosinase and deoxy-tyrosinase (figure 5) [14].  

  

  

 

 

 

 

 

 

 

   

Figure 5 – The two different oxidation cycles and the different role in the oxidation process by the three 
different functional states of tyrosinase active site [14]. 
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Figure 6 – Scheme of “Achilles heel” approach. 
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 In general, there are two chemotherapeutic approaches for melanoma that 

involve tyrosinase for drug release. They have been referred as the “Achilles heel” and 

the “Trojan horse” approach [4,9].    

 “Achilles heel” approach is based on the selection of analogues of tyrosinase 

substrates, which are able to maximise the formation of reactive ortho-quinones by 

tyrosinase action. In this approach is very important to prevent the cyclization reaction 

(figure 6) of the ortho-quinones generated because this side reaction will deactivate their 

citotoxicity [4]. The major limitation of this approach is to achieve the necessary 

quinone levels for an efficient melanoma treatment. This limitation occurs due to the 

fact that the reaction rate of ortho-quinone reduction by endogenous thiols (e.g: 

glutathione (GSH)) is much higher than the reaction rate responsible for DNA and 

protein alkylation [9,15]. Quinones can also arrest DNA synthesis via thymidylate 

synthase inhibition [16]. 

  

 

 

 

 

 

 

 “Trojan horse” approach (figure 7) involves the use of non-toxic prodrugs, 

which will be activated in a tyrosinase dependent process. These prodrugs are 

structurally formed by a citotoxic moiety linked to a tyrosinase substrate. The citotoxic 

drug is released after tyrosinase oxidation. This approach is also known as melanocyte-

directed enzyme prodrug therapy (MDEPT) [4]. 
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 Apart from its natural substrates (monophenols and o-diphenols), tyrosinase has 

also the ability to oxidize a variety of other phenolic and non phenolic substrates. Many 

aromatic o-diamines and o-aminophenols have been reported to be quinonised by 

tyrosinase, and even aromatic monoamines (anilines) have been referred to be o-

hydroxylated by this enzyme [17-19]. 

 Riley and co-workers tested, by oximetry, twenty-six substituted phenols for 

their rate of oxidation by mushroom tyrosinase in vitro. Among the phenolic analogs 

studied it was found that 3-(4-hydroxyphenyl)propionic acid was a good tyrosinase 

substrate [20]. 

 Tyrosinase can be considered a promising target enzyme for prodrug activation 

due to: 

 It is only located in melanocytes and is over-expressed in melanoma cells; 

 Turnover numbers are high for tyrosinase, resulting in a rapid prodrug 

activation; 

 Total tyrosinase activity is correlated with the degree of malignancy: 

- 3667 to 46183 units of tyrosinase per mg of melanotic melanoma tissue; 

- 168 to 508 units of tyrosinase per mg of partially melanotic melanoma 

tissue; 

- 14 to 75 units of tyrosinase per mg of amelanotic melanoma tissue [21-

23]. 

Figure 7 – Scheme of “Trojan horse” approach [4]. 
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 Despite of these good indicators, the prodrugs activated by tyrosinase have a 

phenolic or a catecholic moiety that can be oxidized in the corresponding cytotoxic 

quinones not only by tyrosinase but also by other undesired mechanisms (e.g: oxidation 

by liver cytochrome P450 isoenzymes (CYP450)).  

 

 

1.3 – Prodrugs in anticancer chemotherapy 

 Prodrugs were initially defined in 1959 by Adrien Albert, as pharmacologically 

inactive compounds, which are converted into the active drug by a metabolic 

biotransformation [24]. Currently, the best definition of prodrugs establishes that they 

are chemical derivatives of an active drug pharmacologically inactive, which suffer a 

transformation process (spontaneous or enzymatic) within the body in order to release 

the active drug [25]. 

 In terms of classification, prodrugs can be divided according with two major 

criteria, the chemical classification and its mechanism of activation [26]. According to 

chemical classification, prodrugs can be: 

 Carrier-linked prodrugs – Compounds that have the active drug linked to a 

carrier, which will be later released. The linker must be labile and the carrier must be 

biologically inactive and non-toxic [24,27]. Some types of carrier linked prodrugs: 

 Macromolecular prodrugs – Compounds with the active drug linked to a 

polymer, which will increase the solubility, the stability and the drug distribution 

time [28]; 

 Drug-Antibody conjugates – Immunoconjugates, which have the active drug 

attached to an antibody specific for tumor-expressed antigens [29]: 
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 Mutual prodrug – Compounds that have two active drugs linked together and 

each drug acts as a promoiety for the other. This means that the carrier used, is 

another biologically active drug instead of some inert molecule [30]; 

 Drug-Enzyme Substrate conjugates: Compounds, which have the active drug 

linked to a specific or an analogue substrate of an enzyme. The substrate moiety 

will carry the drug directly to a specific enzyme, which will promote the release 

of the active drug [31]. 

 Bioprecursors – Compounds that are metabolized into a new compound which 

is the active drug [26]. Some types of bioprecursors: 

 Site-specific chemical delivery systems – Compounds which through sequential 

metabolic transformations, release the active drug in the desired target, thus 

overcoming the transport problems and diminishing the toxicity outer the targets 

[32]; 

 Bioreductive prodrugs – Compounds that have functional groups (e.g: quinones, 

nitroaromatics, N-oxides) that will be reduced/activated by the reducing 

environment or by bioreductive enzymes [31,33]. 

 Based in the mechanism of activation, prodrugs can be:  

 Enzymatically activated – Prodrugs are activated by enzymes that are 

overexpressed and localised in the desired targets. This type of activation has as main 

benefits the fact of being a time- and tissue-controlled process and has as main 

challenges to overcome, inter- and intraspecies variability, genetic polymorphisms and 

the potential for drug-drug interactions [26]. 

 Non-enzimatically activated – Prodrugs are activated by a chemical process 

(e.g: spontaneous chemical cleavage at physiological pH). The problems observed in 

enzymatic activation (e.g: inter- and intraspecies variability, genetic polymorphisms and 

drug-drug interactions) are solved by this mechanism, but in this type of activation, 
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there are chemical stability issues as insufficient half-live and the site of prodrug 

activation is undefined [26]. 

 Prodrug strategy in drug discovery allows the overcoming of pharmaceutical, 

pharmacokinetic and pharmacodynamic problems. One of the most important areas of 

development that stimulates prodrug progress is the rationale design of them (e.g: 

prodrugs for anticancer therapy) in order to increase their selectivity for desired targets 

[26]. 

 Almost all drugs used in the treatment of cancer are systemic antiproliferative 

agents (cytotoxins), which preferably eliminate cells during the division process, by 

attacking their DNA at some level (synthesis, replication, or processing). Despite of the 

advantages of using these cytotoxins as anticancer agents, due to their ability to 

eliminate a large number of tumor cells, their disadvantages have always been a main 

factor of concern. One of these disadvantages is the fact that these antiproliferative 

agents can affect normal cells (e.g: bone marrow cells). The other main disadvantage is 

that not all cancer cells have an exacerbated proliferation. These disadvantages make 

the therapeutic effectiveness of these antiproliferative agents very narrow [34,35]. 

 In order to overcome these disadvantages, it is necessary to implement a strategy 

that makes these drugs more selective for tumor cells. To achieve this goal, it is required 

to seek out for tumor-specific mechanisms that will only transform the non-toxic 

prodrug into the citotoxic drug in the tumor region [34]. It is important to report that, 

cytotoxin prodrugs have been produced and used for a long time, but their activation 

was not specific for tumor cells, their use had only the goal of improving the 

bioavailability of the cytotoxins [35]. 

 Tumor-activated prodrugs have been developed not only with the aim of 

improving the bioavailability of drugs but also to be activated by tumor-specific 

mechanisms, exploiting the differences at physiological, metabolic or genetic level 

between tumor and normal cells. The structure of these prodrugs (figure 8) can be 

subdivided in three parts: trigger, linker and effector. One of the major advantages of 
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Figure 8 – Structure model of tumor-activated prodrugs [35]. 

this structural model is the possibility to optimize each different structural unit for their 

specific role [35,36]. 

  

 

 

 The trigger role is prodrug transport to a specific location. The trigger is variable 

according to the tumor-specific mechanism present [35]. 

 The linker is like a switch, at the beginning it maintains the prodrug inactive, but 

when the prodrug reaches the tumor-specific mechanism, the linker allows a rapid and a 

substantial release of the effector [35]. 

 The role of the effector should be the elimination of the largest number of tumor 

cells in any conditions of pH and in any phase of cell cycle. The effector needs to have a 

significant bystander effect (figure 9), in order to diffuse into the neighbouring 

malignant cells around the tumor cells that are able to activate the prodrug. This is very 

important because tumor cells have a large diversification, so in all tumor cells 

population, probably only a few of them have the tumor-specific mechanism for 

prodrug activation. This diffusion must be limited in order to ensure that the effector 

does not reach normal cells in the neighbourhood. To get an effective bystander effect, 

the effectors must have an adequate stability and an appropriate diffusion, which can be 

obtained by building effectors that bind strongly to macromolecules such as DNA 

[25,35,36]. 

 

 

 

Figure 9 – Bystander effect [35]. 
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Figure 10 – Triazene general structure. 
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1.4 – Triazenes in anticancer chemotherapy  

 Initially, anticancer chemotherapies were extremely cytotoxic, consisting of 

antitumor antibiotics, antimetabolites and alkylating agents. Considered as the oldest 

class of anticancer drugs, alkylating agents are a major cornerstone in the treatment of 

lymphomas, leukaemia and solid tumours. One important feature is the fact that these 

agents could be administered repeatedly with less induced resistance than other classes 

of anticancer drugs. Alkylating agents act as DNA alkylators, since they are able to 

form covalent bonds with purine bases. This alkylation process leads to crosslinking of 

DNA strands and induction of apoptosis. Presently, there are five major types of 

alkylating agents used in the chemotherapy of neoplastic diseases: nitrogen mustards, 

ethylenimines, alkyl sulfonates, nitrosoureas and triazenes [24,37-39]. 

 Triazene compounds have in their structure (figure 10) three consecutive 

nitrogen atoms (triazenyl group). This group represents the active moiety of triazenes 

and is responsible for their chemical, physical and antitumour properties. Triazenes can 

be tri-, di-, mono- or non-substituted depending on the number of hydrogen 

substitutions by other groups in R1, R2 and R3 positions [40,41]. 

  

  

 The first triazene compound 6 was synthesized in 1862 by Griess in the reaction 

between diazonium salts and nucleophilic nitrogen compounds [42]. 
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 Currently, triazene compounds can be easily synthesized from anilines or alkyl 

azides (figure 11). In the aniline synthetic route, anilines are usually treated with nitrite 

ion under acidic conditions to form a diazonium salt, which reacts with a primary or 

secondary amine to provide the desired triazene with a high yield. To obtain triazenes 

from alkyl azides, a reaction between Grignard or alkyl lithium reactants and alkyl 

azides must occur [43]. 

 

 

  

 In 1955, Clarke and co-workers reported for the first time the biologic activity of 

triazenes as antitumor agents. It was shown that 1-phenyl-3,3-dimethyltriazene 7 

inhibited the growth of sarcoma 180 in mouse [44]. 

  

  

  

 Anticancer activity of triazenes can be explained by the generation of 

methyldiazonium ion, the alkylating specie from triazenes. This alkylating agent is 

generated after several transformations of triazene compounds (figure 12) [45]. 

  

  

 

  

Figure 11 – General synthetic routes for triazenes [43]. 

Figure 12 – Formation of methyldiazonium ion and its DNA alkylation reaction. Adapted from [45]. 
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 Among all the current chemotherapy agents used to treat melanoma (table 1), 

Dacarbazine (1, DTIC) and Temozolomide (2, TMZ) are triazene compounds of clinical 

interest [4,40]. 

 More than three decades after its initial approval by US Food and Drug 

Administration (FDA) in 1975, DTIC 1 remains the most effective single-agent for the 

metastatic melanoma therapy, with a response rate between 15% and 25% [38,46,47].  

 DTIC 1, i.e. 5-(3,3-dimethyl-1-triazenyl)imidazole-4-carboxamide belongs to 

triazene class of 1-aryl-3,3-dialkyltriazenes and is structurally related to purines. This 

compound emerged as the result of a rational attempt to produce interfering agents in 

the purine biosynthesis. Despite of DTIC 1 structurally resembles 5-aminoimidazol-4-

carboxamide (AIC), which is an intermediate metabolite of purine biosynthesis, DTIC 1 

is not classified as an antimetabolite because this is not its principal mechanism of 

action [38,40]. 

 DTIC 1 is a prodrug and needs to be metabolized (figure 13), by liver 

microsomes (CYP450 isoenzymes), to give 5-(3-hydroxylmethyl-3-methyl-1-

triazenyl)imidazole-4-carboxamide (HMTIC). Then HMTIC, by loss of formaldehyde, 

is converted to 5-(3-methyl-1-triazenyl)imidazole-4-carboxamide (MTIC), which is the 

cytotoxic agent. MTIC decomposes spontaneously into the major metabolite AIC and 

methyldiazonium ion, which is the alkylating specie. This alkylating agent is 

responsible for producing methyl adducts in DNA. Methylation on the O
6 position in 

guanine is largely responsible for the antineoplastic (and also mutagenic) effect of DTIC 

1, as it can promote an incorrect base pairing with thymine (figure 14). These adducts 

lead to apoptosis or if the cell survives, induce somatic point mutations in DNA helix 

[38,40,48].  
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 TMZ 2 received FDA approval for the treatment of anaplastic astrocytome and 

glioblastoma multiforme. Studies have also been done to show its activity in the 

treatment of malignant melanoma [37,49]. 

Figure 14 – Incorrect base pairing between O6-methylguanine and thymine. Adapted from [40]. 

Figure 13 – DTIC 1 and TMZ 2 activation and mechanism of DNA alkylation. Adapted from [40]. 
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 TMZ 2, i.e. 8-carbamoyl-3-methylimidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one 

belongs to a triazene class named acyl-substituted triazenes. It was first synthesized in 

1984 and is a 3-methyl analogue of the mitozolomide 8, which has demonstrated 

antineoplastic activity against malignant melanoma but with severe side effects. In 

terms of function and structure TMZ 2 is similar to DTIC 1 [40,43]. 

  

 

 

 

 

 Considered as a MTIC prodrug, TMZ 2 is directly activated to MTIC (active 

metabolite of DTIC 1) by a spontaneous chemical decomposition at physiological pH 

(figure 13). After generation of MTIC, the process of DNA alkylation is the same as for 

DTIC 1 [38,40,45]. 

 Human cells have developed defensive mechanisms that lead to drug resistance. 

This is a major problem because it can narrow the efficiency of alkylating drugs. 

Cytotoxic effects of triazene compounds and cell resistance to them depend on at least 

three DNA repair systems, methyl-guanine methyl-transferase (MGMT), mismatch 

repair (MMR) and base excision repair (BER). MGMT removes alkyl adducts from the 

O
6 position of DNA guanine. High levels of MGMT are responsible for normal and 

tumor cell resistance to triazenes. This resistance problem is overcome by the use of 

triazenes in the presence of MGMT inhibitors, which increases triazene citotoxicity 

against target cells expressing high MGMT levels. MMR repairs biosynthetic errors 

generated during DNA replication. This system is not able to repair the DNA damage 

caused by triazenes, and promotes their cytotoxic effects with activation of cell cycle 

arrest and apoptosis. BER is able to repair other types of DNA methylation caused by 
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triazenes. Therefore, triazene citotoxicity can be enhanced with the use of BER 

inhibitors [37,40,48]. 

 

1.5 – MDEPT strategy 

 As described before, tyrosinase expression in melanoma becomes up-regulated 

leading to a marked raise in tyrosinase levels inside the cancerous cells. The basis for 

MDEPT strategy (figure 15) is to “hijack” this enzyme, from its biological pathway, to 

convert non-toxic prodrugs into citotoxic drugs that will promote the death of cancerous 

cells. The three components of these prodrugs must have the following characteristics: 

 Trigger – This entity must be a good tyrosinase substrate, as an analogue or a 

derivative of natural substrates of tyrosinase. This entity will confer selectivity 

in the MDEPT strategy; 

 Linker – Structure with the function of maintaining the non-toxic prodrug stable 

until it reaches the enzyme. This structure will be responsible for reducing the 

toxicity in other parts of the body; 

 Effector - This unit has to possess a known citotoxic mechanism and an effective 

bystander effect. This unit is responsible for the efficiency of MDEPT strategy, 

by eliminating a considerable number of cancerous cells [1,4,50-52]. 
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 MDEPT strategy has as major advantages:  

 It offers a highly selective triggering mechanism for drug delivery; 

 It relies on tyrosinase, which is a good enzyme for prodrug activation [22,50]. 

 The major disadvantage of MDEPT strategy is due to the use of prodrugs with 

phenolic and catecholic moieties that can lead to toxicity in undesired parts of the body, 

namely in the liver [22,53]. 

 The first reference to MDEPT strategy was done by Jordan and co-workers in 

1999 [51]. Since then, there have been several reports in literature about this strategy 

with different triggers, linkers, effectors and mechanisms for drug release.  

 In 1999, Jordan and co-workers synthesized a phenyl mustard prodrug 9, which 

has a dopamine moiety linked to phenyl mustard by a carbamate unit [51]. 

 

 

Figure 15 – MDEPT strategy. Tyrosinase structure (PDB 1WX2) 
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Figure 16 – Mechanism of drug release proposed by Jordan and co-workers [51]. 

 After the synthesis of prodrug 9, Jordan and co-workers ascertained its efficacy 

to act in MDEPT strategy, using scanning oximetry, gas chromatography-mass 

spectrometry (GC-MS) and cytotoxic assays. Results from citotoxicity assays revealed 

an increase in the cytotoxic activity of prodrug 9 against tyrosinase-upregulated cell 

lines when compared with cell lines displaying little or absent tyrosinase activity. The 

nitrogen mustard release was verified by GC-MS evaluation, suggesting that prodrug 9 

was indeed a substrate for tyrosinase. Analysis of these results led the authors to 

propose a tyrosinase-dependent mechanism for drug release, in which the ortho-quinone 

generation is followed by a cyclization pathway (figure 16) [51]. 

 

  

 

 

 

 

  

 In 2001, the same research group synthesized a more extensive range of 

prodrugs 10-16 and examined their ability to be oxidised by tyrosinase. Three different 

types of prodrugs were synthesized: phenyl mustard prodrugs 10-14, bis-chloroethyl 

amine mustard prodrugs 15a-c and daunomycin prodrug 16. The cytotoxic entities used 

were previously applied as anticancer drugs in clinic trials. The activation of prodrugs 

10-16 by tyrosinase was proposed to undergo by the same mechanism referred in 1999 

(figure 16) [52]. 
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 Additionally Jordan and co-workers found that:  

 Prodrug 15a was an excellent substrate for tyrosinase; 

 Prodrugs 10a,b and 15c were as good tyrosinase substrates as tyrosine methyl 

ester; 

 Prodrugs 13a,b showed a slower oxidation rate due to heteroatom incorporation 

in the trigger part of the prodrug; 

 Nitrogen methylation in prodrug 15b reduced its rate of oxidation nearly 10 

times in comparison with prodrug 15a;  

 Transformation of carbamate linker (prodrug 10c) into a thiocarbamate linker 

(prodrug 14) led to a decrease of tyrosinase oxidation; 

 Prodrug 16, not surprisingly, was a poor tyrosinase substrate due to the steric 

hindrance caused by daunomycin; 

 The worst tyrosinase substrate was prodrug 11b, which was not oxidised by 

tyrosinase [52]. 

 Jordan and co-workers also monitored the drug release in the presence of 

tyrosinase. The study showed the release of phenol mustard drug from prodrugs 10a,b. 

However in the case of prodrug 15a, the drug release was not detected, probably due to 

the instability of this compound in aqueous media [52]. 

 In 2002, Jordan and co-workers synthesized a new prodrug 17, which was a 

derivative of prodrug 10b. The change carried out, was the introduction of a urea linker 

(prodrug 17) instead of a carbamate linker (prodrug 10b) [54]. 
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 The results obtained showed that prodrug 17 was as good substrate for 

tyrosinase as prodrug 10b. Jordan and co-workers also proved the release of the 

cytotoxic drug from prodrug 17, when exposed to tyrosinase. They assumed that 

prodrug 17 released the cytotoxic drug after tyrosinase activation by the same 

mechanism proposed in 1999 (figure 16) [54].   

 In 2005, Knaggs and co-workers synthesized two novel series of MDEPT 

prodrugs 18 and 19. The trigger units of prodrugs 18 were found to be substrates of 

tyrosinase with 70% of the oxidation rate when compared with L-tyrosine. In prodrugs 

19, the trigger unit was also reported as being a good substrate for tyrosinase [39]. 

  

  

  

 

 

 For each serie, they hypothesised a different mechanism of drug release after 

tyrosinase activation. For prodrugs 18, they proposed a drug release mechanism based 

on the generation of the orthoquinone, followed by the release of the drug from a 

reactive intermediate instable in aqueous conditions (figure 17) [39,55]. 

 

 

  

  

Figure 17 – Mechanism of drug release for prodrugs 18 [39]. 
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 The drug release pathway from prodrugs 19 (figure 18) was proposed as result of 

6-aminodopamine oxidation by tyrosinase in the corresponding orthoquinone. This 

orthoquinone can initiate a rapid intramolecular cyclisation mechanism and the drug is 

released from a reactive intermediate instable in aqueous conditions [39,56]. 

 

 

 

 

 The results obtained by oximetry studies were: 

 Prodrugs 18a-d were oxidised at rates compared to L-tyrosine; 

 Prodrugs 19a,b were oxidised at slower rates [39]. 

 In addition to oximetry studies, this research group performed high-performance 

liquid chromatography (HPLC) studies in order to evaluate if prodrugs 18 and 19 can 

release the cytotoxic drug after tyrosinase oxidation. Results from these study showed 

that drug release was only successful in the urea linked prodrugs and was more effective 

in prodrugs 18a,c than in prodrug 19a [39]. 

 Knaggs and co-workers also evaluated the citotoxicity of urea prodrugs 18a,c 

and 19a in a tyrosinase rich and tyrosinase absent cell line. The results showed that 

prodrug citotoxicity was greater in tyrosinase rich line, so prodrug citotoxicity was 

enhanced by tyrosinase activation [39]. 

 More recently, in 2009, Perry and co-workers synthesized a new class of 

MDEPT prodrugs 20, which were dopamine- and tyramine- derivatives of triazenes. 

Prodrugs 20 had in their structure [50]: 

Figure 18 – Mechanism of drug release for prodrugs 19 [39]. 
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 Tyramine trigger (prodrugs 20a-d) and dopamine trigger (prodrugs 20e-g), 

which are known good substrates for tyrosinase; 

 Urea linkage, which was previously proved to be a useful linker as it maintains 

the prodrug intact until it reaches tyrosinase; 

 Triazene effector, more specifically, the monomethyltriazene (MMT). MMTs 

are known cytotoxic entities that are able to alkylate nucleic acids [40].   

 

 

 

 

 

  

 Studies to evaluate the ability of prodrugs 20 to act as tyrosinase substrates 

showed that they were rapidly oxidized in the presence of tyrosinase with half-lives 

between 6 and 18 minutes, thus revealing that they are excellent tyrosinase substrates 

[50].  

 Studies from the reaction mixtures between tyrosinase and prodrugs 20 showed 

that they were rapidly converted by tyrosinase into a metabolite that did not correspond 

either to the cytotoxic agent MMT or its aniline decomposition product. This metabolite 

was further identified as the o-quinone. However, the release of the cytotoxic MMT did 

not occur under the reaction conditions used (figure 19) [50,57]. 
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1.6 – Quinone-induced hepatotoxicity 

 CYP450 family is composed by monooxygenase enzymes, which are largely 

located inside the hepatocytes. These enzymes play a crucial role on the mono-

oxygenation of xenobiotics and some endogenous substrates. Aromatic compounds such 

as MDEPT prodrugs, which have in their structure phenol or catechol moieties can 

easily suffer a metabolization process by liver CYP450, giving rise to toxic quinones 

[58,59]. 

 Quinone toxicity results from the fact that quinones are Michael acceptors and in 

addition to that, they are also highly redox active molecules. In the literature there are 

two accepted mechanisms for quinone hepatotoxicity (figure 20): 

 Arylation/alkylation reactions of important biological constituents. Since 

quinones are Michael acceptors, they can react covalently with thiols, such as 

GSH or with cysteine residues of proteins, to produce adducts that ultimately 

will cause cellular damage; 

 

Figure 19 – Drug release pathway hypothesized by Perry and co-workers. Adapted from [50]. 
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 Oxidative stress, by superoxide anion generation via quinone and semiquinone 

interconversion. In these processes, large quantities of superoxide anion radicals 

are produced, leading to severe oxidative stress. These radicals can promote a 

variety of damage effects in healthy cells such as oxidation of proteins, lipids 

and DNA as well as activation of several signalling pathways involved in some 

human pathologies [58-60]. 

 

 

 

 

 

 

 4-hydroxyanisole (4-HA), which has a phenolic moiety in its structure revealed 

to be very efficient in melanoma treatment in clinical trials, however these clinical trials 

were discontinued because this compound caused serious liver toxicity. Its 

hepatotoxicity is explained by the fact that this compound is metabolized into a toxic 

quinone specie by liver CYP450 via arene epoxidation (figure 21) [61-64]. 

 

Figure 20 – Mechanisms of quinone-induced hepatotoxicity [58]. 
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1.7 – Goal of master thesis  

 The main goal of this research work is to develop a new serie of triazene 

prodrugs with potential application in a MDEPT strategy. This research work was 

divided in three parts: 

 Triazene-prodrug synthesis – It was synthesized a new serie of triazene-based 

prodrugs 21, in which the triggers and the effectors were linked by an amide 

function. The triggers used were hydroxyphenylpropionic acid derivatives, since 

3-(4-hydroxyphenyl)propionic acid is a good tyrosinase substrate.  The effectors 

Figure 21 – Metabolism pathway for 4-HA in melanocyte (melanoma treatment) and in hepatocyte 
(hepatotoxicity). Adapted from [61]. 
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used were a serie of MMTs, which are cytotoxic entities with a known and 

efficient cytotoxic mechanism. The linker used was an amide linkage due to the 

fact that our research group experimented an urea linkage in prodrugs 20 without 

success and because amide functions are stable in physiological conditions (37 

ºC, pH 7.4) and in the presence of plasma enzymes. 

 

 

 

 

 

 

 

 

 

 

 

 Evaluation of prodrugs stability in isotonic phosphate buffer (PBS), human 

plasma and in the presence of tyrosinase – Stability studies, in aqueous media 

and human plasma aimed to assess if prodrugs 21 are stable before they reach 

tyrosinase, inside the melanocytes. Mushroom tyrosinase assay was important to 

evaluate if prodrugs 21 are good tyrosinase substrates and if they release the 

citotoxic agent, the MMT, after tyrosinase oxidation. 

 

 Hepatotoxicity assessment of prodrugs – Hepatotoxicity evaluation was 

necessary to verify if prodrugs 21 are hepatotoxic, because they have in their 

structure, phenolic or catecholic moieties that can be possibly metabolized by 

CYP450 enzymes into cytotoxic quinones. 
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Figure 22 – Condensation reaction between a carboxylic acid and an amine. Adapted from [65]. 

2.1 – Introduction  

 Amide bonds are very important in the composition of biological systems and 

are present in many natural products such as proteins. Amides also have a key role for 

medicinal chemists. In fact carboxamide group appears in more than 25% of known 

drugs [65]. In general, prodrugs with an amide linkage have a suitable stability in vivo, 

due to the fact that amide bonds are very stable to aqueous hydrolysis at physiological 

pH, and to enzymatic hydrolysis by plasma enzymes [66,67]. 

  Amide bonds are typically synthesized from the union of carboxylic acids and 

amines. However, amide formation between a carboxylic acid and an amine is a 

difficult condensation process. When the amine is directly mixed with the carboxylic 

acid, an acid-base reaction occurs, to give a stable salt (figure 22). The equilibrium 

process shown in figure 22 also reveals that the amide bond formation is not as 

favourable as its hydrolysis process. The equilibrium between salt and amide bond can 

be reversed with the use of high temperatures, however the integrity of the substrates 

could be affected [65,68]. 

  

  

  

 To face the challenges associated with amide bond formation such as low yields, 

decomposition and difficult purification procedures, numerous methods have been 

developed in order to form this linkage in mild conditions. Acylation of amines usually 

involves a previous conversion of the carboxylic acid to a more reactive functional 

group. Carboxy moieties can be activated as acyl halides, mixed anhydrides, acyl azides 

or activated esters. Preparation of these more reactive derivatives is usually carried out 

using coupling agents [65,68]. 
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 Carboxylic acid activation could be attempted with different types of coupling 

agents such as N,N'-dicyclohexylcarbodiimide/4-dimethylaminopyridine 

(DCC/DMAP), O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluroniumtetrafluoroborate 

(TBTU), 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride 

(DMTMM) and thionyl chloride. Amide coupling could also be attempted with the use 

of a zirconium catalyst.  

- Activation with DCC/DMAP 

 DCC, which is a carbodiimide, has been frequently used for amide bond 

formation since 1955 [68,69]. In this one-pot procedure (figure 23), DCC and the 

carboxylic acid react together to form the O-acylurea. This specie is slowly converted 

into an unreactive N-acylurea. To prevent and diminish this side reaction, is necessary 

to use an additive, as DMAP, which reacts faster with O-acylurea to form an 

intermediate specie that stills active enough to couple with the amine in order to 

synthesize the final amide product. In this process, triethylamine (TEA) is used to 

regenerate the DMAP catalyst and an urea by-product, the N,N’-dicyclohexylurea 

(DCU) is formed. DCU is usually insoluble in the reaction medium and can be removed 

by filtration [65,68,70]. 

  

 

  

Figure 23 – Amide coupling activation with DCC/ DMAP. 
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Figure 24 – Amide coupling activation with TBTU. 
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- Activation with TBTU 

 Numerous coupling agents are based on the 1-hydroxybenzotriazole/1-hydroxy-

7-azabenzotriazole (HOBt/HOAt) system and uronium/aminium salts. TBTU is an 

uronium salt that has been used in highly efficient amide coupling reactions, especially 

in peptide synthesis [65,71]. This one-pot coupling synthesis (figure 24) is executed by 

mixing the carboxylic acid and the amine in the presence of TBTU and TEA. TEA is 

used to deprotonate the carboxylic acid and the carboxylate ion formed reacts with 

TBTU to form the activated acid and (-)OBt. A side reaction can also occur with the 

amine reacting with TBTU to form a guanidinium by-product. This side reaction can be 

diminished by adding HOBt to the reaction. (-)OBt readily reacts with the activated acid 

to generate an OBt active ester that suffers a nucleophilic attack by the amine in order to 

form the final amide linkage. In the formation of the OBt active ester, an urea by-

product is generated [65,68]. The by-products formed can be removed by aqueous 

extraction.   
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- Activation with DMTMM 

 DMTMM, which is a triazine derivative, has been described to be an effective 

activating coupling agent, not only for ester bond formation, but also for amide coupling 

and peptide synthesis [68,72]. In this synthesis (figure 25), the first step is a 

nucleophilic aromatic substitution, in which N-methylmorpholine reacts with 2-chloro-

4,6-dimethoxy-1,3,5-triazine to form DMTMM. An advantage of this process is the fact 

that N-methylmorpholine can be used in excess, so no additional base is required, as N-

methylmorpholine is able to deprotonate the carboxylic acid and generate the 

carboxylate ion.  The carboxylate ion formed reacts with DMTMM to form an activated 

ester that suffers a nucleophilic attack by the amine to form the final amide product. In 

this process a triazinone by-product is formed but it is easily removed by aqueous 

extraction [65]. 

 

 

  

  

 

 

 

 
 
 
 
 

 

Figure 25 – Amide coupling activation with DMTMM. 
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- Activation with thionyl chloride 
 

 Acyl chlorides are one of the easiest methods for activation of carboxylic acids. 

This is usually a two-step activation process (figure 26), involving first the conversion 

of the carboxylic acid into the acyl chloride and then the amide coupling between this 

specie and the amine to form the amide linker. The presence of a base (e.g: NEt3, 

iPr2NEt or N-methylmorpholine) is usually required, in order to trap the formed HCl 

and to avoid the conversion of the amine into its unreactive HCl salt [65]. Amide 

coupling can also be enhanced with catalytic amounts of DMAP, by generation of the 

acylpyridinum salt, which is a reactive intermediate [73]. 

 

 

 

 

   

 

- Activation with zirconium 

 Organometallics have become a major tool in modern organic synthesis with 

successful reports in the literature for amide coupling. These compounds have 

coordination bonds between metal and heteroatoms such as oxygen or nitrogen in the 

organic ligands. This coordination is very useful in stoichiometric and catalytic 

processes. In the amide coupling between esters and amines, catalytic amounts of metal 

mediators are usually required [74-76]. 

  

Figure 26 – Amide coupling activation with thionyl chloride. 
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 Zr(Ot-Bu)4/HOBt system was described by Yang and co-workers to be efficient 

in ester-amide exchange [76]. In this one-pot method (figure 27), Zr(Ot-Bu)4 and HOBt 

react together to form a Zr-OBt specie, which is responsible for the coordination 

between ester and amine. This coordination enhances the generation of the final amide 

product [74]. 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 27 – Amide coupling activation with Zr(Ot-Bu)4/HOBt. Adapted from [74]. 
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 The synthetic approach used for the preparation of triazene prodrugs derivatives 

(21a-f, table 2) is shown in figure 28. 

 

 

 

 

 

 

 

 

  

 

 

 MMTs 23 were synthesized from the corresponding HMTs 22. Compound 22 

resulted from diazotization of the proper aniline with sodium nitrite and HCl. The 

diazonium salt obtained reacts further with a conjugate, formed in situ between 

formaldehyde and methylamine, to give the desired HMT derivative 22 [77,78]. HMT 

derivatives 22 were transformed into MMT derivatives 23 by methylamine catalysis in 

aqueous medium (figure 23) [79]. 

 As coupling reagents we have tried DCC/DMAP, TBTU, DMTMM, thionyl 

chloride and zirconium.  

 
Triazene 
Prodrug 

 
R1 

 
R2 

 
Substituent in X 

21a OH H COOCH3 

21b OH H CN 

21c H OH COOCH3 

21d H OH CN 

21e H OH COCH3 

21f H OH CONH2 

Figure 28 – Synthetic pathway involved in the synthesis of triazene prodrugs 21.  

≈ 

Table 2 – Triazene prodrugs synthesized 21a-f. 
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Figure 29 – Amide coupling activation with activation of the amino group. 
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 Amide coupling was also enhanced with the activation of the amino group, along 

with the activation of the carboxylic acid 24. Amino group, in MMT 23, responsible for 

the nucleophilic attack, is a secondary amine. In our experiments (figure 29) the 

secondary amine in MMT 23 was activated with NaH. Sodium hydride behaves as a 

strong base that promotes the deprotonation of the N-methyl nitrogen atom. This 

deprotonation process generates a negative charge in nitrogen atom, increasing its 

nucleophilicity and enhancing the amide coupling between MMT 23 and the activated 

carboxylic acid 24 [80]. 

 

  

  

  

 

 Sometimes, when the amide coupling was not efficient at room temperature, it 

was necessary to provide energy in order to accelerate the process. This energy can be 

provided by two different sources, microwave irradiation or conventional heating.  

 Microwave irradiation produces a rapid and volumetric heating, where all 

reaction mixture is heated at the same time. The acceleration of reactions with 

microwave irradiation results from a combination between thermal and non-thermal 

effects, which are not usually accessible by conventional heating. Thermal effects are 

dielectric heating, overheating, hotspots and selective absorption of radiation by polar 

substances. Non-thermal effects of highly polarizing radiation, also called specific 

microwave effects, still to be a controversial topic. Microwave-assisted organic 

synthesis has as main advantages, the achievement of higher yields, the use of milder 
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Table 3 – Methodologies applied in the synthesis of triazene prodrugs 21a-f and the yields obtained. 

 

conditions and shorter reaction times. Amide coupling assisted by microwave 

irradiation has been previously reported in literature with success [81,82]. 

 In contrast, the conventional heating source is a slower and a more inefficient 

process of transferring energy for the reaction. In addition, the temperature gradient 

formed in the reaction mixture can develop local overheating, which can lead to product 

or reagent decomposition [81,82]. 

 Microwave irradiation has been described to be efficient in reactions, which do 

not occur by conventional heating [82,83]. 

 

2.2 – Results and Discussion 

 Synthesis of triazene prodrugs 21a-f 

 Triazene prodrugs 21a-f (table 3) were synthesized using different 

methodologies, which are fully described in the chapter 5, section 5.2.2. The yields 

obtained in the different processes were low and did not exceed 20 % (table 3).  

 
Triazene 
prodrug 

Hydroxyphenylpropionic acid 
derivative 

Substituent X Method Yield (%) 

21a 
3-(3-hydroxyphenyl)propionic 

acid 
COOCH3 DCC/DMAP < 5 

21b 
3-(3-hydroxyphenyl)propionic 

acid 
CN TBTU (MW irradiation) 8 and 20 

21c 
3-(4-hydroxyphenyl)propionic 

acid 
COOCH3 TBTU (MW irradiation) < 5 

21d 
3-(4-hydroxyphenyl)propionic 

acid 
CN DCC/DMAP 15 

21e 
3-(4-hydroxyphenyl)propionic 

acid 
COCH3 TBTU (reflux) < 5 

21f 
3-(4-hydroxyphenyl)propionic 

acid 
CONH2 DMTMM < 5 



 
CHAPTER 2 – SYNTHESIS OF TRIAZENE PRODRUGS 

 

 

  

42 

X

N
N

N

23

X

N
N

N

23

 First attempt to synthesize triazene prodrugs 21 was accomplished by 

DCC/DMAP coupling. This method was the first choice, because in our research group, 

the synthesis of triazene derivatives with an amide linkage was previously achieved 

with yields between 21% and 73% [84-86]. This methodology was also used by Chen 

and co-workers in the synthesis of amide-linked paclitaxel analogs, with yields that 

ranged from 50% to 71% [87]. With this method the synthesis of triazene prodrugs 

21a,d was accomplished but the yields obtained were substantially lower in comparison 

with the yields described above. The explanation for these low yields could be in the 

structure of the hydroxyphenylpropionic acid derivative 24. Compound 24 has a 

phenolic moiety that is easily oxidized by different promoters as UV-light or high 

temperatures [88,89]. Although in this method the amide coupling was performed at 

room temperature and protected from light, some oxidation in compound 24 must have 

occurred, thus compromising the yields obtained in the synthesis of prodrugs 21a,d. 

Other possible explanation for the lower yields obtained could be in the complex 

purification process applied in this method, due to formation of DCU, which was 

partially soluble in the reaction solvent, tetrahydrofuran (THF). This long and complex 

purification process could have also promoted the oxidation of prodrugs 21a,d. This 

method was also attempted with activation of MMT 23 but the results did not improve. 

Negative charge generated in the N-methyl nitrogen atom, after MMT 23 activation, is 

involved in resonance (figure 30), thus decreasing its nucleophilic character. 

  

  

 

 

Figure 30 – Resonance process in MMT 23 structure after the formation of the negative charge. 
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 In order to overcome the long reaction time and the complex purification 

process, another method was applied. By this method the amide coupling occurred with 

activation of the 3-(4-hydroxyphenyl)propionic acid 24 with DMTMM. This method is 

a highly rapid strategy for amide coupling at room temperature with an easy purification 

process. This methodology was successfully applied by Kunishima and co-workers in 

the amide coupling between several carboxylic acids (e.g: aromatic, sterically hindered, 

α,β-unsaturated, etc) with primary and secondary amines. The yields obtained ranged 

between 62% and 92% [90]. Luca and co-workers also applied this method in the 

preparation of Weinreb amides, which consisted in the coupling between several types 

of carboxylic acids and N,O-dimethylhydroxylamine. The yields obtained ranged 

between 49% and 97% [91]. Another reference in the literature for this method refers 

the amide coupling done by Bandgar and co-workers in the synthesis of monoacylated 

piperazine derivatives with yields that ranged from 60% to 95%. One of the amide 

couplings carried out by them, was between 4-hydroxybenzoic acid (phenolic moiety) 

and piperazine (secondary amine), with a yield of 92% [92]. In our research work, this 

method was used to synthesize triazene prodrug 21f, but the yield obtained was much 

lower in comparison with the yields previously reported. We could envisage three 

possible explanations for this low yield: 

 MMT derivatives 23 are usually unstable in the reaction conditions, thus 

hydrolyzing in the corresponding anilines [77]; 

 N-methyl nitrogen atom of the MMT derivatives 23 is a weak nucleophile; 

 We observed during the synthesis some solubility problems, which may 

negatively influenced the yield obtained. 

 Synthesis of triazene prodrug 21e was achieved with activation of 3-(4-

hydroxyphenyl)propionic acid 24 with TBTU. In this method, amide coupling was 

assisted by conventional heating. This method was previously applied with success by 

Loffredo and co-workers in peptide synthesis [83]. Finaru and co-workers also used this 

method in the synthesis of 5-carboxamido-N-acetyltryptamine derivatives, and the 

yields obtained ranged from 58% to 100% [93]. The yield obtained in the synthesis of 
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Figure 31 – Dimerization process of two activated molecules of 3-(4-hydroxyphenyl)propionic acid before the 
amide coupling and formation of compounds 25a,b.  

Legend: Compound 25a – X = COOCH3; Compound 25b – X = COCH3. 
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triazene prodrug 21e was very poor in comparison with the yields mentioned before. 

There are some possible explanations for this poor yield: 

 As described before the conventional heating source can lead to product and 

reagent decomposition [81]; 

 Reaction temperature promoted a dimerization process of the activated 3-(4-

hydroxyphenyl)propionic acid 24 before the amide coupling and the result was 

the emergence of secondary products 25 (figure 31). The same type of process 

was previously observed by Bejugam and co-workers [94]; 
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 A possible side reaction between MMT 23 and TBTU, which promoted the 

formation of a guanidinium by-product (figure 32) [68]; 

 

 

 
 
 
 
 
 
 
 

Figure 32 – Guanidinium by-product formation. 
 

 Some amounts of triazene prodrug 21e were lost during the extraction process 

used to remove dimethylformamide (DMF). 

 In order to overcome the decomposition problems caused by the conventional 

heating, it was attempted the synthesis of triazene prodrugs 21b,c with microwave 

irradiation. This method was also applied with sucess by Loffredo and co-workers in 

peptide synthesis [83]. Synthesis of 5-carboxamido-N-acetyltryptamine derivatives was 

also attempted by Finaru and co-workers and the yields obtained ranged between 80% 

and 100% [93]. The yields obtained in the synthesis of triazene prodrugs 21b,c were 

poor in comparison with the yields described above. We observed that the yield 

obtained in the synthesis of triazene prodrug 21b, significantly increased to 20% when 

the microwave cycle was performed twice. These low yields can be explained by the 

reasons described in the previous method. The dimerization process (figure 31) have 

also occurred in the synthesis of triazene prodrug 21c. 

 Attempts to synthesize triazene prodrug 21g lead us to apply activation of 

carboxylic acid function 24 with thionyl chloride. Cvetovich and co-workers applied 

this method in the synthesis of acrylanilides, acrylamides and amides with yields 

between 50% and 98% [95]. This method was also applied in the preparation of N-Fmoc 

α-amino/ peptidyl Weinreb amides by Sureshbabu and co-workers with yields ranging 

from 76% to 90% [96]. Unfortunately triazene prodrug 21g was only synthesized in 
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CN

N
N

N

O

21g

HO

HO

very small amounts and very impure. The lack of efficiency of this method in this amide 

coupling can be possibly explained by:  

 Activation of 3-(3,4-dihydroxyphenyl)propionic acid 24 with thionyl chloride 

increased the acidity in the reaction medium, promoting the hydrolysis of the 

MMT-CN 23 in the corresponding aniline-CN [97]; 

 A condensation process between two activated molecules of 3-(3,4-

dihydroxyphenyl)propionic acid 24, with formation of a dimer (e.g: figure 31) 

[98]. 

 Another method tried in the synthesis of prodrug 21g encompassed the use of a 

metal coupling catalyst Zr(Ot-Bu)4 with HOBt. Han and co-workers applied this method 

in the amide coupling between several types of esters and amines, and the yields 

obtained ranged between 75% and 95% [74]. The same method was also used by Yang 

and co-workers and the yields obtained in the amide coupling ranged from 72% to 93% 

[76]. These results prompt us to think that this method could be advantageous for the 

synthesis of our prodrugs 21 but in our experiment, amide coupling did not occur. 

Maybe the extreme temperature (100ºC) applied in this method has decomposed the 

reactants or even the triazene prodrug 21g. 
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 Structural Identification 

 Structural identification of triazene prodrugs 21 was carried out by nuclear 

magnetic resonance (NMR) spectroscopic methods (1H NMR, 13C NMR, heteronuclear 

multiple quantum correlation (HMQC)), infrared (IR) spectroscopy and electrospray 

ionization mass spectrometry (ESI-MS). Complete structural identification is shown in 

chapter 5, section 5.3. HMQC information is shown in the appendices.   

- 1H NMR spectroscopy 

 
Triazene 
Prodrug 

 
CH2’s 

 
N-CH3 

 
OHPhenol 

 
Ar(CH’s)Phenol 

 
Ar(CH’s)MMT 

21a 

3.04 
(2H, t, J = 7.7 Hz) 

3.26 
(2H, t, J = 7.7 Hz) 

3.44 
(3H, s) 

5.31 
(1H, s) 

6.69 
(1H, dd, J = 7.8, 2.0 Hz) 

6.75 
(1H, br s) 

6.81 
(1H, d, J = 7.8 Hz) 

7.16 
(1H, t, J = 7.8 Hz) 

 

7.60 
(2H, AA’, J = 8.4 Hz) 

8.11 
(2H, XX’, J = 8.4 Hz) 

 

21b 

3.03 
(2H, t, J = 7.8 Hz) 

3.25 
(2H, t, J = 7.8 Hz) 

3.45 
(3H, s) 

5.39 
(1H, s) 

6.69 
(1H, dd, J = 7.8, 2.2 Hz) 

6.75 
(1H, br s) 

6.80 
(1H, d, J = 7.8 Hz) 

7.15 
(1H, t, J = 7.8 Hz) 

7.63 
(2H, AA’, J = 8.4 Hz) 

7.73 
(2H, BB’, J = 8.4 Hz) 

21c 

3.01 
(2H, t, J = 7.6 Hz) 

3.23 
(2H, t, J = 7.6 Hz) 

3.44 
(3H, s) 

4.97 
(1H, s) 

6.76 
(2H, AA’, J = 7.8 Hz) 

7.11 
(2H, XX’, J = 7.8 Hz) 

7.60 
(2H, AA’, J = 8.2 Hz) 

8.11 
(2H, XX’, J = 8.2 Hz) 

21d 

3.01 
(2H, t, J = 7.6 Hz) 

3.22 
(2H, t, J = 7.6 Hz) 

3.44 
(3H, s) 

4.74 
(1H, s) 

6.76 
(2H, AA’, J = 7.6 Hz) 

7.11 
(2H, XX’, J = 7.6 Hz) 

7.63 
(2H, AA’, J = 7.8 Hz) 

7.73 
(2H, BB’, J = 7.8 Hz) 

21e 

3.01 
(2H, t, J = 7.8 Hz) 

3.23 
(2H, t, J = 7.8 Hz) 

3.45 
(3H, s) 

5.15 
(1H, s) 

6.77 
(2H, AA’, J = 8.6 Hz) 

7.11 
(2H, XX’, J = 8.6 Hz) 

7.63 
(2H, AA’, J = 8.8 Hz) 

8.03 
(2H, XX’, J = 8.8 Hz) 

21f 

2.90 
(2H, t, J = 7.6 Hz) 

3.14 
(2H, t, J = 7.6 Hz) 

3.35 
(3H, s) 

nd 

6.65 
(2H, AA’, J = 8 Hz) 

6.98 
(2H, XX’, J = 8 Hz) 

7.52 
(2H, AA’, J = 8 Hz) 

7.83 
(2H, XX’, J = 8 Hz) 

Table 4 – Summary of the common peaks in the 1H NMR spectra of triazene prodrugs 21a-f. 
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HO R

21a,b

H1

H2

H3

H4

 Analysis of table 4 shows that: 

 Chemical shifts from the alkyl CH2’s are assigned by two triplets in the region 

between 2.90-3.26 ppm; 

 N-CH3 signal is characterized by a singlet in the region of 3.40 ppm; 

 Chemical shift from the aromatic OH, when is observed, is characterized by a 

singlet near 5 ppm; 

 In the aromatic CH’s from MMT 23, the chemical shifts are assigned by a pair 

of doublets in the region between 7.52-8.11 ppm. Depending on the substituent 

X in the MMT derivatives 23, these aromatic CH’s can be represented by a 

AA’BB’ spin system (∆ν/J ≤10) or by a AA’XX’ spin system (∆ν/J ˃ 10). Only in 

triazene prodrugs 21b,d, the aromatic CH’s are represented by a AA’BB’ spin 

system; 

 In the aromatic CH’s from the phenolic moiety, the chemical shifts depend on 

the hydroxyphenylpropionic acid 24 derivative:  

 
- Triazene prodrugs 21a,b (3-(3-

hydroxyphenyl)propionic acid derivatives) have 

four different chemical shifts in the region 

between 6.69-7.16 ppm (H2 – 6.69; H1 – 6.75; H3 

– 6.80/6.81; H4 – 7.15/7.16). The assignment of 

these chemical shifts is supported by 1H NMR 

data collected by Takaishi and co-workers from 

several m-alkylphenols [99]; 

 
- In triazene prodrugs 21c-f (3-(4-hydroxyphenyl)propionic acid, these 

protons are assigned by a pair of doublets in the region between 6.65-

7.11 ppm with a AA’XX’ spin system.  
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- 13C NMR and HMQC spectroscopic methods 

 In 13C NMR data of triazene prodrugs 21, all carbon chemical shifts were 

detected. HMQC spectra of triazene prodrugs 21 revealed all the expected proton-

carbon correlations.  

- IR spectroscopy 

 Table 5 – Summary of the relevant IR absorption bands in triazene prodrugs 21a-f and 25a,b. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

* two undifferentiated amide functions; ** two undifferentiated ester functions  

 
 
 

Triazene 
prodrug 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

21a 1686 Ester(C=O)  - 1713 ------------ 

21b 1684 Cyano(CΞN) - 2228 ------------ 

21c 1697 Ester(C=O) - 1728 ------------ 

21d 1711 Cyano(CΞN) - 2234 ------------ 

21e 1661 Ketone(C=O) - 1695 ------------ 

21f         1686  / 1670* ------------ 

25a               1717                                                                  1734  / 1749** 

25b 1682 Ketone(C=O)  - 1703     1754 

IR absorption bands (cm-1) 

R N

O

R

R O

O

R

X

R

Carbonyl of function 

amide 
Substituent X 

Carbonyl of function 

ester 
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  Analysis of table 5 shows that: 

 IR amide band varies from 1661 to 1717 cm-1 but the range for tertiary amides 

referred in the literature varies from 1630 to 1680 cm-1 [100]. This discrepancy 

can be explained by the influence of the vicinity atoms.   

 IR absorptions bands of substituent X for compounds 21 and 25 were all 

identified and in accordance with the literature [100]. 

 IR carbonyl band from the ester of the dimer was detected in compounds 25a,b, 

in addition to the other IR bands. 

 

- ESI-MS  

 

Table 6 – Expected molecular weights and the m/z values for the molecular ion of each triazene prodrug 21a-f. 

  

 Analysis of table 6 reveals that the expected molecular weights for all triazene 

prodrugs 21a-f are confirmed.    

 
Triazene prodrug Expected molecular weight ESI+ [M+Na]+   ESI- [M-H]- 

21a 341 364 (341+23) 340 (341-1) 

21b 308 331 (308+23) 307 (308-1) 

21c 341 364 (341+23) 340 (341-1) 

21d 308 331 (308+23) 307 (308-1) 

21e 325 348 (325+23) 324 (325-1) 

21f 326 349 (326+23) 325 (326-1) 
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2.3 – Conclusions  

 Although all the difficulties associated with amide coupling, the synthesis, 

purification and structural identification of a new serie of anti-tumor triazene prodrugs 

21 was achieved.  

 About the different methodologies adopted in the synthesis of prodrugs 21, it is 

possible to conclude that: 

 The activation methods with DCC/DMAP, TBTU and DMTMM were useful 

but not efficient, due to the fact that the yields obtained did not exceed 20 %;  

 

 The activation methods with DCC/DMAP and TBTU (MW irradiation) 

provided the best yields, however in the activation with TBTU (MW 

irradiation), reaction time and purification process are much shorter; 

 

 Microwave irradiation is more efficient than conventional heating; 

 

 The activation methods with thionyl chloride and zirconium must be further 

modified in order to become useful in the synthesis of prodrugs 21;  

 

 The poor yields obtained can also be explained based on the intrinsic reactivity 

of the main reactants (hydroxyphenylpropionic acid derivatives 24 and MMT 

derivatives 23), which are unstable and can easily suffer decomposition 

processes in the reaction mediums. 
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3.1 – Introduction  

 In order to study the stability of triazene prodrugs 21 in conditions that mimic 

physiological environment and to evaluate their activation by mushroom tyrosinase and 

their efficiency in drug release, several kinetic assays were performed: chemical 

hydrolysis in PBS (0.01 M, pH 7.4), hydrolysis in 80% of human plasma and oxidation 

of prodrugs 21 by mushroom tyrosinase. 

 These assays were all accomplished at 37 ºC and performed by HPLC, by 

monitoring the loss of substrate and the generation of products. The percentages of these 

compounds in each assay were calculated using calibration curves (chapter 5, section 

5.4.4). Chemical reactions followed pseudo first-order kinetics and were monitored 

during at least 3 half-lives. Pseudo first-order rate constants (kobs) were calculated from 

the slopes of plots of ln(Area) vs time (equation 1) and half-lives (t1/2) from equation 2. 

An example of the plots obtained is shown in figure 33.  

 Equation 1 –                             

 Equation 2 –                     
 

 

 

 

 

Figure 33 – Plot of the hydrolysis reaction of triazene prodrug 21b in PBS (0.01 M, pH=7.4). 
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3.2 – Chemical hydrolysis of triazene prodrugs in physiological 

conditions 

 Triazene prodrugs 21 suitable for MDEPT strategy must be chemically stable in 

physiological conditions (37 ºC and pH 7.4) and reach the desired target undecomposed. 

The assays were performed following the experimental procedure described in the 

chapter 5, section 5.4.1. The calculated pseudo first-order rate constants (kobs) and half-

lives (t1/2) for the hydrolysis of triazene prodrugs 21 in PBS are given in table 7.    

 

Table 7 – Results from HPLC analysis of the assays in PBS (0.01 M, pH=7.4) at 37 ºC for triazene prodrugs 21. 

 
Triazene 
Prodrug 

 
%Prodrug 

consumption 

 
%Aniline 
formation 

 

kobs (s
-1) 

 
R2 

 
Half-live (h) 

21a 97.4 ± 1.5 93.8 ± 0.7 2.0x10-6 ± 0.2x10-6 0.99  94.7 ± 10.4 

21b 98.4 ± 0.5 92.0 ± 8.6  3.2x10-6 ± 0.2x10-6 0.99 60.1 ± 3.9  

21c 97.5 ± 3.6 90.1 ± 0.3 1.9x10-6 ± 0.2x10-6 0.99 101.5 ± 9.5 

21d 93.7 ± 2.7 82.9 ± 0.4 2.6x10-6 ± 0.3x10-6 0.99 76.0  ± 9.0 

21e 90.6  ± 3.5 81.5 ± 2.1 1.57x10-6 ± 0.02x10-6 0.99 122.7 ± 1.9 

21f 94.5 ± 2.1  86.7 ± 2.8 1.63x10-6 ± 0.05x10-6 0.99 118.2 ± 3.4 

  

 Triazene prodrugs 21 decompose in PBS leading to generation of 1-aryl-3-

methyltriazenes 23 and hydroxyphenylpropionic acid 24. Under the reaction conditions, 

MMTs 23 are also unstable and further hydrolyze into the corresponding anilines (figure 

34 and 35) [97]. 
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Figure 35 – HPLC chromatograms of the hydrolysis of triazene prodrug 21a in PBS (0.01 M, pH=7.4).  

 

   

 

 

 

  

  

 

 

 Table 7 shows that triazene prodrugs 21 decompose in this medium with half-

lives ranging from 60 to 123 hours, so they are chemically stable in physiological 

conditions (37 ºC and pH 7.4). When we compare the stability in PBS between triazene 

prodrugs 21a,b with 21c,d respectively, is possible to see that the position of the OH 

group in the phenolic moiety does not have a significant influence in the chemical 

hydrolysis of compounds 21. Complete mass balance was observed for all prodrugs 21 

in this assay (table 7 and figure 36).  

 

Figure 34 – Chemical hydrolysis reaction of triazene prodrugs 21 and their hydrolysis compounds. Adapted 
from (97). 
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Figure 36 – Time course for the decay of prodrug 21b and generation of aniline. 

 

 

 

 

 

 
 
  

  

 Carvalho and co-workers analyzed the chemical stability of a range of 

aminoacyltriazenes 26 in the same conditions. Our prodrugs 21 reveal to be 140 to 240 

times more stable in this medium in comparison with compounds 26 [85,86]. 

 

 

  

  

 Perry and co-workers also evaluated the chemical stability of a range of N-

acylamino acid derivatives of triazenes 27 in PBS. Although these derivatives 27 gain 

some stability upon aminoacyl derivatives 26, they are 6 to 9 times less stable than our 

prodrugs 21 [84]. Since the only difference between MMT-based prodrugs 21 and 

MMT-based prodrugs 26 and 27 is in the trigger/carrier unit, is possible to affirm that 

the hydroxyphenylpropionic acid trigger 24 is more efficient than the amino acid unit in 

the amide-linker stabilization.   

N
N

N

X

R

O

26

R = CH(CH3)NH2; CH(CH2Ph)NH2

X = CN; COCH3; COOEt; CONH2; Br; CH3
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N
N

N

X
O

H
NR'

O R

27

R = CH3; H; CH2Ph; CH(CH3)2
R' = CH3; CH2CH3; CH2CH2CH3; Ph
X = CN; COCH3; COOEt; CONH2; Br

N

N N
H

N

N
N

NR

O

OCH2Ph

28a-d     R = alkyl; aryl

28e-k    R = alkoxy; aryloxy

 

 

 

    

 Our prodrugs 21 also reveal to have an intermediate stability in PBS in 

comparison with the prodrugs synthesized by Perry, which are a carbamate and an aryl 

derivatives of prodrugs 26 (Carbamate linker - X = CN, R = OCH3, t1/2 = 46 h; Amide 

linker - X = CN, R = CH3, t1/2 = 124 h) [97]. 

 Wanner and co-workers synthesized triazene prodrugs 28 with a heterocyclic 

ring in the triazene moiety. Prodrugs 28a-d with an amide linkage have half-lives 

ranging between 22.1 and 58.3 hours and prodrugs 28e-k (with a carbamate linkage) 

have half-lives ranging from 0.4 to 58.3 hours. Triazene prodrugs 21 reveal to be more 

stable in PBS than methyltriazene prodrugs 28 [48]. 
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 When we compare the stability of our prodrugs 21 with urea and thiourea 

prodrugs previously synthesized by Knaggs and co-workers for MDEPT strategy (18a-c 

and 19a,b that practically remained undecomposed after 5 hours of incubation), it is 

possible to see that prodrugs 21 are at least equal or slightly less stable [39]. 

 Perry and co-workers have also evaluated the stability of potential MDEPT 

prodrugs 20, which have an urea linker. Prodrugs 20a-d are stable in PBS for 15 days 

and prodrugs 20e-g have half-lives larger than 15 hours. Triazene prodrugs 21 reveal to 

be more stable than prodrugs 20e-g and to have an ideal chemical stability as prodrugs 

20a-d [50]. 

 Prodrugs 21 revealed to be sufficiently stable to reach the tumor cells 

undecomposed, which allowed further chemical and enzymatic studies. 

 

3.3 – Hydrolysis of triazene prodrugs in human plasma 

 Blood serum and plasma contain a variety of enzymes that catalyse the 

hydrolysis of ester and amide functions. Since triazene prodrugs 21 have in their 

structure an amide function, tests in human plasma were performed in order to evaluate 

if prodrugs 21 are stable in this medium [84,101]. 

 These assays were performed following the experimental procedure described in 

the chapter 5, section 5.4.2. The calculated pseudo first-order rate constants (kobs) and 

half-lives (t1/2) for the hydrolysis of prodrugs 21 in human plasma are given in table 8. 
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Figure 37 – HPLC chromatograms of the hydrolysis of triazene prodrug 21b in human plasma (80% v/v). 

*maximum % observed in the assay. 

 
Triazene 
Prodrug 

 
%Prodrug 

consumption 

 
%Aniline 
formation 

 
%MMT 

formation* 

 

kobs (s
-1) 

 
R2 

 
Half-live (h) 

21a 98.9 ± 0.2 nd nd 2.48x10-5 ± 0.03x10-5 0.99 7.8 ± 0.1 

21b 99.9 ± 0.2 85.4 ± 4.1  38.4 ± 9.2  7.1x10-5 ± 0.2x10-5 0.99  2.7 ± 0.1  

21c 99.0 ± 0.5 nd nd 2.66x10-5 ± 0.09x10-5 0.99 7.3 ± 0.2 

21d 96.1 ± 1.8 85.1 ± 2.9 18.3 ± 2.6 3.3x10-5 ± 0.1x10-5 0.99 5.8  ± 0.3 

21e 90.7  ± 0.9 82.8 ± 1.2 nd 1.32x10-5 ± 0.03x10-5 0.99 14.6 ± 0.4 

21f 88.9 ± 0.6  89.7 ± 5.9 nd 4.0x10-6 ± 0.3x10-6 0.99 48.5 ± 2.9 

 

  

 In this assay it was possible to observe for triazene prodrugs 21b,d, their 

hydrolysis in the corresponding MMT-CN 23. Over time MMT-CN 23 began to be 

hydrolyzed in the corresponding aniline-CN (figure 37). Complete mass balance was 

observed for prodrugs 21b,d-f (table 8 and figure 38). 

 

 

 

 

 

 

 

Table 8 – Results from HPLC analysis of the assays in human plasma (80% v/v) at 37 ºC for triazene prodrugs 21. 
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 The half-lives (table 8) obtained in these assays range from 3 to 49 hours. These 

results clearly show that all prodrugs 21 are substrates for plasma enzymes, because 

they are hydrolyzed 3 to 22 times faster in plasma than in PBS. When prodrugs 21 are 

compared with other triazene derivatives with an amide function, it is possible to assess 

that: 

 Triazene prodrugs 21 are 2 to 6.5 times more stable than N-acylamino acid 

derivatives of triazenes 27 [84]; 

 The low stability of triazene prodrugs 21b,d, which are derivatives of MMT-

CN 23, in human plasma has been previously observed for aminoacyltriazenes 

27 [85]; 

 Triazene prodrugs 21e,f reveal to be more stable when compared with the aryl 

derivative of prodrugs 26 synthesized by Perry (Amide linker - X = CN, R = 

CH3, t1/2 = 13 h) [97].     

  

 

Figure 38 – Time course for the formation and decay of intermediates in the plasma hydrolysis of prodrug 21b.  
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 Comparison of stability of triazene prodrugs 21 in plasma, with other potential 

MDEPT prodrugs shows that: 

 Amide linker in triazene prodrugs 21 is much more stable than the carbamate 

linker in prodrug 9 (t1/2 = 0.8 h). Prodrug 17, which have an urea linker, 

remained undecomposed after 2 hours of incubation in plasma, so it is more 

stable than prodrugs 21 [51,54]; 

 In almost all cases, amide linker in triazene prodrugs 21 provides more stability 

than thiourea linker in prodrugs 18b,d and 19b (t1/2 ≤ 5 h). Urea linker in 

prodrugs 18a,c and 19a (t1/2 ≥ 5 h) reveal to be as stable as the amide linker in 

prodrugs 21 [39]; 

 Amide linker in triazene prodrugs 21 is as stable as urea linker in prodrugs 

(20e-g, 5.7 ≤ t1/2 (h) ≤ 15), but is less stable than urea linker in prodrugs (20a-

d, t1/2 ≥ 72 h) [50]. 

 Triazene prodrugs 21, with the exception of 21b, have an adequate stability in 

plasma, so they are suitable for MDEPT strategy. 

 

3.4 – Activation of triazene prodrugs by mushroom tyrosinase 

 These assays were performed in order to evaluate the ability of triazene prodrugs 

21 to act as substrates for tyrosinase and their capacity to release the cytotoxic agent 

MMT 23 after tyrosinase activation. These assays are fundamental due to the fact that 

tyrosinase is the target enzyme in MDEPT strategy. 

 These assays were performed according with the experimental procedure 

described in the chapter 5, section 5.4.3. The calculated pseudo first-order rate constants 

(kobs) and half-lives (t1/2) for the activation of compounds 21 and 25 by mushroom 

tyrosinase are given in table 9.   
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*maximum % observed in the assay; **single assay. 

Table 9 – Results from HPLC analysis of the assays performed in the presence of mushroom tyrosinase at 37 
ºC for triazene prodrugs 21 and 25. 

   

 

 Comparing the results in table 9 with the ones in table 7, we can clearly affirm 

that triazene prodrugs 21 are substrates of mushroom tyrosinase. Depending on the 

hydroxyphenylpropionic acid derivative 24, two different processes were observed: 

 After tyrosinase activation, triazene prodrugs 21a,b (3-(3-

hydroxyphenyl)propionic acid derivatives), released the corresponding MMT 

derivatives 23. MMT 23 specie remained for a while and then it began to be 

hydrolyzed in the corresponding aniline over time (figure 39 and 40); 

 

 
Triazene 
prodrugs 

Mushroom 
tyrosinase 
(units/mL) 

%Prodrug 
consumption  

%Aniline 
formation 

%MMT 
formation kobs (s

-1)  
R2 

 
Half-live (h) 

21a 300 97.5 ± 3.4 54.9 ± 11.2 2.0 ± 0.2 9.1x10-6 ± 0.9x10-6 0.99  21.2 ± 2.0 

21b 300 91.1 ± 3.6 68.9 ± 11.4  4.6 ± 0.7  9.9x10-6 ± 0.9x10-6 0.99 19.5 ± 1.8  

21c 100 100** 36** 5** 4.7x10-3 ± 0.4x10-3 0.99 0.041 ± 0.004 

21d 100 100** 46** 4** 7.9x10-3 ± 0.5x10-3 0.99 0.025  ± 0.002 

21e 100 100** 24** 5** 3.2x10-3 ± 0.3x10-3 0.99 0.061 ± 0.005 

21f 100 100** 20** 4** 2.5x10-3 ± 0.2x10-3 0.99 0.077 ± 0.005 

25a 100 ------------ ------------ ----------- 1.8x10-3** 0.99** 0.105** 

25b 100 ------------ ------------ ----------- 2.1x10-3** 0.99** 0.093** 
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 Triazene prodrugs 21c-f (3-(4-hydroxyphenyl)propionic acid derivatives), when 

exposed to mushroom tyrosinase, are oxidized into an intermediate specie 29 

before the MMT 23 release (figure 41 and 42). This intermediate could be a 

quinone specie that is stable enough to be detected. In the literature is referred 

the generation of a similar quinone specie when 3-(4-hydroxyphenyl)propionic 

acid is oxidized by tyrosinase [20]. Actually, it was already observed by Perry 

Figure 39 – HPLC chromatograms of the activation of triazene prodrug 21a by mushroom tyrosinase. 

Figure 40 – Time course for the formation and decay of intermediates after activation of prodrug 21b by 
mushroom tyrosinase. 
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Figure 41 – HPLC chromatograms of the activation of triazene prodrug 21e by mushroom tyrosinase. 
 

Figure 42 – Hypothetic mechanism for MMT 23 release from prodrugs 21c-f after tyrosinase activation. 
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and co-workers, using LC-MS, the generation of a similar intermediate in the 

oxidation of compounds 20b,c and e promoted by mushroom tyrosinase [50].   

  

 

 

 

 

 

 

 With the data collected from the assays of prodrugs 21c-f in the presence of 

mushroom tyrosinase, we hypothesized a tyrosinase-dependent mechanism of MMT 23 

release (figure 42). In this drug release pathway, triazene prodrugs 21c-f are oxidized by 

tyrosinase in the corresponding orthoquinone 29. Then this specie 29 can initiate an 

intramolecular cyclization pathway and MMT 23 is released from a reactive 

intermediate instable in aqueous media.    
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 The release of MMT 23, was detected 250 seconds after exposure of triazene 

prodrugs 21c-f to mushroom tyrosinase. The maximum percentage of MMT 23 

generation that was detected, ranged from 4 to 5 % (figure 43). MMT release from 

prodrugs 21c-f is much faster in comparison with other drug release pathways described 

in the literature for potential MDEPT prodrugs. In prodrugs 9, 10b and 17 synthesized 

by Jordan and co-workers, the drug release after tyrosinase activation was only detected 

at 10.2, 30 and 30 minutes, respectively [51,52,54]. 

 

 

 

 

 

 

 

 

  

 In these assays, the complete mass balance was not observed because we never 

saw the total formation of aniline. This situation can be explained by the fact that 

aromatic amines (e.g: anilines) are also tyrosinase substrates. Toussaint and co-workers 

have found in a previous research work that several p-anilines are oxidized in a two-step 

mechanism by tyrosinase. Firstly, p-anilines suffer an ortho hydroxylation and then they 

are converted to o-quinone imines [102]. The interaction mechanism between p-anilines 

and the active site of tyrosinase was proposed by Munoz-Munoz and co-workers [19]. 

The formation of this o-quinone imine specie can be the main reason by which we did 

Figure 43 – Time course for the formation and decay of intermediates after activation of prodrug 21c by 
mushroom tyrosinase.  
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not observe the expected total concentration of aniline in these mushroom tyrosinase 

assays. 

 When the half-lives of triazene prodrugs 21c-f are compared with the half-lives 

of triazene prodrugs 21a,b, it is possible to see that the derivatives of 3-(4-

hydroxyphenyl)propionic acid have much more affinity for tyrosinase than the 

derivatives of 3-(3-hydroxyphenyl)propionic acid. A similar difference has already been 

observed in a previous work of Fenoll and co-workers, in which they found that the 

catalytic efficiency of tyrosinase is much higher for 4-hydroxyanisole than for 3-

hydroxyanisole [103]. 

 Triazene prodrugs 21c-f reveal to be excellent tyrosinase substrates with half-

lives that range from 1.5 to 5 minutes. These prodrugs 21c-f have a better affinity for 

tyrosinase in comparison with other potential MDEPT prodrugs described in the 

literature because they have shorter half-lives in the presence of mushroom tyrosinase:  

 Prodrugs 18a,c and 19a synthesized by Knaggs co-workers have, in the 

presence of 938 units of mushroom tyrosinase per mL, half-lives that range 

from 58 to 100 minutes [39]; 

 Triazene prodrugs 20 synthesized by Perry and co-workers have, in the 

presence of 100 units of mushroom tyrosinase per mL, half-lives that range 

between 6.1 an 18.2 minutes [50]. 

 Tyrosinase activation in compounds 25a,b was also evaluated and it was 

surprisingly found that these compounds are excellent tyrosinase substrates despite of 

being large molecules. Compounds 25a,b have a half-live of approximately 6 minutes. 

In this assay it was possible to observe the generation of two intermediate species 29 

and 30 (figure 44 and 45). Intermediate 30 could be the same type of quinone specie 

already observed during the hydrolysis of prodrugs 21c-f. 
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Figure 44 – HPLC chromatograms of the activation of compound 25b by mushroom tyrosinase. 

Figure 45 – Formation of a quinone specie 30, after tyrosinase activation in compounds 25a,b. 
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 Since compounds 21c-f and 25a,b are excellent tyrosinase substrates, it was 

calculated the partition coefficients using the ALOPS 2.1 (table 10) and their respective 

molecular weights (MW) in order to estimate if they have the ability to diffuse across 

the biological membranes in the malignant melanoma cells [104,105]. 
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Table 10 – Calculated log P  and MW for triazene prodrugs 21c-f and 25a,b 

 

 

 

 

  

 Due to the fact that these log P were calculated, it is only possible to estimate 

that: 

 Prodrug 21f has a calculated log P near to 2, so it is in the desirable range to 

diffuse freely across biological membranes. Triazene prodrugs 21c-e are not 

definitely excluded because in the literature there are some examples of some 

successful drugs/prodrugs that have log P values outside this desirable range. In 

terms of MW, prodrugs 21c-f are in the desirable range (MW < 500 g/mol) to 

permeate across biological membranes [106,107]; 

 According to Lipinski rules, compounds 25a,b will have problems to diffuse 

freely across biological membranes, because they are too lipophilic (log P > 5) 

and their MW are near to 500 g/mol [107]. 

 

 
Triazene prodrugs Substituent X Calculated log P MW 

21c COOCH3 3.45 ± 0.63 341.14 

21d CN 3.29 ± 0.67 308.13 

21e COCH3 3.35 ± 0.63 325.14 

21f CONH2 2.63 ± 0.62 326.14 

25a COOCH3 5.09 ± 0.81 489.19 

25b COCH3 5.00 ± 0.80 473.20 
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3.5 – Conclusions  

 Taking into account the results described in this chapter, it is possible to 

conclude that in terms of stability: 

 Triazene prodrugs 21 show to be chemically stable in physiological conditions 

(37 ºC and pH 7.4) with half-lives between 60 and 123 hours; 

 Most of triazene prodrugs 21, with the exception of triazene prodrug 21b, show 

to be stable in human plasma with half-lives between 6 and 49 hours; 

 Amide function reveals to be very stable in both mediums; 

 It is expected that most of triazene prodrugs 21 reach the malignant 

melanocytes undecomposed. 

 In terms of triazene prodrugs 21 activation by mushroom tyrosinase, it is 

possible to conclude that: 

 Triazene prodrugs 21c-f have much more affinity for tyrosinase than triazene 

prodrugs 21a,b; 

 Triazene prodrugs 21c-f reveal to be excellent tyrosinase substrates with half-

lives between 1.5 and 5 minutes and they will promote a fast release of the 

cytotoxic agent MMT 23 after tyrosinase activation.  

 Despite of being large molecules, compounds 25a,b reveal to be excellent 

tyrosinase substrates with half-lives of approximately 6 minutes. 

 The final conclusion about these results is that triazene prodrugs 21c-f have the 

stability, the tyrosinase affinity and the drug release efficiency to be promising for 

application in MDEPT strategy. 
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4.1 – Introduction 

 The liver is an important target of prodrugs/drugs toxicity due to its unique 

metabolism and relationship to the gastrointestinal tract. Hepatotoxicity evaluation of 

triazene prodrugs 21 is necessary because when these prodrugs, which have in their 

structure a phenolic moiety, pass through the liver they can possibly be metabolized by 

liver CYP450 enzymes into cytotoxic quinones that cause liver cell toxicity [108,109]. 

Benzoquinones and related compounds have the ability to react irreversibly with GSH 

by conjugate addition, causing GSH depletion.  

 In terms of phenolic moiety, prodrugs 21 can be 

considered as analogs of monoalkylphenols. Since the 

metabolization by CYP450 enzymes in monoalkylphenols, as p-

cresol and m-cresol, are described in the literature, we can 

hypothesize the type of quinones formed, after CYP450 

metabolization in triazene prodrugs 21. 

 Triazene prodrugs 21a,b are related with m-cresol, because they both are 

phenolic compounds with a meta alkyl group. Sulistyaningdyah and co-workers have 

found in a previous work that m-cresol is metabolized by CYP450 into the 

corresponding p-hydroquinone compound [110]. Based on this information we can 

theorize the metabolic pathway promoted by liver CYP450 in triazene prodrugs 21a,b 

and the following conjugation reactions between the quinone formed and GSH  (figure 

46). 

  

 

 

OH OH

p-cresol m-cresol

Figure 46 – Possible metabolic activation by liver CYP450 in triazene prodrugs 21a,b.  
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 Since triazene prodrugs 21c-f are phenolic compounds with a para alkyl group, 

we can compare them with p-cresol. In the literature there are references about two 

metabolic pathways, in which p-cresol is metabolized by CYP450 into two different 

types of quinones. Thompson and co-workers have discovered in a prior work that p-

cresol is metabolized in a CYP450-dependent metabolism into a quinone methide specie 

[111]. Later, Yan and co-workers have found that p-cresol can also be metabolized by 

CYP450 into the corresponding o-hydroquinone compound [112]. With this information 

we can hypothesize the metabolic pathways promoted by liver CYP450 activation in 

triazene prodrugs 21c-f and the subsequent conjugation reactions between the quinone 

species generated and GSH (figure 47). 

 

 

 

  

 

 

 

 The methodology used in the hepatotoxicity assessment of triazene prodrugs 21 

is based on the experimental procedure developed by Moridani and co-workers (chapter 

5, section 5.5) [61]. In this assay is measured the GSH depletion induced by triazene 

prodrugs 21, when they are metabolized/oxidized into cytotoxic quinones by a rat liver 

CYP450 microssomal preparation/NADPH/O2 system. GSH that is not depleted, will 

further react and reduce 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) to form 2-nitro-5-

thiobenzoic acid, which formation can be followed by UV spectroscopy at 412 nm 

(figure 48). 

Figure 47 – Possible metabolic pathways promoted by liver CYP450 activation in triazene prodrugs 21c-f.  
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 The percentage of GSH depletion (GSHdepletion (%)) observed in these assays is 

related with the non depleted GSH by the equation 3: 

 Equation 3 –  

                                                                               
 * The GSH concentration used in these assays was twice as the concentration of 

triazene prodrugs 21. 

 Non depleted GSH was quantified using a calibration curve (chapter 5, section 

5.5.1). 

 

4.2 – Results and Discussion 

 GSHdepletion (%) was measured at selected times of incubation (30, 60 and 180 

min) and the results obtained for each triazene prodrug 21 are shown in figure 49. 

 

Figure 48 – Calculation of non depleted GSH, following 2-Nitro-5-thiobenzoic acid generation at 412 nm.  
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 By analysis of figure 49 it is possible to see that most of triazene prodrugs 21 

promote an increase of GSHdepletion (%) in the course of the assay. The maximum 

GSHdepletion (%) induced by each triazene prodrug 21 was detected at 180 min of 

incubation and is shown in table 11.    

 
Triazene 
prodrug 

Hydroxyphenylpropionic acid 
derivative 

Substituent X Maximum GSHdepletion (%)   

21a 
3-(3-hydroxyphenyl)propionic 

acid 
COOCH3 45.7 ± 5.0 

21b 
3-(3-hydroxyphenyl)propionic 

acid 
CN 63.5 ± 5.0 

21c 
3-(4-hydroxyphenyl)propionic 

acid 
COOCH3 39.3 ± 1.0 

21d 
3-(4-hydroxyphenyl)propionic 

acid 
CN 39.6 ± 8.6 

21e 
3-(4-hydroxyphenyl)propionic 

acid 
COCH3 34.6 ± 8.6 

21f 
3-(4-hydroxyphenyl)propionic 

acid 
CONH2 43.6 ± 2.0 

Figure 49 – GSHdepletion (%) induced by triazene prodrugs 21 at different times.  

Table 11 – GSHdepletion (%) induced by triazene prodrugs 21 at 180 min of incubation. 
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 The maximum GSHdepletion (%) induced by prodrugs 21a,b (3-(3-

hydroxyphenyl)propionic acid derivatives) is 45.7 ± 5.0 and 63.5 ± 5.0, respectively. 

Prodrugs 21c-f (3-(4-hydroxyphenyl)propionic acid derivatives) promote a maximum 

GSHdepletion (%) from 34.6 ± 8.6 to 43.6 ± 2.0. Comparing the triazene prodrugs 21a,b 

with 21c-f, is possible to see that prodrugs 21a,b are more hepatotoxic. This result can 

be possibly explained by the different types of quinones generated that are described in 

figure 47 and 48. The different rates of quinone generation and their conjugation with 

GSH, can possibly lead to the differences observed by us. 

 Vad and co-workers evaluated the GSHdepletion (%) caused by some 3- and 4-

hydroxy analogs of phenolic agents 31 in the same type of assay.  They concluded that 

there was no distinctive order of metabolism observed for the different phenolic analogs 

31 in this assay and that the oxidation state, presence of an electron 

donating/withdrawing group and position of the functional group on the phenolic 

moiety have a major role in the metabolization of phenolic compounds. Analysis of 

their results showed some 3-hydroxy analogs (3-hydroxyacetophenone (3-HAP) and 3-

hydroxybenzoic acid (3-HBA)) that are more hepatotoxic than the corresponding 4-

hydroxy analogs (4-HAP and 4-HBA) [113]. 
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4-HPP

 In 2010, Kudugunti and co-workers analyzed the GSHdepletion (%) induced by 

several analogs of cinnamic acid 32 in the same type of assay. Compounds 32 promoted 

GSHdepletion (%) between 46 ± 7 and 146 ± 7, which are higher in comparison with 

GSHdepletion (%) induced by triazene prodrugs 21c-f [114]. 

 

 

 

 

 

  

 

 

 

 

 

  

  

 

 One of compounds 32 was 3-(4-hydroxyphenyl)propionic acid (4-HPP), which 

is the trigger unit in our triazene prodrugs 21c-f. The GSHdepletion (%) promoted by this 

compound was 56 ± 4 %, which is higher than the GSHdepletion (%) induced by triazene 
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prodrugs 21c-f [114]. Based on this result is possible to say that the insertion of MMT 

23 in the structure of 3-(4-hydroxyphenyl)propionic acid, decreases its hepatotoxicity. 

 4-HA, which has a phenolic moiety in its structure was investigated for 

melanoma treatment in clinical trials, however this compound revealed to be very 

hepatotoxic [113]. Vad and co-workers have found in a previous research work that the 

GSHdepletion (%) induced by this compound was 88% [53]. When the GSHdepletion 

promoted by triazene prodrugs 21c-f is compared with this result, it is possible to 

observe that prodrugs 21c-f have half of the hepatotoxicity that is induced by 4-HA. 

With this result we can hypothesize that we are in the right path to reduce the toxicity 

associated with this type of compounds for MDEPT strategy.  
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4.3 – Conclusions  

  With the results obtained in this chapter it is possible to conclude that: 

 Prodrugs 21c-f reveal to be less hepatotoxic than the prodrugs 21a,b; 

 The hepatotoxicity of prodrugs 21c-f is lower in comparison with most of 

similar compounds 32 described in the literature; 

 The insertion of MMT 23 in the structure of 3-(4-hydroxyphenyl)propionic acid, 

reduces its hepatotoxicity; 

 Since triazene prodrugs 21c-f have half of the hepatotoxicity induced by 4-HA, 

we can conclude that they are more suitable for MDEPT strategy. 
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5.1 – General information 

 5.1.1 – Reagents and solvents 

 2-chloro-4,6-dimethoxy-1,3,5-triazine 97% (Sigma-Aldrich) 

 3-(3-hydroxyphenyl)propionic acid 98% (Alfa Aesar) 

 3-(4-hydroxyphenyl)propionic acid 98% (Sigma-Aldrich) 

 3-(3,4-Dihydroxyphenyl)propionic acid 98% (Sigma-Aldrich) 

 Acetonitrile (ACN) HPLC (Fisher) 

 DCC (Merck) 

 DCM (Valente e Ribeiro, Lda) 

 Deuterated chloroform (Merck) 

 Deuterated methanol (Merck) 

 Diethylenetriaminepentaacetic acid (DETAPAC) ≥ 99% (Fluka) 

 DMAP ≥ 99%  (Sigma-Aldrich) 

 DMF anhydrous 99.8% (Sigma-Aldrich) 

 Dimethyl sulfoxide (Merck) 

 DTNB ≥ 98% (Sigma-Aldrich) 

 Ethyl Ether (Panreac) 

 Formaldehyde solution puriss. p.a. (Sigma-Aldrich) 

 HOBt ≥ 99% (Sigma-Aldrich) 

 Hydrochloric acid 1.0 mol (Riedel-de Haën) 

 L-Glutathione reduced ≥ 98% (Sigma-Aldrich)  

 Methylamine 40% solution in water (Merck) 

 Mushroom Tyrosinase (Sigma-Aldrich) 

 N-methylmorpholine ≥ 98% (Fluka) 

 n-Hexane (Valente e Ribeiro, Lda) 

 NADPH regenerating system solution A (31 mM NADP+, 66 mM 

Glucose-6-phosphate and 66 mM MgCl2 in H2O) (BD biosciences) 
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 NADPH regenerating system solution B (40 U/mL Glucose-6-phosphate 

dehydrogenase in 5 mM sodium citrate) (BD biosciences) 

 PBS in tablets (Sigma-Aldrich) 

 Petroleum ether B.P. 35ºC to 60ºC (Fisher scientific) 

 Pooled rat (Sprague-Dawley) male liver microsomes (BD biosciences) 

 Sodium hydride 80% (BDH laboratory reagents) 

 Sodium hydroxide 1M (Riedel-de Haën) 

 Sodium nitrite (Merck) 

 TBTU ≥ 97% (Fluka) 

 THF (Fisher scientific) 

 Thionyl chloride (Merck) 

 Trichloroacetic acid (Merck) 

 Triethylamine ≥ 99% (Sigma-Aldrich) 

 Tris(hydroxymethyl)aminomethane (Tris) (Merck) 

 Water Milli-Q 18MΩcm 

 Zirconium (IV) tert-butoxide 99.999% (Sigma-Aldrich) 

 5.1.2 – Equipment 

 Thin layer chromatographies (TLC) were performed on silica gel plates from 

Merck DC Kieselgel 60 F254 and were analyzed under a CAMAG UV lamp; 

 The reactions performed with microwave irradiation were carried out in a CEM 

Discover microwave reactor; 

 Column chromatographies were performed in glass columns filled with silica gel 

from Merck Kieselgel 60 (0.040 nm-0.063nm); 

 UV spectra were recorded in a spectrophotometer Shimadzu UV-1700 coupled 

with a Shimadzu CPS-240 thermostatized unit; 

 IR spectra were recorded in a Shimadzu FTIR spectometer IRaffinity-1; 

 1H NMR, the 13C NMR and HMQC spectra were recorded in a 

spectrophotometer Bruker 400 Ultra-Shield. Chemical shifts (δH and δC) are 
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given in parts-per-million (ppm) and coupling constants (J) are quoted in Hertz 

(Hz); 

 Melting points were determined in a Köfler camera Bock-Monoscop “M” and 

are uncorrected; 

 Mass spectra were obtained by direct infusion on “Full Scan” mode (m/z 60-

800) in a Micromass Quattro Micro API benchtop mass spectrometer. Positive 

and Negative electrospray ionization mode were applied on sample ionization; 

 Studies by HPLC were performed in a ELITE LaChrom VWR HITACHI 

equipment (PUMP L-2130; UV DETECTOR L-2400) with a LiChrospher® 100 

RP-18 (5 µm) column; 

 Thermostatized bath. 

 

5.2 – Synthesis 

WARNING: All the triazenes synthesized and used in this master thesis should be 

considered as mutagenic and carcinogenic and appropriate care should be taken to 

handle them safely. 

 5.2.1 – HMT and MMT derivatives 

 To a solution of the required aniline (0.046 moles) in 10 mL of HCl 37%, was 

added 100 mL of cold water. A cold solution of sodium nitrite (3.4 g, 0.049 moles in 5 

mL of water) was droppewise to the previous solution. The reaction mixture was stirred 

for one hour with mechanic stirring at -10 ºC. Then, the reaction mixture was 

neutralized by addition of NaOH 1M until the pH reach 7. After the neutralization, it 

was added 60 mL of cold formaldehyde and 9.4 mL of methylamine (Sol. 40%) and the 

reaction mixture was stirred for 30 minutes.  HMT derivatives synthesized were isolated 

by vacuum filtration and recrystallized. 
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  In the synthesis of each MMT derivative, the proper HMT derivative (0.023 

moles) was dissolved in 100 mL of water and then it was added 5.4 mL of methylamine 

(Sol. 40%) in a MeNH2 3:1 HMT molar ratio. MMT derivatives synthesized were 

washed with water and dried out in vacuo.  

 5.2.2 – Experimental methods used in the synthesis of triazene 

prodrugs 

 Amide coupling with activation of hydroxyphenylpropionic acid with 

DCC/DMAP and activation of MMT with NaH 

 Hydroxyphenylpropionic acid (1.12 mmol) was dissolved in dried THF (3 mL) 

and DCC (0.29 g, 1.4 mmol) was added to the solution at room temperature. The 

reaction mixture was stirred for one hour. Apart, MMT (1.12 mmol) was dissolved in 

dried THF (2 mL) and NaH (0.027 g, 1.12 mmol) was added to the solution. MMT 

solution, TEA (0.156 mL, 1.12 mmol) and DMAP (0.014 g, 0.112 mmol) were all 

added into the reaction mixture. The reaction was stirred at room temperature for 48 

hours. Reaction progress was followed by TLC. When the reaction was completed, the 

reaction mixture was filtered in order to remove DCU, and concentrated under reduce 

pressure. Triazene prodrugs 21a (with and without activation of MMT) and 21d were 

synthesized by this method.  

 Amide coupling with activation of hydroxyphenylpropionic acid with 

DMTMM.  

 To a solution of 2-chloro-4,6-dimethoxy-1,3,5-triazine (0.176 g, 1 mmol) in 4 

mL of dried DCM, was added N-methylmorpholine (0.33 mL, 3 mmol). The reaction 

mixture was stirred for 30-40 min at 0-5 ºC. Then, 3-(4-hydroxyphenyl)propionic acid 

(0.166 g , 1 mmol) in 10 mL of dried DCM was added to the reaction mixture. The 

reaction mixture was stirred at room temperature for one hour. After that, MMT-

CONH2 (0.178 g, 1 mmol) was added to the reaction mixture and stirred for 8 hours. 
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Reaction development was followed by TLC After completion of the reaction, the 

reaction mixture was washed with 2x5 mL of NaHCO3 (10%) and 3x5 mL of H2O. The 

organic phase was dried with anhydrous sodium sulphate and concentrated under reduce 

pressure. By this method it was synthesized the triazene prodrug 21f. 

 Amide coupling with activation of hydroxyphenylpropionic acid with TBTU 

 3-(4-hydroxyphenyl)propionic acid (0.1 g, 0.6 mmol), MMT-COCH3 (0.117 g, 

0.66 mmol) and TBTU (0.202 g, 0.63 mmol) were all dissolved in dried DMF (4 mL). 

Then, TEA (0.182 mL, 1.3 mmol) was added and the reaction mixture was stirred at 

50ºC for one hour. Reaction progress was followed by TLC. When the reaction was 

completed, it was extracted with a 5% solution of citric acid, a 5% solution of NaHCO3 

and a saturated NaCl solution (figure 50). Organic phase was dried with sodium 

sulphate anhydrous and concentrated under reduce pressure. By this method it was 

synthesized the triazene prodrug 21e and 25b. 

- Assisted by microwave irradiation 

  Hydroxyphenylpropionic acid (0.3 mmol), MMT (0.33 mmol) and TBTU (0.101 

g, 0.315 mmol) were dissolved in dried DMF (3 mL) in a microwave tube. After that, 

TEA (0.088 mL, 0.63 mmol) was added. The resulting mixture was irradiated in a first 

cycle with 100 W, 50 ºC, 15 min and in a second cycle with 100 W, 55 ºC, 15 min. 

After completion of the reaction, the work-up described in method TBTU (reflux) was 

followed. By this method it was synthesized the triazene prodrugs 21b (with two cycles 

and with four cycles), 21c and 25a. 

 

 

 

 



 
CHAPTER 5 – EXPERIMENTAL METHODOLOGY 

 

 

  

90 

Figure 50 – Extraction process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Amide coupling with activation of hydroxyphenylpropionic acid with 

thionyl chloride 

 To a solution of MMT-CN (0.16 g, 1 mmol) in 2 mL of dried THF, was added 3-

(3,4-Dihydroxyphenyl)propionic acid (0.182 g, 1 mmol). The reaction mixture was 

stirred under ice-cooling. Then, thionyl chloride (0.109 mL, 1.5 mmol) was dropwised 

into the reaction mixture for 10 min. The reaction mixture continued for 3 hours at room 

temperature. Reaction development was followed by TLC After completion of the 

reaction, the reaction mixture was extracted with ethyl acetate and washed with 2 mL of 

brine. Organic phase was dried over sodium sulphate anhydrous and concentrated under 
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reduce pressure. Triazene prodrug 21g was synthesized in small amounts and very 

impure by this method.  

 Amide coupling activation with Zr(Ot-Bu)4/HOBt 

 The ester was synthesized by dissolving 3-(3,4-Dihydroxyphenyl)propionic acid 

(0.182 g, 1 mmol) in dried MeOH (1.5 mL) and the reaction mixture was stirred under 

ice-cooling. Then, thionyl chloride (0.109 mL, 1.5 mmol) was dropwised into the 

reaction mixture for 10 min. The reaction was stirred for 3 hours at room temperature. 

After completion, the reaction mixture was extracted with ethyl acetate and washed with 

2 mL of brine. The organic phase was dried over sodium sulphate anhydrous and 

concentrated under reduce pressure [115]. Ester (0.05 g, 0.25 mmol), MMT-CN (0.208 

g, 1.3 mmol) and HOBt (0.012 g, 0.086 mmol) were all mixed in a microwave tube and 

dissolved in dried DMF (4 mL). After dissolution, the zirconium catalyst Zr(Ot-Bu)4 

(0.017 mL, 0.043 mmol) was added. The microwave method used was (100 W, 100ºC, 

30 min). After completion of the reaction, the same work-up described in method TBTU 

(reflux) was followed. 

 Triazene prodrugs 21 and 25 were purified by column chromatography and in 

some cases by preparative TLC. These prodrugs were also recrystallized. Experimental 

conditions are summarized in table 12.   
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           Table 12 – Summary of experimental purification conditions. 

 
Triazene 
prodrugs 

 
Column chromatography  

eluent 

 
Preparative chromatography 

eluent 

 
Recrystallization  

(rich / poor solvent)  

21a 
DCM → 

DCM 9.9 : 0.1 MeOH 
It was not necessary DCM / Petroleum ether 

21b Hexane 7 : 3 Ethyl ether It was not necessary DCM / Petroleum ether 

21c 
DCM → 

DCM 9.9 : 0.1 MeOH 
DCM 9.8 : 0.2 MeOH DCM / Hexane 

21d DCM DCM 9.9 : 0.1 MeOH DCM / Petroleum ether 

21e 
DCM → 

DCM 9.9 : 0.1 MeOH 
Ethyl ether 7 : 3 Petroleum 

ether 
DCM / Hexane 

21f 
DCM 9.9 : 0.1 MeOH → 

DCM 9.5 : 0.5 MeOH 
DCM 9 : 1 MeOH 

DCM 9 : 1 MeOH / 
Hexane 

 25a 
DCM → 

DCM 9.9 : 0.1 MeOH 
DCM 9.8 : 0.2 MeOH DCM / Hexane 

 25b 
DCM → 

DCM 9.9 : 0.1 MeOH 
Ethyl ether 7 : 3 Petroleum 

ether 
Ethyl ether 7 : 3 Petroleum 

ether 

21g 
DCM 9.9 : 0.1 MeOH → 

DCM 9.8 : 0.2 MeOH 
------------ ------------ 

 

 

5.3 – Structural identification  

 Triazene prodrug 21a 

 Yield < 5%; yellow crystals; m.p 136-138 ºC; νmax/cm-1 1686 (ν C=Oamide), 1713 

(ν C=Oester), 3410 (ν O-Haromatic); 
1H NMR (400 MHz, CDCl3): δH/ppm 3.04 (2H, t, J = 

7.7 Hz, CH2), 3.26 (2H, t, J = 7.7 Hz, CH2), 3.44 (3H, s, N-CH3), 3.94 (3H, s, COO-

CH3), 5.31 (1H, s, Ar-OH), 6.69 (1H, dd,  J = 7.8, 2.0 Hz, Ar(CH)Phenol), 6.75 (1H, br s, 

Ar(CH)Phenol), 6.81 (1H, d, J = 7.8 Hz, Ar(CH)Phenol), 7.16 (1H, t, J = 7.8 Hz, 
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Ar(CH)Phenol), 7.60 (2H, AA’, J = 8.4 Hz, Ar(CH’s)MMT), 8.11 (2H, XX’, J = 8.4 Hz, 

Ar(CH’s)MMT); 13C NMR (101 MHz, CDCl3): δC/ppm 28.14 (N-CH3), 30.97 (CH2), 

35.99 (CH2), 52.48 (COO-CH3), 113.42 (Ar(CH)Phenol), 115.57 (Ar(CH)Phenol), 120.90 

(Ar(CH)Phenol), 122.09 (Ar(CH’s)MMT), 129.89 (Ar(CH)Phenol), 130.28 (CAr), 130.90 

(Ar(CH’s)MMT), 142.76 (CAr), 152.10 (CAr), 155.96 (CAr), 166.74 (C=O), 175.20 

(C=O); ESI+-MS: m/z 364 ([M+Na]+); ESI--MS: m/z 340 ([M-H]-).   

 Triazene prodrug 21b 

 Yield 20%; yellow crystals; m.p 119-121 ºC; νmax/cm-1 1684 (ν C=Oamide), 2228 

(ν CΞN), 3410 (ν O-Haromatic); 
1H NMR (400 MHz, CDCl3): δH/ppm 3.03 (2H, t, J = 7.8 

Hz, CH2), 3.25 (2H, t, J = 7.8 Hz, CH2), 3.45 (3H, s, N-CH3), 5.39 (1H, s, Ar-OH), 6.69 

(1H, dd,  J = 7.8, 2.2 Hz, Ar(CH)Phenol), 6.75 (1H, br s, Ar(CH)Phenol), 6.80 (1H, d, J = 

7.8 Hz, Ar(CH)Phenol), 7.15 (1H, t, J = 7.8 Hz, Ar(CH)Phenol), 7.63 (2H, AA’, J = 8.4 Hz, 

Ar(CH’s)MMT), 7.73 (2H, BB’, J = 8.4 Hz, Ar(CH’s)MMT); 13C NMR (101 MHz, 

CDCl3): δC/ppm 28.34 (N-CH3), 30.88 (CH2), 35.95 (CH2), 112.18 (CAr), 113.46 

(Ar(CH)Phenol), 115.57 (Ar(CH)Phenol), 118.64 (CΞN), 120.84 (Ar(CH)Phenol), 122.85 

(Ar(CH’s)MMT), 129.89 (Ar(CH)Phenol), 133.46 (Ar(CH’s)MMT), 142.62 (CAr), 151.76 

(CAr), 156.01 (CAr), 175.12 (C=O); ESI+-MS: m/z 331 ([M+Na]+); ESI--MS: m/z 307 

([M-H]-). 

 Triazene prodrug 21c 

 Yield < 5%; yellow crystals; m.p 101-103 ºC; νmax/cm-1 1697 (ν C=Oamide), 1728 

(ν C=Oester), 3368 (ν O-Haromatic); 
1H NMR (400 MHz, CDCl3): δH/ppm 3.01 (2H, t, J = 

7.6 Hz, CH2), 3.23 (2H, t, J = 7.6 Hz, CH2), 3.44 (3H, s, N-CH3), 3.94 (3H, s, COO-

CH3), 4.97 (1H, s, Ar-OH), 6.76 (2H, AA’, J = 7.8 Hz, Ar(CH’s)Phenol), 7.11 (2H, XX’, J 

= 7.8 Hz, Ar(CH’s)Phenol), 7.60 (2H, AA’, J = 8.2 Hz, Ar(CH’s)MMT), 8.11 (2H, XX’, J = 

8.2 Hz, Ar(CH’s)MMT); 13C NMR (101 MHz, CDCl3): δC/ppm 28.10 (N-CH3), 30.36 

(CH2), 36.48 (CH2), 52.49 (COO-CH3), 115.50 (Ar(CH’s)Phenol), 122.07 

(Ar(CH’s)MMT), 122.71 (CAr), 129.71 (Ar(CH’s)Phenol), 130.87 (Ar(CH’s)MMT), 132.87 
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(CAr), 152.14 (CAr), 154.30 (CAr), 166.74 (C=O), 175.31 (C=O); ESI+-MS: m/z 364 

([M+Na]+); ESI--MS: m/z 340 ([M-H]-). 

 Triazene prodrug 21d 

 Yield 15%; yellow crystals; m.p 140-141 ºC; νmax/cm-1 1711 (ν C=Oamide), 2234 

(ν CΞN), 3389 (ν O-Haromatic); 
1H NMR (400 MHz, CDCl3): δH/ppm 3.01 (2H, t, J = 7.6 

Hz, CH2), 3.22 (2H, t, J = 7.6 Hz, CH2), 3.44 (3H, s, N-CH3), 4.74 (1H, s, Ar-OH), 6.76 

(2H, AA’, J = 7.6 Hz, Ar(CH’s)Phenol), 7.11 (2H, XX’, J = 7.6 Hz, Ar(CH’s)Phenol), 7.63 

(2H, AA’, J = 7.8 Hz, Ar(CH’s)MMT), 7.73 (2H, BB’, J = 7.8 Hz, Ar(CH’s)MMT); 13C 

NMR (101 MHz, CDCl3): δC/ppm 28.30 (N-CH3), 30.24 (CH2), 36.42 (CH2), 112.16 

(CAr), 115.53 (Ar(CH’s)Phenol), 118.65 (CΞN), 122.83 (Ar(CH’s)MMT), 129.70 

(Ar(CH’s)Phenol), 132.72 (CAr), 133.45 (Ar(CH’s)MMT), 151.82 (CAr), 154.37 (CAr), 

175.18 (C=O); ESI+-MS: m/z 331 ([M+Na]+); ESI--MS: m/z 307 ([M-H]-). 

 Triazene prodrug 21e 

 Yield < 5%; yellow crystals; m.p 134-136 ºC; νmax/cm-1 1661 (ν C=Oamide), 1695 

(ν C=Oketone), 3244 (ν O-Haromatic); 
1H NMR (400 MHz, CDCl3): δH/ppm 2.64 (3H, s, 

O=C-CH3), 3.01 (2H, t, J = 7.8 Hz, CH2), 3.23 (2H, t, J = 7.8 Hz, CH2), 3.45 (3H, s, N-

CH3), 5.15 (1H, s, Ar-OH), 6.77 (2H, AA’, J = 8.6 Hz, Ar(CH’s)Phenol), 7.11 (2H, XX’, J 

= 8.6 Hz, Ar(CH’s)Phenol), 7.63 (2H, AA’, J = 8.8 Hz, Ar(CH’s)MMT), 8.03 (2H, XX’, J = 

8.8 Hz, Ar(CH’s)MMT); 13C NMR (101 MHz, CDCl3): δC/ppm 26.89 (O=C-CH3), 28.14 

(N-CH3), 30.34 (CH2), 36.48 (CH2), 115.51 (Ar(CH’s)Phenol), 122.28 (Ar(CH’s)MMT), 

129.71 (Ar(CH’s)Phenol), 129.71 (Ar(CH’s)MMT), 132.90 (CAr), 137.01 (CAr), 152.18 

(CAr), 154.27 (CAr), 175.27 (C=O), 197.63 (C=O); ESI+-MS: m/z 348 ([M+Na]+); ESI-

-MS: m/z 324 ([M-H]-). 

 Triazene prodrug 21f 

 Yield < 5%; yellow crystals; m.p 172-174 ºC; νmax/cm-1 1670-1686 (ν 

C=Oamide), 3306 (ν O-Haromatic), 3348-3410 (ν NH2 amide); 
1H NMR (400 MHz, CDCl3): 
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δH/ppm 2.90 (2H, t, J = 7.6 Hz, CH2), 3.14 (2H, t, J = 7.6 Hz, CH2), 3.35 (3H, s, N-

CH3), 6.65 (2H, AA’, J = 8 Hz, Ar(CH’s)Phenol), 6.98 (2H, XX’, J = 8 Hz, 

Ar(CH’s)Phenol), 7.52 (2H, AA’, J = 8 Hz, Ar(CH’s)MMT), 7.83 (2H, XX’, J = 8 Hz, 

Ar(CH’s)MMT); 13C NMR (101 MHz, CDCl3): δC/ppm 27.79 (N-CH3), 30.41 (CH2), 

36.44 (CH2), 115.29 (Ar(CH’s)Phenol), 122.10 (Ar(CH’s)MMT), 128.61 (Ar(CH’s)MMT), 

129.37 (Ar(CH’s)Phenol), 131.64 (CAr), 133.26 (CAr), 151.30 (CAr), 155.13 (CAr), 175.66 

(C=O); ESI+-MS: m/z 349 ([M+Na]+); ESI+-MS: m/z 325 ([M-H]-). 

 Triazene prodrug 25a 

 Yield < 5%; yellow crystals; m.p 156-158 ºC; νmax/cm-1 1717 (ν C=Oamide), 1734 

(ν C=Oester), 1749 (ν C=Oester), 3438 (ν O-Haromatic); 
1H NMR (400 MHz, CDCl3): 

δH/ppm 2.83 (2H, t, J = 7.5 Hz, CH2), 3.00 (2H, t, J = 7.7 Hz, CH2), 3.06 (2H, t, J = 7.5 

Hz, CH2), 3.24 (2H, t, J = 7.7 Hz, CH2), 3.45 (3H, s, N-CH3), 3.95 (3H, s, COO-CH3), 

5.09 (1H, s, Ar-OH), 6.79 (2H, AA’, J = 8.4 Hz, Ar(CH’s)), 6.90 (2H, AA’, J = 8.4 Hz, 

Ar(CH’s)),  7.13 (2H, XX’, J = 8.4 Hz, Ar(CH’s)), 7.23 (2H, XX’, J = 8.4 Hz, 

Ar(CH’s)), 7.61 (2H, AA’, J = 8.6 Hz, Ar(CH’s)MMT), 8.11 (2H, XX’, J = 8.6 Hz, 

Ar(CH’s)MMT). 

 Triazene prodrug 25b 

 Yield < 5%; yellow crystals; m.p 189-191 ºC; νmax/cm-1 1682 (ν C=Oamide), 1703 

(ν C=Ocetone), 1754 (ν C=Oester), 3397 (ν O-Haromatic); 
1H NMR (400 MHz, CDCl3): 

δH/ppm 2.64 (3H, s, O=C-CH3), 2.83 (2H, t, J = 7.6 Hz, CH2), 3.00 (2H, t, J = 7.6 Hz, 

CH2), 3.06 (2H, t, J = 7.6 Hz, CH2), 3.24 (2H, t, J = 7.6 Hz, CH2), 3.45 (3H, s, N-CH3), 

5.01 (1H, s, Ar-OH), 6.79 (2H, AA’, J = 8.4 Hz, Ar(CH’s)), 6.90 (2H, AA’, J = 8.4 Hz, 

Ar(CH’s)),  7.13 (2H, XX’, J = 8.4 Hz, Ar(CH’s)), 7.23 (2H, XX’, J = 8.4 Hz, 

Ar(CH’s)), 7.63 (2H, AA’, J = 8.4 Hz, Ar(CH’s)MMT), 8.04 (2H, XX’, J = 8.4 Hz, 

Ar(CH’s)MMT). 

 



 
CHAPTER 5 – EXPERIMENTAL METHODOLOGY 

 

 

  

96 

5.4 – Kinetic studies 

 5.4.1 – PBS (0.01 M, pH=7.4) 

 A 30 μL aliquot of a 10-2 M stock solution of prodrug 21a-f in ACN was added 

to 10 mL of PBS (0.01 M, pH 7.4) at 37 ºC. At different times, several aliquots of the 

reaction mixture were taken and analyzed by HPLC at λ = 300 nm.  

 5.4.2 – Human plasma (80% v/v) 

 Human plasma was collected from several healthy donors in sodium heparinate, 

and stored at -70ºC until required. 

 A mixture of 2 mL of human plasma and 0.5 mL of PBS (0.01 M, pH 7.4) was 

thermostatized at 37 ºC. To this mixture was added 10 μL of a 10-2 M stock solution of 

prodrug 21a-f in ACN. Several aliquots (200 μL) of the reaction mixture were taken at 

different times, and added to eppendorfs with 400 μL of cold ACN. Eppendorfs were 

centrifuged at 14000 rpm for 5 min and the supernatant was analyzed by HPLC at λ = 

300 nm. 

 5.4.3 – Mushroom tyrosinase  

  Mushroom tyrosinase (89.4 μL, 900 units / 29.8 μL, 300 units) was added in a 

solution of 2.4 mL of PBS (0.01 M, pH=7.4) and 0.6 mL of DMSO at 37 ºC. To this 

mixture was added 10 μL of a 10-2 M stock solution of triazene prodrugs 21a-f or 25a,b 

in ACN. Several aliquots (200 μL) of the reaction mixture were collected at selected 

times and added to eppendorfs with 400 μL of cold ACN. Eppendorfs were centrifuged 

at 14000 rpm for 5 min and the supernatant was analyzed by HPLC at λ = 300 nm. 
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 The conditions applied for each compound in HPLC analysis are summarized in 

table 13. 

Table 13 – Mobile phases applied and retention times observed for each compound in HPLC analysis. 

 

 
Triazene 
prodrug 

 
Compound 

 
PBS 

 
Human 
plasma 

 
Mushroom 
tyrosinase 

 
Mobile phase 

21a 
Aniline-COOCH3 2.18 ------- 2.21 

45% ACN + 55% H2O MMT-COOCH3 ------- ------- 4.24 
Prodrug 21a 12.19 11.95 12.41 

21b 
Aniline-CN 1.85 1.98 1.96 

45% ACN + 55% H2O MMT-CN ------- 3.38 3.36 
Prodrug 21b 7.43 8.85 8.70 

21c 

Aniline-COOCH3 2.32 ------- 2.05 

45% ACN + 55% H2O 
MMT-COOCH3 ------- ------- 3.92 
Intermediate 29 ------- ------- 7.92 

Prodrug 21c 10.39 9.57 10.66 

21d 

Aniline-CN 1.83 1.99 1.97 

50% ACN + 50% H2O 
MMT-CN ------- 3.38 3.18 

Intermediate  29 ------- ------- 4.17 
Prodrug 21d 5.48 6.15 5.65 

21e 

Aniline-COCH3 1.84 1.78 1.66 

40% ACN + 60% H2O 
MMT- COCH3 ------- ------- 3.19 
Intermediate  29 ------- ------- 6.87 

Prodrug 21e 12.09 11.71 11.33 

21f 

Aniline-CONH2 1.31 1.03 1.03 

30% ACN + 70% H2O 
MMT- CONH2 ------- ------- 1.47 
Intermediate  29 ------- ------- 4.04 

Prodrug 21f 8.03 7.98 7.62 

25a 

Aniline-COOCH3 ------- ------- 1.53 

60% ACN + 40% H2O 

MMT-COOCH3 ------- ------- 2.14 
Intermediate  29 ------- ------- 2.68 

Prodrug 21c ------- ------- 3.35 
Intermediate  30 ------- ------- 5.29 
Compound 25a ------- ------- 6.85 

25b 

Aniline-COCH3 ------- ------- 1.26 

60% ACN + 40% H2O 

MMT-COCH3 ------- ------- 1.71 
Intermediate  29 ------- ------- 2.12 

Prodrug 21e ------- ------- 2.52 
Intermediate  30 ------- ------- 3.81 
Compound 25b ------- ------- 4.83 

Retention times (min) 
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Figure 51 – Graphic plot of the calibration curve of triazene prodrug 21a. 

 5.4.4 – Calibration Curves 

 These calibration curves (e.g: figure 51-53) were made by HPLC analysis at λ = 

300 nm of known concentrations of aniline, MMT 23 or triazene prodrug 21. The slopes 

obtained are shown in table 14.   

Table 14 – Slopes and correlation factors (R2). 

  

 

   

 

 

 

 

 
 
 

Triazene 
Prodrug 

 
Aniline 

 
MMT 

 
Prodrug 

Slope (m) R2 Slope (m) R2 Slope (m) R2 

21a 9.184x1010 0.991 1.568x1011 0.997 1.103x1011 0.997 

21b 2.943x1010 0.996 1.212x1011 0.996 1.156x1011 0.999 

21c 9.184x1010 0.991 1.568x1011 0.997 1.015x1011 0.999 

21d 6.970x109 0.998 3.077x1010 0.991 2.143x1010 0.998 

21e 9.125x1010 0.999 7.115x1010 0.996 1.019x1011 0.999 

21f 3.549x1010 0.998 9.053x1010 0.997 7.849x1010 0.998 
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Figure 52 – Graphic plot of the calibration curve of aniline-COOCH3. 
 

Figure 53 – Graphic plot of the calibration curve of MMT-COOCH3. 
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5.5 – Hepatotoxicity assessment 

  Incubation mixture contained 881 μL of phosphate buffer (0.1M, pH 7.4, 

DETAPAC 1mM), 50 μL of rat liver microsomes solution (20 mg/mL), 20 μL of GSH 

solution (10 mM), 32.5 μL of NADPH solution A (31 mM NADP+, 66 mM Glucose-6-

phosphate and 66 mM MgCl2 in H2O), 6.5 μL of NADPH solution B (40 U/mL 

Glucose-6-phosphate dehydrogenase in 5 mM sodium citrate) and 10 μL of a 10-2 M 

stock solution of prodrug 21a-f in a final volume of 1 mL. The mixture was gently 

mixed at 37 ºC. Then, three aliquots of 250 μL were taken at different times (30, 60, 180 

min) and added to eppendorfs with 25 μL of trichloroacetic acid (30% w/v). Reaction 

mixture was centrifuged at 14000 rpm for 5 min. GSH levels of a 100 μL aliquot of the 

supernatant was determined by the addition of 875 μL of Tris/HCl buffer (0.1 M, pH 

8.9) and 25 μL of DTNB solution (2 mg/mL). The absorbance of the solution was 

measured at λ = 412 nm. 

  

 5.5.1 – Calibration Curve 

 Calibration curve (figure 54) was made by adding known concentrations of GSH 

(100 μL) with 875 μL of Tris/HCl buffer (0.1 M, pH 8.9) and 25 μL of DTNB solution 

(2 mg/mL). The absorbance of this mixture was also determined by UV at λ = 412 nm.   
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Figure 54 – Calibration curve applied in the hepatotoxicity assessment. 
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Appendix 1 – Triazene prodrug 21a 
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Appendix 2 – Triazene prodrug 21b 
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Appendix 3 – Triazene prodrug 21c 
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Appendix 4 – Triazene prodrug 21d 
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Appendix 5 – Triazene prodrug 21e 
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Appendix 6 – Triazene prodrug 21f 
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Appendix 7 – Compound 25a 
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Appendix 8 – Compound 25b 
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Appendix 9 – Triazene prodrug 21g 
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Appendix 10 – Poster - Synthesis and evaluation of novel triazene 

prodrugs as candidates for melanocyte-directed enzyme prodrug 

therapy 

 

 

 

 

 

 



 

 



 

 

 


