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Abstract: Tribology research mainly focuses on the friction, wear, and lubrication between interacting surfaces. 

With the continuous increase in the industrialization of human society, tribology research objects have become 

increasingly extensive. Tribology research methods have also gone through the stages of empirical science 

based on phenomena, theoretical science based on models, and computational science based on simulations. 

Tribology research has a strong engineering background. Owing to the intense coupling characteristics of 

tribology, tribological information includes subject information related to mathematics, physics, chemistry, 

materials, machinery, etc. Constantly emerging data and models are the basis for the development of 

tribology. The development of information technology has provided new and more efficient methods for 

generating, collecting, processing, and analyzing tribological data. As a result, the concept of “tribo-informatics 

(triboinformatics)” has been introduced. In this paper, guided by the framework of tribo-informatics, the 

application of tribo-informatics methods in tribology is reviewed. This article aims to provide helpful guidance 

for efficient and scientific tribology research using tribo-informatics approaches. 
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1 Introduction 

With the development of engineering technology,  

the structures of various industrial products and 

exceptional equipments are becoming increasingly 

complex, and the working conditions are becoming 

more severe. At the same time, the requirements for 

operational reliability and stability are increasing. 

A tribological system generally comprises the tribo- 

pairs, lubricating medium, and working environment 

(as shown in Fig. 1). Tribological systems exhibit subject 

coupling, time dependence, and system dependence, 

which have led to a wide range of data sources and 

numerous theoretical models in tribological research. 

Tribology researchers have often analyzed various 

simulations [1], experiments, and engineering data to 

explain tribological phenomena or develop theoretical 

or predictive models. In general, data and models are 

the basis for the study of tribology, and accelerating the 

transmission of information between them is the key 

to improving the efficiency of tribology research. 

Information technology is a method of generating, 

collecting, processing, and analyzing information. 

With the development of information technology, 

information processing methods are no longer limited 

to traditional regression, fitting, and induction 

methods. The development of machine learning and 

artificial intelligence technologies has dramatically 

improved the efficiency of information processing 

methods, and the scope of application has continued 

to expand. Therefore, the possibility of integrating 

informatics and other disciplines, such as health 

information technology [2], supply chain informa-

tion technology [3], and educational information  
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technology [4], has been accelerated. Tribo-informatics 

was also developed in this context, and it has 

improved the tribology research efficiency and process 

by establishing tribology standards, building tribology 

databases, and using information technology to 

collect, classify, store, retrieve, analyze, and disseminate 

tribology information [5]. 

At present, tribo-informatics methods have numerous 

functions, such as regression and clustering [6].   

The purposes of the application of tribo-informatics 

mainly include condition monitoring, behavior 

prediction, and optimization of tribological systems 

[7–9]. In a sense, the ultimate goal of informatics 

methods is to obtain the relationship between data. 

When the goal is to obtain the relationship between 

the tribological quantity and time quantity, system 

behavior prediction is employed; when the goal is  

to obtain the relationship between the tribological 

quantity and state quantity, system state monitoring 

is used; and when the goal is to obtain the relationship 

between the system input and output, system 

optimization is employed. The tribological model aims  

to solve the problem of the attribution of different 

types of data to facilitate more accurate data analysis 

using informatics methods. From this perspective, 

the model can guide the processing of data, and the 

data can enrich the meaning of the model. Therefore, 

the collaborative driving of the data and model is an 

indispensable research method in tribo-informatics. 

This article reviews the application of informatics 

methods in tribological research in detail based on 

the three aspects mentioned above. 

2 Meaning of tribo-informatics methods 

The functions of a tribological system may include 

transmitting information, movement, or energy or 

generating material deformation to achieve processing 

purposes. The output of a tribological system is   

the function that it aims to achieve. The state of a 

tribological system includes tribological and derivative 

signals. It should be noted that these signals may 

also be the target outputs of the tribological system. 

For example, in the bearing tribological system of a 

 

Fig. 1 Components of tribo-systems. 
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satellite momentum wheel, the output is the moment 

of momentum, the inputs can be the material of the 

friction pairs, lubrication methods, surface treatment, 

etc., and the state quantities are the friction, vibration, 

wear rate, friction heat, and other parameters. 

The tribo-informatics approach is a collection of all 

of the methods used to process tribological information. 

It includes not only traditional information processing 

methods such as the Gaussian regression method, 

linear regression method, and least squares method, 

but also advanced machine learning methods. Artificial 

intelligence methods are the products of machine 

learning development. The primary purpose of 

tribo-informatics methods is to obtain the relationship 

between various quantities in a tribological system. 

1) When the relationship between an observable 

state quantity and unobservable state quantity is 

obtained, state monitoring of the tribological system 

is realized. 

2) When the relationship between the input quantity 

or current state quantity and a future state quantity 

is obtained, prediction of the tribological behavior 

can be realized. 

3) When the relationship between the input and 

target output is obtained, the tribological system can 

be optimized to obtain a better output. 

Tribology information processing needs to be 

based on the basic models and principles of tribology 

to realize the deep integration of informatics and 

tribology. For example, the peak value of the sound 

signal can be selected as a characteristic parameter to 

study its relationship with friction; or gray-scale image 

information can be processed to study the relationship 

between image information and the wear rate. In the 

framework of tribo-informatics, it should be aimed  

to ensure that the selection of each characteristic 

parameter has a physical meaning, which is referred 

to as “model-driven data processing”. Inevitably, 

in some cases, it is difficult to determine the most 

suitable characteristic parameters using the basic 

models or principles of tribology. In this case, it is 

necessary to evaluate the relationships between 

multiple characteristic parameters of two physical 

variables. Correlations can then be used to obtain the 

optimal characteristic parameters. More importantly, 

the determination of optimal characteristic parameters 

can be used to develop new tribological physical 

models or principles, referred to as “data-driven model 

optimization”. 

The application purposes of specific tribological 

informatics technology can be divided into regression, 

classification, clustering, and dimensionality reduction 

(as shown in Fig. 2). The quantitative tribological 

relationship can be determined using regression 

methods, the tribological behavior characteristics 

can be determined using classification methods, new 

tribology laws can be discovered using clustering 

methods, and tribological research efficiency can be 

improved using dimensionality reduction methods. 

Among these methods, artificial neural network (ANN), 

support vector machine (SVM), k-nearest neighbor 

(KNN), and random forest (RF) methods are the most 

commonly used. 

2.1 ANNs in tribology research 

ANNs, which consist of a large number of node 

connections (as shown in Fig. 3), are a research topic 

of considerable interest in artificial intelligence. 

Each node represents an incentive function, and each 

connection between two nodes has a corresponding 

weight [10]. ANNs have a high degree of nonlinearity 

and have played enormous roles in regression, 

classification, clustering, etc. There are three main 

types of units in ANN methods: input, hidden, and 

output units. The input unit accepts signals and data 

from the outside world. The output unit realizes the 

output of the processing results of the system. The 

hidden unit is located between the input and output 

units and cannot be observed. 

In tribological research, system input information 

(such as the friction speed and load) is typically used 

as the input unit. System output information (such 

as the friction, wear, and lubrication) is used as the 

output unit. In addition, some easy-to-observe state 

quantities (such as acoustic signals, electrical signals, 

and vibration signals) can also be used as input units 

to obtain difficult-to-observe state quantities (such as 

the coefficient of friction (COF) and wear rate). 

2.2 SVM in tribology research 

SVM is a generalized linear classifier that performs 

binary data classification based on supervised learning 

[11]. Its purpose is to find the farthest hyperplane  
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from various sample points, i.e., the hyperplane with 

the most significant separation (as shown in Fig. 4). 

When encountering situations that are not entirely 

linearly separable, slack variables need to be introduced. 

In a situation that is not linearly separable, the sample 

can also be mapped to a high-dimensional space to 

enable linear separation. SVM has strict mathematical 

support and strong interpretability, and thus it is 

 

Fig. 2 Classification and function of tribo-informatics methods. 

 

Fig. 3 Application of ANN methods in tribology research. 
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usually applied to behavior classification in tribological 

research. 

2.3 KNN in tribology research 

KNN is one of the simplest and most commonly used 

classification algorithms [12]. It uses the categories of 

the k nearest samples to determine the appropriate 

category for a data point. The k value in the KNN is 

very important for the classification. As the k value 

increases from small to large, the error rate initially 

decreases and then increases. Therefore, when deter-

mining a batch of samples, there is a critical optimal 

k value (as shown in Fig. 5). In tribological research, 

KNN is often used to predict the COF and wear   

rate [13]. 

2.4 RF in tribology research 

The RF method is a classifier containing multiple 

decision-makers, which is mainly used to solve 

classification and regression problems. It can achieve 

high prediction accuracy with a small amount of 

calculations, and it is not sensitive to the missing 

parts of the data (as shown in Fig. 6). First, random 

sampling with replacement is performed on the original 

training set to form K training sets. Subsequently, 

m features are randomly selected for each training 

set to form K classification models; finally, the best 

classification is determined through a majority vote. 

In this way, the RF can generally increase the number 

of decision trees and overcome the shortcomings of 

a single decision tree, which is prone to overfitting.  

 

Fig. 4 Application of SVM methods in tribology research: (a) principle of SVM; (b) application of SVM in the classification of 
tribological behavior characteristics. 

 

Fig. 5 Simplified schematic of the KNN method. 
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Fig. 6 Simplified schematic of the RF method. 

Applying RF to tribological research can easily predict 

tool wear [14, 15], COFs, and wear rates [13, 16]. 

3 Application of the tribo-informatics 

approach in tribology 

For the purposes of tribological research, the 

applications of tribo-informatics can be divided into 

three main categories: tribological status monitoring, 

tribological behavior prediction, and tribological 

system optimization. In this section, the specific 

operation procedures for each application purpose 

are discussed in detail. In addition, the application  

of tribo-informatics approaches is described in the 

form of a framework. It should be noted that tribo- 

informatics approaches are not a simple application 

of informatics methods to tribological problems. 

Rather, they are essentially methods driven by data 

and model collaboration. The tribological physical 

model can assist informatics methods in completing 

more accurate and reliable calculations. 

3.1 Condition monitoring of tribological systems 

State monitoring of a tribological system mainly refers 

to the use of by-product information of the tribological 

system to monitor the friction state (as shown in   

Fig. 7). Condition monitoring of a tribological system 

plays an essential role in the real-time diagnosis of 

faults and maintenance of the system. For example, 

the working state of a bearing can be evaluated based 

on the state of the friction force and the friction torque 

of the bearing using RF, gradient boosting classifier 

(GBC), and extra tree classifier (ETC) methods [17, 18]. 

Easy-to-observe system state variables, such as images, 

sound pressure, temperature, lubricating oil quality, 

and vibration, are often used to monitor tribological 

variables that are not easy to measure, such as wear, 

friction, and lubrication. 

3.1.1 Wear status monitoring 

Abrasion is the factor that most directly affects the 

performance of mechanical systems. Changes in the 

state of abrasion usually lead to abnormalities in sound 

[19], image, and vibration signals [20]. In addition, 

analyzing the abrasive particles can also provide status 

information regarding the wear behavior. Wear state 

monitoring is mainly divided into the wear monitoring 

of machining and functional parts. 

 

Fig. 7 Application of tribo-informatics approaches in tribological condition monitoring. 
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(1) Wear monitoring of machining parts 

In wear status monitoring, tool wear monitoring is 

a widespread application that determines the quality 

and efficiency of processing. If the tool status can be 

monitored in real-time, the tool repair and replacement 

times can be accurately selected. Sound pressure, 

images, and vibration signals have all been used to 

monitor tool wear. For instance, the SVM learning 

model can be used to determine the relationship 

between the sound domain signal and tool wear 

phenomena [21]. Expanding the regularized particle 

filtering technique can reduce errors caused by pure 

data processing [22], which is referred to as a semi- 

physical model. Advanced machine learning methods 

with multi-feature multi-model ensembles and dynamic 

smoothing schemes can also be used to monitor  

tool ear [23]. Using pseudo-local singular spectrum 

analysis (SSA) to process vibration signals is also an 

excellent way to monitor tool wear [24]. 

In existing research, the status monitoring of tool 

wear has mostly been qualitative in nature. Therefore, 

the use of decision-making algorithms can provide 

improved efficiency. 

(2) Wear monitoring of functional parts 

Wear behavior is present in the movable connection 

parts in a mechanical system, and thus wear status 

monitoring can provide a reference for the working 

quality and remaining life of the mechanical system. 

Chang et al. [25] proposed a method for evaluating 

the degree of wear combined with image data sets. 

Acoustic emission is an essential technology for 

monitoring wear conditions, and it can be used to 

distinguish wear conditions such as running-in, 

inadequate lubrication, and particle-contaminated oil 

[26, 27]. Using continuous wavelet transform (CWT) 

and SVM as classifiers is also an effective method for 

monitoring wear status [28]. Moreover, the shape 

characteristics of wear particles can also reflect the 

wear state. The radial concave deviation (RCD) method 

has thus been used to elucidate the relationship 

between the structure of wear particles and the wear 

state [29, 30]. 

3.1.2 Friction status monitoring 

Friction state monitoring can be divided into the 

monitoring of friction forms and the monitoring of 

friction characteristic quantities (such as the friction 

force and friction torque). At present, there are more 

monitoring techniques for friction forms than for 

friction characteristics [28, 31]. Research on friction 

state monitoring is scarce, but state monitoring of the 

frictional force or frictional torque is important for 

high-precision and high-stability mechanical systems, 

such as aero-engine shaft-bush adjustment mechanisms 

and satellite attitude control systems (e.g., momentum 

wheels). As the requirements for the precision and 

reliability of industrial products increase, friction state 

monitoring will play a more significant role. 

3.1.3 Lubrication status monitoring 

Lubrication is an essential factor that affects wear and 

friction. Therefore, most of the current monitoring of 

lubrication status is carried out from two perspectives: 

the friction status [32] and oil status [33]. In general, 

ANN and linear discriminant analysis (LDA) can be 

used to classify the lubricants in different states. 

3.2 Prediction of tribological system behavior 

Predicting the behavior of a tribological system is the 

best fusion of information technology and tribology 

(as shown in Fig. 8). This prediction is of great 

significance for predicting the failure and remaining 

service life of mechanical systems. The applications 

of predictions of tribological system behavior generally 

include cutting processing [34], friction stir welding [35], 

geological tribology [36–38], and basic tribological 

research. The following sections summarize the three 

aspects of wear prediction, friction prediction, and 

lubrication prediction. 

3.2.1 Wear prediction 

In the study of tribo-systems, most researchers  

have focused on the damage caused by friction to 

mechanical parts, and most of this damage is caused 

by wear. Therefore, wear prediction accounts for a 

considerable proportion of the existing research. Wear 

prediction mainly includes two categories: quantitative 

analysis of wear and classification of wear behavior. 

Quantitative analysis is mainly used to predict   

the wear rate, wear amount, etc., whereas behavior 

prediction is mainly used to predict the wear behavior 

characteristics. 
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(1) Quantitative analysis of wear 

The quantitative prediction of tool wear mainly 

involves first collecting a large amount of data and 

then determining the relationship between the wear 

amount and time [39–41]. A variety of information 

technologies can be used in this process, such as 

ANNs [42–45], support vector regression (SVR) [46, 47], 

RF methods [14, 15], and the adapted data mining 

methodology (DMME) [48, 49]. Generally, the process 

of applying artificial intelligence and machine learning 

to wear prediction involves using the neural network 

method to learn from the data, genetic programming 

to determine the mathematical expression for the wear 

amount, and a fuzzy inference system to impose rules 

with physical meaning [50]. 

Most quantitative research on wear is based on 

tool wear [23, 42, 51], and machine learning methods 

have been used to process large amounts of test data 

to predict the wear rates [52, 53]. At the same time, 

some quantitative wear analyses aim to elucidate  

the impact of different materials on the wear. For 

example, the influence of composite materials [54, 55], 

biological friction materials [56], and materials with 

different surface textures on the amount of wear can 

be investigated using machine learning methods. 

Hasan et al. [13, 16] compared five different machine 

learning algorithms, including KNN, SVM, ANN, 

RF, and gradient boosting machine (GBM), which is 

instructive for the application of machine learning 

methods to tribological problems. They found that 

GBM was more suitable for predicting tribological 

behavior, whereas RF was more suitable for predicting 

wear behavior. 

(2) Classification of wear behaviors 

Wear behavior is a qualitative state that must be 

distinguished. It is related to many factors, including 

the material processing parameters, material com-

position [57], working conditions, lubrication conditions 

[58, 59], etc. [60]. To predict wear behavior, it is usually 

necessary to use clustering, decision-making, fuzzy 

inference, and other processing methods, such as the 

ANN approach, adaptive neural-based fuzzy inference 

system (ANFIS) technique, and the fuzzy clustering 

method (FCM) [61]. 

Generally, the determination of the wear behavior 

state requires the involvement of physical rules. 

Therefore, combining ANN models, belief rule-based 

(BRB) inference models, and evidential reasoning (ER) 

rule models can better identify wear problems [62]. 

3.2.2 Friction prediction 

In cutting work, information technology can predict 

the cutting force, which is related to the cutting 

parameters, tool geometry, and tool wear conditions. 

Therefore, friction prediction is related to the condition 

monitoring system. The condition monitoring system  

 

Fig. 8 Application of tribo-informatics approaches for the prediction of tribological behavior. 
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inputs parameters to the prediction model, and then 

establishes the intelligent friction prediction model 

using deep neural network (DNN) [34] and SVR 

methods [63]. In addition to tool friction prediction, 

friction prediction generally includes friction damage 

[64] and friction prediction during machining [65, 66]. 

In addition to friction, predicting COFs is of great 

significance for the operation of tribo-systems, such 

as the COF of coatings [48, 67, 68], pipe friction 

coefficients [69–71], and automobile friction coefficients 

[72]. The COF is a critical indicator in tribology for 

measuring the advantages and disadvantages of 

tribological components. The realization of accurate 

COF predictions can be used not only to evaluate  

the future functional status of the tribological system 

but also to guide the selection of pre-preparation 

processes. The DNN method plays a significant role 

in predicting COFs [13, 16, 52]. 

3.2.3 Lubrication prediction 

Prediction of the lubrication performance generally 

involves analyzing the relationship between the surface 

lubrication performance and surface characteristics 

(roughness, surface texture, etc.) [73, 74], the evolution 

of the lubricant performance [75], and life prediction 

[76]. Prediction of the lubrication performance plays a 

vital role in the optimization of tribological systems. 

3.3 Tribological system optimization 

The optimization of a tribological system is a method to 

improve the operational performance of the tribological 

system based on predicting the tribological behavior 

(as shown in Fig. 9). This can be deduced from the 

composition of the tribological system. Optimization 

of a tribological system can be implemented from three 

perspectives: optimization of the tribo-pair materials, 

optimization of the lubricant, and optimization of 

the working conditions. Artificial intelligence and 

machine learning methods have played a considerable 

role in this direction by improving design efficiency 

and reducing design costs. It should be noted that 

tribological system optimization is usually a systematic 

engineering problem, and thus the optimization 

should be performed comprehensively by considering 

three aspects: tribo-pairs, lubricants, and working 

conditions. 

3.3.1 Optimization of tribo-pairs 

The optimization of tribo-pairs can be divided into 

three research directions: surface texture design, 

material design, and material selection. 

(1) Surface texture optimization 

By measuring the friction results under different 

surface texture modification conditions, artificial 

intelligence methods can be used to evaluate the 

impact of the manufacturing process on friction,  

and the results can be applied to control the friction 

phenomena by designing surface textures with 

different parameters [77–79]. When the preparation 

process or surface texture design is reversed from 

the expected friction state, the tribological system is 

optimized [80, 81]. 

(2) Surface material optimization 

Both the design of the composite material [82–84] 

and the parameters of the carburizing and nitriding 

processes [85] can be optimized using the ANN  

 

Fig. 9 Optimization of a tribological system. 
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method. The design of the material comprises only 

two aspects that can be changed: the composition of 

the material and the structure of the material (achieved 

mainly by changing the process parameters) [86]. 

(3) Surface material selection 

Rather than design new tribo-pair materials, it is 

more common in engineering to select suitable 

materials to complete specific tribological tasks. This 

requires engineers to have the ability to screen 

specific materials from a large number of candidates, 

and information technology provides this ability.  

Luo et al. [87] established a database of industrial 

tribological coatings, and the performance of these 

coatings was evaluated through simple tests and then 

screened according to actual engineering requirements. 

Decision tree-based models play an essential role in 

the material screening process, as these models can 

support the high-throughput screening of materials 

to be selected [88, 89]. 

3.3.2 Optimization of the lubricant 

Lubricants generally have the effect of reducing 

friction and wear. Designing or selecting a suitable 

lubricant is crucial for the optimization of the tribological 

system. The optimization of lubricants is mainly 

divided into the synthesis of new lubricants [90, 91] 

and the allocation of lubricant ratios [92, 93]. With 

the development of two-dimensional (2D) materials, 

the screening of 2D materials has also become an 

essential aspect of lubricant material optimization. 

3.3.3 Design of the working conditions 

The input parameters of the tribological system  

(such as the sliding speed and load) [94, 95] and 

environmental conditions in the tribological system 

(such as the temperature and humidity) [96, 97] will 

affect the output of the tribological system. To 

obtain the target output, it is sometimes necessary to 

design reasonable working conditions to realize the 

optimization of the tribological system. 

4 Typical application scenarios of tribo- 

informatics approaches 

Tribo-informatics approaches have many application 

scenarios in the field of tribology. Among these 

applications, some typical scenarios can be identified. 

A summary of the successful application of tribo- 

informatics approaches in these typical scenarios can 

provide a reference for the comprehensive integration 

of tribology and informatics in the future. Based on 

an analysis of a large amount of literature, three 

typical tribological informatics application scenarios 

can be summarized: the cutting process, friction stir 

welding, and wear analysis based on ferrographs. 

Tribo-informatics approaches have played a significant 

role in these scenarios and have processed more than 

one type of tribology information. In a sense, tribo- 

informatics approaches have changed the research 

framework of these scenarios and promoted the 

iterative upgrading of additional tribological research 

methods in the future. 

4.1 Cutting process 

Cutting is an important machining process, and it is 

also a very complex nonlinear process [34]. To ensure 

a stable and reliable machining quality, it is necessary 

to monitor and analyze the cutting parameters, 

cutting force, tool wear, and other parameters (as 

shown in Fig. 10). The cutting force can reflect the state 

of the surface processing, and it also affects the tool  

 

Fig. 10 Applications of tribo-informatics approaches in the cutting process. 



Friction 11(1): 1–22 (2023) 11 

www.Springer.com/journal/40544 | Friction 
 

life, processing roughness, and surface geometry [98]. 

Tool wear significantly affects the machined surface 

texture, tool life, and machining costs. Selecting 

suitable initial settings of the cutting parameters is an 

important method for optimizing the cutting process. 

Reasonable settings can effectively improve the tool 

wear and prepare target surfaces. 

4.1.1 Cutting force prediction 

Precise cutting force prediction can provide an 

important reference for computer numerical control 

(CNC) machining [99]. It is difficult to capture the 

complex and changeable processing conditions using 

basic theoretical modeling, and thus it is difficult  

for the accuracy of these approaches to meet the 

requirements of engineering applications. To solve 

this problem, Xu et al. [100] proposed a cutting force 

prediction model called “ForceNet,” which combined 

basic physical properties into a structured neural 

network. Hao et al. [101] proposed a relatively complete 

model based on ANN, which used the cutting speed, 

feed rate, depth of cut, and tool inclination along with 

outputs of the thrust, radial force, and main cutting 

force as inputs to predict the cutting force in the 

cutting process. Jurkovic et al. [102] compared three 

different machine learning methods (SVR, ANN, 

and polynomial (quadratic) regression) to predict the 

cutting force, roughness, and tool life, and the results 

showed that polynomial (quadratic) regression was 

superior to SVR and ANN for predicting the cutting 

force. These studies also show that for prediction   

of the same tribological quantity, multiple tribo- 

informatics methods can be used. However, the same 

tribo-informatics approach has different calculation 

efficiencies and accuracies for the monitoring and 

prediction of different tribological quantities. For 

example, ANNs can obtain complex nonlinear 

relationships but require many parameters. KNN  

is suitable for the automatic classification of class 

domains with a relatively large sample size, but it is 

very computationally intensive. RF can solve some 

over-fitting problems, but it is not suitable for dealing 

with noisy sample sets. Therefore, to balance efficiency 

and accuracy, it is necessary to classify different 

tribological problems and select appropriate tribo- 

informatics methods. 

The monitoring of the cutting force also plays an 

important role in the prediction and suppression of 

machining chatter. Peng et al. [103] proposed a new 

method based on a dynamic cutting force simulation 

model and SVM, which could predict machining 

chatter. 

4.1.2 Tool wear prediction 

Tool wear prediction is an important basis for 

evaluating the cutting tool life and machining quality. 

Tool wear prediction mainly includes data-driven 

modeling and physics-based modeling methods [44, 

104–107]. Tool wear can be predicted by analyzing 

various signals such as the cutting force, acoustic 

emissions, temperature [108], and vibration [109, 110]. 

Gouarir et al. [42] proposed a tool wear process 

prediction system that used the cutting force to 

reflect the tool-side wear status and a convolutional 

neural network (CNN) to predict tool wear; the 

method was verified based on milling experiments. 

Thangarasu et al. [111] used the cutting force and 

surface roughness as inputs and predicted the  

flank wear of a cutting tool using the ANN method. 

Subsequently, EN8 steel was used as the cutting 

material, and different cutting depths and cutting 

speeds were set to verify the accuracy of the model. 

Kong et al. [112] presented a tool wear predictive model 

based on the integrated radial basis function-based 

kernel principal component analysis (KPCA_IRBF) 

and relevance vector machine (RVM), which could 

improve the prediction accuracy compared to 

traditional prediction methods such as partial least 

squares regression (PLSR), ANN, and SVM. 

Image processing of tool wear marks is another 

important method for tool wear prediction. This 

method is representative of non-contact measurement 

methods. Bergs et al. [113] proposed a deep learning 

method for image processing, in which the wear state 

of the tool could be quantified through wear images. 

Generally, the analysis of wear images is only used  

as a qualitative analysis of wear status, and the 

quantification of wear images will be affected by many 

factors, including pixels, lighting conditions, and 

material composition differences. With the improvement 

in image noise reduction and feature value selection 

methods, wear images will play an increasingly 

important role. 
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4.2 Friction stir welding 

Friction is an inevitable product of the cutting process. 

In contrast, friction is a necessary condition for the 

process of friction stir welding. Friction stir welding 

is used for welding between workpieces, and thus 

the prediction and optimization of the welding 

quality are the main objectives of the application  

of tribo-informatics methods (as shown in Fig. 11). 

Many machine learning methods have been used to 

predict the welding quality of friction stir welding, 

including ANN [114], regression models (RSM), SVM 

[115], and ANFIS [116–118]. In the welding process, the 

required process parameters may affect the welding 

quality [119–122], and achieving accurate prediction 

of the welding quality as a multi-objective welding 

optimization problem provides the basis for these 

parameters [97, 123]. 

To predict and optimize the welding quality, it is 

necessary to obtain the relationship between input 

quantities (such as the welding speed, rotation speed, 

cutting depth, and tool type), state quantities (such as 

welding vibration, sounds, and images), and output 

quantities (such as the tensile strength, yield strength, 

hardness, and residual stress) [119, 124]. Friction stir 

welding is a complex tribological process with many 

input, output, and state quantities. The purpose of the 

tribo-informatics approach is to obtain the relationship 

between several tribological system quantities, and 

thus it is widely used in friction stir welding. 

4.2.1 Welding quality prediction 

Because welding quality comprises multiple evaluation 

indicators, welding quality predictions are mostly 

used to study the relationship between certain input 

quantities and output quantities. For example, Verma 

et al. [126] regraded the speed and feed rate as input 

variables with the ultimate tensile strength as the 

output variable to predict the welding quality using 

ANN, M5P tree regression, and RF. RF was found to 

be a more suitable algorithm for predicting the quality 

of joint welding. Das et al. [127] used real-time torque 

signals to monitor the friction stir welding process, and 

predicted internal defects in the process. SVR, ANN, 

and general regression methods were used together, 

and SVR showed better prediction performance 

than the other two methods. Mishra et al. [128] used 

the tool rotation speed, axial force, and welding 

speed as inputs to the ANN method to predict the 

corrosion resistance of welded parts. When the quality 

evaluation index of friction stir welding is changed, 

more algorithm models will be available to predict 

the welding quality. 

4.2.2 Welding quality optimization 

Welding quality optimization is a method to enable 

proper design of input quantities based on the 

relationship between the input quantity and output 

quantity to achieve the target welding quality [116]. 

Tansel et al. [129] developed a genetically optimized 

neural network system (GONNS) for intelligent 

 

Fig. 11 Applications of tribo-informatics approaches in friction stir welding [119, 125]. Reproduced with permission from Ref. [119], 
© The Korean Institute of Metals and Materials 2020; Ref. [125], © Elsevier B.V. 2005. 
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decision-making, and applied it to estimate the 

best operating conditions for friction stir welding. 

Mishra et al. [130] used regression algorithms based 

on supervised learning, such as RF, decision tree, and 

gradient regression algorithms, to obtain a set of process 

parameters that yielded the best welding mechanical 

performance, which were verified experimentally. 

4.3 Wear analysis based on ferrographs 

Ferro-spectrometry is a new type of wear test 

method that uses a magnetic force to separate the 

metal particles in oil and arrange them on a substrate 

according to the size of the particles. Using this method, 

researchers can obtain the particle concentration in 

the oil and the micro-mechanical properties of the 

wear particles (as shown in Fig. 12). This technology 

is thus of great significance for wear testing and 

analysis [131–134]. 

The application of tribo-informatics approaches 

can improve the efficiency of particle detection, 

recognition, and classification in ferro-spectrometry. 

Peng et al. [135] developed an algorithm model for 

automatic wear particle detection and classification 

that improved the analysis efficiency of ferro- 

spectrometry; an ANN was used for particle detection 

and recognition, and SVM was used for particle 

classification. Wang et al. [136] developed a CNN 

method to classify seven types of ferrograph images, 

and the proposed method could be used to determine 

the severity of wear with an accuracy of 90%. In the 

actual use of ferrographs, problems such as unclear 

ferrograph images and a low data collection frequency 

of the ferrograph may be encountered, which will 

affect the accuracy and real-time performance of the 

wear monitoring. Wu et al. [137] used a CNN with  

a larger convolution kernel to build a degradation 

model, which reduced the effect of defocus blur in the 

ferrograph imaging process. To realize the real-time 

monitoring of the wear state and amplify the amount 

of ferrograph image data, Nugraha et al. [138] used  

a data-driven method based on Gaussian process 

regression approximation to analyze the data, 

reasonably increase the sample size, and predict the 

wear based on the larger sample size. 

4.4 Other important application scenarios 

The friction informatics method also has some 

important applications in other scenarios, such as the 

identification of surface friction damage and material 

processing. Shevchik et al. [139] collected an acoustic 

data set during the reciprocating motion of bearing 

metal friction pairs, and used RF methods to predict 

three friction states: the running-in, steady state, and 

wear stages. Xiao and Zhu [140] used the ANN method 

to optimize the friction material formula, and processed 

a non-asbestos organic friction material containing 16 

Fig. 12 Applications of tribo-informatics approaches in wear analysis [135, 137, 138]. Reproduced with permission from Ref. [135], 
© Elsevier Ltd. 2020; Ref. [137], © Elsevier B.V. 2018; Ref. [138], © Elsevier Ltd. 2021. 
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ingredients. Zhang et al. [141] used machine learning 

algorithms to predict the band gap of a given 2D 

material rapidly and accurately, which promoted  

the application of these materials in the field of 

semiconductor devices. 

In other words, tribo-informatics approaches can 

be used in many aspects of tribology, such as 

manufacturing, lubricants, material processing, surface 

engineering, and drive technology [142]. However,  

it should be noted that the application of tribo- 

informatics approaches in these tribological fields is 

not very systematic. For a certain tribological problem, 

it is necessary to establish a complete informatics 

solution from all aspects of condition monitoring, 

behavior prediction, and system optimization. 

5 Outlook and conclusions 

5.1 Limitations and outlook 

5.1.1 Current application limitations 

Informatics methods can easily calculate the relation-

ships between tribological quantities and realize the 

purposes of tribological state monitoring, behavior 

prediction, and system optimization. To date, informatics 

methods have been applied to tribological problems 

in different fields, such as industrial tribology, 

lubrication, bio-tribology, friction processing, and 

geo-tribology. These methods use acoustic, image, 

vibration, thermal, electrical, and other signals 

generated by friction to analyze various problems  

in tribology. These methods can predict the life of  

the tribological system, monitor the health of the 

tribological system at any time, and discover new 

relationships between the physical quantities in 

tribology. However, tribo-informatics is a complete 

research direction, not the application of informatics 

methods to a certain tribological problem. At present, 

these informatics methods have some limitations in 

solving practical problems. 

1) The tribological system model is rarely considered 

in the application of informatics methods. This is also 

why it is currently difficult to integrate informatics 

and tribology deeply. Tribology is a systematic, multi- 

disciplinary coupling that is time-dependent, and the 

relationship between two particular physical quantities 

cannot reveal the operating law of the entire system. 

For this reason, the concept and architecture of 

tribo-informatics have been proposed [5], and the 

application of tribo-informatics methods in practical 

problems should also consider the input, output, and 

state quantities of the tribological system. In addition, 

the operating rules of the tribological system should 

be more comprehensively studied. 

2) It is difficult to determine the most suitable 

informatics method for a specific tribological problem. 

At present, the general process of most tribo- 

informatics research is to use a selected informatics 

method for monitoring or prediction, and the obtained 

results are compared and verified with tribology 

experiments. The applicability of different tribo- 

informatics methods to different tribological problems 

is an important research direction that can help  

to balance the efficiency and accuracy of friction 

informatics methods. 

5.1.2 Future directions 

With the continuous development of information 

technology, the meaning of tribo-informatics will 

continue to be enriched in the future. However, 

tribo-informatics approaches, including regression, 

classification, clustering, dimensionality reduction, 

and other methods, still face application challenges. 

1) Tribo-informatics framework. Presently, there is no 

clear framework for the comprehensive integration 

of tribology and informatics. Therefore, the current 

application of tribo-informatics approaches in 

tribological research is relatively random. For example, 

with respect to tribo-system condition monitoring, 

there is more research on wear condition monitoring 

than friction condition monitoring. To enrich the 

methods of tribo-informatics and expand applications 

in tribological research, it is necessary to establish a 

complete concept and framework of tribo-informatics. 

Then, a comprehensive fusion study should be carried 

out based on this framework. In the future, a complete 

tribo-informatics approach should be able to link the 

input, state, and output of a tribology system based on 

the tribology information model to obtain more accurate 

monitoring, prediction, and optimization results. 

2) Standardized tribological tests. The tribo- 

informatics approach requires a large amount of 
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input data, but non-standard tribological tests will 

produce a large amount of wasted data and in-

formation. Therefore, standards for tribological testing 

need to be established, which will allow various 

tribological test data to be reused. For example, if  

a researcher designs a standardized pin-to-disc test 

and uses tribo-informatics approaches to study the 

relationship between wear scar shape and friction, these 

tribological test data should not be wasted. Ideally, 

they could be combined with other standardized 

pin-to-disc tests to study the relationships of vibration, 

acoustics, and other information with the friction 

state. This will allow the significance of the tribo- 

informatics framework to be revealed, and the cir-

culation, reusability, and dissemination of tribological 

data will be greatly enhanced, thereby improving 

the efficiency of tribological research. 

3) Advanced tribological data collection technology. 

Sufficient tribological data are the basis of tribo- 

informatics. Advanced data perception technology 

is an important method for obtaining tribological 

data. Electrical signals are one of the easiest signals 

to measure and analyze. Therefore, it is reasonable to 

suggest that self-powered sensors based on triboelectric 

nano-generators (TENGs) [143–145] and intelligent 

sensing coatings for active tribology [146] will play an 

important role in data acquisition. After the factors 

that affect triboelectric signals (such as temperature, 

humidity, vibration frequency, and material properties) 

are decoupled, self-powered sensors can provide a very 

convenient means for tribological data collection. 

5.2 Conclusions 

This article systematically summarizes the application 

of information technology, including traditional 

methods, machine learning methods, and artificial 

intelligence methods, in the field of tribology. These 

tribo-informatics methods can be divided into four 

types based on the application purpose: regression, 

classification, clustering, and dimensionality reduction. 

First, four standard tribology information methods 

(ANN, SVM, KNN, and RF) are introduced, and 

their roles in tribological research are discussed. 

Then, informatics is introduced, mainly focused on 

the generation, collection, processing, and analysis 

of information. Tribology is primarily concerned with 

condition monitoring, behavior prediction, and system 

optimization. The two approaches have been cross- 

integrated in many aspects, resulting in the emerging 

discipline of “tribo-informatics.” This introduction 

provides an understanding of the applications of 

tribological informatics in various fields of tribology. 

Finally, three typical scenarios of tribo-informatics 

applications are introduced in detail, and the future 

development of the tribo-informatics approach is 

discussed. With the development of tribo-informatics 

approaches and the improvement of the framework of 

tribo-informatics, the research efficiency of tribology 

can be greatly improved. 
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