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Abstract

Background: Agriculture is an indispensable part of any country to feed the millions of people but it is under
constant threat of pests. To protect the crops from this huge yield loss recently, chemical pesticides are used.
Though chemical pesticides have shown effective results in killing the crop pests, it causes negative impact on the
environment as well as humans. So to find an eco-friendly alternative, biological control methods are being used.

Main body: Biological control is a great renaissance of interest and research in microbiological balance to control
soil-borne plant pathogens and leads to the development of a better farming system. In biological control, genus
Trichoderma serves as one of the best bioagents, which is found to be effective against a wide range of soil and
foliar pathogens. Genus Trichoderma is a soil inhabiting green filamentous fungus, which belongs to the division
Ascomycota. The efficacy of Trichoderma depends on many abiotic parameters such as soil pH, water retention,
temperature and presence of heavy metals. The biocontrol potential of Trichoderma spp. is due to their complex
interaction with plant pathogens either by parasitizing them, secreting antibiotics or by competing for space and
nutrients. During mycoparasitic interactions, production of hydrolytic enzymes such as glucanase, chitinase and
protease and also signalling pathways are initiated by Trichoderma spp. and the important ones are Heterotrimeric
G protein, MAP kinase and cAMP pathway. G protein and MAPK are mainly involved in secretion of antifungal
metabolites and the formation of infection structures. cAMP pathway helps in the condition and coiling of
Trichoderma mycelium on pathogenic fungi and inhibits their proliferation.

Short conclusion: Trichoderma being an efficient biocontrol agent, their characteristics and mechanisms should be
well understood to apply them in field conditions to restrict the proliferation of phytopathogens.
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Background
Plant diseases caused by fungi and bacteria result in se-
vere losses to agriculturally important crops. Plant dis-
ease control by chemical methods has many unwanted
health, safety and environmental risks. Biological control
is a potent mean of reducing the damage caused by plant
pathogens and is environmentally non-hazardous. Many

species in this genus can be characterized as opportunis-
tic virulent plant symbionts (Harman et al. 2004). Tri-
choderma taxonomy has been classified based on the
differences in its morphological characters and sporula-
tion. The species of Trichoderma uses several mecha-
nisms to control the growth and proliferation of harmful
pathogens such as parasitism, competition and anti-
biosis. Biocontrol agent like Trichoderma has been an
integral part of Integrated Pest Management (IPM) to
control the pests and diseases in an environmentally
friendly manner (Monte, 2001).
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Main text
Insights on Trichoderma and its biocontrol mechanism
Taxonomy
The first description of the genus Trichoderma was in
1794 by Persoon, and Tulasne and Tulasne suggested the
sexual state of a Hypocrea species in 1865. Cook and
Baker (1983) described genus Trichoderma as a common
soil inhabitant and the conidiophores are terminating in
phialides. Doi and Doi (1986) recognized 63 species under
this genus and included some anamorphs of genus Hypo-
crea that were previously placed under genera Verticillium
and Gliocladium, where each having irregularly branched
conidiophores and elongated phialides. Bissett (1984)
worked on subgrouping the species under genus Tricho-
derma into 5 sections, i.e., Trichoderma, Longibrachiatum,
Saturnisporum, Pachybasium and then the fifth new sec-
tion of Hypocreanum arose.
For more species identification, other criteria have also

been used. Zamir and Chet (1985) applied enzyme elec-
trophoresis for Trichoderma harzianum identification
and isozyme polymorphism was demonstrated. Another
diagnostic approach known as scanning electron micro-
scope (SEM) was used (Hashioka, 1973), which revealed
the presence of sheath material with epispore scars.
Schlick et al. (1994) firstly used randomly amplified PCR
fingerprinting (RAPD) to distinguish between gamma ir-
radiated mutants and wild strains of T. harzianum that
was found to be the most effective tool. Kindermann
et al. (1999) used the nucleotide sequences of the in-
ternal transcribed spacer region one of rDNA to investi-
gate phylogenetic relation among Trichoderma species
of the section Pachybasium, which was found to be
nonmonophyletic.
The different species of the genus, Trichoderma/Hypo-

crea were difficult to be distinguished morphologically. It
was even proposed to reduce taxonomy to only a single
species, T. viride (Schuster and Schmoll, 2010). Nowadays,
new species can be easily identified due to the develop-
ment of TrichOKEY, where an oligonucleotide barcode
and TrichoBLAST became a search tool. These are easily
available online at www.isth.info (Druzhinina et al. 2005;
and Kopchinskiy et al. 2005). Recently, according to
Kamala et al. (2015) Trichoderma species belongs to the
division Ascomycota, subdivision Pezizomycotina, class
Sordariomycetes, subclass Hypocreomycetidae, order
Hypocreales and family Hypocreaceae. Chaverri et al.
(2015) have reidentified the ubiquitous Trichoderma har-
zianum into 14 new species with various characteristics.

Morphology
Rifai (1969) and Domsch et al. (1980) described colonies
of Trichoderma spp. in culture to be floccose, tufted
green, growing rapidly and sporulate well under incan-
descent light than otherwise, often producing spores in

bands. Phialides of Trichoderma spp. are sterile hyphae
creeping septate forming a flat, firm, tuft conidiophores
erect arising from a short branch. In T. viride, conidia
have double-layered walls consisting of an electron
dense rough outer layer (epispore) and a moderate elec-
tron dense inner layer. Around the conidia and hyphae,
a distinct mucilaginous substance is present (Hashioka
et al. 1996). Majumdar (1993) and Sengupta (1995)
stated that chlamydospores are formed late in cultural
media, intercalary or rarely terminal, round and double-
walled function as resting spores during unfavourable
conditions. Recently, micromorphology of Trichoderma
reesei has been studied by confocal laser scanning micro-
scope to see the branching pattern of the fungus which
produces cellulolytic enzymes (Novy et al. 2016).

Characteristics
Trichoderma spp. are often found wherever decaying plant
materials are available mainly of cellulosic materials
(Kubicek et al. 2009 and Jaklitsch, 2009). Trichoderma
spp. are mainly characterized by branched conidiophore-
bearing bright green conidia (Gams and Bissett, 1998).
Figure 1 demonstrates the conidiophores containing phia-
lides and phialospores of T. harzianum. According to
Shah et al. (2012), the light green conidia of T. harzianum
are globose to subglobose, while those of T. viride are glo-
bose. Small pale green conidia were observed in T.
pseudokoningii.

Trichoderma as a bioagent
The use of microorganisms as bioagents is a less hazard-
ous method for controlling plant pathogens. Almost 20
species of the genus Trichoderma act as bioagents against
many soil-borne as well as foliar plant pathogens. T. har-
zianum, T. koningii, T. viride, T. atroviride, T. pseudoko-
ningii, T. longibrachiatum, T. hamatum, T. polysporum
and T. reesei are the most important species, which act as
potential antagonists (Monaco et al. 1991). Antagonism of
Trichoderma against different pathogens has been re-
ported for several times like Sclerotium rolsfii (Mukherjee
and Tripathi, 2000), Fusarium ciceris, Macrophomina
phaseolina, Rhizoctonia solani (Mukhopadhyay and Pan
2012a) and plant parasitic nematodes (Spiegel and Chet,
1998). Mukherjee and Raghu (1997) observed that Tricho-
derma species and Gliocladium virens were highly effect-
ive in suppressing S. rolsfii on ginger rhizomes and on
several vegetables in storage. Li et al. (2018) showed that 4
species of Trichoderma restricted Fusarium oxysporum
growth by producing volatile compounds.

Influence of environmental factors on biocontrol potential
of Trichoderma strains
Among the Trichoderma species, the optimum
temperature for the growth is different (Samuels, 1996),
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but mostly they are mesophilic. Water conditions have
been shown to strongly effect on Trichoderma activities,
most particularly spore germination, germ tube growth
(Magan, 1988), mycelial growth (Lupo et al. 2002), the
interaction with other fungi (Badham, 1991) and on en-
zyme production (Grajek and Gervais, 1987). At higher
water potential, optimum secretion of cellobiohydrolase
and NAGase enzymes were observed, while the max-
imum activities of secreted glucosidase, xylosidase and
chymotrypsin-like protease enzymes occurred at lower
water potential values than those optimal for growth.
Some examined Trichoderma strains were able to grow
in a wide range of pH from 2.0 to 6.0 with an optimum
at 4.0. Mycelial growth of Trichoderma strains was also
affected by the presence of heavy metals. Zehra et al.
(2017) tested Trichoderma spp. against Alternaria alter-
nata, F. oxysporum in different environmental conditions
such as salt, temperature and pH and found T. harzia-
num to be most effective

Biocontrol mechanisms of Trichoderma spp.
The main three mechanisms of biocontrol of Trichoderma
spp. are mycoparasitism, antibiosis, and competition for
nutrients or space among others which may operate inde-
pendently or together to suppress plant pathogens.

Mycoparasitism
Haran et al. (1996) proposed the mycoparasitic activity
(hyperparasitism) of Trichoderma as one of the major
mechanisms involved in their antagonistic activities
against phytopathogenic fungi. The importance of Tri-
choderma’s mycoparasitism in the biological control of
wood decay fungi was discussed by Kumar et al. (1998),

who investigated the hyperparasitism of T. harzianum
by forming appressoria over the pathogenic hyphae of F.
solani by lightly coiling around them within 95 h of con-
tact. They added that within 6 days, the fungus was com-
pletely inhibited, while T. harzianum was multiplied by
conidiogenesis. T. gamsii showed mycoparasitic activities
as well as antibiosis against phytopathogens (Chen et al.
2016). In Fig. 2a and b, the microscopic observations on
hyphal interaction showed that antagonist, sometimes,
grew parallel to the hyphae of the tested pathogen,
coiled around and penetrated into the hyphae of the
pathogen by producing hook or knob-like structure
(appresorium) (Mukhopadhyay and Pan, 2012a).

Antibiosis
Antibiosis is one of the important attributes in deciding
the saprophytic ability of the fungus. A range of antibiotics
produced by species of Trichoderma and Gliocladium,
which has been suggested as a mode of action of both
fungi against plant pathogens was reported by Weindling
(1934). Manibhusanrao et al. (1989) reported that antibi-
otics like trichodermin, suzukacillin and alamethicin pro-
duced by T. harzianum influence morphological or
physiological sequences leading to its successful penetra-
tion. Trichoderma spp. and Gliocladium spp. inhibited the
growth of broad range of soil-borne fungi viz. genera of
Fusarium, Macrophomina, Pythium, Phytophthora, Rhiz-
octonia, Sclerotinia, Sclerotium and Verticillium (Zaher et
al. 2013; Ragab et al. 2015 and Chen et al. 2016). do
Nascimento Silva et al., (1998) demonstrated the in vitro
antagonistic potential of 3 Trichoderma spp. against
Colletotrichum gloeosporioides on passion fruit.
Trichoderma spp. antagonistic to a range of pathogenic

Fig. 1 Phialides and phialospores of a Trichoderma harzianum and b Trichoderma viride (taken from the Université de Bretagne
Occidentale website)
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fungi was reported to be producing volatile and non-
volatile antibiotics (Mukhopadhyay and Kaur, 1990).
Studies on the production of volatile and non-volatile
antibiotics revealed that T. harzianum and T. viride
were highly effective in reducing the radial growth of
S. rolfsii (Rao and Kulkarni, 2003). Mukhopadhyay
and Pan (2012a) stated that T. viride was the most
potential antagonist based on volatile and non-volatile
antibiotics. Five local isolates of the bioagents, T. har-
zianum, T. viride, T. aureoviride and G. virens iso-
lated from ginger rhizosphere were evaluated in vitro
to assess their mode of antagonism against R. solani,
infecting Capsicum annuum and C. frutescens. It was
observed that the non-volatile antibiotics were more
effective than the volatile antibiotics (Bunker and
Mathur, 2001).
Bhagat and Pan (2010) screened 12 isolates of Tri-

choderma spp. in vitro against R. solani Kuhn. caus-
ing root and collar rot of French bean (Phaseolus
vulgaris L.) by dual culture tests and production of
volatile and non-volatile antibiotics and it was found
that all the isolates significantly inhibited the mycelial
growth of R. solani.

Competition
Bioagents compete for nutrients and space with patho-
gens and, thus, it is the injurious effect of one micro-
organism to another due to the utilization or removal of
some resources from the environment. Competition be-
tween iron containing siderophore of Trichoderma and
wood decay Basidiomycetes fungi was investigated by
Srinivasan et al. (1995).

Biopriming and field evaluation of Trichoderma spp.
The biocontrol fungi, Trichoderma spp., are not only
able to control the pathogens causing plant disease, but

can also induce seed germination, seedling emergence
and promote plant growth. Vinale et al. (2004) re-
ported that in greenhouse and field trials, T. harzia-
num and T. atroviride improved the growth of
lettuce, tomato and pepper plants and productivity
was increased up to 300% than the untreated con-
trol. Similarly, several scientists have got positive re-
sults of disease control and increased plant growth
and yield in vivo and under field conditions (Har-
man et al. 2003, Dubey et al. 2007; Bhagat and Pan,
2008; Joshi et al. 2010 and Mukhopadhyay and Pan,
2012b). Seed treatment with bioagents for protection
of seeds and control of seed borne diseases offers ef-
fective biocontrol agents that have been developed
for the control of seed and seedling pathogens such
as Pythium spp., R. solani, S. rolfsii, M. phaseolina
and Fusarium spp., which offer the farmers alterna-
tive means to chemical fungicides (Dubey et al. 2007
and Nirmalkar et al. 2017).
The efficacy of biological seed treatment can be af-

fected by moisture, temperature and inoculums dens-
ities of the pathogen (Mathre et al. 1994) and also by
soil pH and iron concentration (Weller, 1988). Efficacy
can also be controlled by inoculum density of the bioa-
gents on the seed adjunct treatment such as priming
formulation and additives that enhance the activity and
survival of the bioagent in the formulated product, crop
and pathogen specificity of the bioagent and compati-
bility with other microbial inoculants. Precolonization
provides the bioagent with a competitive advantage
over seed attacking pathogens and often provides su-
perior seed protection when compared to seed coating
(Harman et al. 1989). Bioagents are effective as a seed
treatment, since they colonize roots, increase root mass,
health and consequently frequently provide yield in-
creases (Mukhopadhyay et al. 2012b).

Fig. 2 Mycoparasitism by Trichoderma hyphae a coiling around the hyphae of Rhizoctonia solani and b producing haustoria to inhibit growth of
Macrophomina sp.
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Molecular approaches of genus Trichoderma and its
benefits

Lytic enzymes and biocontrol An insight into the char-
acters of genus Trichoderma at the molecular level
would help in developing Trichoderma strains with
excellent biocontrol properties. Several hundreds of
genes and their products might be involved, which
give genus Trichoderma its properties of biocontrol
and plant growth enhancement. Hydrolytic enzymes
such as glucanase, chitinase and protease are the key
players that give Trichoderma the mycoparasitism
properties (Haran et al. 1996). 1,4-β-N-acetylglucosa-
minidases, endo and exochitinases were reported to
be secreted by Trichoderma spp. that help the fun-
gus to improve its biocontrol potential. β-glucanase
produced by Trichoderma spp. degrades β-glucan the
structural component of the attacking pathogen. 1,3-
β glucosidase purified from T. harzianum by Lorito
et al. (1994), which inhibited germ tube elongation
and spore germination of Botrytis cinerea. Proteinase
from Trichoderma spp. is also involved in mycopara-
sitism. PRA1, a trypsin protease purified from T.
harzianum CECT 2413 strain showed nematicidal ef-
fects by destroying the hatched eggs of Meloidogyne
incognita (Suarez et al. 2004). Chitinase and protease
activity produced by Trichoderma spp. helped to
control Sclerotium rolfsii pathogen in groundnut
(Parmar et al. 2015).

Signalling pathways involved in biocontrol mechanism

G protein signalling Neer in 1995 showed that G pro-
tein signalling is basically heterotrimeric and constitutes
of 3 parts: a G protein-coupled receptor (GPCR), a het-
erotrimeric G protein (α, β, γ subunits) and an effector.
Heterotrimeric G proteins are signal transducers that
couple cell surface receptors to cytoplasmic effector pro-
teins and transmit the signal to the MAPK and cAMP
signalling pathways (Fig. 3). In fungi, G proteins help
during sexual and pathogenic development, secondary
metabolism and virulence of the pathogens. T. atroviride
subgroup I Gα subunit Tga1 was analysed by tga1 gene
over-expression and silencing which showed that it is in-
volved in both coiling and condition (Rocha-Ramirez
et al. 2002). Reithner et al. (2005) characterized the Tga1
mutant and showed that the G protein subunit affects
processes involved in Trichoderma biocontrol like chiti-
nase formation and production of antifungal metabolites
which are important for biocontrol by Trichoderma. He
also proved that Δtga1 mutant was not able to overgrow
and lyse the host fungi such as B. cinerea, R. solani and
S. sclerotiorum. Homologue of Tga1 of T. atroviride, i.e.,
TgaA and TgaB did not show such effects in T. virens
and also showed different effects in controlling patho-
genic fungi such as R. solani and S. sclerotiorum
(Mukherjee et al. 2004). Zeilinger et al. (2005) showed
that Tga3 protein of T. atroviride is involved in control-
ling vegetative growth and conidiation and thus Δtga3

Fig. 3 Schematic representation of signalling pathways involved in mycoparasitism
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knockout mutants produced significantly lesser intracellu-
lar cAMP levels in comparison to the parental strain. Ac-
cording to experiments done by do Nascimento Silva
(2009), intracellular cAMP levels increased at several folds
in T. reesei, since it carries an activated allele of the sub-
group III Gα protein-encoding Tga3 homologue gna3.
TBRG-1 which bears the domain of RasGTPase helps in
conidiation of Trichoderma but its lack causes positive
effects on antibiosis mechanism (Castro et al. 2020).

Mitogen-activated protein kinases
MAPK cascades are found in all eukaryotes and are or-
ganized in a 3 kinase architecture comprising of a
MAPK, MAPK kinase or MEK and MEK kinase or
MEKK or MAPK kinase kinase. In Trichoderma, the best
observed MAPKs are yeast and fungal extracellular-
related kinases (YERK1), and also MAPKs such as Fmk1
from Fusarium oxysporum, Pmk1 from Magnaporthe
grisea, Ubc3/Kpp2 from Ustilago maydis, or Bmp1 from
B. cinerea (Zeilinger et al. 2007). The MAPKs in differ-
ent species of Trichoderma are more or less similar as
described by Reithner et al. (2007). According to his
findings, there is almost 98% similarity in MAPKs of T.
atroviride (Tmk1) and T. virens (TmkA/Tvk1).
MAPK signalling is important in Trichoderma to in-

duce full systemic resistance in plants. TmkA MAPK
loss-of-function mutants of T. virens can colonize the
roots of cucumber plants against Pseudomonas syringae
pv. lacrymans but cannot induce systemic resistance
against the pathogen (Viterbo et al. 2005). MAPK cas-
cades traduce signals by sequential phosphorylation of
kinases. Inactivation of MAP kinase gene tvk1 in mutant
line of Trichoderma showed increased mycoparasitism
and decreased the growth of the fungus R. solani (Men-
doza-Mendoza et al. 2003). Esquivel-Naranjo et al.
(2016) showed that in T. atroviride, the mutants lacking
the MAPKK gene Pbs2 and the MAPK Tmk3 were
found to be highly sensitive towards cellular stress such
as cell wall damage, osmotic and oxidative stress, UV ir-
radiation and high temperature.

cAMP pathway
cAMP signalling in fungi helps in many cellular pro-
cesses such as the sexual development, virulence, control
of differentiation, monitoring of the nutritional status
and stress. But the most important function of cAMP
signalling is regulation of transcription and cell cycle. In
eukaryotes, almost all the effects of cAMP are due to
stimulation of cAMP-dependent protein kinases (PKA)
(Dickman and Yarden, 1999). Functional PKA is found
to be involved in plant pathogenic fungi, processes like
growth, morphogenesis and virulence (Xu and Hamer,
1996). The process of sporulation is the main mechan-
ism for survival and spread of Trichoderma in the

environment. These processes are induced by environ-
mental factors. cAMP plays a pivotal role in signalling
during sporulation as investigated in T. viride and T.
atroviride by Casas-Flores et al. (2006). cAMP along
with the activators of G protein-mediated signal induce
the mycoparasitic behaviour of T. harzianum by increas-
ing the coiling behaviour of hyphae (Omero et al. 1999).
Nogueira et al. (2015) observed that in T. reesei cAMP
regulates cellulase expression depending on carbon
source. The cel7a and cel6a genes were expressed in
higher amounts in sporophose which increased cAMP
levels and regulated secretion of cellulolytic enzymes.

Conclusion
Trichoderma can be an important component in IPM
strategies. Biocontrol mechanisms of various species of
Trichoderma have been isolated and studied. They re-
strict the growth and proliferation of the pathogens by
parasitism and antibiosis as well as molecular ap-
proaches are being done. Different signalling pathways
are being studied to gain further insights in the biocon-
trol mechanism of Trichoderma.
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