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Trichodesmium,
a Globally Significant

Marine Cyanobacterium
Douglas G. Capone, Jonathan P. Zehr, Hans W. Paerl,

Birgitta Bergman, Edward J. Carpenter

Planktonic marine cyanobacteria of the genus Trichodesmium occur throughout the
oligotrophic tropical and subtropical oceans. Their unusual adaptations, from the mo-
lecular to the macroscopic level, contribute to their ecological success and biogeo-
chemical importance. Trichodesmium fixes nitrogen gas (N2) under fully aerobic con-
ditions while photosynthetically evolving oxygen. Its temporal pattern of N2 fixation
results from an endogenous daily cycle that confines N2 fixation to daylight hours.
Trichodesmium colonies provide a unique pelagic habitat that supports a complex
assemblage of consortial organisms. These colonies often represent a large fraction of
the plant biomass in tropical, oligotrophic waters and contribute substantially to primary
production. N2 fixation by Trichodesmium is likely a major input to the marine and global
nitrogen cycle.

Trichodesmium, a colonial marine cya-

nobacterium (1) (Fig. 1), has intrigued nat-
uralists, biologists, and mariners for well
over a century (2). These cyanobacteria
have been reported throughout the tropical
and subtropical Atlantic, Pacific, and Indi-
an oceans, as well as the Caribbean and
South China seas (Fig. 2) (3, 4). Modern
interest in Trichodesmium dates to the early
1960s with the recognition that the biolog-

ical productivity of large expanses of the
ocean is often limited by the availability of
nitrogen (5) and the observation that Tri-
chodesmium is diazotrophic (that is, an N2

fixer). The current focus in assessing the
global role of the upper ocean in assimilat-
ing atmospheric CO2 has elevated the im-

portance of quantifying marine N2 fixation.
Although major advances in under-

standing the biology of Trichodesmium have
recently occurred on diverse fronts, several
important questions remain largely unre-

solved: (i) Where does Trichodesmium fit in
the broader scheme of cyanobacterial phy-

logeny? (ii) How does Trichodesmium sus-
tain simultaneous photosynthetic O2 evolu-

tion with nitrogenase activity, and why
does it fix N2 only during daylight periods?
(iii) What physiological, morphological,
and behavioral adaptations contribute to
Trichodesmium’s ecological success in the
oligotrophic marine environment? (iv)
What environmental and ecological fac-

tors control production and N2 fixation in
Trichodesmium in situ, and to what extent
does it contribute to productivity, nutrient
cycling, and trophodynamics in tropical
and subtropical seas? (v) What is the over-
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all importance of Trichodesmium N2 fixa-

tion and primary production in the global
marine N and C cycles?

Molecular and Physiological
Features

Open-ocean marine N-cycle studies and ba-

sic N2 fixation research converged in 1961
when Dugdale et al. first identified Tri-
chodesmium as a putative light-dependent
N2 fixer (6). However, as a nonheterocys-
tous N2 fixer, Trichodesmium represented a
clear exception to the prevailing dogma (7)
and, in the absence of a pure culture or
other definitive evidence, its ability to fix
N2 was viewed with some caution (8). A
comparison of the DNA sequence of the
gene that codes for the Fe protein of nitro-

genase (nifH) obtained from natural popu-

lations of Trichodesmium with that from a
Trichodesmium isolate (9) provided the first
direct evidence of the cyanobacterial origin
of the nitrogenase activity associated with
Trichodesmium. Later immunolocalization
studies showed that the nitrogenase protein
occurs within Trichodesmium cells (10–12).

The diversity among forms of Trichodes-
mium with respect to cellular and colonial
morphology has prompted extended debate
concerning its taxonomy and phylogenetic
position within the cyanobacteria. With

the relatively recent isolation and mainte-

nance of cultures of the organism (13, 14)
and the development of structural and mo-

lecular biological approaches to character-
izing natural populations, the taxonomic
status of Trichodesmium populations has
gained firmer footing. Sequence analysis of
nifH and 16S ribosomal DNA (rDNA) has
enabled inference of the taxonomic identity
of the Trichodesmium sp. isolates and has
provided additional bases for distinguishing
Trichodesmium species as well as the means
to determine the relative phylogenetic re-

lation of Trichodesmium to other bacteria
and cyanobacteria (15, 16). The data are
consistent with differences in trichome di-
mensions and colony morphology that had
been used in previous taxonomic schemes
(15). The nitrogenase DNA sequences of
field samples of T. thiebautii and both field
and culture samples of T. erythraeum were
very similar (98% over 325 nucleotides), in
contrast to comparisons of nitrogenase nifH
gene sequences between species of other
cyanobacterial genera, which are as low as
75% similar. Trichodesmium nifH sequences
from three species form a deeply branching
cluster within the cyanobacteria (Fig. 3),
implying a very early radiation in cyanobac-

terial evolution. Although the nifH se-

quence indicates that Trichodesmium sp.
NIBB 1067 is distantly related to other
cyanobacteria, it appears relatively closely
related to an oscillatorian on the basis of its
16S rDNA sequence (17). The reason for

the differences in phylogenetic association
based on the two genes is not yet clear but
could involve convergent evolution (in
nifH) or lateral transfer (of nifH or 16S
ribosomal RNA genes). The rather distant
relation of the Trichodesmium nifH gene to
that of other cyanobacteria suggests that
Trichodesmium nifH evolution may be con-

strained by the structural requirements for
aerobic N2 fixation.

One of the most intriguing aspects of
Trichodesmium biology is the simultaneous
occurrence of N2 fixation and photosynthe-

sis. Several hypotheses explaining how Tri-
chodesmium might fix N2 aerobically have
been proposed. First, it is possible that the
properties of Trichodesmium nitrogenase are
unique with respect to their resistance to O2

inactivation. Second, nitrogenase may be
transiently modified to protect it from per-
manent O2 deactivation, or it may be con-

tinually synthesized to replace protein being
inactivated by O2. Third, there may be
intracellular O2-consumptive processes that
maintain O2 at concentrations compatible
with N2 fixation. Finally, N2 fixation and
photosynthesis may be spatially segregated
in some manner—for instance, either with-

in specific regions in a colony or by cell
differentiation within a trichome—such
that N2 fixation and photosynthesis are mu-

tually exclusive within individual cells.
Mapping of the Trichodesmium nitroge-

nase operon and subsequent sequencing of
nitrogenase structural genes demonstrated

A

B

Fig. 1. Examples of Trichodesmium colonies. (A)
Fusiform or tuft of Trichodesmium culture IMS
101; (B) radial or puff colony of T. thiebautii. Col-
onies are typically ;2 to 5 mm in length (fusiform)
or diameter (radial) and are composed of tens to
hundreds of aggregated filaments (trichomes).
Each trichome consists of tens to hundreds of
cells (typically ;100); cells are generally 5 to 15
mm in diameter but can range up to 50 mm in
length (15) (photos by H. Paerl).
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Fig. 2. Location of process-oriented studies and distribution of Trichodesmium in the world’s oceans
based on maps compiled by Carpenter (3) with reference to surface nutrient and productivity distribu-
tions from Berger et al. (85) to exclude areas of coastal upwelling and equatorial divergence. Dashed line
indicates approximate extent of Trichodesmium penetration into subtropical waters. Although Tri-

chodesmium is found in waters colder than 20°C, growth and activity are usually restricted to waters
above 20°C (3, 4). See Table 1 for key to study locations.
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that the gene size and organization were
similar to those of other heterocystous and
nonheterocystous cyanobacteria (16). Mod-

eling of the three-dimensional structure of
the Fe protein from the deduced amino acid
sequence did not reveal unique or unusual
features of the Trichodesmium nitrogenase
Fe protein, relative to those of other cya-

nobacteria, that might explain a higher O2

tolerance (18). Moreover, elevated O2 con-

centrations lead rapidly to inhibition of N2

fixation, whereas decreased partial pressure
of O2 often stimulates activity (19); hence,
nitrogenase activity in Trichodesmium is O2-

sensitive.
Continuous nitrogenase synthesis, as ob-

served in other nonheterocystous cya-

nobacteria (7), could replace nitrogenase
inactivated by O2 and thereby provide a
mechanism for simultaneous N2 fixation
and photosynthesis. However, nitrogenase
activity in Trichodesmium is sustained for
several hours in the presence of the pro-

tein synthesis inhibitor chloramphenicol
(19, 20) and well after the disappearance
of nifH messenger RNA (21), which indi-
cates a relatively low turnover rate of ni-
trogenase protein during the active period
of N2 fixation. In some diazotrophs, nitro-

genase may be protected from permanent
inactivation by O2 through conformation-

al changes or covalent modification (7).
The Fe protein of Trichodesmium nitroge-

nase can be modified in response to O2

stress (19, 22), although the nature of the
modification and whether this modifica-

tion confers protection have yet to be
determined.

Experimental evidence exists for the role
of O2 removal processes in maintaining low
intracellular O2 concentrations and thereby
facilitating contemporaneous N2 fixation
and photosynthesis. Respiration rates in
Trichodesmium appear high relative to other
cyanobacteria, resulting in high compensa-

tion points (typically 100 to 200 mmol m22

quanta s21) (23). Several other biochemi-
cal or physical means of O2 consumption
have been suggested (24).

Fogg (25) first offered the provocative
hypothesis that a spatial segregation of O2

evolution and nitrogenase activity (analo-

gous to that between vegetative cells and
heterocysts) occurs within Trichodesmium
colonies. He postulated that photosystem II
(PS II)–associated O2 production took place
in trichomes near the periphery of the colo-

ny, whereas nitrogenase activity was con-

fined to the inner portions of the colony that
lacked PS II. Experimental evidence sup-

porting this idea was provided (26, 27) soon
after Fogg’s original suggestion. However,
other findings suggest that nitrogenase and
oxygenic photosynthesis may co-occur in
cells and that colony integrity is not an
absolute prerequisite for activity (28). Early
suggestions that Trichodesmium might differ-
entiate N2-fixing and photosynthesizing
cells along individual trichomes have recent-
ly gained support (29). If cellular delegation
of activity through differentiation is conclu-

sively demonstrated as a general mechanism
in Trichodesmium, it would provide an in-

valuable model for molecular-level studies of
a simple differentiated system.

The proposed mechanisms summarized
above are not mutually exclusive. Trichodes-
mium most likely uses several strategies to
permit nitrogenase activity during photo-

synthesis. Other mechanisms that enable
the co-occurrence of nitrogenase activity
and oxygenic photosynthesis in this organ-

ism may yet be identified. Regardless of how
Trichodesmium is able to fix N2 in the light,
it is equally curious that in natural popula-

tions N2 fixation occurs only during the day
and is not performed during the night, as is
characteristic for other nonheterocystous
cyanobacteria (7). Saino and Hattori (30)
first observed that nitrogenase was only ac-

tive in samples of Trichodesmium collected
during daylight hours: Samples collected at
night were incapable of N2 fixation under
artificial light. They suggested, 8 years be-

fore circadian rhythms were identified in
any prokaryote (31), that the daily cycle of
N2 fixation in Trichodesmium might be at-
tributable to an endogenous rhythm. Re-

search into the dynamics of the nitrogenase
pool and nifH transcription in natural pop-

ulations revealed a dynamic daily cycle of
synthesis, activity, and degradation, directly
coupled to the light cycle (19–21), thus
providing a mechanistic explanation for the
original observations.

A primary criterion for establishing the
endogenous nature of N2 fixation in Tri-
chodesmium—its persistence over several cy-

cles in constant light—has recently been
provided in Trichodesmium sp. IMS 101
(32). The circadian clock, which appears to
be set by illumination patterns, is likely to
be of adaptive significance in ensuring that
synthesis is induced in anticipation of the
light period, thus optimizing the efficiency
of light-driven N2 fixation in the relatively
stable environment of tropical and subtrop-

ical seas. This is the first endogenous
rhythm to be confirmed in a prokaryote
other than a coccoid cyanobacterium (31).

Ecology

Trichodesmium primarily inhabits surface
waters of oligotrophic, tropical, and sub-

tropical oceans, and is encountered in
high abundance in western boundary cur-
rents (for example, the Gulf Stream, Ku-

roshio), in tropical portions of the central
gyres, and in several ocean margin seas (3)
(Fig. 2). The water column of these envi-
ronments is generally very stable, with the
upper mixed layer often around 100 m.
This zone is characterized by low nutrient
concentrations, very clear waters, and
deep light penetration.

In an environment where the densities
of microorganisms are very low and the
waters highly transparent, Trichodesmium is
unusual in that it is visually prominent,
especially during surface blooms. The ob-

served abundance of Trichodesmium in nu-

trient-depleted waters prompts the question
of how it is uniquely adapted to this envi-
ronment. Characteristics of Trichodesmium
that appear to contribute to its success in
the oligotrophic open ocean include its ca-

pability to fix N2; its natural buoyancy,
which positions it in the upper water col-
umn; a photosynthetic apparatus adapted to
a high-light regime; and a relatively low
growth rate, which, coupled with a lack of
major grazers, allows it to maintain relative-

ly high biomass.
Despite its ability to fix N2 and its hab-

Fig. 3. Evolutionary relation
of the genus Trichodesmium

to other diazotrophs on the
basis of nifH amino acid se-
quence data. The evolution-
ary distances between de-
duced amino acid sequenc-
es were used to create a
phenogram using the neigh-
bor-joining method of
PHYLIP (96). The Fe protein
gene (nifH) of Trichodes-

mium was amplified from
cultures by means of the
polymerase chain reaction
(9). Trichodesmium nifH sequences cluster relatively distantly from other cyanobacterial genera, imply-
ing that the Trichodesmium genus diverged early in evolution. The nifH DNA sequences obtained from
field collections of T. erythraeum and T. thiebautii are very similar (98%) and could be distinguished by
only a few signature nucleotides (short distances among Trichodesmium species nifH sequences
cannot be distinguished here).
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itation in the high-light environment of the
near surface, Trichodesmium has growth
rates that are low relative to those of many
eukaryotic phytoplankton (4). Even in cul-
ture, the doubling times of Trichodesmium
are slow (;3 to 5 days), which suggests that
a relatively low growth rate may in fact be
an adaptation for exploiting the high-ener-
gy but low-nutrient conditions of the oligo-

trophic oceans (33). Because of its diazotro-

phic capacity, Trichodesmium growth rates
are presumably limited by the availability of
non-N nutrients. Field and laboratory data
suggest that Fe is a key factor limiting Tri-
chodesmium N2 fixation and growth rates
(34–36).

A key characteristic of Trichodesmium is
the presence of gas vesicles, which provide
buoyancy (37) and help maintain Trichodes-
mium populations in the upper surface wa-

ters. As has been noted in other planktonic
cyanobacteria, the buoyancy of Trichodes-
mium is a dynamic property: A daily cycle of
rising and sinking of colonies is often ob-

served, and this may be a result of cell
ballasting through the progressive increase
of relatively dense carbohydrate and protein
accumulating from photosynthesis through
the day (38).

Wind stress at the surface affects the
qualitative distribution of Trichodesmium
populations. Relatively high and steady
winds of the Trade Wind belts mix plank-

ton populations throughout the upper eu-

photic zone, but natural buoyancy counter-
acts mixing to the bottom of the mixed
layer; population densities are generally
greatest at relatively shallow depths (20 to
40 m) in the upper water column (3, 4)
(Fig. 4).

Localization of the population in the
high-irradiance upper water column is an
adaptation that may provide a solution to
the constraint of high compensation points
(23) (equivalent to compensation depths of
;50 to 70 m in oligotrophic waters) and
the added energetic demands of N2 fixation.
Pigment composition and photosynthetic
parameters indicate a photosystem adapted
for both maximum efficiency and photopro-

tection at high light (4, 39). Moreover, Fe
enters the open ocean primarily through
atmospheric deposition, and location of
these organisms in the upper water column
may be advantageous with respect to Fe
acquisition (35).

When wind stress is low for an extended
period, the intrinsic buoyancy of Trichodes-
mium can have striking consequences, lead-

ing to the development of extensive surface
blooms or “red tides” (3, 39, 40). These
phenomena, which range in actual color
from yellow to brown, are easily observed by
satellite (Fig. 5) (41, 42). The accumula-

tion of the population at the surface for an
extended period may result in photoinhibi-
tion (43) and, possibly, photooxidative
damage (3, 4, 39); however, bloom organ-

isms appear to be metabolically active,
growing (40, 41), and relatively resistant to
photoinduced damage (39).

Although physical processes most often
dominate oceanic plankton distributions,
large surface accumulations of Trichodes-
mium may affect the bulk physical and
chemical properties of surface waters. Me-

soscale sea-surface features of the extent
and intensity characteristic of some Tri-
chodesmium blooms likely modify light pen-

etration and the quality of the in situ light
field (43) as well as heat and gas transfer
across the ocean-atmosphere interface (44).
Organic and inorganic nutrients accumu-

late during blooms and can affect subse-

quent phytoplankton succession and pro-

ductivity (40).
Ecologically, Trichodesmium affects the

structure and function of the oligotrophic
ocean by contributing to its productivity
and trophodynamics, as well as by provid-

ing a unique pelagic habitat. Upon close
inspection, many colonies reveal a micro-

cosm including bacteria, other cyanobac-

teria, protozoa, fungi, hydrozoans, and
copepods (45). Nitrogen and carbon fixed
by Trichodesmium enters the food web, but
not necessarily through increased C and N
flux into classical food chains. Some spe-

cies of Trichodesmium produce a toxin that
deters grazing by calanoid and cyclopoid

copepods, considered to be the major graz-
ers in these systems (46). A specialized
group of harpacticoid copepods appear
adapted to the toxin and are capable of
directly grazing Trichodesmium (47), al-
though their quantitative role in the con-

sumption of Trichodesmium is unknown.
Although there are anecdotal reports of
the presence of Trichodesmium in the guts
of gelatinous zooplankton and fish (4),
this does not appear to be a quantitatively
important fate for Trichodesmium biomass,
and much of the C and N fixed by Tri-
chodesmium likely enters upper trophic
levels by other pathways. In natural pop-

ulations of Trichodesmium, a large propor-
tion of recently fixed N is released as
organic N (48). Besides providing a means
of exchange between N2-fixing and non–
N2-fixing cells in the colonies, this exu-

dation may be an important source of C
and N for microbes inhabiting the colo-

nies (49) or free-living in the water col-
umn, and ultimately may be a source of
inorganic N for phytoplankton.

Biogeochemistry

With its cosmopolitan distribution
throughout much of the oligotrophic trop-

ical and subtropical oceans (3) and its ca-

pacity to form extensive surface blooms
(40–42), Trichodesmium may be one of the
most globally important cyanobacteria and
phytoplankton. However, there is insuffi-
cient quantitative information to substanti-
ate this inference, possibly because of the
unique problems associated with assessing
the biomass and productivity of Trichodes-
mium by traditional methods as well as the
inherent difficulty in sampling ephemeral
blooms (50). As a result, the contribution
of Trichodesmium to marine C and N input
has generally been considered relatively
small (51). Recent data, however, suggest
otherwise.

Accurately quantifying N2 fixation in
the seas has direct bearing on our under-
standing of C flux in the tropical oceans.
According to the “new production” concept

Fig. 4. Average depth distributions
of trichomes of T. thiebautii and
volumetric N2 fixation (A), and chlo-
rophyll a (Chl a) biomass and prima-
ry productivity relative to micro-
plankton (B), for a series of stations
taken in the southwestern tropical
North Atlantic in May 1994 (Fig. 2,
map code 9) (97). Bars indicate
6SE of the mean.
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(52), in steady-state marine systems the
amount of organic N removed from the
system (that is, the euphotic zone) should
equal external (“new”) N inputs entering
that system. Although N2 fixation is a po-

tential source of new N, NO3
2 from depth

is generally considered the quantitatively
dominant source of new N in most open-

ocean systems (52). Areal rates of total
production in tropical oligotrophic regions
are typically very low (53), and the relative
amount of production dependent on new N
(that is, “new” production) is thought to be
small; nonetheless, the export of organic N
and C from the upper water column of
oligotrophic regions is important in the ma-

rine C and N budgets because the total area
involved is vast (53).

The increase in atmospheric CO2 has
provided added impetus to the quest to
quantify oceanic primary production and its
rate of removal to depth (54). N2 fixation
and vertical NO3

– flux from depth have
different potentials for supporting primary
production and effecting net removal of
CO2 from the atmosphere. Vertical NO3

2

flux occurs with a concurrent upward flux of
CO2 and PO4

3– from depth, often close to
the stoichiometric requirement of phyto-

plankton. Thus, relative to N2 fixation,
NO3

– derived from depth has limited capac-

ity for effecting net removal of atmospheric
CO2. N2 fixation represents a source of new
N entering the system that can account for
a net sequestering of atmospheric CO2 into

export production (55).
Recently, several independent lines of

evidence have prompted speculation that
marine N2 fixation has been severely un-

derestimated and may play a larger role in
global C and N fluxes. Large imbalances in
the estimated N budgets for the North At-
lantic, central North Pacific, Indian, and
global oceans have prompted speculation as
to unknown or poorly quantified N inputs,
and N2 fixation may provide the missing
source of N (56).

For nonupwelling regions of the tropical
and subtropical North Atlantic, the vertical
flux of NO3

–, assumed to represent the bulk
of the influx of new N into the euphotic
zone (52), is estimated to range from 30 to
150 mmol N m22 day21 (57). However,
such estimates of new N inputs are often
insufficient to satisfy the calculated demand
for new N and organic export from the
euphotic zone (57), which suggests the ex-

istence of sources of combined N in addi-
tion to vertical NO3

– flux. Other biogeo-

chemical approaches also reveal N demand
in, or losses from, the upper water column
exceeding current estimates of N inputs,
further indicating unquantified inputs (58).

Independent evidence that N2 fixation
may be of greater relevance than currently
believed derives from studies of the natural
isotopic abundance of 15N in surface partic-

ulate organic nitrogen (PON). Trichodes-

mium has a low d15N, typical of N2-fixing
organisms (59). Relative to the isotopic
composition of PON in more nutrient-rich
areas, the d15N of suspended particles and
zooplankton in surface waters of the west-
ern and central tropical Pacific and in the
Caribbean is often low and inversely related
to the abundance of Trichodesmium. This
suggests that the isotopically light PON in
these waters is a result of N2 fixation by
Trichodesmium (59).

Relative to conventional assessments of
planktonic standing crop, primary produc-

tivity, and inorganic N uptake, there are
few direct estimates of Trichodesmium bio-

mass and its rate of N2 fixation (50) (Table
1) and even fewer estimates of its contribu-

tion to primary production. The most com-

prehensive studies to date have been made
in the subtropical Sargasso Sea and in the
tropical Caribbean and far western Pacific
(Kuroshio, South and East China Sea) (Fig.
2), ocean margin regions that may not be
representative of the tropical oceans. More
limited data are available for the tropical
North Atlantic and the vicinity of Hawaii.
Virtually no information exists for large
expanses of the tropical oceans, particularly
in the Southern Hemisphere. Nonetheless,
several of the studies conducted over the
past two decades have provided direct evi-
dence of the importance of Trichodesmium
relative to other phytoplankton (60). With

Table 1. Summary of direct areal estimates of N2 fixation, as originally reported or as derived. Studies
based on C2H2 reduction determinations of N2 fixation used a 3:1 conversion from C2H2 reduced to N2
fixed, unless otherwise noted. N, number of discrete observations.

Location

Areal estimates

Map
code

Refer-
ence

Date
Average 6 SE
(mmol N m22

day21)
N

Subtropical
28°N, 155°W (North Pacific) Aug 73 33 1 1 (95)
27° to 34°N (NW Sargasso Sea) Sep–Oct 73 1.4* 6 0.47 9 2 (93)
22° to 36°N (Sargasso Sea) Aug 74 6.2* 6 4.0 7 3 (92)
22° to 23°N (Caribbean

passages)
Feb–Mar 74,

Aug 74
4.2* 6 4.0 10 3 (92)

30°N (Atlantic transect) May–Jun 75 0.29* 6 0.13 5 4 (94)
Tropical

0° to 24°N, 45° to 66°W (SW
North Atlantic)

Fall 64 41† 6 7.6 19 5 (65)

Spring 65 108† 6 24 15 5 (65)
21°N, 159°W (North Pacific) Oct, Dec 72 134 2 6a (62)

12° to 22°N (Caribbean) Feb–Mar 74,
Aug 74

77* 6 9.7 12 3 (92)

10° to 25°N (SE East China Sea) Summer 77 126 32 7 (63)
23°N, 158°W (North Pacific) Jun 90,

Feb 91
85 2 6b (89)

7° to 10°N (Arabian Sea) May 95 35 6 7.4 9 8 (81)
14° to 22°N (SW North Atlantic) May 94 73 6 22 12 9 (64)
NE Caribbean May 94 278 6 129 3 9 (64)
Tropical, grand average 106 6 24

*Data as originally presented using a 6.3 :1 conversion ratio. †Data based on direct 15N2 uptake. Average rates
from 0 and 15 m are assumed over the top 20 m and have been increased by 50% to account for activity below 20 m,
on the basis of data for the region from Fig. 4 and (64).

A

B

118°E 120°E

20°S

20°S

Fig. 5. (A) Image of chlorophyll and (B) relative
Trichodesmium abundance derived from a coast-
al zone color scanner (CZCS) image of the north-
western coast of Australia in the vicinity of the
Dampier Archipelago and confirmed by contem-
poraneous sea-truth data [adapted from (42)]. A
protocol based on reflectivity and absorption at
550 nm was used. Chlorophyll is reported as de-
tected by CZCS, with lowest to highest chloro-
phyll a concentrations ranging from purple (,0.05
mg m23) to red (.3.0 mg m23). For Trichodes-

mium, dark colors indicate its absence; lighter col-
ors (light blue through orange) indicate its pres-
ence. Differences in color represent varying re-
sponses to the protocol, not necessarily differenc-
es in Trichodesmium concentration.
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respect to subtropical waters such as the
Sargasso Sea, previous studies have detected
appreciable populations of Trichodesmium
only for limited periods during the summer,
and the calculated contributions of Tri-
chodesmium to C and N input were relative-

ly small (Table 1) (61).
In tropical studies, despite low growth

rates, the relatively high biomass of Tri-
chodesmium in these regions implies that it
may account for a quantitatively important
input of organic C, and data from several
studies have provided support for this idea
(60) (Fig. 4). Not surprisingly, the most
data exist for estimates of N2 fixation (Ta-

ble 1). The average rate of N2 fixation
reported for a suite of stations throughout
the Caribbean Sea was 77 mmol N m22

day21. One station in the tropical North
Pacific yielded an N2 fixation rate of 134
mmol N m22 day21 (62–65). We calculated
126 mmol N m22 day21 on the basis of data
(63) for the China Sea and Kuroshio cur-
rent near the southern tip of Japan (Table
1). Our recent results from the open tropi-
cal Atlantic Ocean (Fig. 4) are generally
consistent with earlier data from this and
other tropical regions (Table 1). Scaling the
average (nonbloom) tropical rate of 106
mmol N m22 day21 to tropical oligotrophic
waters that cover about 150 3 106 km2 (53)
yields an annual input of ;80 Tg N, con-

siderably greater than previous estimates of
pelagic N2 fixation input (3, 40).

These estimates of N input through N2

fixation in tropical areas are roughly equiv-

alent to the estimates of vertical NO3
2 flux

given above and suggest that these two
processes are of comparable importance in
new N input. Moreover, recent evidence
indicates that actual eddy diffusivities are at
the lower range of those values currently
assumed (66). If this is correct, it would
lower the estimate of N input by vertical
flux of NO3

2 and correspondingly increase
the relative importance of upper water col-
umn N2 fixation to overall N input. The
extreme depth of the euphotic zone in the
oligotrophic open ocean (.100 m), and the
absence of measurable NO3

– throughout
much of the upper water column of the
highly oligotrophic tropical areas, imply an
uncoupling between the reservoirs of NO3

–

at depth and productivity in the near sur-
face. Any NO3

2 that penetrates up from
depth is likely to be assimilated at the chlo-

rophyll maximum, typically located near
the 1% light level near the nitracline.

Although numerous blooms have been
documented and their spatial extent and
biomass density have been estimated (40–
42), the effect of a given bloom on C and N
input has been determined only on a few
occasions. For three studies that directly
measured N2 fixation in surface blooms, the

input of N in the bloom was about three
times that occurring throughout the rest of
the water column (67).

Taken together, these observations
strongly indicate that N2 fixation is an im-

portant component of the marine N budget
that needs to be considered in basin-scale
studies of N cycling and in calculations of
global N budgets. In addition to N2 fixa-

tion, other potentially significant “new” N
inputs, such as atmospheric deposition of
dissolved inorganic and organic N, have
been poorly quantified or ignored in the
past (68). More accurate assessment of their
contributions to the oceanic N cycle will
further help to rectify current discrepancies
in basin-scale and oceanic N budgets.

Future Research and Prospects

Research efforts from a molecular to a glob-

al perspective provide a new basis for un-

derstanding the biology and ecology of Tri-
chodesmium and inferring its role in global
biogeochemical cycles. Physiological, ge-

netic, and immunological evidence have
confirmed Trichodesmium, rather than asso-

ciated microorganisms, as the main N2 fixer
in its colonial aggregates. Trichodesmium
fixes N2 aerobically, possibly in the same
cell and at the same time as it evolves O2

through photosynthesis, making it a unique
and valuable model organism for the study
of N2 fixation in photosynthetic organisms.
As one of the few prokaryotic systems iden-

tified as having an endogenous rhythm, Tri-
chodesmium has a relative biochemical sim-

plicity that makes it an attractive system for
identifying the genetic and physiological
factors regulating components of its biolog-

ical clock.
Multiple characteristics have been iden-

tified that contribute to the ability of Tri-
chodesmium to fix N2 aerobically, but a sin-

gle critical component that allows simulta-

neous photosynthesis and nitrogenase ac-

tivity of nitrogenase has yet to be found,
and seemingly conflicting results need to be
reconciled. The dichotomy in growth rate
estimates based on C or N in natural pop-

ulations needs also to be resolved. The
availability of robust cultures will greatly
improve our knowledge of the biochemical
functioning of these unusual diazotrophs.

A variety of recognized morphological
and functional features demonstrate Tri-
chodesmium to be well adapted to the N-

poor oligotrophic ocean environment. Of
particular ecological relevance may be its
cyclic patterns of vertical migration, N2

fixation, and photoprotective processes.
However, we have yet to develop an inte-

grative physiological model directly linking
these ecological behaviors in cultures or in
natural populations. More rigorous defini-

tion of the interplay of physical and chem-

ical limiting factors will provide important
constraints for modeling and predicting the
in situ dynamics of these populations.

The accumulating evidence strongly in-

dicates a much more important role of Tri-
chodesmium in oceanic biogeochemistry
than it is currently afforded. Synoptic esti-
mates of the areal and temporal extent of
Trichodesmium populations and, particular-
ly, blooms by new and planned satellite
sensors [for example, the ocean color and
temperature scanner (OCTS) and the sea-

viewing wide field-of-view sensor (Sea-

WiFS)], coupled with the development of
in situ methods of enumerating these pop-

ulations (for example, fluorescence-based
optical plankton counters and laser-induced
fluorescence imagers), will further refine
and advance our knowledge of occurrence
in tropical and subtropical seas. This in-

formation will be useful in determining
the potential role of blooms in the modi-
fication of system-scale features such as
heat, material flux, and albedo. The more
comprehensive database on Trichodesmium
population biomass and distribution de-

rived from satellite studies, along with ex-

panded direct information on its in situ
contributions to C and N cycling, will also
allow for more precise extrapolation of its
oceanic contributions to new N inputs as
well as the inclusion of Trichodesmium as
an explicit component of large-scale mod-

eling of oceanic productivity.
Variations in oceanic productivity over

glacial-interglacial time scales have been
directly related to subtle variations in the
extent of denitrification and cyanobacterial
(that is, Trichodesmium) N2 fixation in the
sea (69). The possibility exists for use of
nucleotide probes of nifH to examine paleo-

ecological trends of Trichodesmium popula-

tions in oceanic sediment cores (70). De-

veloping a firm understanding of the dy-

namics and controls of Trichodesmium pop-

ulations in the contemporaneous ocean,
along with information on its population
trends over geological time scales, will lead
to important new insights about controls of
oceanic productivity.
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