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TRIB3-EGFR interaction promotes lung cancer
progression and defines a therapeutic target
Jiao-jiao Yu1,7, Dan-dan Zhou1,7, Xiao-xiao Yang2, Bing Cui 1, Feng-wei Tan3, Junjian Wang4, Ke Li5,

Shuang Shang1, Cheng Zhang1, Xiao-xi Lv1, Xiao-wei Zhang 1, Shan-shan Liu1, Jin-mei Yu 1, Feng Wang1,

Bo Huang6, Fang Hua 1✉ & Zhuo-Wei Hu1✉

High expression or aberrant activation of epidermal growth factor receptor (EGFR) is related

to tumor progression and therapy resistance across cancer types, including non-small cell

lung cancer (NSCLC). EGFR tyrosine kinase inhibitors (TKIs) are first-line therapy for NSCLC.

However, patients eventually deteriorate after inevitable acquisition of EGFR TKI-resistant

mutations, highlighting the need for therapeutics with alternative mechanisms of action.

Here, we report that the elevated tribbles pseudokinase 3 (TRIB3) is positively associated

with EGFR stability and NSCLC progression. TRIB3 interacts with EGFR and recruits PKCα to

induce a Thr654 phosphorylation and WWP1-induced Lys689 ubiquitination in the EGFR

juxtamembrane region, which enhances EGFR recycling, stability, downstream activity, and

NSCLC stemness. Disturbing the TRIB3-EGFR interaction with a stapled peptide attenuates

NSCLC progression by accelerating EGFR degradation and sensitizes NSCLC cells to che-

motherapeutic agents. These findings indicate that targeting EGFR degradation is a previously

unappreciated therapeutic option in EGFR-related NSCLC.
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E
pidermal growth factor receptor (EGFR) is critical for
controlling the growth and survival of epithelial cells and is
often targeted therapeutically in epithelial malignancies,

including non-small cell lung cancer (NSCLC). Currently, all
available EGFR-targeted therapeutics, including small-molecule
tyrosine kinase inhibitors (TKIs) and EGFR-targeted monoclonal
antibodies, focus on the inhibition of EGFR kinase activity or
induction the antibody- and complement-mediated cytotoxicity1.
EGFR-targeted antibodies are mainly used in the treatment of
advanced colorectal and head and neck cancers but not in NSCLC
because of their marginal clinical benefit2. So far, three genera-
tions of EGFR TKIs have been developed to reversibly (the first
generation) or irreversibly (the second- and the third generation)
inhibit EGFR tyrosine kinase activity and are widely used in
NSCLC treatment.

Gefitinib and erlotinib are the first generation of EGFR TKIs
that were designed against the wild-type EGFR (WT-EGFR) but
show potent and selective inhibitory effect against active EGFR
mutations (e.g. exon 19 deletions and the L858R mutation).
Second-generation EGFR TKIs (e.g., afatinib and dacomitinib)
are irreversible pan-HER blockers that were developed to over-
come acquired T790M resistance to first-generation EGFR TKIs
but failed because of inacceptable toxicity3. The newly developed
third-generation EGFR TKIs (e.g., AZD9291 and rociletinib) bind
irreversibly to the cysteine-797 residue in the ATP binding site of
EGFR, harboring preferential activity for EGFR forms with acti-
vating mutations or the T790M resistance mutation relative to the
WT-EGFR4,5. AZD9291 acts as a dual EGFR/HER2 inhibitor,
which moderately decreases aberrant activation of HER2, another
mechanism for acquired resistance to EGFR TKIs6. Despite suc-
cess with clinical use, acquired resistance (e.g., the C797S muta-
tion) has already been reported in patients after AZD9291
initiation7. Except for the inevitable acquired resistance, EGFR
TKIs are more relevant to EGFR-activating mutations than to
WT-EGFR, suggesting that this strategy will achieve relatively
little benefit in the majority of lung cancer patients who har-
boring with WT-EGFR. Accumulating evidence has demon-
strated that WT-EGFR is critical in the pathogenesis and
progression of lung cancer. Elevated WT-EGFR expression not
only correlates with acquired resistance to third-generation EGFR
TKIs but also participates in the maintenance of mutated KRAS
activity and KRAS-driven NSCLC tumorigenesis8–11. Thus, there
is an urgent need to identify targeted therapeutics against either
mutant EGFR or WT-EGFR with alternative mechanisms of
action12.

A number of studies show that EGFR spatial distribution and
stability are also crucial determinants in the regulation of lung
cancer progression. Even in mutant EGFR-driven lung adeno-
carcinoma, dysregulation of EGFR degradation further accelerates
tumor initiation and progression13. Spatial deregulation of EGFR
increases the availability of plasma membrane receptors and
induces a persistent signaling output14. Depletion of sterol-C4-
methyl oxidase–like and NAD(P)H steroid dehydrogenase-like
protein, two proteins involved in the sterol biosynthesis pathway,
inhibits EGFR recycling and sensitizes A431 xenografts to
cetuximab treatment15. Golgi Membrane Protein 1 interacts with
EGFR to promote EGFR recycling to the membrane, leading to
prolonged EGFR activation and hepatocellular carcinoma pro-
gression16. Notably, crosstalk between oncogenic mutations in
receptor tyrosine kinases (RTKs) and aberrant RTKs trafficking
have been causally linked with human malignancies17,18. These
findings emphasize that promoting EGFR degradation is an
alternative strategy to target EGFR-related cancers.

The pseudokinase Tribble 3 (TRIB3), which acts as a stress
sensor in response to a diverse range of stressors, is involved in
chronic inflammatory, metabolic, and malignant diseases by

interacting with signaling and functional proteins19. We recently
reported that TRIB3 promoted the initiation and progression of
several cancers by interacting with the autophagic receptor p62,
impairing the degradation functions of autophagy and protea-
some, two critical protein quality control systems in cancer cells.
Depletion of TRIB3 results in drastically decreased expression of
several tumor-promoting factors, including EGFR, across
cancers20,21. The Cancer Genome Atlas (TCGA) data show that
there exist 1.14% of gene amplification and 1.84% gene mutation
of TRIB3 in NSCLC.

In this study, we identified that the elevated TRIB3 expression
is associated with the increases in EGFR stability, recycling, signal
activity, and NSCLC progression. We thus assumed that TRIB3
promotes NSCLC through the regulation of EGFR turnover. We
found that TRIB3-EGFR interaction results in a series of post-
translational modifications of EGFR and thereby enhances the
EGFR membrane recycling and signaling activity to support
NSCLC stemness. Also, our study reveals the potential utility of
disturbing the TRIB3–EGFR interaction in the treatment of
NSCLC by accelerating EGFR degradation.

Results
TRIB3 is correlated with EGFR and poor survival of NSCLC.
To determine the relationship between TRIB3 and EGFR levels in
lung cancer, we detected the expression of these two proteins in
several human lung cancer cell lines. High TRIB3 expression was
correlated with the elevated EGFR expression in most of the
human NSCLC cell lines (Fig. 1a). TRIB3 depletion not only
decreased EGFR expression in these cell lines and in primary
NSCLC cells (Fig. 1b), but also suppressed the EGFR-responsive
genes in A549 cells (Fig. 1c). We interrogated the TCGA database
using online kmplot tools to evaluate 1416 NSCLC patients22, and
identified that high TRIB3 mRNA level is only correlated with
poor survival of lung adenocarcinoma (Supplementary Fig. 1a)
but not that of lung squamous carcinoma (Supplementary
Fig. 1b). However, high TRIB3 protein was found to be positively
correlated with poor survival of both lung adenocarcinoma
(Supplementary Fig. 1c, d) and squamous carcinoma (reported in
our previous paper, ref. 20.). Consistent with TRIB3 protein
expression, higher EGFR protein level was observed in human
NSCLC tissue samples than that in the adjacent nontumor tissue
samples (Fig. 1d, e). A positive correlation could be observed
between TRIB3 and EGFR protein levels in NSCLC tissues
(Fig. 1f). Notably, 26% of 147 patients with higher expression of
both EGFR and TRIB3 showed significant lower survival rate
than patients with single or simultaneous low expression of EGFR
and TRIB3 (Fig. 1g).

TRIB3 enhances EGFR stability and signaling activity. Because
neither the correlation between the mRNA levels of EGFR and
TRIB3 from TCGA lung cancer data sets (Supplementary Fig. 1e)
nor an effect of TRIB3 depletion on EGFR transcription in A549
cells was detected (Supplementary Fig. 1f), differences in EGFR
protein stability were compared between NCI-H157 and A549
cells that showed identical levels of WT-EGFR, but the NCI-H157
cells expressed much less TRIB3 than the A549 cells (Fig. 1a). The
half-life of EGFR degradation was over 24 h in the A549 cells but
only 3.7 h in the NCI-H157 cells (Supplementary Fig. 1g).
Depletion of TRIB3 in A549 (harboring WT-EGFR) or NCI-
H1975 (harboring L858R/T790M double mutations) cells reduced
the half-life of EGFR (Fig. 2a and Supplementary Fig. 1h), while
overexpression of TRIB3 in NCI-H157 (harboring WT-EGFR) or
NCI-H1650 (harboring mutated EGFR with exon 19 deletion)
cells prolonged the half-life of EGFR (Supplementary Fig. 1i, j).
These data suggest that TRIB3 positively regulates the stability of
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EGFR, either WT-EGFR or its activating and resistant mutants.
Consistently, silencing TRIB3 protected against EGF-induced
phosphorylation of ERK1/2, STAT3/5, while enforced TRIB3
expression enhanced the phosphorylation of these proteins
(Fig. 2b and Supplementary Fig. 1k, l). These data suggest that the
elevated TRIB3 expression positively correlates with EGFR
expression and its downstream activities by supporting EGFR
stability in NSCLCs.

The turnover of EGFR is regulated by endocytosis and
postendocytic sorting. Upon stimulation, EGFR is internalized
into early endosomes, which are either recycled to the cell surface
or undergo lysosomal degradation23. In either control or TRIB3-
depleted A549 cells, EGF stimulation for 30 min induced EGFR
internalization and colocalization with early endosome antigen 1
(EEA-1), an early endosome marker (Fig. 2c). However, when
EGF stimulation was prolonged to 60 min, EGFR was identified
on the cell surface of control A549 cells but not on that of TRIB3-
depleted A549 cells (Fig. 2c). Similarly, EGF stimulation for 30
min caused EGFR internalization and colocalization with EEA-1
in control or TRIB3-overexpressing NCI-H157 cells; however,

membrane EGFR expression was observed only in TRIB3-
overexpressing NCI-H157 cells stimulated with EGF for 60 min
(Supplementary Fig. 2a). These data indicate that elevated TRIB3
expression enhances membrane EGFR expression without
impeding EGFR endocytosis. Thus, we suspected that TRIB3
upregulated EGFR expression by enhancing EGFR recycling.
Stimulation of cells with EGF for 60 min did not reduce the
membrane EGFR level in control A549 cells but did reduce the
level in control A549 cells pretreated with monensin, a recycling
inhibitor, indicating that EGFR is recycled back to the cell surface
after 60 min of EGF treatment. However, the membrane EGFR
level in TRIB3-depleted A549 cells, which were not pretreated
with monensin, reduced with 60 min of EGF treatment (Fig. 2d
and Supplementary Fig. 2b). Consistently, EGF stimulation
reduced the membrane EGFR level in control NCI-H157 cells
but not in NCI-H157 cells overexpressing TRIB3; additionally,
monensin reduced the EGFR membrane level in TRIB3-over-
expressing NCI-H157 cells (Supplementary Fig. 2b, c). These data
indicate that TRIB3 enhances membrane EGFR expression by
promoting EGFR recycling. Indeed, after 120 min of EGF
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stimulation, the recycling rate of EGFR was >60% in control A549
cells, but it was only ~10% in TRIB3-depleted A549 cells (Fig. 2e).
Likewise, overexpression of TRIB3 in NCI-H157 and NCI-H1650
cells increased the recycling rate of EGFR after EGF stimulation
(Supplementary Fig. 2d, e). Moreover, a substantial amount of
EGFR was predominantly colocalized with Rab11-positive

recycling vesicles in control A549 cells or in TRIB3-overexpressing
NCI-H157 cells after EGF stimulation; however, far less EGFR was
colocalized with lysosomal associated membrane protein 1 (LAMP-
1), a lysosomal degradation marker (Fig. 2f and Supplementary
Fig. 2f). These results suggest that the elevated TRIB3 expression
supports EGFR stability and enhances EGFR recycling.
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TRIB3 promotes PKCα-mediated EGFR Thr654 phosphoryla-
tion. TRIB3 induces multiple cellular functions through
protein–protein interactions19. To determine the critical mediator
of TRIB3-enhanced EGFR recycling, a high-throughput protein
array screening was carried out, and protein kinase C alpha
(PKCα) was identified as a binding partner of TRIB3 (Fig. 3a).
Notably, co-immunoprecipitation (CO-IP) assays showed that
TRIB3, EGFR, and PKCα were coprecipitated by each antibody
(Fig. 3b). In addition, TRIB3, EGFR, and PKCα were colocalized
in the cytoplasm upon EGF stimulation (Fig. 3c). Thr654 in
EGFR, a major phosphorylation site target by PKCα, has been
reported to divert the internalized EGFR from a degradative
pathway into the recycling endosomes24. Under EGF treatment, a
substantial amount of EGFR (77 ± 4.3%) was colocalized with
PKCα in control A549 cells (Fig. 3d, left); in TRIB3-depleted cells,
the colocalization was much less (12 ± 2%) than that in the
control cells, and accompanied by reduced total amounts of
EGFR and PKCα (Fig. 3d, right). TRIB3 depletion reduced EGF-
induced EGFRT654 phosphorylation even when PKCα was ecto-
pically expressed (Fig. 3e). These data suggest that TRIB3 acts as a
scaffolding to assemble a heterotrimeric complex for PKCα-
induced EGFRT654 phosphorylation and subsequent membrane
recycling.

To map the interaction region of TRIB3 that interacts with
EGFR and PKCα, deletion mutants of HA-tagged TRIB3 were
constructed and subjected to CO-IP assay. The C-terminus of the
TRIB3 kinase-dead (KD) region (M4 mutant) was identified to
interact with EGFR (Fig. 3f). However, it was the C-terminal tail
of TRIB3 that was responsible for the association between TRIB3
and PKCα (Fig. 3g). Furthermore, the intracellular juxtamem-
brane (JM) region of EGFR was identified to interact with TRIB3
(Fig. 3h, i). Moreover, restoring the expression of TRIB3 but not
the KDC deletion mutant (M5) reversed the inhibitory effect of
TRIB3 depletion on EGFR recycling (Fig. 3j). These data indicate
that the interaction between TRIB3 and EGFR is crucial for EGFR
recycling.

Lys689 ubiquitination is a decisive signal for EGFR recycling.
Phosphorylation and ubiquitination are two key modifications for
the ligand-induced endocytosis and degradation of EGFR25. We
evaluated the effect of TRIB3 on EGFR ubiquitination. Over-
expression of TRIB3 enhanced Lys63 (K63)- but not K48-linked
EGFR ubiquitination (Supplementary Fig. 3a), and the mod-
ification occurred in the JM region of EGFR (Supplementary
Fig. 3b). These findings were verified by the abrogation of TRIB3-
enhanced JM ubiquitination by the Lys63-to-Arg (K63R) ubi-
quitin mutant (Fig. 4a). There are five Lys sites (K652, K684,
K689, K690, and K692) in the JM region of EGFR. We found that
K689R mutation accelerated EGFR degradation, but other

mutations did not (Fig. 4b). Using JM-4KR, a mutant harboring 4
Lys-to-Arg mutations (not K689), TRIB3-enhanced K63-linked
ubiquitylation was found to occur at K689 (Fig. 4c). Notably, a
JM-4KR mutant with a phosphorylation-resistant Thr654-to-Ala
mutation (referred to as JM-4KR/T654A) lost the ability to be
ubiquitinated upon TRIB3 overexpression (Fig. 4c), suggesting
that EGFR T654 phosphorylation is critical for the K63-linked
K689 ubiquitination. Moreover, the K689R mutation reduced the
recycling rate of the phosphomimetic Thr654-to-Asp (T654D)
EGFR mutant, suggesting that the K63-linked K689 ubiquitina-
tion of EGFR is a decisive signal for EGFR recycling (Fig. 4d).

SMAD Specific E3 Ubiquitin Protein Ligase 2 (SMURF2) and
Ring Finger Protein 126 (RNF126), two E3 ligases reported to
interact with EGFR to promote its ubiquitination and
stability26,27, could not induce K63-linked ubiquitination at
K689 in the JM region (Supplementary Fig. 3c, d). To identify
EGFR-associated E3 ligases in the context of high TRIB3
expression, IP of lysates from A549 cells with an anti-EGFR
antibody was undertaken, followed by mass spectrometry-based
proteomic analysis (Supplementary Fig. 3e). Five E3 ligases were
identified from the precipitated proteins (Supplementary Table 1).
Among them, the C-terminus of Hsc70-interacting pro-
tein (CHIP), an EGFR degradation-promoting E3 ligase28, and
RNF126 could be excluded from the above discussion. Of the
remaining three E3 ligases, only the WW domain-containing E3
ubiquitin protein ligase 1 (WWP1) enhanced EGFR expression
driven by the cytomegalovirus promoter (Supplementary Fig. 3f).
WWP1 interacted with EGFR, and the T654A mutation impaired
the association between EGFR and WWP1 (Fig. 4e). Indeed,
knocking down of either PKCα or WWP1 expression destroyed
TRIB3-enhanced EGFR recycling, confirming the critical roles of
these two proteins in EGFR recycling (Fig. 4f). WWP1 increased
K63-linked ubiquitination of WT-EGFR but not that of the
K689R mutant (Supplementary Fig. 3g). However, the T654A
mutation protected EGFR from WWP1-induced K689 ubiquiti-
nation (Fig. 4g), suggesting that T654 phosphorylation is a
necessary signal for WWP1-induced K689 ubiquitination. Over-
expression of WWP1 inhibited the WT-EGFR degradation but
not K689R mutant degradation (Supplementary Fig. 3h). How-
ever, TRIB3-enhanced EGFR stability was abolished whenWWP1
was depleted (Supplementary Fig. 3i), indicating that TRIB3
enhances EGFR stability via WWP1. These data suggest that
TRIB3 interacts with EGFR to recruit PKCα and phosphorylate
EGFR at T654, which causes WWP1-catalyzed, K63-linked K689
ubiquitination of EGFR, a decisive signal for EGFR recycling, and
enhances EGFR stability.

Because both PKCα and WWP1 are necessary for TRIB3-
promoted EGFR recycling, we detected the expression of these
two proteins in human NSCLC samples. Higher PKCα and

Fig. 2 TRIB3 promotes EGFR recycling to enhance its stability and signaling activity. a Control or TRIB3-silenced A549 cells were treated with

cycloheximide (CHX) (10 µgml−1) at indicated intervals and protein stability of EGFR was analyzed by IB. Data are means ± SEM of four independent

assays. b A549 cells stably expressed control-shRNA or TRIB3-shRNA plasmid were stimulated with or without EGF (100 ngml−1) for 1 h. Indicated proteins

were analyzed by IB analysis. Data represent means ± SEM of three independent assays. c Confocal microscopy images show the distribution of EGFR and

early endosome antigen 1 (EEA-1) in control or TRIB3-silenced A549 cells before and after 0.5 or 1 h of EGF (100 ngml−1) stimulation. Quantification of

EGFR and EEA-1 colocalization was shown as Pearson’s coefficient. Data are means ± SEM of three independent assays. d Quantitative analyses of cell

surface EGFR in A549 cells stably expressed control-shRNA or TRIB3-shRNA1. Cells were preincubated with DMSO or 10 μM monensin for 4 h, and then

treated with or without EGF (100 ngml−1) for another 1 h. The Mean Fluorescence Intensity (MFI) of EGFR on cell surface was detected by flow cytometry

analysis. Top: representative flow cytometry data. Bottom: the data were normalized to A549/control-shRNA cells without EGF stimulation, which was

considered as 100% MFI signal. Data are means ± SEM of three independent assays. e EGFR recycling was detected in A549 cells stably expressed control-

shRNA or TRIB3-shRNA1 plasmid. Data are means ± SEM of three independent assays. f Colocalization analysis of EGFR with Rab11 and LAMP-1 before or

after 30min EGF treatment in control and TRIB3-silenced A549 cells. Quantification of EGFR/Rab11 or EGFR/LAMP-1 colocalization was shown as

Pearson’s coefficient. Data represent means ± SEM of three independent assays. Statistical significance between two groups was determined with two-

tailed Student’s t test. Statistical significance among groups was determined by one-way ANOVA test. Source data are provided as a Source Data file.
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WWP1 expression was observed in human NSCLC tissue samples
than in adjacent nontumor tissue samples (Fig. 5a, b and
Supplementary Fig. 4a, b). Notably, elevated expression of either
PKCα or WWP1 correlated with a poor survival rate in NSCLC
patients (Fig. 5c, d). Indeed, depletion of either PKCα or WWP1
abrogated TRIB3-enhanced proliferation, invasion, and tumor
growth (Fig. 5e–h). Importantly, these effects could be rescued by
overexpressing the EGFRT654D mutant but not the EGFRT654A or
EGFRT654D/K689R mutants (Supplementary Fig. 4c, d), indicating
that TRIB3 promotes NSCLC progression by enhancing PKCα

and WWP1-regulated EGFR stability. Cancer stem cells (CSCs)
are considered as the root of tumor relapse and resistance29.
TRIB3 depletion decreased the expression of critical CSC markers
(Supplementary Fig. 4e), as well as their target gene sets
(Supplementary Fig. 4f). Indeed, depletion of either PKCα or
WWP1 abrogated TRIB3-enhanced tumor sphere formation
(Fig. 5i); while TRIB3 depletion-impaired tumor sphere forma-
tion could be rescued by overexpressing the of EGFRT654D

mutant but not the EGFRT654A or EGFRT654D/K689R mutants
(Supplementary Fig. 4g). These data suggest that TRIB3, PKCα,
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Fig. 3 TRIB3 interacts with EGFR to promote PKCα-mediated EGFR phosphorylation. a Interactors of TRIB3 were screened through a human protein

microarray (HuProtTM 20 K) with purified TRIB3 protein. Data shown are signal to noise ratio (SNR) values and representative images of PKCα. Alexa647-

labeled IgG and Biotin-labeled BSA were used as positive controls. GST protein, the buffer only and BSA were used as negative controls. Two repeats were

designed for each protein of the microarray. b, c TRIB3, EGFR and PKCα form heterotrimeric complex. Protein extracts from A549 cells were IP with anti-

TRIB3, anti-EGFR or anti-PKCα Abs individually, and detected with indicated Abs (b). Primary NSCLC cells were treated with EGF (100 ngml−1) for 30min.

Colocalization of EGFR with PKCα and TRIB3 was analyzed with confocal microscopy (c). d Confocal microscopy images show the colocalization of EGFR

with PKCα in control and TRIB3-silenced A549 cells treated with EGF (100 ngml−1) for 30min. Quantification of EGFR and PKCα colocalization was shown

as Pearson’s coefficient. Data are means ± SEM of three independent assays. e Control and TRIB3-silenced A549 cells were transfected with indicated

plasmid and treated with or without EGF (100 ngml−1) for 1 h. EGFR T654 phosphorylation was detected by IB. f Mapping TRIB3 regions involved in EGFR

binding. Left: schematic diagram of TRIB3 deletion mutants. Right: HEK 293T cells were cotransfected with indicated constructs of EGFR-Myc and TRIB3-HA

deletion mutants. Cell extracts were IP with anti-Myc Ab. g Mapping TRIB3 regions involved in PKCα binding. h Mapping EGFR regions involved in TRIB3

binding. i Mapping the domains of ICD region involved in TRIB3 binding. j The recycling of EGFR was determined by ELISA in A549 cells with the indicated

constructs stably expressed. Data represent mean ± SEM of three assays. Data in e–i are representatives of three independent assays. Statistical

significance was determined by one-way ANOVA test. (KD kinase-dead region, KDN N-terminal of KD, KDC C-terminal of KD, ECD extracellular domain,

ICD intracellular domain. JM juxtamembrane, TK tyrosine kinase, CT C-terminal, TRIB3si-Ris the TRIB3-siRNA-resistant expressing plasmid). Source data are

provided as a Source Data file.
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Fig. 4 WWP1-induced EGFR K689 ubiquitination is a decisive signal for EGFR recycling. a Cell extracts from HEK 293T cells transfected with indicated

plasmids were IP with anti-GFP Ab. The ubiquitination of EGFR JM region was detected by IB. b Mapping the lysine sites responsible for EGFR stability in

EGFR JM region. HEK 293T cells transfected with indicated plasmids were incubated with CHX (10 μg ml−1) at indicated intervals and expression of

indicated proteins were analyzed by IB. c The K63-linked ubiquitination of the indicated JM mutants were analyzed by IB in HEK 293T cells transfected with

indicated plasmids. d The recycling of indicated EGFR mutants was detected in HEK 293T cells transfected with indicated plasmids. e Cell extracts from

HEK 293T cells transfected with indicated plasmids were IP with anti-Myc Ab. The binding of WWP1 with EGFR wild type and EGFR T654A mutant were

detected by IB. f EGFR recycling was determined by ELISA in indicated NCI-H157 cells. g The K63-linked ubiquitination of the indicated JM mutants were

analyzed by IB in HEK 293T cells transfected with indicated plasmids. For a, c, e, and g, data are representatives of three independent assays. For b, d, and

f, data indicate means ± SEM, n= 3. Statistical significance among groups was determined by one-way ANOVA test. Source data are provided as a Source

Data file.
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WWP1, and EGFR form a regulatory axis to promote tumor
stemness and progression in NSCLC by maintaining EGFR
stability.

Disturbing TRIB3–EGFR interaction reduces EGFR stability.
To verify the critical role of TRIB3–EGFR interaction in the
regulation of EGFR stability and recycling, two α-helices were
identified in the JM region of EGFR by a predictive I-TASSER
server based on the PDB data (1Z9I) from an nuclear magnetic
resonance analysis of EGFR JM region (Fig. 6a, Left)30,31. By
fusing the two α-helical peptides with GFP via a flexible linker,
JMA2 was found to be the main α-helix responsible for the
EGFR–TRIB3 interaction (Fig. 6a, Right). However, the isolated
JMA2 peptide showed no binding with TRIB3 (Fig. 6b). As the I-
TASSER prediction shows discontinuous α-helix in the JMA2
peptide at Leu683 and Lys684, we tried amino acid substitution
with the ones showing similar physicochemical properties. Leu-
to-Arg (basic amino acids with aliphatic group) substitution
(denoted as JGZ hereinafter) displayed an acceptable binding
affinity with TRIB3; while Leu-to-Ile or Leu-to-Val (branched-
chain amino acids) did not (Fig. 6b). To assess the contribution of
amino acids to JGZ-TRIB3 binding in JGZ peptide, each amino
acid residue of JGZ was substituted with Ala. The residues

Leu680, Ile682, Leu683, Arg684, and Lys689 were critical for the
binding of JGZ to TRIB3 or for the maintaining of the α-helical
conformation, because these mutations abolished JGZ-TRIB3
binding (Supplementary Fig. 5a). To optimize the physicochem-
ical properties of the peptide, we inserted chemical staples at four
(i, i+ 4) positions to generate peptides SAH-JGZ1 ~ SAH-JGZ4
(Fig. 6c). The insertion of i, i+ 4 staples enhanced the α-helical
content up to fourfold over the content of the unmodified JGZ
peptide (Fig. 6d). However, only SAH-JGZ4 showed an improved
binding affinity with TRIB3, detecting with either surface plas-
mon resonance analysis (Fig. 6e and Supplementary Fig. 5b) or
fluorescence polarization (FP) binding and competition experi-
ments (Supplementary Fig. 5c, d). The chloroalkane penetration
assay was used to quantify the cytosolic delivery of SAH-JGZ4
using A549 cells stably expressed Halo-GFP-Mito, the cytosoli-
cally oriented GFP-haloenzyme32,33 (Fig. 6f). Fluorescence con-
focal microscopy showed that preincubation with chloroalkane-
tagged SAH-JGZ4 (denoted as ct-SAH-JGZ4) suppressed almost
of the cytosolic ct-TAMRA signal, while weaker suppressive effect
was observed in cells preincubated with ct-Pep2-JGZ, a chimeric
peptide fused with the cell-penetrating peptide Pep234 (Fig. 6g).
Moreover, ct-SAH-JGZ4 showed a dose-dependent suppression
of the ct-TAMRA signal with a CP50 (concentration at which 50%
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Fig. 5 PKCα and WWP1 positively correlate with poor survival and NSCLC stemness. Quantitative analysis of PKCα (a) and WWP1 (b) expressions in

paired clinical samples. Statistical significance was determined by two-tailed Student’s t test. Kaplan–Meier plot of overall survival of patients with lung

cancer stratified by PKCα (c) and WWP1 (d) protein expression levels. Statistical difference was determined by two-sided log-rank test. e Cell proliferation

was measured by CCK-8 assay in NCI-H157 cells stably transfected with indicated plasmids. Data represent means ± SEM of three assays. f The invasive

capacities of NCI-H157 cells stably transfected with indicated plasmids were evaluated with transwell assays. Data represent means ± SEM of three assays.

Tumor growth curves (g) and quantified tumor weight (h) of mice subcutaneously inoculated with NCI-H157 cells stably transfected with indicated

plasmids. Data are presented as means ± SEM, n= 7. i Immunostaining for F-Actin and DAPI in the tumor sphere of NCI-H157 cells with indicated plasmids

stably expressed. Data represent means ± SEM of three assays. Statistical significance between two groups was determined with two-tailed Student’s

t test. Statistical significance among groups was determined by one-way ANOVA test. Source data are provided as a Source Data file.
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cell penetration was observed) of 0.596 μM, more than tenfold
lower than that of the ct-Pep2-JGZ (Fig. 6h). These results con-
firmed the enhanced cell penetration activity and the cytosolic
localization of SAH-JGZ4. To measure the comparative protease
susceptibility of unmodified and stapled SAH-JGZ4 peptides, the
peptides were subjected to proteinase K or pepsin digestion,
followed by liquid chromatography/mass spectrometry analysis of
the reaction products over time. Compared with the unmodified

JGZ template, the SAH-JGZ4 peptide conferred a marked
enhancement in the half-life, demonstrating the striking proteo-
lytic resistance of the stapled SAH-JGZ4 peptide (Fig. 6i and
Supplementary Fig. 5e). Moreover, SAH-JGZ4 not only showed
about 100-fold increased plasma stability than that of JGZ
(Supplementary Fig. 5f), but also displayed a slower half-
clearance rate than Pep2-JGZ (Fig. 6j). Taken together, these
data indicate that stapled SAH-JGZ4 not only confers a robust
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cell-penetrating ability and cytosolic localization, but also enables
intracellular protease resistance.

Using this stapled peptide as a probe, we verified the molecular
mechanism and critical roles of the TRIB3–EGFR interaction in
NSCLC progression. Treatment of A549 or primary human
NSCLC cells with SAH-JGZ4 suppressed the interactions of
TRIB3–EGFR and EGFR–PKCα (Supplementary Fig. 6a, b). In
addition, SAH-JGZ4 treatment inhibited the T654 phosphoryla-
tion of EGFR in A549 cells and reduced the expression of EGFR
and PKCα (Supplementary Fig. 6c, top). In HEK 293T cells, using
ectopic expression to maintain the identical EGFR and PKCα
expression levels, we further confirmed that SAH-JGZ4 treatment
reduced EGFR T654 phosphorylation by disturbing the
TRIB3–EGFR and EGFR–PKCα interactions (Supplementary
Fig. 6c, bottom). Furthermore, SAH-JGZ4 inhibited EGFR
recycling (Supplementary Fig. 6d) and promoted EGFR degrada-
tion (Supplementary Fig. 6e). Also, SAH-JGZ4 inhibited basal
and EGF-induced phosphorylation of ERK1/2, STAT3/5, and
EGFR (Supplementary Fig. 6f). These data indicate that SAH-
JGZ4 suppresses EGFR recycling and downstream signaling
activities and promotes EGFR degradation by disturbing the
TRIB3–EGFR interaction.

Targeting EGFR degradation inhibits lung cancer develop-
ment. Because SAH-JGZ4 could promote EGFR degradation and
suppress EGFR signaling activity, its antitumor effect was eval-
uated using in vitro and in vivo models. SAH-JGZ4 not only
protected against the EGF-induced expression of core plur-
ipotency factors (Supplementary Fig. 6g), but also suppressed
tumor proliferation, invasion, and intrinsic oncosphere formation
in A549 cells (Supplementary Fig. 6h–j). SAH-JGZ4 treatment
suppressed tumor growth in subcutaneous xenograft models with
A549 cells in a dose-dependent manner and it showed a better
antitumor effect than gefitinib at a dose of 2 mg kg−1 adminis-
tered twice a week (Fig. 7a and Supplementary Fig 7a). SAH-JGZ4
induced a dose-dependent reduction of metastasis to the liver,
which was better than the reduction induced by gefitinib (Fig. 7b).
Metastasis was confirmed by anti-human mitochondria antibody
staining, which is a marker for human cells in a xenograft model
(Supplementary Fig. 7b). Notably, SAH-JGZ4 also suppressed
tumor growth and metastasis in mice inoculated with NCI-H1975
cells, which are gefitinib-resistant lung cancer cells harboring the
T790M mutation (Fig. 7c, d and Supplementary Fig. 7c); the
antitumor efficacy of SAH-JGZ4 was superior to that of gefitinib
and comparable to that of AZD9291 (Fig. 7c, d and Supple-
mentary Fig. 7c). Mechanistically, SAH-JGZ4 disturbed the
in vivo interactions of EGFR–TRIB3 and EGFR–PKCα, and
suppressed the expression of EGFR and PKCα in the inoculated
tumor tissues (Fig. 7e). In addition, the phosphorylation of

STAT3/5 and EGFR, as well as the expression of total EGFR,
PKCα, TRIB3, and core pluripotency factors, were reduced in
tumor tissue samples from NCI-H1975 inoculated mice treated
with SAH-JGZ4 (Supplementary Fig. 7d, e). Using a lung
orthotopic transplantation model, we found that SAH-JGZ4
attenuated the metastasis of A549 cells from the inoculated side to
the opposite side (Fig. 7f, g). Furthermore, SAH-JGZ4 treatment
increased the survival rate of the tumor-bearing mice orthotopi-
cally inoculated with either A549 or NCI-H1975 cells (Fig. 7h, i).
SAH-JGZ4 reduced the tumor-initiating cell (TIC) frequency by
sixfold (1/TIC from ~93 cells to ~546 cells) (Fig. 7j, k), suggesting
that targeting EGFR stability is a potential strategy to inhibit the
stemness of lung cancer cells. Indeed, SAH-JGZ4 treatment
decreased the size of tumor organoids derived from NSCLC
patients (Fig. 7l).

CSCs are considered a main player for chemoresistance against
a variety of drugs35. Indeed, SAH-JGZ4 treatment enhanced the
carboplatin- and pemetrexed-induced cell death in A549 cells, but
not that of gemcitabine and taxol (Fig. 8a). The sensitization
effects for carboplatin and pemetrexed were also observed in
NCI-H1975 cells (Fig. 8b). We next examined whether SAH-
JGZ4 could sensitize the therapeutic effect of carboplatin or
pemetrexed in two NSCLC patient-derived xenograft (PDX)
models, which showed higher TRIB3 and EGFR expression than
A549 cells (Fig. 8c and Supplementary Fig. 7f). Combination of
SAH-JGZ4 with carboplatin or pemetrexed showed drastic
inhibition effects on tumor growth and further prolonged the
survival rate of tumor-bearing mice in both of the two NSCLC
PDX models (Fig. 8d–k). These data suggest that accelerating
EGFR degradation is a potential therapeutic strategy to enhance
the sensitivity of carboplatin- or pemetrexed-based chemotherapy
in NSCLC. Although long-term AZD9291 treatment reduced
TRIB3 and EGFR expression, it upregulated the expression and
phosphorylation of STAT3, STAT5, and ERK1/2 (Supplementary
Fig. 7d), suggesting the compensatory activation of other
oncogenic pathways and induction of cancer stemness. Except
for the acquisition of a T790M mutation in EGFR exon 20, the
emergence of bypass signaling pathways such as c-MET, HER2,
insulin-like growth factor 1 receptor (IGF1R), fibroblast growth
factor receptor 1 (FGFR1), and AXL are also critical resistance
mechanisms36–40. SAH-JGZ4 showed no effect on the phosphor-
ylation and expression of HER2, while AZD9291 displayed
suppressive effect on HER2 phosphorylation as reported6

(Supplementary Fig. 7g). Moreover, SAH-JGZ4 treatment
decreased the expression and promoted the degradation of
c-MET, but not that of FGFR1, IGF1R, and AXL (Supplementary
Fig. 7h, i). These data indicated that SAH-JGZ4 sensitized lung
cancer cells to carboplatin or pemetrexed chemotherapy, which
may rely on the comprehensive effects of not only promoting

Fig. 6 Generation and physiochemical analysis of TRIB3-binding stapled peptide. a Identification of TRIB3-binding α-helical peptide in EGFR JM region.

Left: I-TASSER server analysis of the secondary structure of EGFR JM region. Right: the JM, JMA1, and JMA2 fragments were constructed into pEGFP-C1

expression vector. The interactions of TRIB3 with the three fragments were evaluated with CO-IP assays. Data are representatives of three assays. b

Kinetic interactions of JMA2 and its derivative peptides with TRIB3 were determined by surface plasmon resonance analyses (n= 3). c Structural scheme

of the stapled i, i+ 4–JGZ peptide helices. d The helicity of the SAH-JGZs peptides were determined by circular dichroism analysis. e Kinetic interactions of

stapled peptides with TRIB3 were determined by surface plasmon resonance analyses. Top: the representative SPR diagram of SAH-JGZ4. Bottom: the

sequences of stapled peptide and their dissociation constant (n= 3). f Schematic diagram of chloroalkane penetration assay (CAPA). g Representative

images of HaloTag stably expressed A549 cells pulsing with 5 μM indicated chloroalkane-tagged peptides for 4 h, and then chasing with HaloTag TAMRA

ligand. Data are representatives of three independent assays. h HaloTag stably expressed A549 cells were pulsed with different concentrations of

chloroalkane-tagged peptides for 4 h, and then chasing with HaloTag TAMRA ligand. The mean TAMRA fluorescence was determined by fluorescence

microplate reader. The data were normalized using a nonpulsed control as 100% signal. i Proteinase K resistance profiles of JGZ, Pep2-JGZ, and SAH-

JGZ4. The reaction productions were evaluated by LC/MS analysis. j IVIS Spectrum analyses of the distributions and clearance of FAM-Pep2-JGZ and

FAM-SAH-JGZ4 at indicated times. Data in h–j are means ± SEM of three independent assays. Source data are provided as a Source Data file. (Asn: N, Gln:

Q, Ala: A, Leu: L, Arg: R, Ile: I, Lys: K, Glu: E, Thr: T, Phe: F).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17385-0

10 NATURE COMMUNICATIONS |         (2020) 11:3660 | https://doi.org/10.1038/s41467-020-17385-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


EGFR degradation but also blocking the compensation of
oncogenic or bypass signals.

As TRIB3 was reported to connect with NSCLC progression or
response to therapeutic agents with some controversial opi-
nions41–45, we evaluated the genetic depletion of TRIB3 on

NSCLC progression. Knocking down of TRIB3 inhibited tumor
growth, metastasis, and increased the survival rate of tumor-
bearing mice in NSCLC PDX and A549 xenograft models (Fig. 8l,
m and Supplementary Fig. 8a–c), confirming the tumor-
promotion role of TRIB3 in NSCLC. To identify which NSCLCs
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three independent assays. Statistical significance between two groups was determined with two-tailed Student’s t test. Statistical significance among

groups was determined by one-way ANOVA test. Source data are provided as a Source Data file.
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would be sensitive to SAH-JGZ4 treatment, three more NSCLC
cell lines with different expression level of TRIB3 and EGFR
(shown in Fig.1a) were tested using in vivo models. SAH-JGZ4
administration inhibited tumor growth of NCI-H460 cells but not
NCI-H157 and NCI-H2170 cells (Supplementary Fig. 8d–f),

suggesting that tumors with high expression of both TRIB3 and
EGFR would be sensitive to SAH-JGZ4 treatment. Consistently,
SAH-JGZ4 treatment showed no further strengthened antitumor
effects on TRIB3 depletion cells (Supplementary Fig. 8a–c). We
also evaluated the off-target and toxic effects of SAH-JGZ4. SAH-
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JGZ4 did not affect the interaction of EGFR or TRIB3 with their
known binding partners (Supplementary Fig. 9a, b and
Supplementary Note 1). Another, SAH-JGZ4 showed a smaller
impact on normal epithelial cells than on cancerous epithelial
cells and revealed no abnormalities on all major organs
(Supplementary Fig. 9c–i and Supplementary Note 1). Taken
together, high expression of both TRIB3 and EGFR is the
biomarker to determine the sensitivity of cancer cells to SAH-
JGZ4 treatment.

Discussion
Although targeted EGFR therapeutics such as TKIs are largely
effective in the treatment of NSCLC with mutated EGFR, the
development of resistance is a challenging issue for using TKI
therapies in these patients3. Also, WT-EGFR is critically contributed
to EGFR TKI resistance and NSCLC progression. WT-EGFR was
reported to confer acquired resistance to third generation of EGFR
TKIs and maintain the mutated KRAS activity as well as KRAS-
driven tumorigenesis (another critical driving factor of NSCLC)
9,11,46. Moreover, EGFR promotes tumor progression and ther-
apeutic resistance independent of its kinase activity47,48. These
evidences emphasize that WT-EGFR should be taken into account
in both basic and translational researches. Full activation of EGFR,
as well as termination of its signaling, depends on ligand-stimulated
endocytosis and intracellular trafficking. Intrinsic and extrinsic
stresses, including iatrogenic stress, trigger robust EGFR trafficking
and signaling to provide cancer cells with a survival benefit and
resistance to therapeutics49. However, the molecular mechanisms
responsible for aberrant EGFR trafficking are far from elucidated.
Data from our group and others suggest that TRIB3 is a stress
sensor in response to a diverse range of stressors, allowing TRIB3 to
participate in the pathogenesis of chronic inflammatory and
malignant diseases by interacting with intracellular signaling and
functional proteins20,41,50–52. In this study, we showed that the
elevated TRIB3 participates in the pathogenesis and progression of
NSCLC by enhancing EGFR recycling and stability, not only for the
WT-EGFR, but also for the activating and “gatekeeper” mutants.

Mechanistically, TRIB3 interacts with EGFR and PKCα to form
a heterotrimeric complex, in which TRIB3 acts as a scaffolding in
recruiting PKCα to maintain a sustainable interaction with EGFR
and elicit T654 phosphorylation of EGFR, a modification that
blocks EGFR degradation24,53. Indeed, PKCα-induced T654
phosphorylation of EGFR acts as a marker for WWP1 to induce
the K63-linked K689 ubiquitination of EGFR, a decisive signal for
EGFR recycling rather than degradation. Although the majority
of studies pay attention to the role of ubiquitination in mediating
protein degradation, growing evidence suggests that ubiquitina-
tion, especially the K63-linked polyubiquitin modification, does
not always serve as a degradation signal, but has roles in signal
transduction, transcription, and other regulatory pathways54.
K63-mediated B-cell lymphoma 6 (BCL6) polyubiquitination

promotes BCL6 stabilization and lymphomagenesis55. For EGFR
itself, SMURF2-induced ubiquitination enables EGFR stabiliza-
tion27. Our data indicated that TRIB3–PKCα–WWP1 forms a
positive regulatory axis on EGFR recycling and stability via
inducing K63-linked ubiquitination of EGFR at K689. WWP1
belongs to the Nedd4-like homologous to the E6-associated
protein C-terminus type E3 family, and its expression is upre-
gulated across cancers56. In a previous study, WWP1 was iden-
tified to enhance EGFR expression by inhibiting the ring finger
protein 11 activity57. The current work expands our under-
standing of ubiquitination in determining of protein fates, not
only in degradation, but also for recycling and stability main-
tenance. In addition, our work shows molecular details about the
tumor-promotion effect of WWP1 by inducing K63-linked K689
ubiquitination of EGFR, which subsequently promotes EGFR
recycling and maintains EGFR stability. Crosstalk between dif-
ferent types of posttranslational modifications for precise and
specific regulation is an emerging theme in eukaryotic biology58.
Our study reveals that TRIB3 supports PKCα-induced T654
phosphorylation, which serves as a priming signal for the K689
ubiquitination of EGFR and elicits EGFR recycling and
stabilization.

Except for EGFR per se, activation of alternative RTKs or
STAT3 signaling is also critical for EGFR TKI or chemotherapy
resistance in NSCLC59,60. High expression of TRIB3 is reported
to correlate with poor response to erlotinib in NSCLC tumors
that do not harbor the active EGFR mutations43. Such phe-
nomenon may be the comprehensive effects of TRIB3 in pro-
moting the stability not only of EGFR, but also of c-MET, the
major bypass signaling pathway for EGFR TKI resistance61. In
addition, TRIB3 is necessary for EGF-induced STAT3/5 activa-
tion, which is critical for cancer stemness and
chemoresistance59,62. Here, we developed SAH-JGZ4, a staple-
modified EGFR-derived peptide, which disturbs the
TRIB3–EGFR interaction and produces anticancer effects by
inhibiting EGFR recycling and subsequently inducing EGFR
degradation. Moreover, SAH-JGZ4 treatment also showed inhi-
bitory effects on the compensatory pathways by promoting c-Met
degradation and sustaining inhibition of STAT3/5 signaling. The
mutations of EGFR and KRAS are two main driver-alterations in
NSCLC. In contrast to EGFR-targeted therapies, no effective
inhibitor targeting mutated KRAS protein is available in the
clinics. Recent study reveals that genetic ablation of EGFR sup-
presses KRAS activity and mutated KRAS-driven pathogenesis
and progression in lung cancer9,46. Consistent with these obser-
vations, we found that SAH-JGZ4 treatment of KRAS mutated
A549 cells decreases KRAS activity, and inhibits tumor initiation
and progression, suggesting that promoting EGFR degradation
have therapeutic potential for targeting the “undrugable” KRAS
mutations. The therapeutic effect of SAH-JGZ4 in combination
with KRAS inhibitors should be evaluated in future studies. For

Fig. 8 SAH-JGZ4 sensitizes NSCLC to chemotherapy. a Cell viability of A549 cells treated with different concentrations of carboplatin, pemetrexed,

gemcitabine, or taxol in combination with 5 µM SAH-JGZ4 or SAH-Con for 72 h. Data are means ± SEM of three independent assays. b Cell viability of

H1975 cells treated with different concentrations of carboplatin or pemetrexed in combination with 5 µM SAH-JGZ4 or SAH-Con for 72 h. Data are means

± SEM of three independent assays. c Schematic diagram for the construction of patient-derived tumor xenograft (PDX) models from NSCLC patients.

Effects of carboplatin in combination with SAH-JGZ4 or SAH-Con on tumor growth (d) and survival (e) in the PDX-1# model. Effects of pemetrexed in

combination with SAH-JGZ4 or SAH-Con on tumor growth (f) and survival (g) in the PDX-1# model. Effects of carboplatin in combination with SAH-JGZ4

or SAH-Con on tumor growth (h) and survival (i) in the PDX-2# model. Effects of pemetrexed in combination with SAH-JGZ4 or SAH-Con on tumor

growth (j) and survival (k) in the PDX-2# model. Effects of TRIB3 deletion on tumor growth (l) and survival (m) in PDX-2# model. n Schematic diagram

illustrates the molecular mechanism of how TRIB3 promoting EGFR recycling and stability, as well as NSCLC development. Statistical significance between

two groups was determined with two-tailed Student’s t test. Data in d, f, h, j, and l are presented as means ± SEM. Statistical significance among groups

was determined by one-way ANOVA test. Statistical differences for the survival in e, g, i, k, and m were determined by two-sided log-rank test. CBP

carboplatin, PEM pemetrexed, GEM gemcitabine. Source data are provided as a Source Data file.
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TKI-based therapy, acquired resistance inevitably arises from the
increasing affinity of the mutant receptor for ATP, which, in turn,
diminishes the potency of these ATP-competitive inhibitors12.
SAH-JGZ4 inhibits EGFR signaling via a mechanism entirely
different from that of EGFR TKIs. Moreover, the active site tar-
geted by SAH-JGZ4 is outside the tyrosine kinase domain but in
the JM region of EGFR. These features of SAH-JGZ4 indicate that
it is an effective and alternative agent for EGFR-targeted therapy,
especially for overcoming the TKI resistance.

In current study, we performed one-round optimization of the
original peptide based on its predictive α-helical conformation by
using peptide stapling technique. The stapled SAH-JGZ4 dis-
played much better druggability, such as improved α-helicity,
binding affinity, cytosolic penetration, and intracellular stability
than the original peptide. The amino acids of Leu680, Ile682,
Leu683, and Arg684 have been identified as the important posi-
tions for the peptide binding with TRIB3. Leu683 may be
important for maintaining the binding conformation, as stapling
on this site obtained a successful stapled peptide construct.
Notably, although Ile682 appeared to be important as Leu680 and
Arg684 for the peptide binding with TRIB3, Ile682 would be on
the opposite face to Leu680 and Arg684 of an α-helix, suggesting
that the peptide bound with TRIB3 not as a helix at some extent.
Protein conformation is a dynamic and flexible status depending
on the environmental factors (e.g., pH, ionic strength and tem-
perature) and its binding molecules. From this aspect, using
computational approach to predict the secondary structure of
peptide has obvious limitation without taking such critical factors
into account. Later, great effort should be made to determine the
crystal structures of TRIB3 per se and TRIB3 in complex with
EGFR or with the stapled peptide, which will provide valuable
information not only for understanding the physiological and
pathological roles of TRIB3; but also provide atomic evidence for
therapeutic peptide design and optimization.

In summary, our studies suggest that the synergistic expression
and action of TRIB3, EGFR, and PKCα establish a
TRIB3–PKCα–WWP1 regulatory axis to promote NSCLC devel-
opment by enhancing EGFR recycling, stability, and signaling. In
addition, our work shows that targeting the TRIB3–EGFR inter-
action to promote EGFR degradation is a potential therapeutic
option for the treatment of EGFR-related NSCLC cases (Fig. 8n).

Methods
For detailed description of all methods, please see “Supplementary Methods”.

Cell lines and primary cultures. Human NSCLC cell lines NCI-H1703, NCI-
H2170, NCI-H157, NCI-H1395, NCI-H1975, A549, NCI-H1650, NCI-H460,
NCM460, BEAS-2B, 4T1, and HaCaT were cultured in RPMI-1640 medium
(GIBCO, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS). HEK
293T cells were cultured in IMDM medium (GIBCO, Carlsbad, CA) supplemented
with 10% FBS. Primary lung cancer cells (Cell Biologics Inc, Chicago, USA)
were cultured in complete human epithelial cell medium. All cells are maintained
at 37 °C in a humidified 5% CO2 atmosphere. NCM460 cells were obtained from
GuangZhou Jennio Biotech Co., Ltd. 4T1 Cells were provided by Dr. Bo Huang
from Institute of Basic Medicine, Chinese Academy of Medical Sciences & Peking
Union Medical College. Other cell lines were obtained from the Cell Culture Center
of Peking Union Medical College. No further authentication of these cell lines was
performed. All of the cell lines were determined to be negative for mycoplasma
using the MycoAlert Mycoplasma Detection Kit (Lonza, LT07-418). Cells were
used for experiments within 15–20 passages from thawing.

Mice. For the xenograft experiments, five-week-old male BALB/c nude mice or
NCG (NOD-PrkdcscidIl2rgnull) mice were purchased from HFK Bioscience Co., Ltd
(Beijing, China) and Nanjing Biomedical Research Institute of Nanjing University
(Nanjing, China), respectively. Mice were maintained in the animal facility at the
Institute of Materia Medica under specific-pathogen-free conditions. Mice were
housed in groups of 4–6 mice per individually ventilated cage in a 12 h light/dark
cycle (07:30–19:30 light; 19:30–7:30 dark), with controlled room temperature (23 ±
2 °C) and relative humidity (40–50%). For animal studies, the mice were earmarked
before grouping, and then were randomly separated into groups by an independent

person; however, no particular method of randomization was used. Sample size was
predetermined empirically according to previous experience using the same strains
and treatments. Generally, we used n ≥ 6 mice per group. We ensured that
experimental groups were balanced in terms of animal age and weight. All animal
studies were approved by the Animal Experimentation Ethics Committee of Chi-
nese Academy of Medical Sciences, and all procedures were conducted in accor-
dance with the guidelines of Institutional Animal Care and Use Committees of
Chinese Academy of Medical Sciences. The animal study also accorded with the
ARRIVE guidelines63.

Human subjects. Lung cancer tissues were obtained from Cancer Institute and
Hospital, Chinese Academy of Medical Science and the Guangdong provincial
people’s Hospital. Informed consent was obtained from all participants in accor-
dance with the Declaration of Helsinki. All protocols using human specimens were
approved by the Institutional Review Board of the Chinese Academy of Medical
Sciences and Peking Union Medical College. The clinical features of the patients
are listed in Supplementary Table 2 and Supplementary Table 3.

Biotinylation and recycling assay of EGFR. Cells were surface labeled with EZ-Link
Sulfo-NHS-SS-Biotin (Thermo Scientific, Wilmington, DE, USA) on ice, and inter-
nalization was then allowed to proceed for 30min at 37 °C with EGF (100 ngml−1).
Biotin remaining at cell surface was removed by exposure to MesNa for three times
(4 °C for 10min). Overall, 1/4 cells were left as control and kept on ice to represent
the total biotinylated EGFR. The remaining cells were divided into three equal parts
and rewarmed to 37 °C in serum-free medium for indicated times, respectively, to
allow recycling of the internalized EGFR. Cells were then re-exposed to MesNa for
three times (4 °C for 10min) to remove the Biotin conjugated with membrane
EGFR. The total and the remaining biotinylated EGFR were determined by ELISA
using microtiter wells coated with anti-EGFR Ab (Santa Cruz, sc-03, 1:500).
“Recycling%” was calculated using the formula: Recycling%= (total− remaining)/
total × 100%.

Synthesis of stapled peptide. Stapled SAH-JGZ peptides were formed by
incorporating JGZ peptide (on the basis of the second α-helix in EGFR JM region)
with two units of nonnatural alkenyl amino acids S5 at the relative positions i and i
+ 4, and then cross-linked by ring-closing olefin metathesis, resulting in a stapled
peptide that is braced in a α-helical conformation64. All stapled peptides, the
chimeric peptide Pep2-JGZ, and their fluorescently labeled analogs were synthe-
sized by Chinese peptide Company (Hangzhou, China). All peptides were purified
by reverse-phase high performance liquid chromatography to >95% purity and
quantitated by amino acid analysis.

Quantification and statistical analysis. Data are presented as the mean ± stan-
dard error. Statistical significance between two groups was determined with
unpaired two-tailed Student’s t test. Statistical significance among groups was
determined by one-way ANOVA test. The correlation between groups was
determined by Pearson’s correlation test. The survival rates were analyzed by the
Kaplan–Meier method. Generally, all experiments were carried out with n ≥ 3
biological replicates. P < 0.05 was considered statistically significant. Analyses were
performed using the Graphpad Prism 7.0 software.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All microarray data generated in this study have been deposited at the NCBI Gene

Expression Omnibus with the accession code GSE103891. Correlation between EGFR

and TRIB3 mRNA expression across TCGA lung cancer data sets were analyzed on the

following website: http://gepia.cancer-pku.cn. The KM plotter lung cancer dataset was

obtained from http://kmplot.com/analysis. All other data supporting the findings of this

study are available from the corresponding authors upon reasonable request. A Reporting

Summary for this Article is available as a Supplementary Information file. The uncropped

gel or blot figures and original data underlying Figs. 1–8 and Supplementary Figs. 1–9 are

provided as a Source Data file. Source data are provided with this paper.
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