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Abstract: The friction stir process (FSP) is becoming a highly utilized method to manufacture
composites since it refines the microstructure and improves the physical characteristics like hardness,
strength, and wear resistance of their surfaces. In this study, the hardness and wear behaviours
of Al6061-based surface composites prepared by the FSP were investigated and compared for the
influences of various parameters—FSP tool geometry, reinforcement composition, number of FSP
passes, pin load, etc. The Taguchi design with an L27 orthogonal array was developed to analyze
the influence of five input parameters on the output parameter, i.e., wear rate during wear tests.
The hardness of the composite samples for different reinforcement compositions was investigated, and
the results were statistically compared with the obtained wear rates. It was concluded from the results
that various parameters influenced the surface wear and hardness of the composites. Tool geometries
cylindrical pin and square pin had the maximum and minimum wear rates, respectively. Additionally,
the optimal composition of the reinforcements copper and graphene as 1:3 possessed the maximum
wear rate and minimum hardness. However, the reinforcement composition 3:3 (Cu:Gr) by weight
had the minimum wear rate and maximum hardness. The higher the FSP pass numbers, the lesser
the wear rate and the higher the hardness, and vice-versa. This work helps identify the influence of
numerous factors on the wear and hardness aspects of surface composites prepared by the FSP. In the
future, this study can be modified by combining it with thermal analysis, sensor data analysis of the
composites, and optimization of the parameters for desirable microstructure and physical properties.

Keywords: friction stir process; surface composite; Al6061; wear; hardness

1. Introduction

Aluminium alloy-based surface composites are recently well-known as highly struc-
tural, stiff, high-strength, thermal resistant, and wear-resistant materials, particularly in
sliding wear applications. These composites, having a good strength-to-weight ratio and
exceptional low-temperature performance, find extensive application in various sectors
of the industry like automobiles, aerospace, and manufacturing, since they attribute to
high payloads (for passengers and cargo), lower fuel consumptions, lower emissions, etc.
Aluminium alloys initially lack good tribological properties. Hence, their composite fabri-
cation with suitable reinforcements and wear investigation for various parameters is critical
for most industrial applications. Many researchers [1–3] attempted fabricated aluminium
hybrid composites and studied the influence of varying process parameters (reinforcements
composition, pin load, rpm of the disc, etc.) on the tribological properties of the composites.
They obtained the optimal combination of the parameters for minimum wear rates. Al6061,
a precipitation-hardened alloy, forms composites with superior strength and corrosion resis-
tance, which are useful for manufacturing frames for road vehicles, railway compartments,
bridges, ship buildings, towers, aircraft components, etc. Various materials are being used
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as reinforcements to fabricate surface composites with Al6061 alloy as the matrix material
by the friction stir processing (FSP) technique. Many other researchers [4–10] studied
Al6061-based composites using varying compositions of nano-size reinforcements and
investigated their wear behaviour for different influencing parameters. Copper particles
form strong intermetallic compounds with Al6061 and decrease their ductility [11]. They
are an excellent in situ reinforcement with the Al6061 alloy as the matrix to form composites.
However, with a large aspect ratio, graphene is lightweight and has excellent mechanical
and thermal properties. It does not form intermetallic compounds with aluminium alloys
and imparts its strength integral to the matrix. Adding graphene to the aluminium matrices
improves the thermal conductivity and ductility of the fabricated composites. Therefore,
it is a potential ex situ reinforcement for aluminium alloy-based matrices [12]. Yun Fan
Dong et al. [13] found significant grain refinement of the graphene reinforcement into
the aluminium matrix composites, resulting in a homogeneous distribution of particles.
Many other researchers [14–21] investigated the influence of graphene reinforcement in
aluminium alloy composites for their mechanical, wear, and microstructural behaviours.
They obtained various process parameters affecting the composite properties. However,
graphene particles may add brittleness to the matrix, so they are suitable for manufac-
turing surface composites as they can modify the physical properties such as hardness
and resistance to wear at the surface without sacrificing the desirable characteristics of the
bulk volume. Various composite fabricating techniques include diffusion bonding, powder
metallurgy, plasma sintering, stir casting, etc. Many conventional methods operate at high
liquefying temperatures and are used to form bulk composites, where they may cause
various surface defects. Since most industrial applications include surface interactions,
manufacturing surface composites has gained ample significance. Friction stir processing
(FSP) is an advanced technique prominently used nowadays to fabricate surface compos-
ites. It provides an easy way to form surface composites with refined grain microstructure
without involving any melting of the base material (no porosity or chemical reactions),
hence improving the surface properties up to a specific depth, while the remaining volume
retains its original characteristics. The invention of FSP is formed on the principle of friction
stir welding (FSW), used for joining two metal plates with the help of friction caused due
to high temperature caused by the tool rubbing on the workpiece surface [22].

The FSP tool geometry is an essential factor in refining the microstructure of the
composites [23–25]. Hamidreza Eftekharinia et al. [26] investigated the wear behaviour
of Al6061 alloy composite with SiC particles as reinforcements by the FSP due to tool
geometry, and the number of FSP passes. They concluded that composites processed
by a FSP tool with a square pin are subjected to the lowest wear, while the composites
prepared by the cylindrical pin exhibit maximum wear. Reza Vatankhah Barenji et al. [27]
manufactured Al6061 surface composites with Al2O3 and TiB2 particles as reinforcements
by the FSP and studied how the pass number affects their microstructural, physical, and
wear characteristics. They obtained a higher number of passes in the FSP, leading to an
even dispersion of particles, high hardness, and low wear rate in the composites due to
refined grain size. Recently attempted research [28] investigated the physical and wear
properties of aluminium alloy composites fabricated with varying amounts of WC and
Co reinforcements [29] prepared by stir casting. Microstructural analyses by SEM and
XRD tests verified the homogeneous distribution of the reinforcements and the presence of
oxides. Sajeeb Rahiman et al. [30] studied the influence of varying weight% of MoB, applied
load at pin, and disc speed during the wear test on the tribology of Al5083. They obtained
a lower wear rate when the amount of MoB weight% was increased. The experiments were
designed using the Taguchi (L16) method and analysed by ANOVA to find how much
the input factors influenced wear rate. It was concluded that reinforcement weight% is
a major contributing factor to wear rate. Arun Premnath et al. [31] coupled the Taguchi
method with the Grey method for multi-response optimization of the mechanical and
wear parameters of the carbon fibre nanocomposites prepared by the hand layup method.
Many researchers [32–41] investigated the physical and wear characteristics of polymer-
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based nanocomposites manufactured by FSP to obtain the influences of various process
parameters using different optimization techniques. They found a significant rise in the
composites’ flexural and tensile strengths by increasing the reinforcement content, normal
load, and sliding speed up to specific limits. Some researchers [42–44] investigated various
parameters and their influence on the properties of prepared composites using the Taguchi
technique. S/N ratio plots help obtain the optimal conditions for wear loss. Sung Chan
Yoo et al. [45] observed significant improvement in the properties of Al6061 alloy-based
nanocomposites composed of SiC and CNT particles as reinforcements, making them
suitable for heavy-duty applications. Another similar study by Shubhajit Das et al. [46]
involved a wear study of an aluminium alloy composite manufactured with SiC and B4C
particles as reinforcement. Some studies involved the study of the effects of tool rpm on the
physical and tribological behaviour of the composites prepared by the friction stir process.

The fabricated composites are characterized by their physical and structural properties.
Most industrial composite applications include sliding movements like pistons, control
rods, valves, transmission shafts, etc., which require good wear-resistant properties. The
above literature shows that the effects of wear test parameters, i.e., pin load, disc rpm, travel
of pin, and reinforcement weight%, on the wear behaviour of FSP fabricated composites
have been examined recently [47]. However, the influences of various parameters in the FSP,
like the geometry of the tool pin, pass numbers, reinforcement composition, and weight%
dispersed in the matrix, along with wear parameters on composites’ wear and mechanical
behaviours, are rarely explored.

The present study is focused on examining the hardness and wear rate of Al6061
surface hybrid composites prepared by the friction stir process for varying parameters
such as the geometry of the FSP tool pin, amount and composition of reinforcements,
pass numbers of FSP, wear parameters, etc. The Taguchi method was utilised to design
an L27 orthogonal array, and ANOVA was used to study the wear rate of the composites.
Statistical analysis was used to compare the composites’ wear rate and hardness for varying
reinforcement weight%.

2. Experimental Procedure
2.1. Material and Equipment

Al6061 alloy plates (180 mm × 100 mm × 10 mm) were selected as the matrix material
in this study. The material composition in weight% was Mg—0.8 to 1.2, Si—0.4 to 0.8,
Cu—0.15 to 0.4, Mn—0.15, Fe—0.7, Zn—0.25, and Ti—0.15. Copper powder (50 to 40 µm)
and graphene nanopowder (5 to 10 nm) were selected as the reinforcements for preparing
surface hybrid composites. These copper and graphene powders were mixed in a ball mill
purchased from Xtreme Engineering Equipment (P) Ltd., Pune, India, in different ratios.
Holes of various dimensions (3 mm and 4 mm diameters) were drilled in the matrix (Al6061)
plates using HSS drill bits of respective sizes. Surface composites were manufactured by
the FSP on a CNC Vertical Milling machine. The prepared composites were analyzed for
hardness and wear characteristics. Wear was tested on a pin-on-disc dry sliding type wear
tester. The hardness was measured for the samples at the composite surface on a Vicker’s
hardness tester using a diamond indenter at a 10 kgf load. The influence of various factors
was analyzed using the Taguchi approach on Minitab software.

2.2. Sample Preparation

The Al6061 alloy plates were faced on all sides for convenient operation on the CNC
milling machine. The reinforcements’ copper and graphene powder mixture was prepared
in varying compositions by weight (1:1, 1:2, 1:3, 2:1, 2:3, 3:1, 3:2) according to the experi-
mentation plan. A high-energy ball milling process was performed to prepare a uniform
reinforcement mixture on a planetary ball mill (Figure 1a), available at Advanced Manufac-
turing Laboratory, SIT, Pune. In order to add the reinforcement mixture, 3 mm and 4 mm
diameter holes were drilled in the plates.
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2.3. Fabrication of Composites

The FSP was performed on the CNC milling machine to manufacture the Al6061
hybrid composites using specific machine parameters, i.e., tool rotation = 1000 rpm,
feed = 45 mm/min, depth of cut = 5 mm (equal to pin height). The experimentation
was conducted with a tungsten carbide FSP tool with different pin profiles—cylindrical,
conical, square, and triangle, according to the plan designed by the Taguchi method for the
wear rates of fabricated surface composites (as output response) using Minitab software.
The orthogonal L27 designs were prepared for all the FSP tool pin profiles. All the surface
composite samples prepared were examined. Each composite sample was prepared twice
for accuracy in readings. Therefore, 216 samples were prepared in this study. Holes were
drilled on each Al6061 sample for a specific quantity of reinforcement addition.

The reinforcement mixture (Cu:Gr) with different ratios (Cu:Gr = 1:1, 1:2, 1:3, 2:1, 2:3,
3:1, 3:2) was prepared by the ball milling process [48] using a planetary ball mill. The ball
mill consisted of a rotating hardened steel cylindrical drum with 15–20 10 mm and 20 mm
diameter ceramic coated steel balls colliding inside. This drum was rotated at 100 rpm for 5
to 10 min for uniform mixture preparation. A slurry of this mixture for each composition
was prepared with ethanol solution (99%) using an agate mortar. This reinforcement slurry
was poured manually into the holes on the surface of matrix plates on the Al6061 plates.

2.4. Wear Tests of Composites

The composite samples were prepared in specific dimensions (10 mm square base
and 20 mm height) according to the machine configuration and ASTM G99 standards
for wear tests on the pin-on-disc sliding type tribometer. These samples were fixed in
a 10 mm × 10 mm square size sample holder one by one for wear tests at room temperature.
While conducting the wear tests, the sample was held on a sample holder fixed inside
an arm supported by a pulley system so that the sample face touched the disc (EN31
steel). Load was attached to the pulley system, which acted on the sample resting over the
disc by a lever mechanism. The test of the prepared samples was conducted keeping the
track diameter constant, i.e., 80 mm, pin load in the range of 30 N, 40 N, and 50 N, and
the disc speed in the range of 400, 500, and 600 rpm with a constant duration of 20 min.
Table 1 shows the wear test input factors and their levels as selected for the wear tests of
the samples.
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Table 1. Pin-on disc wear test input factors and levels.

S.No.
Reinforcement Weight%

No of FSP Passes Pin Load Disc Speed
Cu% Gr%

1 1 1 2 30 400

2 2 2 3 40 500

3 3 3 4 50 600

The pin-on-disc setup (Figure 2) consisted of two sensors, a linear variable differential
transformer (LVDT), and a friction sensor. These sensors, mounted on the machine, were
connected to the controller and monitor attachment to display the wear measurement
(in micrometres) and the frictional force (in N) during the wear examination. The wear
measurement and friction force values were displayed in graphs with time using Winducom
2010 software, version 1.0, purchased by Ducom Instruments Pvt. Ltd., (Bengaluru, India),
on the monitor. The weights of the samples before and after the tests were measured using
a precision electronic weight balance machine with an accuracy of ±0.0001 g.
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Taguchi’s Design of Experiments

The composite samples prepared (by Tools A, B, C, and D) were tested for their wear
behaviour by the wear test as conducted on a pin-on-disc wear tester according to the
experimental plan designed by the Taguchi method (L27 orthogonal array) on Minitab
software. It is a powerful technique to investigate the effects of multiple input factors on
desired output responses individually and interactively. This method reduces the time,
cost, and the number of experiments for the desired outcome without compromising the
accuracy and quality of results. Table 2 shows the design of experiments for composites
prepared by FSP Tool A, i.e., cylindrical pin. Five input factors, i.e., copper weight%,
graphene weight%, number of passes, pin load, and disc speed, were investigated for three
levels on the output response as wear rate. The wear rates of the samples were calculated
according to the following equation:

Wear Rate =
Mass of the specimen lost

(Sliding Distance)×(Time Duration)

=
Mass of the specimen lost

(Π × Track diameter × Disc speed × Time duration)×(Time Duration)
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Table 2. Taguchi’s experiments designed for wear tests of the composites prepared by Tool A.

S.No. Cu% Gr% No of
Passes Pin Load Disc Speed Weight

Loss (g)
Wear Rate

(g/min.mm)

1 1 1 2 30 400 0.014 3.48 × 10−10

2 1 1 2 30 500 0.022 4.38 × 10−10

3 1 1 2 30 600 0.023 3.81502 × 10−10

4 1 2 3 40 400 0.014 3.48328 × 10−10

5 1 2 3 40 500 0.023 4.58 × 10−10

6 1 2 3 40 600 0.024 3.98089 × 10−10

7 1 3 4 50 400 0.013 3.23447 × 10−10

8 1 3 4 50 500 0.025 4.97611 × 10−10

9 1 3 4 50 600 0.022 3.65 × 10−10

10 2 1 3 50 400 0.015 3.73 × 10−10

11 2 1 3 50 500 0.024 4.77707 × 10−10

12 2 1 3 50 600 0.027 4.4785 × 10−10

13 2 2 4 30 400 0.011 2.73686 × 10−10

14 2 2 4 30 500 0.016 3.18 × 10−10

15 2 2 4 30 600 0.017 2.8198 × 10−10

16 2 3 2 40 400 0.015 3.73209 × 10−10

17 2 3 2 40 500 0.021 4.17994 × 10−10

18 2 3 2 40 600 0.023 3.81502 × 10−10

19 3 1 4 40 400 0.012 2.98567 × 10−10

20 3 1 4 40 500 0.02 3.98 × 10−10

21 3 1 4 40 600 0.026 4.31263 × 10−10

22 3 2 2 50 400 0.016 3.98089 × 10−10

23 3 2 2 50 500 0.023 4.58 × 10−10

24 3 2 2 50 600 0.025 4.14676 × 10−10

25 3 3 3 30 400 0.013 3.23447 × 10−10

26 3 3 3 30 500 0.014 2.78662 × 10−10

27 3 3 3 30 600 0.016 2.65393 × 10−10

2.5. Hardness Tests of Composites

The hardness of the composite samples was tested for the composite samples prepared
for varying composition of the reinforcement on a Vicker’s hardness testing machine, and
the results are tabulated with comparison to the wear results in Table 3. In this experiment,
a diamond indenter with an angle of 136◦ was forced into the workpiece surface to form
an indent. This indenter was fixed to the holder and advanced vertically downwards onto the
sample surface at the selected load (10 kgf). Vicker’s hardness number was calculated as:

HV =
Force Applied

Area of indentation
=

1.8544 F
d2
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Table 3. Vicker’s hardness number compared to the wear rate for the samples.

S.No.
Reinforcement
(Cu: Gr)/Tool

Used
Number of

Passes D1 (mm) D2 (mm)
Vicker’s

Hardness
No.

Wear Rate
(g/min/mm)

1 0:0/Tool A 2 0.502 0.512 72.14188734 8.957010 × 10−10

2 0:1/Tool A 2 0.492 0.489 77.07710516 6.985670 × 10−10

3 1:0/Tool A 2 0.485 0.482 79.32506959 6.378980 × 10−10

4 1:1/Tool A 2 0.482 0.489 78.67286213 4.644400 × 10−10

5 1:2/Tool A 3 0.481 0.478 80.65405287 4.976100 × 10−10

6 1:3/Tool A 4 0.472 0.477 82.36277775 6.220100 × 10−10

7 2:1/Tool A 3 0.476 0.473 82.36277775 5.639600 × 10−10

8 2:2/Tool A 4 0.464 0.461 86.69218408 3.980900 × 10−10

9 2:3/Tool A 2 0.469 0.474 83.41420682 4.810200 × 10−10

10 3:1/Tool A 4 0.461 0.465 86.50504504 4.578000 × 10−10

11 3:2/Tool A 2 0.478 0.481 80.65405287 5.473700 × 10−10

12 3:3/Tool A 3 0.471 0.468 84.12638465 3.815000 × 10−10

13 1:1/Tool B 2 0.487 0.483 78.83515783 4.312630 × 10−10

14 1:2/Tool B 3 0.473 0.479 81.84450251 5.639600 × 10−10

15 1:3/Tool B 4 0.473 0.472 83.06150444 4.478500 × 10−10

16 2:1/Tool B 3 0.464 0.463 86.3185113 5.307860 × 10−10

17 2:2/Tool B 4 0.458 0.452 89.57372298 4.478500 × 10−10

18 2:3/Tool B 2 0.462 0.467 85.94724932 4.478500 × 10−10

19 3:1/Tool B 4 0.455 0.451 90.36640693 4.179940 × 10−10

20 3:2/Tool B 2 0.471 0.468 84.12638465 5.141990 × 10−10

21 3:3/Tool B 3 0.461 0.457 88.0193278 3.483280 × 10−10

22 1:1/Tool C 2 0.479 0.473 81.84450251 3.649150 × 10−10

23 1:2/Tool C 3 0.468 0.471 84.12638465 3.317400 × 10−10

24 1:3/Tool C 4 0.463 0.469 85.39483137 4.379000 × 10−10

25 2:1/Tool C 3 0.469 0.473 83.59140105 3.980900 × 10−10

26 2:2/Tool C 4 0.452 0.448 91.57530864 2.322200 × 10−10

27 2:3/Tool C 2 0.463 0.455 88.0193278 3.151500 × 10−10

28 3:1/Tool C 4 0.459 0.455 88.79142347 2.819800 × 10−10

29 3:2/Tool C 2 0.469 0.467 84.66652056 3.815000 × 10−10

30 3:3/Tool C 3 0.449 0.446 92.60135451 2.156300 × 10−10

31 1:1/Tool D 2 0.482 0.478 80.48611111 3.649150 × 10−10

32 1:2/Tool D 3 0.476 0.473 82.36277775 3.980890 × 10−10

33 1:3/Tool D 4 0.468 0.467 84.84772227 5.772290 × 10−10

34 2:1/Tool D 3 0.474 0.478 81.84450251 4.644370 × 10−10

35 2:2/Tool D 4 0.457 0.453 89.57372298 2.985670 × 10−10

36 2:3/Tool D 2 0.468 0.46 86.13258026 3.815020 × 10−10

37 3:1/Tool D 4 0.464 0.46 86.87993104 3.582800 × 10−10

38 3:2/Tool D 2 0.474 0.472 82.88599153 4.478500 × 10−10

39 3:3/Tool D 3 0.454 0.451 90.56622203 2.819800 × 10−10
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3. Results and Discussion
3.1. Wear Test Analysis
3.1.1. Effect of Tool Pin Geometry

The variation in wear rate values in composites for varying parameters for different
tool geometries is shown in Figure 3. For all the graphs, it can be noted that for all conditions,
the wear rate was maximum for Tool A, i.e., the cylindrical pin profile, and was minimum
for Tool C, i.e., the square pin profile. This study confirms the results illustrated in previous
literature [26]. The reason is that when a square pin rotates inside the matrix surface, it
causes rapid variation in material flow, leading to dynamic loading, fragmentation, and
homogeneous distribution of the reinforcement particles (refined in size) on the composite
surface. Additionally, the trend of the wear rate curves was similar for the FSP by all of
the pin profiles. It was visible that on increasing the pin load, the wear rate increased with
a higher rate for 30 N to 40 N and rose slowly from 40 N to 50 N. It was interpreted that the
wear rate reduced with an increase in reinforcement weight% in the composite.
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3.1.2. Effect of Reinforcement Weight%

Different combinations of reinforcement weight% (copper and graphene) were used
to prepare the surface hybrid composites. Al6061 alloy matrices, being soft, undergo
adhesive wear, exhibiting high wear rates. However, adding copper and graphene powders
as reinforcement into these matrices resists the applied load and prevents material loss,
resulting in reduced wear rates [28]. The variation in wear rate of the samples for various
combinations by weight of copper (Cu) and graphene (Gr) particles is shown in Figure 4.
It can be seen that the amount and composition of the reinforcements added caused
considerable effects on the wear rate of tested samples. The wear tests caused a massive
reduction in the size of the particles of the reinforcement mixture as fabricated by the
FSP [49]. With higher reinforcement (weight%), the particles on the composite surface acted
as a solid lubricant film on the composite surface, reducing the delamination caused by
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wear. For the composite samples with reinforcements Cu:Gr at 3:3, the wear rate value
obtained was the lowest, while for composites with reinforcements Cu:Gr at 1:3, the wear
rate value obtained was maximal. In the figures, the wear rate of the tested composites was
visible as maximal for the highest pin load (i.e., 50 N) and was minimal for the lowest pin
load (i.e., 30 N). With a rise in copper weight%, it was visible that the wear rate decreased.
Hence, copper addition improved wear resistance in the Al6061 composite. An increase in
graphene weight% (from 1% to 3%) caused a reduction in the wear rate of the composite [50].
However, the trend varied for different pin load conditions.
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Figure 4. (a) Wear rates of composites with varying reinforcement weight% (copper and graphene);
(b) WR vs. copper weight% at 500 rpm; (c) WR vs. graphene weight% at 600 rpm.

3.1.3. Effect of Pin Load

The wear rate values of samples with varying pin loads for different parameters kept
constant, is shown in Figure 5. As the pin load increased, the wear rate of the composite
rose. From Figure 5a,b, it is clear that the wear rate increased with the rise in pin load for
different copper weight% and graphene weight%. In Figure 5c, the wear rate appears to
rise with an increase in load at pin for various FSP passes.

3.1.4. Effect of the Number of Passes

The graph in Figure 6 shows that the pass numbers undertaken by the tool during
the process highly influenced the wear rate of the tested samples. The variation of wear
rate with the change in the number of passes during the FSP for different pin loads is
visible in Figure 6. It was inferred from the graph that with a rise in pass numbers, the
wear rate decreased. An even refined grain dispersion of reinforcement, i.e., copper and
graphene particles, was obtained after every pass. This grain refinement led to reduced
surface defects such as porosity, clusters of particles, etc. It helped increase the contact
surface area between the composite sample and the rotating disc while reducing the wear
rate with every pass.
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3.1.5. ANOVA of Wear Tests

The wear experiments of the composite samples were conducted on a pin-on-disc
tester according to the run order given by the Taguchi method, and the wear results for the
tested composites, manufactured by FSP Tool A, are explained in this section. In this work,
the five input factors’ (copper weight%, graphene weight%, number of FSP passes, pin
load, and disc speed) influence on the wear rate was obtained for three levels (g/min.mm)
of samples during wear tests using Minitab software.

The main effect plots for means and “signal-to-noise ratio” (SN ratio) variation of the
“wear rate” (g/min.mm) of the composite on the influence of varying input parameters are
shown in Figure 7a,b. The S/N ratio plots determine the optimal values of all the input
parameters influencing the output response. It was inferred that wear rate values fell as the
copper weight% increase from 1% to 3%. The reason for the decrease in wear rate was the
strong intermetallic compounds formed by copper with the Al6061 matrix, which added
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wear resistance to the surface of the composite. Similarly, adding graphene powder (1 to
3 by weight%) as ex situ reinforcement on the matrix surface increased the hardness. It
reduced the wear rate of the matrix surface without any compound formation with the
matrix. Therefore, 3% copper and 3% graphene were the optimal values for minimal wear
rate. The graphs show the fall in wear rates as the number of FSP passes increased from
two to four. The reason was the refined grain size and even dispersion of particles on
the composite surface with every pass. Therefore, to obtain the lowest wear rate, four
FSP passes were the optimal value. With the rise in pin load (from 30 to 50 N) and disc
speed (from 400 to 600 rpm), the wear rate increased due to high dynamic loading and
more material removal caused by rubbing the composite surface with the disc, respectively.
Hence, the optimal values of pin load and disc speed were 30 N and 400 rpm, respectively,
to obtain the lowest wear rate values. Hence, the optimal conditions for the lowest wear
rate were obtained from the main effect plots as A3, B3, C3, D1, and E1.
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Figure 8 shows the interaction plot for the study that included the influence of all the
factors on the output response (wear rate) interactively.
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Significant Factors Affecting Wear Rate

The significance of the parameters influencing the wear rate was evaluated by
an ANOVA using Minitab software. ANOVA was implemented at a significance level of
5% and a confidence level of 95% to obtain the most influential parameter on the output
response. The optimal values of the parameters were obtained from a signal-noise-ratio
analysis for the “smaller-the-better” characteristic.

The ANOVA, as shown in Table 4, depicted the factors affecting the tribology of
composites processed by Tool A. Here, the degree of freedom was obtained by subtracting
one from the level of each factor considered during the experiments. The p-value in the table
indicates the measure of evidence against the null hypothesis, which rejects it if it is lesser
than the significance level. The last column for the contribution factor (%p) was added to
obtain the most influential parameter, which was calculated by obtaining the percentage of
Adj SS, i.e., adjusted sum of squares. The contribution factor indicates how much influence
is contributed by that factor. It is inferred that %p for pin load had a maximum value, and
hence it most significantly affected the wear rate of the composites. Additionally, the least
significant factor was copper weight%. The model summary for the performance parameter
R2 for the ANOVA for all the composites prepared by all the tools, i.e., Tools A, B, C, and D,
are shown in Table 5. It is visible that the value of R2 for composites processed by Tool C
was maximal, showing more significance of influencing parameters.

Table 4. Analysis of variance (ANOVA) for wear rate of the composites prepared by FSP Tool A.

Source DF Adj SS Adj MS F-Value p-Value %p

Cu% 2 0.5061 0.2530 1.83 0.192 4.484634743

Gr% 2 0.7812 0.3906 2.83 0.089 6.922340765

No of
Passes 2 1.0001 0.5001 3.62 0.051 8.86204941

Pin Load 2 4.1961 2.0980 15.18 0.000 37.1823273

Disc speed 2 2.5905 1.2953 9.37 0.002 22.95484351

Error 16 2.2112 0.1382

Total 26 11.2852
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Table 5. Model summary for ANOVA table for Tools A, B, C and D.

Tool S R-sq R-sq (adj) R-sq (pred)

A 0.371755 80.41% 68.16% 44.20%

B 0.350984 86.74% 78.46% 62.25%

C 0.351629 91.13% 85.58% 74.74%

D 0.345158 89.37% 82.72% 69.73%

The response table for S/N ratios of all input factors affecting the output parameter is
shown in Table 6. The rank order indicates the pattern in which all the parameters affect the
output response. The table shows that the delta value (distinction in maximal and minimal
values) for pin load was the highest; hence, it had the maximal effect on the wear rate of
samples. Similarly, copper weight% was the least affecting parameter.

Table 6. Response table for S/N ratios for wear rate of composites processed by Tool A. Smaller is better.

Level Cu% Gr% No of
Passes Pin Load Disc Speed

1 −11.86 −11.95 −12.04 −10.08 −10.58

2 −11.26 −11.27 −11.30 −11.75 −12.24

3 −11.04 −10.94 −10.82 −12.33 −11.34

Delta 0.82 1.01 1.22 2.26 1.66

Rank 5 4 3 1 2

• Multiple linear regression:

By implementing the regression analysis, the wear rate for the composites was pre-
dicted based on all the input factors and their significance obtained from ANOVA. Minitab
software was used to develop an empirical linear model to predict the wear rates on the
influence of all the input parameters. The predicting equations were as shown below:

Regression Equations
For Tool A

Wear Rate × 10ˆ − 10 = 2.473 − 0.162 Cu% − 0.205 Gr% − 0.235 No of Passes + 0.0470 Pin Load + 0.00170 Disc speed

For Tool B

Wear rate × 10ˆ − 10 = 1.003 − 0.075 Cu% − 0.095 Gr% − 0.084 No of Passes + 0.0721 Pin Load + 0.00041 Disc speed

For Tool C

Wear rate × 10ˆ − 10 = −2.049 − 0.054 Cu% − 0.047 Gr% − 0.018 No of Passes + 0.0955 Pin Load + 0.00272 Disc speed

For Tool D

Wear rate × 10ˆ − 10 = −0.474 − 0.069 Cu% − 0.071 Gr% − 0.051 No of Passes + 0.0838 Pin Load + 0.00147 Disc speed

In the regression model predicted by the software, the value of R2, i.e., coefficient of
determination, was obtained as a measure of variability in values of one factor that could
be caused due to its interdependence with other related factors. This method examined the
model’s potential to predict wear rate for new observations. For example, if we put the
values of all the factors for a particular experimental run in the model, we get the estimated
wear rate slightly different from the one we got from the experiments. This deviation of
the fit value from the experimental result is called the residual error. The R2 value here
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was obtained as 79.98% and 73.86% for the composites processed by Tool C and Tool D,
respectively, which is a good fit with some residual errors or variability in comparison
to that for composites processed by Tools A and Tool B. The optimal wear rates for all
the cases can be obtained by putting the optimal values (as obtained from the SN ratios
analysis) of all the parameters in the respective regression equations.

Figure 9 shows the residual plots, which indicated the consistency of all the exper-
imental data for the composites processed by Tool A. Significance of the coefficient was
predicted by the residual plots. The word residual means the error. The distance of the
dots to the probability line is called the error. The normal probability plots for the residuals
indicate that data points are adjacent to the trend line. The error bars or the residuals
were more concentrated in the lower region, which suggests that the obtained results were
precise. The residuals in the graph were scattered randomly above and below the zero axis,
showing that they possessed constant variance. It can be estimated from the graphs that
the residuals or the errors were within the control range, indicating the model’s sufficiency.
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3.2. Analysis of Hardness

Vicker’s hardness test setup was utilised to capture the hardness of composite samples.
The average hardness of the friction-stir-processed Al6061 alloy with no reinforcements was
obtained as 72.14188734 HV. The influence of FSP tool geometry, amount of reinforcement
added, and pass number in the FSP on hardness values of the samples were investigated in
the following subsections.

3.2.1. Effect of Tool Geometry

The hardness profile for the processed composites by different geometries of the tools is
shown in Figure 10. It is visible that the hardness profile of the composite sample prepared
by FSP tools varied significantly for different tool pin geometries (cylindrical, conical,
square, and triangular). The composite samples manufactured by the cylindrical pin tool
(Tool A) were found to have minimal hardness, while the composites prepared by the
square pin FSP tool (Tool C) had the highest hardness values. The reason for high hardness
in the case of the square profile was the fluctuation in the area stirred by the flat-faced
tool pin inside the flowing material, resulting in refined grain size and even dispersion
of particles. However, the cylindrical pin stirred the material uniformly, and the particles
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accumulated with the tool pin, causing a coarser dispersion of reinforcement particles and
the formation of clusters inside the material surface. Hence, the lowest hardness values
were obtained in the composite samples prepared by the cylindrical pin tool.
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3.2.2. Effect of Reinforcement Weight%

Figure 11 shows the comparison of wear rate and Vicker’s hardness number for vary-
ing compositions of reinforcement (copper and graphene). It is inferred that if a surface has
a high hardness value, it will have good wear resistance and hence will give a lower value
for wear rate when tested. From Table 3, the sample with no reinforcement (Cu:Gr = 0:0)
had the lowest value of Vickers’ hardness and the highest value of wear rate. Similarly, the
composite samples with copper and graphene at 3:3 (3 weight% each) had the highest hardness
and lowest wear rates for composites processed by all the tools of all tested geometries.
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3.2.3. Effect of Number of Passes

The hardness values of the composites varying with a different number of passes (two,
three, and four) for all the tool geometries (A, B, C, and D) is shown in Figure 12. It is visible
in the graph that as the pass number increased, the composites’ hardness also increased.
The increased hardness was due to the refined grain size dispersion obtained in the stir
zone with every pass. After two passes, the mean size of the particles in the processed
composite samples was higher. Hence, hardness values were the lowest. Nonetheless, after
four passes, the grains were refined to a much-reduced size, so the composites’ hardness
was maximal.
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4. Conclusions and Future Scope

The wear rate and the hardness of the Al6061 hybrid surface composite samples
prepared using the FSP technique using four tool pin profiles were analyzed for varying
parameters using statistical and Taguchi ANOVA. Based on the studies, some important
conclusions were obtained as follows:

• The wear rate was maximal and hardness was minimal in composite fabrication
by the FSP using Tool A, i.e., the cylindrical pin profile. In contrast, the minimal
wear rate and maximal hardness were obtained for the samples processed by Tool C,
i.e., the square pin profile. The reason for the high hardness and low wear rate of the
composites prepared using Tool C was the rapid variation in the material flow leading
to dynamic loading, refined grain size, and uniform distribution of the particles when
the square pin stirred inside the material.

• It was verified from the results of the experiments that if a surface had a high hardness
value, it also had good wear resistance and hence exhibited a lower wear rate value.

• Addition of copper and graphene (1% to 3% both) as in situ and ex situ reinforcements,
respectively, to the Al6061 matrix, refined the grain size and improved the wear
resistance and hardness of the composites. The lowest wear rate and highest hardness
values were obtained for the Al6061-based composites for copper and graphene
particles at 3:3, whereas the wear rates were maximal and hardness was minimal for
the composites with Cu:Gr at 1:3.

• From the wear experiments, it was verified that the wear rate increased with the rise
in pin load and disc speed. The reason was excessive rubbing on the surface when the
load at the pin and rotational speed of the disc were increased.

• When the composite was prepared by the FSP technique, it was concluded that with
a higher number of passes, the microstructure was more refined, and the reinforce-
ments were more uniformly dispersed. Therefore, for a higher number of FSP passes,
the wear rate was reduced, hardness was increased, and vice-versa.

• From ANOVA with wear rate as the output response and five input factors (pin load,
Cu%, Gr%, No of passes, disc speed), pin load was the most significant parameter
affecting the wear rate, while copper weight%. was the least influencing factor on
wear rate.

• The regression analysis for wear rate prediction of the composites (prepared by Tools
A, B, C, D) was based on all the input factors and their significance obtained from
ANOVA. It was concluded from all four models that the model was a good fit for
composites prepared by Tool C, followed by Tools D, B, and A, respectively.

Composites fabrication and their mechanical and tribological characterization for
varying FSP and wear test parameters were performed in this study. This study can be
modified by collecting sensor data, such as temperature, vibration, forces, etc., during com-
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posite fabrication and analyzing that sensor data to obtain the conditions of the composites
fabricated for varying parameters by the FSP process using suitable machine learning
algorithms. The study can also be improved to predict and classify the faults caused during
composite fabrication and relate them to the possible causes of their occurrence. As a result,
the modification of parameters in order to improve the microstructure and physical as well
as wear properties of the composites may be implemented.
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