
TRICERT: A Distributed Certified E-Mail Scheme

Giuseppe Ateniese Breno de Medeiros Michael T. Goodrich

Department of Computer Science
The Johns Hopkins University

E-mail:
�
ateniese,breno,goodrich�&cs.jhu.edu

Abstract

In this paper we present protocols for distributed certifiede-mail,
which use encryption to ensure both confidentiality and fairness. As
with other protocols for certified e-mail, ours achieve fairness by plac-
ing trust on an external entity, referred to as the Trusted Third Party
(TTP). The TTP can become a bottleneck, however, and we explore
scenarios that support a distributed TTP, in the context of both off-line
and online protocols. With several servers dividing the TTPrespon-
sibilities, the level of confidence placed in individual servers can be
reduced without compromising the TTP’s overall trust.

Keywords: Secure E-commerce, Fair Exchange, Certified E-mail,

Semi-trusted TTP.

1 Introduction

Considerably valuable data - commercial, medical,
educational and scientific - is today stored in electronic
format in computer databases. The commercialization
of this information, as well as other electronic items of
intrinsic value - such as software code, for instance - via
internets (or the Internet) is a development of great eco-
nomical and technological impact, allowing companies
to operate with greater efficiency and increase the value
of their products, and facilitating faster development of
medical and scientific innovations. The fact that this in-
formation is intrinsically valuable then has implications
as to how it must be transmitted or exchanged. In the real
world, when we purchase something, a receipt is issued
simultaneously with our receiving the product. Several
protocols have been devised which theoretically allow
simultaneous exchange of electronic items between two
computers. However, most of them demand too much
computational power and/or communication bandwidth
to be implemented. The lack of simultaneity in elec-
tronic transactions creates an issue involving fairness:
If the purchaser issues the receipt before obtaining the
product he may be denied that product later on, while
charged nevertheless for it. Symmetrically, the pur-
chaser may refuse to pay for a product it has received
before issuing a receipt, claiming that there is no proof

he/she ever purchased such an item. Thus, if two mutu-
ally untrusted parties wish to engage in an exchange of
an electronic item for its receipt they will need to follow
a series of protocol steps that make it impossible - or at
least too hard or expensive - to misbehave.

One example of fair exchange service is certified e-
mail delivery, in which the recipient gets the mail con-
tent if and only if the mail originator receives a proof-of-
receipt from the recipient. The proof-of-receipt is gener-
ally a signature that can be used to trace the transaction
and certifies the mail content. This is different from the
traditional certified mail protocol operated by the U.S.
Postal Service, where the recipient’s signature is only
a proof that“the recipient has indeed received an item
from the sender”. In particular, there is no guarantee
that a specific mail content was sent. Only date of trans-
mission and persons involved are certified.

Online protocols employ a trusted third party (TTP)
which acts as a delivery channel. Both parties send their
items to the TTP which checks for their integrity, en-
sures the validity and fairness of the exchange, and for-
wards the items to the intended receivers. In this paper,
we present efficient certified e-mail protocols that make
use of a trusted third party but in aoptimisticway, i.e.,
the TTP is involved only in case of dispute, which is
expected to be a rare event.

We explore new trust models by distributing the TTP’s
role to several entities having different levels of trust.
We, finally, describe hybrid protocols that combine the
strengths of both optimistic and online approaches and
a core system that implements them. Our protocols can
be easily extended and employed to exchange generic
electronic items.

2 Digital certified e-mail

A certified e-mail service should therefore use cryp-
tographic tools to provide proof that a particular mes-
sage was delivered between two parties at a certain time.
Moreover, we desire certified e-mail schemes that are
fast, fair, and simple. We believe that such schemes
should minimally provide:

� Fairness: No party should be able to interrupt or
corrupt the protocol to force an outcome to his/her
advantage. In any instance of the protocol, it should
terminate with either party having obtained the de-
sired information, or with neither one acquiring
anything useful.

� Monotonicity: Each exchange of information dur-
ing the protocol should add validity to the final out-
come. That is, the protocol should not require any
messages, certificates, or signatures to be revoked
to guarantee a proper termination of the protocol.
This is important, because if revocation in needed
to ensure fairness, then the verification of the valid-
ity of the protocol outcome becomes a bottleneck
as it requires TTP’s active participation.

� TTP invisibility: A TTP is visible if the end re-
sult of an exchange makes it obvious that the TTP
participated during the protocol.

� Non-repudiation of receipt: The recipient of the
message should not be able to deny having received
the message if indeed the message was delivered.

� Non-repudiation of origin: The sender should not
be able to deny having sent the message.

� Confidentiality: In case the exchange is deemed
confidential, the protocol should not need to dis-
close the message contents to any other party ex-
cept for sender and recipient. In particular, other
trusted or semi-trusted parties acting as intermedi-
aries should not be able to read the contents of a
confidential e-mail.

� Realistic trust models: The trust model should be
based on realistic assumptions the users are com-
fortable with. A system that places less trust in
outside parties is more likely to be accepted.

� Efficiency: The protocol should not involve ex-
cessive computational or communication costs. It
should let itself to reasonably fast implementations.

� Timeliness: Roughly speaking,timelinessguar-
antees that both parties will achieve their desired
items in the exchangewithin finite timeor that at
least one party has the ability to decide to abort
the normal operation of the protocol and adopt a
scheme for protocol resolution that can be executed
in a finite, eventually short, period of time.

We stress the point that a certified e-mail system must
assure confidentiality. Most of the protocols for fair ex-
change of electronic items proposed so far do not pro-
vide any level of confidentiality, in the sense that they

allow a TTP (which is needed as an arbitrator to ensure
fairness) to see the contents of the exchange, at least in
the exceptional cases in which there is a dispute and ac-
tive arbitration by the third party is needed. While our
protocol also requires the existence of a trusted arbitra-
tor, the arbitration can be performed without violating
the confidentiality of the exchange. Indeed, e-mail mes-
sages can be certified without revealing their contents
to third parties. Such confidentiality could actually im-
prove the usage of a commercial certified e-mail service,
as users might wish that private information not be uti-
lized by third parties for commercial or other purposes.
This desire would even be true for a third party that is a
major corporation, which people trust to perform trans-
mission, storage, or dispute resolution, but do not trust to
keep confidential information private. In fact, such de-
sires are even written into law in many European coun-
tries.

In the next section, we review existing protocols and
compare them with our own according to the criteria
above.

3 Related work

The certified e-mail problem is related to the more
generic cryptographic problem offair exchange. The
classic solution to this problem (e.g., see [18]) involves
the gradual exchange of information between the two
parties. Evenet al. [10] introduced the randomized ap-
proach where two parties exchange items one bit at a
time. At some point, either party can use a brute-force
algorithm to complete the exchange; hence, the scheme
gradually converges to one that achieves a probabilistic
notion of fairness, albeit with a large number of com-
munication rounds. Likewise, this classic approach im-
plicitly assumes that the two parties have equal compu-
tational power, which is unrealistic. Ben-Oret al. [5]
give an alternate gradual approach. In their scheme, the
parties gradually release information that incrementally
increases the probability that a fair exchange is valid,
with this probability going to

�
after many rounds. Thus,

while it reduces the need for equal computational power
between the parties, this scheme is still expensive from
a communication point of view.

Because of the high communication costs of gradual
exchange schemes, more recent work has focused on
the use of TTPs to make fair exchange more efficient.
Asokanet al. [1, 2] describe very efficientoptimistic
protocols for the fair exchange problem. When applied
to certified e-mail, their (asynchronous) scheme [2] re-
sults in five messages being sent when there is no dis-
pute. The protocol in [2], however, is not strictly mono-
tonic: In order to achieve complete fairness, some mes-
sages might have to be revoked by the TTP. The protocol

in [1] is expensive as it makes use of verifiable escrow
protocols implemented via acut and choosemethod.
However, it provides timely termination assuming only
resilient channels.

Notice that, certified e-mail isasymmetric, i.e., the re-
cipient can send back a receipt only after he has received
the message in some form (possibly even encrypted),
whereas the fair exchange involves simultaneous ex-
change of two items. This difference may be crucial and
can be exploited in order to find more efficient solutions
than those for fair exchange. Many existing approaches
address specifically the certified e-mail problem rather
than the more generic fair exchange problem.

The Internet servicewww.certifiedmail.com
provides certified e-mail using its server as a TTP. It
is an online service where the TTP acts as transmis-
sion medium for both the message and its receipt. The
scheme is very simple: The sender sends the message
to the TTP which informs the recipient that a message
for him has arrived. The recipient authenticates himself
with a password and, then, reads the message. Finally,
the TTP sends a signed receipt to the sender that the re-
cipient has indeed received and read the message. Al-
though simple and efficient, the scheme requires an on-
line TTP for every transaction, it does not provide con-
fidentiality, and it does not actually give the sender a
receipt signed by the recipient, as the receipt is signed
by the TTP only.

There are several published protocols specialized for
certified e-mail, as well. Zhou and Gollmann [21] give
an online certified e-mail protocol, which involves trans-
ferring the message from the sender though a series
of TTPs, delivering the message, collecting the receipt
from the recipient and routing it back to the message
originator. They also provide a version of their protocol
where the recipient signs a hash of the message before
he can read it. The trusted party in their protocol con-
sists of replicated servers. This means that each server
must be trusted in order for the protocol to work prop-
erly. One single compromised server would invalidate
the entire scheme.

Bahreman and and Tygar [3] present an elegant on-
line strategy that uses six messages. In their scheme, the
sender sends the message to the TTP, which returns a
proof of mailing. The TTP, then, encrypts the message
and sends it to the intended recipient, who signs the ci-
phertext and returns the signature to the TTP. Finally, the
TTP sends the receipt to the sender, and the deciphering
key to the recipient. Notice that, the receipt is signed by
the recipient, however this system assumes that the on-
line TTP is fully trusted. Moreover, confidentiality from
the TTP is not discussed.

Denget al.[7] also provide an online protocol for cer-

tified e-mail. Their scheme requires only four messages
to be sent, which is obviously optimal for online pro-
tocols requiring a proof-of-receipt from the recipient.
Even so, their scheme does not achieve confidentiality
from the TTP.

Schneier and Riordan [17] present two protocols, one
online and the other optimistic, where the TTP is a se-
cure archiving message database. (The authors present
the TTP as a public publishing location, which might be
implemented as a secure database server.) In their online
protocol, the sender, Alice, sends an encrypted message
to the recipient, Bob. Bob, then, replies with a dated,
signed request for the decryption key. Then, the sender
submits the key to the TTP, from where Bob can retrieve
it. Alice’s proof-of-receipt consists of the signed request
from Bob and the database record kept with the TTP. In
the optimistic version of their protocol, Alice sends the
decryption key directly to Bob, and Bob sends Alice a
receipt of the key. If Bob doesn’t reply, then the pro-
tocol reverts to the online version. Their optimistic ap-
proach implies a visible TTP, as the form of the receipt
from Bob is different depending on whether the protocol
worked optimistically or not. Moreover, the TTP must
be directly involved in any secondary adjudication as it
must provide, in the case involving dispute resolution,
an additional signed proof-of-mailing with each query
or deposit.

3.1 Prior work on Degree of Trust

Franklin and Reiter [11] introduce the notion of a
semi-trusted third party for the fair exchange problem.
Their protocol is online as it requires the TTP to be in-
volved in any transaction. The TTP can sometimes fail
or misbehave but it cannot conspire with either of the
parties involved in the exchange. Their model is actu-
ally more restrictive, it is assumed that at most one party
misbehaves. If the sender cheats, for instance, then the
recipient and the trusted third party must be both honest.
This also implies that if the TTP misbehaves then, by
definition, the other two parties are honest and, in prin-
ciple, they could simply exchange their items by them-
selves.

4 Our results

In this paper we propose a scheme for distributed cer-
tified e-mail, which we call TRICERT. Our main motiva-
tion is to find a model for certified e-mail that would al-
low for efficient and easy-to-implement schemes. There
are many efficient protocols for certified e-mail but very
few are practical. Efficiency is generally interpreted in
theoretical terms but very rarely it is considered from a
practical point of view. In fact, the only protocols for
certified e-mail implemented and operational so far are

Alice

SigAlice

�� � ��� �
�

SigBob

�� � � ��� �
� 	

�
Bob

Three-message optimistic protocol

Figure 1: Sequence of messages in the optimistic exchange.

those online, i.e., that require a TTP to be involved for
each exchange.

TRICERT is a hybrid protocol that combines the
strengths and overcome the disadvantages of both op-
timistic and online approaches.

The TRICERT schemescales. We introduce the
notion of postal agents (

�

s), which are distributed

servers acting on behalf of the TTP, with each
�

re-
quiring minimal trust in itself. The

�

s are online

but they do not resolve disputes, which are still han-
dled by the TTP. The protocol is monotonic, in that
each party cannot revoke a message after it has been
sent (like physical certified mail) and makes use of “off-
the-shelf” cryptographic technology, such as digital sig-
natures and public-key cryptography. Additionally, the
protocol provides TTP’s invisibility, and achieves con-
fidentiality from both the TTP and the

�

s, which

are able to verify the validity of a proof-of-receipt and
proof-of-origin without knowing the e-mail content.

We extended the model of Franklin and Reiter [11] as
the PAs are semi-trusted, in the sense that they can fail or
misbehave, but in addition they can conspire with either
of the parties involved in the exchange.

Before we describe TRICERT, we show, in Section 5,
that three messages are sufficient to perform optimistic
certified e-mail, which is actually one message below
the lower-bound for the online case. This three-message
optimistic protocol is hardly novel and does not consti-
tute the contribution of this paper. In fact, we later dis-
covered that the general idea behind it is described in a
US patent by Micali [16]. Nevertheless, we will extend
it and show how to make it more practical in Sections 5
and 6. In particular, we add timestamps and lifetime pa-
rameters and show how to distribute the trust of the TTP
via threshold cryptographic techniques.

5 A simple optimistic protocol

Before we discuss issues of distributing the trusted
party, we introduce a simple optimistic protocol that we
will use as sub-protocol in our implementation (see Sec-

tion 6). In the optimistic approach, the protocol ter-
minates successfully without intervention of the trusted
party if sender and recipient both act honestly. Only in
case of dispute, the TTP is involved. The general idea
is as follows ([16]): The initiator, Alice, first encrypts
a message

	
with the public-key of the recipient, Bob.

The result, PBob
�	 �

, is further encrypted under TTP’s
public-key, achieving� � PTTP

�
PBob

�	 ��
, and finally

sent to Bob. Bob, then, issues a receipt by sending Al-
ice his signature on� . Upon verifying the receipt, Alice
sends Bob the message

	
. If Alice does not reply, Bob

sends� and his signature on it to the TTP which will
then recover PBob

�	 �
and give it to Bob, while forward-

ing Bob’s receipt to Alice. Since the message was first
encrypted with Bob’s public-key, the confidentiality of
the transaction is guaranteed even in this special case.

This protocol is extremely simple. However, we need
to slightly modify it in order to achieve timely termina-
tion. In particular, a time limit must be incorporated in
the protocol otherwise Bob might never reply or might
decide to resolve the protocol with the TTP after a cer-
tain amount of time that may be unacceptable to Alice.
In the next section, we describe the actual protocol we
have included into our system implementation.

5.1 Protocol Description

Alice wishes to send a message

	
to Bob, and wants a

signed receipt back. Alice produces an identification to-
ken for herself, containing her name and e-mail address
for responses, and other identifying information (such
as a public-key certificate). We refer to this by IdA . The
generation of this token involves no secrets and can be
done by any entity from publicly available information
about Alice. In fact, Alice also generates (or retrieves) a
similar token for Bob (IdB) and for the TTP (IdTTP).

The identification tokens will be combined with other
parameters, such as a timestamp, a nonce� (a ran-
dom number), and a time limit in a protocol header
(
� �

). Notice that, in this protocol, both timestamps
and nonces are needed to prevent replay attacks. The

header also should contain other pertinent information
about the protocol, such as the encryption, authentica-
tion and signature algorithms used. Thus, we have:

� � � �IdA
��
IdB

��
IdTTP

��
protocol descriptors��

where
��

denotes the concatenation operation. Alice,
then, encrypts

	
with Bob’s public-key and concate-

nates the result with
� �

, which is subsequently en-
crypted under TTP’s public-key. The resulting cipher-
text is:

� � PTTP
�� � ��

PBob
�	 �� �

Alice concatenates the above with the protocol
header, signs it and sends the resulting signature
SigAlice

�� � ��� �
to Bob1.

Bob receives the message, and, from
� �

, he gets rel-
evant information to properly generate a receipt. Bob
can discard the message or he may decide to read the
content, which implies a receipt must be sent to Alice.
The receipt is a signature of Bob, SigBob

�� � � ��� �
, stat-

ing that he has indeed received a message encrypted as
specified in

� �
. The new protocol header

� � �
con-

tains a new timestamp and the specifications of the sig-
nature algorithm. It also includes the old

� �
and indi-

cates that the signed message is indeed a receipt. Upon
receiving Bob’s receipt, Alice releases the message

	
.

The sequence of protocol messages can be seen in fig-
ure 1.

The only place where the protocol can be interrupted
with an unfair outcome is after the transmission of the
second message, when Alice has Bob’s signature but
Bob cannot yet read the message. If indeed Alice does
not send Bob the third message, Bob contacts the TTP,
forwarding the contents of the messages in the first two
steps. The TTP decrypts

�
, checks the protocol headers,

and then verifies Bob’s receipt. If all is correct, it gives
Bob the message PBob

�	 �
and forward the receipt to Al-

ice (in case Bob didn’t send the second message before
complaining).

Notice that, Bob is signing encrypted information
which constitutesa statement to the fact that he received
the message.This is made explicit in the receipt by the
concatenation of the protocol header

� � �
with the en-

crypted message. Since Bob can take steps to ensure re-
covery of the message contents, he cannot repudiate his
signed receipt on the sole basis that the message received
was encrypted and unintelligible. The verification of the
receipt can be done by encrypting twice the message

	
1The notation SigAlice ��� implies that the signed plaintext is also

available, either because the signature scheme allows for message re-
covery or because the plaintext is attached to the signature.

in order to compute
�

and then checking Bob’s signa-
ture via public verification algorithms specified in

� � �
.

Alice must also provide the signed message of the first
step of the protocol.

In the actual implementation, the message in the third
step is concatenated with another protocol header in or-
der to allow the recipient to properly link this protocol
step with the two previous ones. Notice that, if con-
fidentiality was not desired, the encryption with Bob’s
public-key could be avoided without compromising the
other guarantees of the protocol.

6 TRICERT

As already mentioned, the model introduced by
Franklin and Reiter [11] for online fair exchange is quite
restrictive. Their protocol cannot be easily adapted for
certified e-mail, mainly for two reasons: It is assumed
that at most one party fails or misbehaves, and that each
party knows the one-way hash value of the item that is
expected in the exchange. These are unrealistic assump-
tions in our environment. Nevertheless, the TTP need
not be fully trusted and this is appealing for protocols on
large networks. The costs of realizing and maintaining a
semi-trusted server are much lower than those incurred
for a fully-trusted third party. However, the TTP cannot
conspire with either of the communicating parties.

We propose a hybrid scheme that achieves the benefits
of the optimistic and online protocols. In our model, we
consider a highly-secure and fully-trusted server (TTP)
and several low-cost semi-trusted servers, which we re-
fer to as Agents. In a fair exchange scheme, the Agents
are directly involved in the exchange but they can misbe-
have or simply crash, in which case the TTP is invoked
in order to handle this exceptional case. Our protocol
distributes responsibilities so that the TTP need not be
highly available, thus lowering the communication de-
mand on it. The Agents are semi-trusted servers act-
ing as intermediary between the two parties involved in
the exchange. This increases the availability of the en-
tire system at a lower cost. Most importantly, in our
model, the Agents are allowed to conspire with either of
the main parties.

In the next Section, we describe our hybrid protocol
specialized for certified e-mail. The Agent server in-
volved is called Postal Agent (

�

) and is initially cho-

sen by the message originator. Because of this, we sim-
plify our model and make it more practical by assuming
that

�

will not conspire with the recipient of the mes-

sage.

6.1 Protocol Description

The TRICERT scheme starts with Alice recruiting the
postal agent (

�

) to intermediate the interchange in her

� � SigAlice

�
PH

��� � �PBob
�	 �

� �SigPA

�
PH’

��� �
� � SigBob

�
PH”

��� �

�

Alice PA Bob

Here� � PTTP�PH��PBob�� ��

PBob
�	 �

Figure 2: TRICERT scheme – protocol 1

behalf. She gives
�

the message

	
encrypted with

Bob’s public-key (PBob
�	 �

). Then the protocol proceeds
with an optimistic exchange between

�

and Bob. At

the end,
�

forwards Bob’s receipt to Alice. We also
assume thatthe communication is performed through
private and authenticated channels.

We have two versions of our protocol. The first ver-
sion requires five messages to be completed and the sec-
ond one only four, which is optimal.

Protocol 1. The five-message version works as follows:
Alice encrypts the message

	
first with Bob’s public-

key, and concatenates the protocol header
� �

to the
ciphertext. She then encrypts the result under TTP’s
public-key and signs it. The signature is sent to

�

along with PBob

�	 �
. Optionally, Alice could ask

�

to

provide her with a proof-of-mailing (a receipt from
�

)
in reply to her first message. Next

�

and Bob perform

an optimistic exchange. Specifically,
�

sends Bob the
request from Alice along with its own commitment to
the transaction in form of a signature. Bob checks the
signatures and sends the receipt to

�

which replies

with the encrypted message PBob
�	 �

while forwarding
the receipt to Alice. The message flow diagram can be
seen in figure 2.�

can fail or conspire with Alice. Bob can complain
with the TTP if he does not receive the last message from�

, in which case, he forwards to the TTP the content
of the first message received from

�

and his receipt.

As in the optimistic protocol, the TTP performs the nec-
essary checks, sends PBob

�	 �
to Bob and, finally, for-

wards Bob’s receipt to Alice. The signature of Alice,
�

,

constitutes the proof-of-origin. Moreover, each protocol
header, such as

� �
, must include the identities of all

parties involved. In particular, it must include the identi-
ties of Alice,

�

and Bob, as well as the TTP’s identity

in case of multiple TTPs. In addition,
� �

must be in-
cluded in the encryption under TTP’s public-key. All is
done to prevent subtle replay attacks. For instance, Bob
could claim that the encrypted message

	
had been sent

to him by a colluding partner. The TTP would then de-
crypt the message for Bob and forward Bob’s receipt to
the cheater, who would conveniently (for Bob) dispose
of it. As before, a time limit must be included in the
protocol headers, which implies that Bob cannot recover
the message after that specified time. Since a proof-
of-origin is useless without the corresponding message
body, Alice’s liability immediately ends after the time
limit if Bob has not recovered the message (and provided
Alice with the receipt).

Protocol 2. The second version of TRICERT is very
similar to Protocol 1 but it requires only four messages
which is optimal for online protocols. Our protocol im-
proves over existing solutions as the postal agent can
misbehave or fail and, in particular, conspire with the
message originator. This is achieved as follows: Al-
ice recruits a postal agent

�

to act as intermediary.

She sends the signature
�

in Protocol 1 directly to Bob
along with PBob

�	 �
but encrypted under

�

’s public-

key. Bob checks the signature and generates a receipt.
Notice that, Bob cannot read the message

	
since it has

been encrypted for the postal agent. Alice’s message is
then forwarded to

�

by Bob, along with the receipt.

� � SigAlice

�
PH

��� � � � � PPA
�
PBob

�	 ��
� � SigBob

�
PH’

��� ��
�
� � �

�

Alice PA Bob

Here� � PTTP�PH��PBob�� ��

PBob
�	 �

Figure 3: TRICERT scheme – protocol 2

If the receipt is valid, it is sent to Alice by
�

which
also forwards PBob

�	 �
to Bob. In case of dispute, Bob

contacts the TTP as usual. For details, see figure 3.
An important point to notice is that in this version of

the protocol Bob should sign both
�

and� in the sec-
ond protocol message. Observe that in the first version
with five messages, Bob only needs to complain to the
TTP if the

�

is not forthcoming, an unlikely event; in

particular, in that setting if the
�

is honest it is not pos-
sible for Alice to cheat, as the contents of her message
can be verified for consistency by the

�
 �
However in

this four message version Alice sends Bob the contents
directly, and Bob cannot verify that

�
and� are linked

in any way. Thus if Bob signed only
�

he would have
to rely on the TTP to solve any further disputes, as he
does not trust the

�

to discard his signature after Al-

ice’s dishonesty has been verified. The entire role of
the

�

would thus be a redundant one. On the other

hand, by signing both
�

and� � Bob safeguards himself
against any dishonesty on Alice’s part. The verification
algorithm is modified to compute both

�
and� from the

private message PBob
�	 �

and to check their consistency
as well as Bob’s signature on them; and thus Bob will
have to resort to the TTP only if the

�

misbehaves,

exactly as in the first protocol version.
Although this version of TRICERT is more efficient,

we decided to implement the five-message protocol.
There are reasons for this, strictly related to practical
concerns. First, we believe Bob should have a signa-
ture from

�

before issuing the receipt. This signature

constitutes a commitment of
�

to the transaction and
helps Bob collecting evidences that can be useful in case
of dispute. Second,

�

may not be willing to act on Al-

ice’s behalf at some point. For instance,
�

may charge
Alice for its service but Alice may refuse to pay. If this is

the case, then Alice and
�

should first negotiate pay-
ment terms and then involve Bob in the exchange, as it
may happen in Protocol 1. In Protocol 2,

�

may de-

cide not to terminate the protocol, after Bob generated
and forwarded the receipt, because of issues with Alice,
requiring Bob to complain with the TTP.

Remark 1 Our trust model assumes that Alice, the
sender, trusts

�

which cannot conspire with Bob by

providing him the message without collecting the re-
ceipt. We believe this is a plausible assumption since Al-
ice initiates the transaction, freely choosing

�

. Within

a business model, a contract can be set in which the
agent agrees to provide its services to Alice. Bob, on
the other hand, while trusting the TTP (as do all parties),
does not need to place trust in

�

chosen by Alice.

An extension of the original TRICERT schemes is
possible, in order to eliminate Alice’s need to trust the
postal agent. Alice can select several agents and send
each the signature

�
along with a distinct share of the

ciphertext PBob
�	 �

. Each postal agent would then trans-
fer

�
and its own commitments to Bob in exchange for

the receipt. If the receipt is valid, each agent would send
its own share to Bob. Bob can retrieve the ciphertext
PBob

�	 �
by pooling together all the shares. This is done

via simple secret sharing schemes. If Bob does not re-
ceive all the shares or the message is not the one ex-
pected, he can complain with the TTP. Bob would still be
protected against any of the agents cheating, while Al-
ice would have the guarantee that Bob could not retrieve
anything useful unlessall the agents she hired conspire
with Bob.

The shares can be made by xoring the ciphertext with
random numbers with the same bitlength. For three
agents, Alice would generate two random numbers��
and �� . Then, she would send to the first agent:

� �

SigAlice

�
PH

��� � � �� � PBob
�	 � �

� �
�

�� . The sec-
ond agent would receive

�
and� � and the third one,

�
and �� . If the receipt is valid, Bob receives the shares
�� , ��, ��, and then computes the ciphertext PBob

�	 � �
�� �

� �
�

�� . It is enough that at least one postal agent is
honest in order to protect Alice from colluding attacks.

Remark 2 During the receipt verification process, Al-
ice provides the message

	
which is then encrypted

by the verifier twice to achieve the value
� �

PTTP
�
PH

��
PBob

�	 ��
. Once

�
is computed, the verifier

checks the signature of Bob that constitutes the proof-of-
receipt. This verification is also performed by Bob when
he receives PBob

�	 �
from

�

in order to check that the

message he is reading is the same contained in the re-
ceipt

�
. If the message is different, then Bob contacts

the TTP to solve the dispute. This implies that the pub-
lic encryption algorithms PB

��� �PTTP
���

should be deter-
ministic. If they are randomized, then Alice must also
provide the random parameters used during the encryp-
tion phase.

We adopted a different, more practical, technique. We
employed a Message Authentication Code (MAC) to
construct a heuristically secure encryption scheme. A
practical construction for a MAC function is described
in Bellare et al. (see [4]), called HMAC. Then, one
would encrypt

	
as follows:

E� �
	 ��

HMAC� �
	 �� �

where E� is a symmetric encryption algorithm, such
as DES in CBC mode, and� and� are random session
keys. The keys� and� can be encrypted using public-
key cryptography, for instance:

PBob
�� ��� � �

where PBob
���

is deterministic, such as plain-RSA.
Hence, Alice reveals the random session keys to the ver-
ifier during the verification process. Notice that, this
encryption method provides also protection against the
adaptive chosen ciphertext attack, although this protec-
tion is only heuristic and not achieved for all the instan-
tiations of the encryption algorithm.

Remark 3 Our protocols reduce the demand on the
fully-trusted party, which needs only to be involved in
case of disputes. This situation can be even improved
by using threshold cryptosystems [8, 9] instead of tra-
ditional public-key cryptography. The idea is to have TTPs instead of a single one and encrypt messages
such that only	
 or more TTPs can decrypt them.
In a threshold cryptosystem, the secret key is shared
among the participants using a	-out-of- secret sharing
scheme. Once the message is encrypted, each partici-
pant takes as input the ciphertext and his share and re-

turns as output the original plaintext. If at least	 partic-
ipants follow the decryption protocol, then the original
message is recovered successfully.

TRICERT can be easily modified to support multiple
TTPs by just selecting the encryption function

�� � � ���
as a threshold cryptosystem. This applies also to the
optimistic protocol in Section 5.

6.2 Motivation

Compared with online protocols, TRICERT is clearly
preferable as it requires four messages, which is optimal
for online schemes, and it scales better as it makes use of
low-cost semi-trusted third party, the postal agents, that
can misbehave or fail.

While simple and elegant, the protocol described in
Section 5.1, based on [16], has some disadvantages. It
places a too large burden on Bob. We believe Bob is a
passiveparticipant that receives messages from, perhaps
unknown, untrusted senders and shouldn’t be so heavily
responsible of handling disputes by interacting with the
TTP. Once Bob sends his receipt, there is no guarantee
that he will receive the message from Alice. So, Bob has
to wait for some unspecified amount of time and still
must contact the TTP before the time limit. Bob does
this for any message he receives; a very unpleasant sit-
uation that has not counterpart in the real world. More-
over, the communication channel between Bob and the
TTP must bereliable, i.e., always operational and with-
out delays, otherwise fairness may not be ensured for
Bob as the time limit could expire before he can reach
the TTP.

The protocol in [1] assumes onlyresilientchannels. A
resilient channel will eventually deliver a message sent
through it. The time lapse incurred at the conclusion of
the delivery process may be arbitrarily long, yet finite.
However, the protocol in [1] requires the TTP to keep
state and it is quite expensive compared to other solu-
tions.

Our approach mitigates the above issues without re-
quiring the TTP to keep state (the TTP does not store any
value). We still require a reliable channel between Bob
and the TTP, however the number of disputes is dras-
tically reduced since we expect the postal agent to act
honestly more often than a totally untrusted sender. Our
protocols may increase Bob’s willingness of participat-
ing by providing his signature; Bob will only be signing
receipts for requests originating from certified agents,
rather than from unknown senders. Bob has a further
incentive: the duration of his interchange with

�

is

likely short (in terms of seconds, in our implementa-
tion). This because

�

is an online server always avail-

able whereas Alice, the sender, may not reply promptly,
putting Bob at risk.

Figure 4: The main GUI frame

7 System implementation
The first implementation decision was which platform

to use. Efficiency was only one of the concerns to be
addressed. As in the case of online systems, we had
to develop both the agent (server) application and the
user interface (client application). We wanted our sys-
tem highly usable and able to support several authenti-
cation methods (e.g., PGP-type or X.509 certificates).
An important restriction on the platform type is that
it should be able to incorporate existing, freely avail-
able cryptographic libraries. We employed OpenSSL to
provide SSL capabilities (http://www.openssl.-
org/) and a modified Gnu GPG library (http://-
www.gnupg.org) to sign and encrypt messages.

The client application provides a user interface
through a SSL-enabled web server. The postal agent
servers are currently implemented on two Linux ma-
chines running the Apache web server (http://-
www.apache.org/) with the modulemodssl en-
abled which allows for SSL secure connections
(http://www.mod ssl.org/). Daemons running
in these computers performed all the agents’ transac-
tions automatically. We experimented with Java servlets
for the daemons instead of CGI/bin since the web server
can satisfy a client request through a single process al-
lowing to handle more transactions simultaneously and

more robustly.
The user interface should ideally be a standalone ap-

plication, with capabilities of web browsing (including
SSL connections). In our case, however, we borrowed
the same web servers running the postal agents.

The trusted party is clearly the security critical server.
We did not run a daemon on this machine. Instead, we
designated ourselves service operators. The requests are
logged into the trusted server, and the operator imme-
diately prompt for assistance. The trusted server itself
is a machine dedicated to this service during our test-
ing phase (a 800MHz pentium III, 256 MB RAM Linux
box) that is protected by a firewall and unavailable for
remote login.

The client GUI is extremely simple as shown in the
screenshot. After pointing it to the secure site, Alice,
the sender, is prompted for an ID and password. The
leftmost top button, labeled “Resources”, if pressed will
pop up a window from where Alice can specify the files
containing information such as certificates and keys, and
also enter bookmarks to web directories from where
user certificates/public-keys can be downloaded. Alice’s
own certificates are displayed in the top left list window.
Similarly, the certificates and Ids of the postal agents are
shown in the lower left list window. Alice can specify
the name of the recipient in the field labeled “Receiver

Identification”, and, by pressing the “Fetch certificate”
button, download the corresponding certificate which is
displayed in the middle left list window. While we ex-
pect that most messages will consist only of attached
files, a simple text composer is also included for conve-
nience at the bottom right. By pressing the “Send/Exit”
button, Alice sends the encrypted request to the postal
agent.

The receiver, Bob, will receive a secure URL to point
to. Then using a SSL-enabled browser, he provides the
receipt and receives back the message promptly.

We found that the system performed satisfactory un-
der the simulating conditions. We plan to extend it by
implementing the version with multiple TTPs.

8 Conclusion

In this paper, we presented practical protocols for cer-
tified e-mail. We introduced a hybrid approach which
combines the strengths of both online and optimistic ap-
proaches and allows for effective scalability by distribut-
ing responsibilities to low-cost semi-trusted servers. Our
protocols are simple and efficient. They articulate real-
istic and flexible trust models that could be employed to
create attractive, usable certified e-mail systems.

9 Acknowledgements

The authors gratefully acknowledge the comments of
Michael Steiner, which greatly improved a previous ver-
sion of this paper. The first author would like to thank
Silvio Micali for illuminating discussions on certified e-
mail protocols.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair ex-
change of digital signatures. Technical Report RZ 2973,
IBM Research, 1997.

[2] N. Asokan, V. Shoup, and M. Waidner. Asynchronous
protocols for optimistic fair exchange. InProceedings of
the IEEE Symposium on Research in Security and Pri-
vacy, pages 86–99. IEEE Computer Society Press, May
1998.

[3] A. Bahreman and J. D. Tygar. Certified electronic
mail. In Proceedings of Symposium on Network and Dis-
tributed Systems Security, pages 3–19. Internet Society,
Feb. 1994.

[4] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash
functions for message authentication. pages 1–15.

[5] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A
fair protocol for signing contracts.IEEE Transactions on
Information Theory, IT-36(1):40–46, 1990.

[6] M. Blum. Coin flipping by telephone – a protocol
for solving impossible problems. InDigest of papers
from Compcon Spring 1982, pages 22–25, 133–137. Feb.
1982.

[7] R. H. Deng, L. Gong, A. A. Lazar, and W. Wang. Prac-
tical protocols for certified electronic e-mail.Journal
of Network and Systems Management, (4(3)):279–297,
1996.

[8] Y. Desmedt. Society and group oriented cryptography: A
new concept. InAdvances in Cryptology – CRYPTO’87,
pages 120–127, 1987.

[9] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In
Advances in Cryptology – CRYPTO’89, pages 307–315,
1989.

[10] S. Even, O. Goldreich, and A. Lempel. A randomized
protocol for signing contracts.Comm. ACM, 28(6):637–
647, 1985.

[11] M. Franklin and M. Reiter. Fair exchange with a semi-
trusted third party. InProc. ACM Conference on Com-
puter and Communications Security, 1997.

[12] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin.
Secure distributed key generation for discrete-log based
cryptosystems. InProceedings of Eurocrypt’99, 1999.

[13] O. Goldreich. A protocol for sending certified mail.
Technical report, Computer Science Department, Tech-
nion, Haifa, Israel, 1982.

[14] S. Ketchpel and H. Garcı́a-Molina. Making trust explicit
in distributed commerce transactions. InProceedings of
the International Conference on Distributed Computing
Systems, 1996.

[15] M. Luby, S. Micali, and C. Rackoff. How to simultane-
ously exchange a secret bit by flipping a symmetrically
biased coin. InProceedings of the��th IEEE Symposium
on Foundations of Computer Science, pages 11–21, 1984.

[16] S. Micali. Simultaneous electronic transactions.
Technical Report 566420, http://www.delphion.com/cgi-
bin/viewpat.cmd/US566420, 1997.

[17] J. Riordan and B. Schneier. A certified e-mail protocol.
13th Annual Computer Security Applications Conference,
pages 100–106, Dec. 1998.

[18] B. Schneier. Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C. John Wiley & Sons, Inc.,
1996.

[19] B. Schneier and C. Hall. An improved e-mail security
protocol. In13th Annual Computer Security Applications
Conference, pages 232–238. ACM Press, Dec. 1997.

[20] T. Tedrick. Fair exchange of secrets. In G. R. Blak-
ley and D. C. Chaum, editors,Proceedings of Crypto’84,
pages 434–438. Springer, 1985. Lecture Notes in Com-
puter Science No. 196.

[21] J. Zhou and D. Gollmann. Certified electronic mail. In
Computer Security – ESORICS’96 Proceedings, pages
55–61. Springer Verlag, 1996.

