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Abstract. This study investigates segmentation with a novel invariant
compactness constraint. The proposed prior is a high-order fractional

term, which is not directly amenable to powerful optimizers. We derive
first-order Gateâux derivative approximations of our compactness term
and adopt an iterative trust region paradigm by splitting our problem
into constrained sub-problems, each solving the approximation globally
via a Lagrangian formulation and a graph cut. We apply our algorithm
to the challenging task of abdominal aorta segmentation in 3D MRI
volumes, and report quantitative evaluations over 30 subjects, which
demonstrate that the results correlate well with independent manual
segmentations. We further show the use of our method in several other
medical applications and demonstrate that, in comparison to a standard
level-set optimization, our algorithm is one order of magnitude faster.

1 Introduction

Embedding shape priors in medical image segmentation is necessary in numer-
ous applications [15,13,12,16], more so when the target segment has an intensity
profile very similar to other parts in the image. Based on standard techniques
such as statistical shape models [16] and probabilistic atlases [12], most of the
existing medical image segmentation algorithms require (i) an intensive learn-
ing from a large, manually-segmented training set; and (ii) registration or pose
optimization procedures (i.e., w.r.t rotation, translation, and scaling). Although
they can yield excellent results in some applications, training-based algorithms
may have difficulty in capturing the substantial variations that occur in a clinical
context, with the results often being dependent on the choice of a specific train-
ing set. This is due to the fact that they enforce a strict pixelwise consistency
between the solution and the template shapes in a training set.

Recently, there has been an ongoing research effort towards embedding global

shape constraints in segmentation [15,14,13,2,6,18]. These include constraints on
segment convexity [18], axial symmetry [15], area [14] and compactness [6], as
well as geometric inter-segment relationships [2]. Several recent studies have



shown that such global shape constraints can lead to excellent performances
in various medical applications [15,14,13,2], while removing the need for inten-
sive training and pose estimation. Unfortunately, such constraints are high-order
functionals, which result in difficult optimization problems that are not directly
amenable to standard powerful optimizers, e.g., graph cuts or convex-relaxation
techniques. The following summarizes the contributions of this study.

Contributions in the general-purpose context: We propose a novel
global shape constraint, which measures segment compactness w.r.t a point set.
Our compactness constraint can be invariant w.r.t scale, rotation and translation,
unlike the shape compactness in [6] (which is pose dependent). Unfortunately,
our prior is a high-order fractional functional, which is not directly amenable to
powerful optimizers. We derive first-order Gateâux derivative approximations of
our compactness term and adopt an iterative trust region paradigm [9] by split-
ting our problem into constrained sub-problems, each solving the approximation
globally via a Lagrangian formulation and a graph cut. We show the use of our
method in several medical applications and demonstrate that, in comparison to
a standard level-set optimization, our algorithm is one order of magnitude faster.

Contributions in the application context: Abdominal aorta segmen-
tation is an essential step towards accurate assessments of abdominal aortic
aneurysms (AAA) [7,8,5]. Most of the existing works addressed the problem in
CTA, except the recent interactive-segmentation study in [7] (which also consid-
ered MRI). In MRI, the task is seriously challenged by the intensity similarities
and very weak edges between the aorta and its neighboring structures. Fur-
thermore, this tubular structure may have sudden/unpredictable changes in the
scale (size) of the 2D aorta cross-sections (e.g., due to aneurysms). With the
scale-invariance property, our method can handle such unpredictable changes in
scale. We report comprehensive evaluations over a set of 30 MRI volumes ac-
quired from 30 subjects, which show a Dice metric of 0.91 ± 0.03, an excellent
agreement with independent manual segmentations.

2 Formulation

Proposed Functional: Let I(p) : Ω ⊂ R
2 → R be an image function defined

over a domain Ω. Our objective is to find an optimal region in Ω, so that the
region is compact with respect to a point set and follows some appearance and
boundary priors. We optimize a functional containing three terms:

min
u∈{0,1}

E(u) = αA(u) + βS(u) + γC(u) (1)

The following details each of the variables and terms that appear in (1):

– u : Ω → {0, 1} is binary function, which defines a variable segmentation
of Ω: {p ∈ Ω/u(p) = 1}, corresponding to the target segment, and {p ∈
Ω/u(p) = 0}, corresponding to the complement of the target segment in Ω.



– We introduce the following invariant compactness prior:

C(u) =

∫
Ω
u(p)D2 (p,Q) dp
(∫

Ω
u(p)dp

)2 (2)

where D (p,Q) is the shortest-path distance between each point p ∈ Ω and
a set of reference points Q: D (p,Q) = minq∈Q ‖p − q‖, with ‖.‖ denoting
the L2 norm. Depending on the application, point set Q can be either a
variable, which depends on the segmentation (i.e., on function u), or fixed
(e.g., obtained from user inputs). To understand the meaning of the pro-
posed compactness prior, let us first consider the particular case of a single
reference point, which depends on u and corresponds to the centroid of the

target segment, i.e., Q is a singleton containing
∫
Ω

pdp∫
Ω

u(p)dp
. In this case, C(u)

becomes one of the well known Hu moment invariants (invariant to trans-
lation, rotation and scaling). The recent study in [19] has shown that this
invariant can be effectively used to measure shape circularity (i.e., the devi-
ation of a given shape from the most compact a shape–a circle). The lower
the value of this invariant, the closer the shape to a circle. Our extension
of this compactness measure to multiple reference points can accommodate
a more general class of shapes that deviate significantly from a circle (See
the liver example in Fig. 2, where reference points are obtained from a user
scribble). It is worth noting that, in applications where point set Q is fixed
(e.g., obtained from user inputs), C(u) loose its invariance w.r.t translation
but remains invariant w.r.t scaling and rotation.

– A is a log-likelihood appearance term [3]: A(u) =
∫
Ω
u(p) log Mt(I(p))

Mc(I(p))
dp,

where Mt and Mc are fixed (learned a priori) model distributions of intensity
within the target segment and its complement in Ω, respectively.

– S(u) is a pairwise term, which regularizes the segmentation boundary and bi-

ases it towards strong edges [3]: S(u) =
∑

{p,q}∈N
exp(−σ‖I(p)−I(q)‖2)

‖p−q‖ δu(p) 6=u(q),

with δx 6=y equal to 1 if x 6= y and 0 otherwise. N is a 16-neighborhood system
containing all unordered pairs {p,q} of neighboring elements of Ω.

– α, β, γ and σ are positive constants, which have to be fixed empirically.

Trust region optimization: Our prior is a fractional term, which is not
directly amenable to powerful optimizers, e.g., graph cuts [3]. We derive first-
order Gateâux derivative approximations of the compactness term and adopt
an iterative trust region paradigm [9]: We split our problem into a sequence of
easier sub-steps, each approximating the functional within a trust region around
the current solution (i.e., a region where the approximation can be trusted).

Constrained sub-problems: At each iteration k, we solve the following con-
strained sub-problem via a Lagrangian formulation and a graph cut:

min
u:Ω→[0;1]

Ẽk(u) s.t. ‖u− uk‖ < dk, For k = 0, 1, 2, . . .

with Ẽk(u) = C̃k(u) + αA(u) + βS(u) (3)



where u is relaxed in [0; 1] and C̃k(u) is the first-order Gateâux derivative ap-
proximation of the compactness term near current solution uk. dk defines the
size of the trust region, which is adjusted automatically at previous iteration k
(see Algorithm 1, line 7). We derive the approximation in the case Q is fixed
(scale and rotation invariant case):

C̃k(u) = K1+

∫
Ω
u(p)dp

(∫
Ω
uk(p)dp

)2−
2
∫
Ω
uk(p)D

2 (p,Q) dp
(∫

Ω
uk(p)dp

)3
∫

Ω

u(p)D2 (p,Q) dp (4)

where K1 a constant independent of u.
Lagrangian formulation of the sub-problems: We state each sub-problem in

(3) as an unconstrained optimization: minu:Ω→[0;1] Ẽk(u)+λ‖u−uk‖. For binary
functions u and uk in {0, 1}, ‖u−uk‖ can be approximated with a unary potential
[4]: ‖u−uk‖ ≈

∫
Ω
φk(p)(u(p)−uk(p))dp, where φk is the signed distance function

corresponding to the boundary defined by uk, i.e., {p ∈ Ω|∇uk 6= 0}.
Algorithm: A summary of the procedure is given in Algorithm 1. Each sub-

problem in line 3 can be solved globally with a graph cut [3]. Note that the
use of graph cuts is an option, among others, to solve the trust-region sub-
problems. One can use other global optimization techniques, e.g., those based
on convex relaxation [13]. Once candidate solution u∗ is computed, the merit of
the approximation is evaluated by the ratio between the actual and approximate
reduction in the functional. Based on this ratio, the solution is updated in line 6
and the trust region is adjusted in line 7. We set parameter τ2 in line 7 to 0.25.

Algorithm 1: Trust Region for Invariant Compactness (TRIC)

1 Repeat
2 //Solve trust region sub-problem

3 u∗
←− minu:Ω→{0,1} Ẽk(u) + λ

∫
Ω
φk(p)(u(p)− uk(p))dp

4 R̃ = Ẽk(uk)− Ẽk(u
∗) //Approximate functional reduction

5 R = E(uk)− E(u∗) //Actual functional reduction

6 //Update current solution: uk+1 ←−

{
u∗ if R

R̃
> 0

uk otherwise

7 //Adjust the trust region dk+1 ←−

{
dk · γ if R

R̃
> τ2

dk/γ otherwise

8 Until Convergence

3 Experiments

We report several sets of experiments to demonstrate the benefit of the proposed
prior, including: (i) Quantitative evaluations of supervised abdominal aorta seg-
mentations over a set of 30 MRI volumes acquired from 30 subjects; (ii) Addi-
tional examples, which show the use of our method in other applications, e.g.,



Dice metric (with compactness) Dice metric (without compactness) [3]

0.91± 0.03 0.33± 0.05

Table 1. Quantitative evaluations of abdominal aorta segmentations over 30 subjects.

liver segmentation in CT and delineations of cardiac structures (the cavity and
myocardium) in MRI; and (iii) Comparisons in regard to speed/optimality with
a standard level-set optimization applied to the same compactness functional,
which show that our method is one order of magnitude faster and is less likely
to get trapped into weak local minima (See the plot in Fig. 3).

Abdominal aorta segmentation:

Typical examples: Fig. 1 depicts aorta segmentations in 3D T2-weighted MRI
volumes. The problem is challenging due to the intensity similarities and very
weak edges between the aorta and its neighboring structures, as well as the sud-
den/unpredictable changes in the sizes of the 2D aorta cross-sections. The first
row of Fig. 1 depicts the cross-sectional results for one subject at different slices,
along with the ground truth and the segmentations obtained without compact-
ness (this corresponds to the well known method in [3]). The solution of [3] leaked
into several parts of the background, whereas our method yielded segmentations
that are very close to the ground truth. The second row of Fig. 1 depicts 3D
results obtained for another subject. The scale invariance of our method handled
well the sudden/unpredictable changes in the size of the 2D aorta cross-sections.
For this application, we assume that the centroid of the aorta cross-section within
each 2D slice is given. Such a reference point is used to define the shortest-path
distance and build the appearance models. The method belongs to the class of
tubular/vascular structure segmentation techniques that use the centerline of
the structure as input, e.g., [17]; See [10] for a complete categorization of prior
works. Standard semi-automated centerline extraction techniques [10], which use
minimum user inputs (e.g., one or two seed points for the whole volume), can fur-
ther automate the process. The parameters were fixed as follows: α = 5× 10−3,
β = 10−2 and γ = 108. The appearance models are learned from inside/outside
a disc centered at the reference point, with a radius equal to 10 pixels.

Quantitative evaluations: The evaluation was carried out over a data set of
30 T2-weighted MRI volumes acquired from 30 subjects. We segmented a to-
tal of 1968 cross-sectional 2D slices. The results were compared to independent
manual segmentations performed by an expert using the well known Dice metric
(DM) measure. DM evaluates the similarity (overlap) between the automat-
ically detected and ground-truth segments: DM = 2Sam

Sa+Sm

, with Sa, Sm, and
Sam corresponding respectively to the sizes of the segmented aorta volume, the
corresponding hand-labeled volume, and the intersection between them. The
parameters were fixed for all subjects, and were similar to those used in the
examples above. Table 1 reports the DM mean and standard deviation with and
without compactness (i.e., using the method in [3]). The plot in Fig. 1 (bottom-



Fig. 1. Abdominal aorta segmentation in 3D MRI volumes. The first row depicts cross-
sectional results for one subject at different slice levels, with the red curve showing the
ground truth, the green curve showing the result with our compactness prior and the
yellow curve showing the result without compactness (i.e., using [3]). Second row, left:
3D result obtained for another subject. Second row, right: the Dice metrics obtained
for 30 subjects with and without compactness.

Fig. 2. Interactive liver segmentation in CT. α = 5× 10−3, β = 10−1 and γ = 5× 108.

right) depicts the Dice metrics obtained for the 30 subjects. The results confirm
that the compactness term brings a substantial improvement in accuracy.

Liver segmentation in CT: Fig. 2 illustrates the application of our com-
pactness term to interactive liver segmentation in CT. This example shows how
our compactness term can accommodate a more general class of shapes that de-
viate significantly from a circle. Here, the shortest-path distance is defined w.r.t
multiple reference points (a segment), which were obtained from a simple two-
point user input (Fig. 2, first column). The second column depicts the obtained
result (green curve) along with the ground truth (red curve). The last column
depicts the result obtained without compactness (i.e., with [3]).

Cardiac segmentation in MRI: Fig. 3 shows delineations of the cav-
ity/myocardium boundaries in MRI, a well-known problem in cardiac image
analysis [1]. The first column depicts cavity segmentation starting from a single-



Fig. 3. Delineation of the cavity/myocardium boundaries in cardiac MRI. First col-
umn: delineation of the cavity boundary; Second column: delineation of the external
boundary of the myocardium; Third column: results obtained with a level set optimiza-
tion [11] for two different time steps (dt). Last column: Plots of the evolution of the
cavity-segmentation functional w.r.t CPU time for TRIC and level-set optimization
(LS) with different time steps.

point user input, which serves as a reference to define the shortest-path distance
and build the appearance models. The upper figure depicts the user input (red
point), obtained result (green curve) and ground truth (red curve), whereas the
lower one depicts the result without compactness. The parameters were fixed as
follows: α = 5 × 10−3; β = 0; γ = 5 × 108; the appearance models are learned
from inside/outside a disc centered at the reference point, with a radius of 10
pixels. The second column depicts epicardium delineation using an additional
user-specified point to learn myocardium appearance. The upper figure shows
the obtained result (green curve) along with the ground truth (red curve) and the
additional user input (red point). The lower figure depicts segmentation without
compactness. In this example, we added a hard constraint [3] to ensure that the
solution includes the cavity segment (which was computed at the previous step),
and fixed the parameters as follows: α = 5× 10−3; β = 10−1; γ = 108.

Comparisons with level sets in regard to speed/optimality: For the
cavity segmentation example, we plotted the evolution of our functional w.r.t
CPU time for TRIC and level-set gradient-descent optimization (LS), imple-
mented via the well known scheme in [11] (See the right-hand side of Fig. 3). For
the LS method, we varied the artificial time step (dt) in interval [100; 800] so as
to ensure that the curve evolution is stable 1. The plot shows that, in the case of
our compactness prior, the LS method is highly sensitive to the gradient-descent
time step and is one order of magnitude slower that our method.

1 In comparison to level set implementations based on re-initialization procedures, the
scheme in [11] allows much larger time steps (and therefore faster curve evolution).
However, the value of dt still have to be fixed carefully; a very large value would
cause instability in curve evolution.
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