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Abstract: The loss of energy due to friction is one of the major problems industries are facing
nowadays. Friction and wear between sliding components reduce the mechanical efficiency of
machines and have a negative impact on the environment. In recent years, surface texturing has
shown tremendous ability to reduce friction and wear. Micro-features generated on surfaces act
as a secondary reservoir for lubricants and wear debris receptacles to further reduce abrasion. In
addition, surface texturing boosts hydrodynamic pressure, which increases the elasto-hydrodynamic
lubrication regime of the Stribeck curve, reducing friction and wear. Amongst all different techniques
to texture surfaces, laser texturing is the most popular due to its advantages such as high accuracy,
good consistency and celerity as compared to other techniques. This study investigated the effect
of laser texturing on the tribological properties of Ti6Al4V in contact with a ceramic ball. The effect
of varying the dimple density on friction and wear was studied using a ball-on-flat reciprocating
tribometer under lubricated conditions. Results show that friction and wear were reduced for all the
textured samples as compared to an untextured sample, with important friction and wear reductions
for the samples with the highest dimple densities. For samples with intermediate dimple densities,
the friction coefficient stayed low until the dimples wore out from the surface and then increased to a
value similar to the friction coefficient of the untextured surface. The dimple wear-out time observed
in these specimens was greatly influenced by the dimple density.

Keywords: textured surfaces; friction; wear; lubrication; titanium

1. Introduction

The good mechanical strength, low density, excellent corrosion resistance and biocom-
patibility of titanium alloys make them ideal candidates for aerospace [1,2], automotive [3,4]
and biomedical applications [5,6]. Nevertheless, the poor tribological properties of these
alloys are a major drawback to their application.

Friction between mechanical components is responsible for important energy losses
and has a negative environmental impact [7–11]. Furthermore, wear is behind a large
proportion of mechanical failures [12]. Globally, energy consumed due to friction and wear
in industries is around 103 EJ and 16 EJ, respectively [2,3]. In the transportation industry, for
example, friction consumes almost 60% of the energy produced [7]. The cost incorporated
to overcome this friction and replace/remanufacture worn parts in industries is estimated
to be USD 285.5 billion [7]. In addition to these economic losses, friction and wear indirectly
cause global emissions of around 7040 MtCO2 and 1080 MtCO2, respectively, every year [7].

There are different techniques that can be used to reduce friction and wear between two
relatively moving surfaces, such as the use of high-performance lubricants [13,14], advanced
materials [15], surface modifications [16], and other modern technologies. Among all of
these techniques, surface texturing has attracted the attention of the tribology community as
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an environmentally friendly [17–19] and biocompatible [20] method to improve the friction
and wear resistance of a material [21]. Texturing has a positive impact on the loading
capacity of materials and friction coefficients [22]. In texturing, artificial micro-features
(dimples) are created on the surface, where the wear debris may be trapped, reducing
and/or eliminating the plowing effect of friction. Sometimes, these dimples can also act
as a reservoir for lubricant. Due to these positive effects, the use of textured surfaces
may reduce the coefficient of friction by 75% for starved lubrication [23–25]. Nowadays,
the use of textured surfaces is common in mechanical applications such as piston rings,
thrust bearings, and face seals [26,27]. Surface texturing can help reduce the energy
consumption and emission of CO2 gases. Textured surfaces improve the wettability and
lubrication properties of metals [28,29]. As a result, in vehicles, power output, emissions,
and fuel consumption can be considerably improved [30]. Texturing the surface also shows
positive variation in the Stribeck curve. The textured surfaces produced by modulation-
assisted machining accelerate the appearance of the elasto-hydrodynamic regime with
friction reduction of 56% and wear reduction of 90% [25,31]. Depending on the design
parameters, the effectiveness of surface texturing varies. Design parameters can be size,
shape, and density or features such as speed and load [32–35]. Several studies have showed
that dimple shape and depth are essential parameters to enhance the friction and wear
properties of surfaces [36,37]. While some studies have indicated that dimple density also
has a significant effect on the tribological properties of surfaces, no consensus has been
reached on an optimum dimple density [36,38], and further research is needed, particularly
for titanium alloy surfaces.

There are different methods that could be used to texture metallic surfaces. These
methods include sandblasting, acid etching, media blasting, modulation-assisted machin-
ing, electron-beam, ion-beam laser texturing [39–41]. Each of the above techniques has
its own advantages and disadvantages, but laser texturing is the most popular due to
advantages such as high accuracy, good consistency [27,42] and celerity as compared to
other techniques. In addition, since there is no waste generated in laser texturing, it can be
considered an environmentally friendly method.

In this work, the friction and wear behavior of titanium-textured samples generated
by laser were studied under lubricated conditions against a ceramic ball using a ball-on-flat
reciprocating tribometer. The effect of varying dimple density on the hardness, contact
angle, roughness and tribological properties was also examined.

2. Materials and Methods
2.1. Samples

Ti6Al4V titanium samples were textured using a Rofin EasyMark F20 laser marking
machine (ROFIN-SINAR Technologies Inc., Plymouth, MI, USA). Eight different laser
velocities were used to texture the surface of a titanium plate (50 mm × 48 mm × 5 mm),
obtaining eight different samples with varying dimple densities. Sample 9 represents the
untextured sample.

The composition of the Ti6Al4V alloy used in this study is listed in Table 1.

Table 1. Nominal chemical composition of Ti6AlV4 (wt.%).

Element %

Ti balanced
Al 6%
V 4%
Fe <0.25%
O <0.2%

Table 2 summarizes the laser texturing conditions for each sample and the resulting
dimple density and depth. Sample 1 was created with the lowest laser scanning speed of
400 mm/s and the shorter spacing between two laser paths (20 µm), resulting in the highest
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dimple density (50 dimples/mm). Sample 2 through sample 8 were created by using laser
speeds ranging from 800 mm/s to 2800 mm/s, respectively, yielding dimple densities that
ranged from 25 dimples/mm to 7.1 dimples/mm. Dimple depth varied between 6–8 µm.

Table 2. Laser parameters and resulting dimple density and depth.

Sample No. Laser Spot Size
(µm)

Laser Speed
(mm/s)

Laser
Frequency

(Hz)

Spacing between
Two Laser Passes

(µm)

Dimple
Density

(dimples/mm)

Dimple Depth
(µm)

Sample 1 60 400 20,000 20 50 6

Sample 2 60 800 20,000 40 25 6

Sample 3 60 1200 20,000 60 16.7 8

Sample 4 60 1600 20,000 80 12.5 7

Sample 5 60 2000 20,000 100 10 7

Sample 6 60 2400 20,000 120 8.3 7

Sample 7 60 2600 20,000 140 7.6 8

Sample 8 60 2800 20,000 160 7.1 7

Sample 9 Untextured - - - - -

Figure 1a shows the schematic representation of variation in dimple density and
Figure 1b shows the actual metal samples used for the tests. In addition, the optical
microscopic images of the samples are shown in Figure 2. In this work, a nanosecond
laser was used for the irradiation of the textures, which implied that some thermal effects
modified the size and geometry of the dimples. This effect was mainly related to the energy
density of pulses and the scanning speed of the beam used in the irradiation treatments.
The variability between the theoretical (Figure 1a) and real geometries (Figure 2) of the
textures was due to the accumulation of solidified material at dimple boundaries and
material removal.
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Figure 1. (a) Schematic representation of variation in dimple density. (b) Variation in dimple density
on the actual sample.

2.2. Contact Angle Tests

Contact angle tests were performed on each sample using a Rame-Hart goniometer
(Ramé-hart Instrument Co., Succasunna, NJ, USA) and Drop-Image software (Ramé-hart
Instrument Co., Succasunna, NJ, USA) to study the wetting effect of the treatments. Polyal-
phaolefin (PAO) was used as a liquid over the Ti6Al4V textured surface. These tests were
conducted using 2 microliters of PAO for around 24 s to collect 25 data points on contact
angles for each sample of Ti6Al4V.
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Figure 2. Microscopic images of the samples.

2.3. The Roughness of Textured Surfaces

Roughness tests were performed on all of the samples to find the Ra, Rz, and Rpk
values using the NANOVEA ST400 non-contact profilometer (Nanovea Inc., Irvine, CA,
USA) with lateral resolution of 1.7 micrometers and vertical resolution of 8 nanometers. Ra
is the arithmetic average of the absolute values of the roughness profile ordinates, Rz is
the arithmetic mean value of the single roughness depths of consecutive sampling lengths,
and Rpk is a functional roughness parameter based on bearing curves commonly used for
tribological applications. According to ISO 13565, the Rpk roughness parameter describes
the average height of the protruding peaks above the roughness core profile. It represents
the portion of the asperities that will be worn away in the first cycle of the dynamic contact
of the sliding test.

2.4. Surface Hardness Test

Though laser texturing has several advantages over different texturing processes, it
generates heat while the texturing process is underway. Because of the generated heat, the
surface of the metal sample may receive an undesirable heat treatment, which could increase
the sample surface hardness. This increase in surface hardness may impact the tribological
properties of the material. To investigate only the effect of surface hardening due to laser
texturing, surface hardness tests were performed using a Vickers micro hardness tester
(Mitutoyo MVK-H1, Mitutoyo America Corporation, Aurora, IL, USA). For each sample,
25 readings were recorded at different locations inside the sample.

2.5. Tribological Tests

Tribological tests were performed to calculate the friction coefficient and wear on the
titanium textured surfaces against 1.5 mm diameter tungsten carbide balls. A custom-made
reciprocating ball-on-flat tribometer (Figure 3a) was used to conduct the tests using PAO as
a lubricant. Each test was performed under the same operating conditions, with a normal
load of 5 N, which corresponds to a maximum contact pressure of 3.8 GPa. The frequency
used was 2 Hz with a stroke length of 3 mm and a total sliding distance of 50 m. After
performing the friction tests, wear tracks were analyzed using an OLYMPUS B-2 optical
microscope (Olympus, Tokyo, Japan). Volume losses were determined from the mean value
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of the wear track width, based on at least 20 measurements made along the wear track
(Figure 3b) and using Equation (1) [43]:

Vf = Ls[Rf
2 arcsin (

W
2Rf

)−W
2

(Rf − hf)] +
π

3
hf

2 (3Rf − hf) (1)

where Vf is wear volume in mm3, Ls is stroke length in mm, W is wear track width in mm,
Rf is the radius of the ball in mm, and hf is wear depth in mm, which is calculated from
Equation (2).

hf = Rf −

√
R2

f −
W2

4
(2)

Lubricants 2022, 10, x FOR PEER REVIEW 5 of 15 
 

 

2.5. Tribological Tests 

Tribological tests were performed to calculate the friction coefficient and wear on the 

titanium textured surfaces against 1.5 mm diameter tungsten carbide balls. A custom-

made reciprocating ball-on-flat tribometer (Figure 3a) was used to conduct the tests using 

PAO as a lubricant. Each test was performed under the same operating conditions, with a 

normal load of 5 N, which corresponds to a maximum contact pressure of 3.8 GPa. The 

frequency used was 2 Hz with a stroke length of 3 mm and a total sliding distance of 50 

m. After performing the friction tests, wear tracks were analyzed using an OLYMPUS B-

2 optical microscope (Olympus, Tokyo, Japan). Volume losses were determined from the 

mean value of the wear track width, based on at least 20 measurements made along the 

wear track (Figure 3b) and using Equation (1) [43]: 

Vf = Ls[Rf2 arcsin (
W

2Rf
) − 

W

2
 (Rf − hf)] + 

𝜋

3
 hf2 (3Rf − hf) (1) 

where Vf is wear volume in mm3, Ls is stroke length in mm, W is wear track width in mm, 

Rf is the radius of the ball in mm, and hf is wear depth in mm, which is calculated from 

Equation (2). 

hf = Rf − √Rf
2 −

W2

4
 (2) 

For each sample, at least 3 tests were performed to guarantee the repeatability of the 

results. 

 

Figure 3. (a) Custom-made reciprocating tribometer and (b) wear track measurements. 

3. Results 

3.1. Wettability 

The affinity of a surface for a lubricant, also known as wettability, can be character-

ized by the contact angle [44,45]. In general, low contact angles means good affinity (good 

wettability) between the liquid and the surface [46,47] (Figure 4). The graph in Figure 5 

shows the average (and standard deviation) contact angle of PAO on the titanium textured 

and untextured surfaces. The contact angle for the untreated sample was higher compared 

(a) 

(b) 

Figure 3. (a) Custom-made reciprocating tribometer and (b) wear track measurements.

For each sample, at least 3 tests were performed to guarantee the repeatability of
the results.

3. Results
3.1. Wettability

The affinity of a surface for a lubricant, also known as wettability, can be characterized
by the contact angle [44,45]. In general, low contact angles means good affinity (good
wettability) between the liquid and the surface [46,47] (Figure 4). The graph in Figure 5
shows the average (and standard deviation) contact angle of PAO on the titanium textured
and untextured surfaces. The contact angle for the untreated sample was higher compared
to that of the textured surfaces. Lower contact angles mean higher wettability (better
retention of lubricant) of the liquid towards the textured surfaces, which is favorable for
friction reduction [47].
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3.2. Surface Roughness

Figure 6 shows the Ra, Rz and Rpk roughness values for untextured and textured
samples. The yellow line in the figure represents the values for the untextured surface.
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As expected, the three measured roughness parameters of the untreated surface were
lower than those of the textured surfaces. The sample produced with a laser speed of
1200 mm/s (sample 3), showed the highest values for the three roughness parameters com-
pared to all textured surfaces. In this sample, the borders of the dimples were overlapping
each other, resulting in higher roughness values.

3.3. Surface Hardness

Figure 7 compares the average (standard deviation also represented) Vickers hardness
values of the textured samples to the hardness value of the untextured sample. From the
figure, sample 1, created with a lower laser speed of 400 mm/s and the highest dimple
density, showed the highest surface hardness probably due to longer exposure to the laser
heat as compared to the other samples. Samples created with laser velocities ranging from
1200 mm/s to 2800 mm/s (samples 3 to 8) showed surface hardness similar to that of
the untextured surface, and sample 2 (laser velocity of 800 mm/s), showed a very slight
increase in surface hardness.
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3.4. Tribological Results

Figure 8 shows the average friction coefficient values obtained from the ball-on-flat
reciprocating tribometer tests, when the samples were tested against ceramic balls. The
yellow straight line represents the friction coefficient for the untextured sample. Friction
coefficients for all textured surfaces were reduced compared to that of the untextured
sample, but this reduction was particularly important (~67%) for samples 1 and 2 (samples
with the highest dimple density). It is important to note that sample 1, or the sample
created with a laser speed of 400 mm/s and dimple density of 50 dimples/mm, showed
an important increase in its hardness values that may affect its tribological properties.
In sample 2, however, the hardness value remained constant after the surface texturing
treatment, by which the friction reduction observed was mainly due to the texturing effect.
It is well known that some textures on bearing surfaces may act as lubricant reservoirs and
boost hydrodynamic pressure, enhancing surface separation and reducing friction [48–50].
Some textures also may act as receptacles for wear debris, reducing scratching due to a three-
body wear effect [16]. Samples with dimple densities ranging from 16.7 to 7.1 dimples/mm
(sample 3 to sample 8), all had highly similar friction coefficients, which were slightly lower
than that of the untextured sample, showing an average reduction in friction of 6%.
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The important friction reduction when textured sample 2 was used can be clearly
seen in the friction vs. time curves shown in Figure 9. From this figure, we can also see
that textured sample 2 did not show the break-in period at the beginning of the tests,
which is typically due to the initial removal of asperities. The absence of this high friction
period at the beginning of the test has been previously reported [51,52] for other textured
surfaces, where the texturing effect maintains low with constant fiction values. It was
also very remarkable to see that when the continuous value of friction was represented
for the other textured surfaces (Figure 10), all samples started the test with low friction
values (no break-in period), and a sudden increment in friction was seen in all of these
samples after some time. At the beginning of the test, there were still fresh dimples on the
surfaces, and the friction coefficients remained low for a period of time probably due to the
better retention of the oil in the textured surfaces [48]. As the test progressed, the textures
created in samples 3–8 were not sufficient to retain a lubricant layer between the contacting
surfaces, and asperity interactions took place, which eventually wore the dimples out.
As a result, the metal surfaces started to perform as untextured surfaces, reaching higher
friction values.
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Figure 10. Friction coefficient vs. time curves for samples with dimple densities ranging from 16.7 to
7.1 dimples/mm (sample 3 to sample 8). Detail of friction coefficient vs. time curve for the first 1000 s
(sample 3 to sample 8).

If only the first 1000 s (detail inset in Figure 10) are represented in the figure, we can
confirm that the period of low friction was different for each sample. The dimple wear-out
times for sample 3 to 8 are summarized in Figure 11. From Figures 10 and 11, sample 3
(16.7 dimples/mm) showed the shortest time to wear the dimples out, probably due to
the higher surface roughness of this sample amongst all the samples (Figure 6), which
promoted the asperity interactions between surfaces. For samples with dimple densities
ranging from 12.5 to 7.1 dimple/mm (sample 4 to sample 8), the wear-out time decreased
with the decrease in dimple density, with the longest time duration for sample 4 and the
shortest duration for sample 8.
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Figure 11. Dimple wear-out time for textured samples with dimple densities ranging from 12.5 to
7.1 dimples/mm (sample 4 to sample 8).

Figure 12 shows the wear volume of the titanium samples after the ball-on-flat recipro-
cating tests. The solid straight line indicates the wear volume for the untextured sample.
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Texturing the surfaces of titanium reduced the wear volume in all samples compared to
the untextured surface. Samples 1 (50 dimples/mm) and 2 (25 dimples/mm) showed an
impressive wear reduction of almost 99% compared to the untextured sample. Neverthe-
less, the wear reduction of sample 1, as discussed before, may be due to the heat treatment
effect of the laser technology. Sample 2, however, with 25 dimples/mm, showed a very
low increase in surface hardness and negligible wear. Samples 3–8 had highly similar wear
losses, which were slightly lower than the untextured sample with average wear volume
reduction of 11%.
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Figure 13 shows the wear track images for the sample with dimple density of 25 dimples/mm
(sample 2) and the untextured sample. While the untextured surface showed severe wear
with a very wide wear track, the textured surface resulted in almost negligible wear.
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Figure 13. Optical images of worn surfaces: (a) sample with dimple density of 25 dimples/mm
(sample 2) and (b) untextured sample.

Two- and three-dimensional profiles of sample 2 (25 dimples/mm) and the untextured
surfaces are summarized in Figure 14. Again, negligible wear with only superficial scratch-
ing was observed on the textured surfaces. Under the same experimental conditions, a
deeper and wider wear track was obtained with the untreated titanium surface.
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Figure 14. Two- and three-dimensional wear track profiles of (a) sample with dimple density of
25 dimples/mm (sample 2) and (b) untextured sample.

Figure 15 shows the SEM images of the wear tracks for the untextured sample and the
textured sample with 25 dimples/mm dimple density (sample 2). In the untextured sample,
a severe component of three-body abrasive wear was observed, where some of the wear
particles responsible for the ploughing effect could still be seen in the image (Figure 15a,b).
Plastically deformed material at the wear track edges was also observed on the untreated
surface. On the other hand, for the sample with a dimple density of 25 dimples/mm, a
very smooth and superficial wear track was observed, where no deformation of material or
trapped hard particles could be seen.
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Figure 15. SEM images of wear tracks of (a,b) untextured sample, (c,d) sample with dimple density
of 25 dimples/mm (sample 2).

4. Conclusions

In this work, the tribological properties of eight textured surfaces with different dimple
densities, created by laser on titanium samples, were studied and compared to the results
obtained on an untextured surface. Results showed that laser texturing helps to improve
the tribological properties of the titanium alloy. For all of the textured surfaces, friction and
wear were reduced as compared to the untextured sample. In particular:

• Samples with the highest dimple densities (sample 1 and sample 2), showed a fric-
tion reduction of around 67% and wear reduction of almost 99% with respect to the
untextured surface.

• For the sample with the highest dimple density (50 dimples/mm), created with the
lowest laser speed, an important increase in the surface hardness was observed due
to longer exposure to laser treatment. This increased surface hardness may have
influenced the tribological properties of the sample.

• Sample 2 with a dimple density of 25 dimples/mm showed a very low increase in
surface hardness, with better tribological performance that could be attributed to the
surface texturing effect.

• Samples with dimple densities ranging from 16.7 to 7.1 dimples/mm (sample 3 to
sample 8) showed highly similar friction coefficients, which were slightly lower than
that of the untextured sample, with an average reduction in friction of 6%. These
samples presented low friction coefficients at the beginning of the test, when there
were fresh dimples on their surfaces. However, as the test progressed, these dimples
were worn out, and the effect of the textured surface was canceled. As a result, high
friction values were observed through the rest of the test.

• The dimple wear-out time observed in samples 3 to 8 was greatly influenced by the
dimple density.
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