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Abstract

Background and Objectives

Tissue remodeling is believed to cause recalcitrant chronic rhinosinusitis (CRS). Epithelial-

mesenchymal transition (EMT) is a novel clinical therapeutic target in many chronic airway

diseases related with tissue remodeling. The aim of this study was to investigate the effect

of trichostatin A (TSA) on transforming growth factor (TGF)-β1-induced EMT in airway epi-

thelium and nasal tissue.

Materials and Methods

A549 cells, primary nasal epithelial cells (PNECs), or inferior nasal turbinate organ culture

were exposed to TSA prior to stimulation with TGF-β1. Expression levels of E-cadherin,

vimentin, fibronectin, α-smooth muscle actin (SMA), histone deacetylase 2 (HDAC2), and

HDAC4 were determined by western blotting and/or immunofluorescent staining. Hyperace-

tylation of histone H2 and H4 by TSA was measured by western blotting. After siHDAC

transfection, the effects of HDAC2 and HDAC4 silencing on expression of E-cadherin,

vimentin, fibronectin, α-SMA, HDAC2, and HDAC4 in TGF-β1-induced A549 were deter-

mined by RT-PCR and/or western blotting. We assessed the change in migration capacity

of A549 cells by using cell migration assay and transwell invasion assay.

Results

TGF-β1 altered mRNA and protein expression levels of EMT markers including E-cadherin,

vimentin, fibronectin, α-SMA, slug, and snail in A549 cells. Inhibition and silencing of

HDAC2 and HDAC4 by TSA and siRNA enhanced TGF-β1-induced EMT in A549 cells.

TSA blocked the effect of TGF-β1 on the migratory ability of A549 cells. In experiments

using PNECs and inferior turbinate organ cultures, TSA suppressed expression of EMT

markers induced by TGF-β1.
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Conclusions

We showed that EMT is induced by TGF-β1 in airway epithelial cells and nasal tissue via

activation of HDAC2 and HDAC4, and that inhibition of HDAC2 and HDAC4 by TSA

reduces TGF-β1-induced EMT. This observation indicates that histone deacetylase inhibi-

tors such as TSA could be potential candidates for treatment of recalcitrant CRS related

with tissue remodeling.

Introduction

Chronic rhinosinusitis (CRS) is an inflammation of the nose and paranasal sinuses character-

ized by nasal blockage, nasal discharge, and olfactory dysfunction lasting more than 12 weeks

[1]. Control of CRS can be defined as a resolution of symptoms combined with the recovery of

mucosa. Medical treatment options for CRS include oral antibiotics, topical corticosteroids,

systemic steroids, and other medications such as antihistamines, mucolytics, and deconges-

tants. It is known that about one-third of the symptoms of CRS are relieved by medical treat-

ment [2]. Endoscopic sinus surgery is considered an option after failure of above medical

treatment. However, the disease persists in one-third of patients one year after surgery [3]. In

spite of considerable effort to identify factors related to disease recalcitrance, such factors are

still not clearly understood.

Epithelial-mesenchymal transition (EMT) is a phenotype conversion that turns a polarized

epithelial cell into a mesenchymal cell. In the process of EMT, epithelial cells lose cell-to-cell

adhesion and apical-basal polarity, reorganize their cytoskeletal protein, and acquire the char-

acteristics of mesenchymal cells, such as enhanced motility, invasiveness, and fibrogenesis

[4,5]. EMT is known as a feature of embryogenesis, organ development, and cancer progression

[6]. It is also activated in wound healing and inflammation, and dysregulation of EMT by

repeated stress caused by them may lead to organ fibrosis [7,8]. Additionally, evidence has

shown that CRS is related to EMT [9,10].

In a previous study, we showed that histone deacetylase (HDAC) inhibition by trichostatin

A (TSA) is associated with extracellular matrix accumulation in nasal polyp-derived fibroblasts

[11]. As extracellular matrix accumulation is one of the main features of mesenchymal cells, we

hypothesized that epigenetic regulation by TSA can also be associated with suppression EMT

of airway epithelium. The purposes of this study were to investigate whether EMT is induced

by activation of HDACs in airway epithelial cells and nasal tissue, and to evaluate the effect

that histone deacetylase inhibitors such as TSA have on EMT. We stimulated cells and tissues

with transforming growth factor (TGF)-β1, which is known to induce EMT, according to sev-

eral studies [12,13].

Materials and Methods

Materials

Human recombinant TGF-β1 was obtained from R&D Systems (Minneapolis, MN). TSA was

purchased from Sigma (St. Louis, MO, USA). Cells or tissues were previously exposed to TGF-

β1 (5mg/mL) after pretreatment for 1 hour with TSA (100nM)

Trichostatin A and Epithelial Mesenchymal Transition

PLOS ONE | DOI:10.1371/journal.pone.0162058 August 29, 2016 2 / 14

and analysis, decision to publish, or preparation of

the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.



Cell culture

A549 (human carcinomic alveolar basal epithelial cells, type II) cells were obtained from the

American Type Culture Collection (Manassas, VA). A549 cells were grown in RPMI-1640

medium containing 10% (v/v) heat-inactivated fetal bovine serum (Invitrogen, Carlsbad, CA),

1,000 unit/mL penicillin, and 1,000 μg/mL streptomycin (Invitrogen).

Inferior turbinate mucosa specimens were obtained from six patients during endoscopic

sinus surgery for benign tumors at the Department of Otorhinolaryngology, Korea University

Medical Center. None of the patients had a history of allergies, asthma, or aspirin sensitivity,

nor had any of them received steroids, nonsteroidal anti-inflammatory drugs, antihistamines,

or antibiotics during the 4 weeks prior to the biopsy. For the primary culture of the nasal epi-

thelial cells, the nasal tissues were washed with phosphate buffered saline and immersed in Dis-

pase (Stem cell technologies, Vancouver, Canada) for 4 h. Then, the tissue was filtered through

a mesh. Primary nasal epithelial cells (PNECs) were incubated with Bronchial Epithelial Cell

Growth Medium (Lonza, Basel, Switzerland). Written informed consent was obtained from

each patient, and the study was approved by the Korea University Medical Center Institutional

Review Board (KUGGR-12041-001).

Organ culture of nasal polyps

Inferior turbinates from the patients were cut into three pieces of 2 to 3 mm with scissors

under sterile conditions. Tissue fragments were washed three times with phosphate buffered

saline. The washed tissue fragments were placed on a prehydrated gelatin sponge (10 mm × 10

mm × 1 mm; Spongostan, Johnson & Johnson, San Angelo, TX) in 6-well plates. Then, each

well was filled with 1.5 mL of culture medium containing Dulbecco’s Modified Eagle Medium

(Invitrogen) supplemented with 2% fetal bovine serum (Invitrogen). Inferior turbinate tissues

were stimulated with TGF-β1 (5 ng/mL) with or without TSA. The plates were maintained at

37°C in 5% CO2.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay

A549 cells were seeded on 96-well tissue culture plates at a concentration of 4 x 105 cells/mL

with various concentrations (0–1600 nM) of TSA with or without TGF-β1 (5 ng/mL) for 72 h.

Then, cells were incubated with MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium

bromide, Sigma) for 4 h, and the reaction was interrupted by the addition of acidified isopropa-

nol. A fluorescence microplate reader (F2000; Hitachi, Ltd., Tokyo, Japan) was used to deter-

mine the results (570 nm).

Immunofluorescent staining

Cells were incubated with TGF-β1 (5 ng/mL) alone or in conjunction with TSA for 72 h.

Images were obtained with a microscope (Olympus BX51; Olympus, Tokyo, Japan). Cells

were fixed with 4% paraformaldehyde, then permeabilized with 0.2% TritonX-100 in 1%

bovine serum albumin for 10 min, blocked with 5% bovine serum albumin for 1 h at room

temperature, and incubated overnight at 4°C with monoclonal antibodies including vimentin,

α-SMA, and snail, and polyclonal antibodies including E-cadherin, fibronectin, and slug

(Santa Cruz, CA). Cells were then incubated with Dy-Light 549 horse anti-mouse IgG anti-

body or DyLight 488 horse anti-rabbit IgG Antibody (Vector Labs, Burlingame, CA). Finally,

cells were counterstained with 4’,6-diamidino-2-phenylindole (Invitrogen, Carlsbad, CA).

Immunostained cells were captured and visualized using a confocal microscope (LSM700;

Zeiss, Oberkochen, Germany).
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Reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was isolated according to the manufacturer’s recommendations using Trizol reagent

(Invitrogen). Two micrograms of RNA were reverse-transcribed using MMLV reverse transcrip-

tase (Invitrogen) according to the manufacturer’s protocol. PCR was performed using the follow-

ing primers: HDAC2 (sense sequence 50
- CATCCCATGAAGCCTCATAGAATC -3

0, anti-sense

sequence 50
- GCACCAATATCCCTCAAGTCTCC -3

0, 566 bp), HDAC4 (sense sequence 50
- CTG

CAAGTGGCCCCCTCGG -3
0, anti-sense sequence 50

- CTCGTGCTGTTGCCTCTGGA -3
0, 179

bp), Snail (sense sequence 50
- TCTAGGCCCTGGCTGCTACAA -3

0, anti-sense sequence 50
-

GCCTGGCACTGGTACTTCTTGAC -3
0, 152 bp), Slug (sense sequence 50

- ATGCATATTCGGAC

CCACACATTA -3
0, anti-sense sequence 50

- AGAATTTGACCTGTCTGCAAATGCT -3
0, 158 bp),

and GAPDH (sense sequence 50
- GTGGATATTGTTGCCATCAATGACC -3

0, anti-sense

sequence 50
- GCCCCAGCCTTCTTCATGGTGGT -3

0, 271 bp). The gels were captured and visu-

alized using Molecular Imager ChemiDoc XRS+ (Bio-Rad, Hercules, CA).

Western blot analysis

A549 cells were lysed in PRO-PREPTM protein extraction solution (iNtRON Biotechnology,

Seongnam, Korea). Lysates were separated by 10% sodium dodecyl sulfate polyacrylamide gel

electrophoresis and transferred onto polyvinyl difluoride membranes (Millipore Inc., Billerica,

MA). Membranes were blocked with a 5% skim milk solution and incubated with the following

antibodies: E-cadherin, vimentin, α-SMA, fibronectin, snail, slug (Santa Cruz, CA), HDAC2,

HDAC4, ac-histone H3, histone H3, ac-histone H4, histone H4 (Upstate, Millipore Inc.), and

β-actin (Santa Cruz, CA). The blots were visualized with HRP-conjugated secondary antibodies

and an ECL system (Pierce, Rockford, IL).

Transfection with small interference RNA (siRNA) of HDAC2 and
HDAC4

A549 cells were pelleted by centrifugation at 13,000 rpm for 3 min; thereafter, the cells were

suspended in 1 mL phosphate buffered saline and dispersed using a pipette. The cells were pel-

leted at 1,000 rpm for 1 min. The supernatant was discarded, and the cells were suspended in

Neon Resuspension buffer (Invitrogen) at a concentration of 6 × 105 cells/mL. Universal nega-

tive control siRNA (siControl; Santa Cruz) and small interference oligonucleotide RNA

directed against siHDAC2 and siHDAC4 (Santa Cruz) were used as controls. Neon Electrolytic

buffer (Invitrogen) was added into the Neon transfection tubes, and the tubes were then placed

in the Neon transfection system device (Invitrogen) that was set to 1400 V and 30 pulses. Gold

tips were used to aspirate 100 μL RNA cell mixture and place it in the device station. After elec-

troporation, an appropriate amount of complete medium was immediately added to each cell

aliquot, and the cells were re-plated onto culture dishes.

Cell migration scratch assays

A549 cells were plated and grown to confluence in 6-well tissue culture dishes. A straight

scratch was made in the cells using a pipette tip. Scratched cells were immediately rinsed with

phosphate buffered saline, and RPMI-1640 medium containing 10% (v/v) heat-inactivated

fetal bovine serum (Invitrogen, Carlsbad, CA, USA), 1,000 unit/mL penicillin, and 1,000 μg/

mL streptomycin (Invitrogen) was added. Cells were incubated with TGF-β1 (5 ng/mL) alone

or in conjunction with TSA for 48 h. Images were obtained with a microscope (Olympus BX51;

Olympus, Tokyo, Japan).
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PLOS ONE | DOI:10.1371/journal.pone.0162058 August 29, 2016 4 / 14



Transwell migration assay

The cells were seeded to the upper chamber of transwell chambers (Corning Life Sciences, MA,

USA). Then, RPMI-1640 medium containing 10% (v/v) heat-inactivated fetal bovine serum

(Invitrogen, Carlsbad, CA, USA), 1,000 unit/mL penicillin, and 1,000 μg/mL streptomycin

(Invitrogen) was treated with TGF-β1 (5 ng/mL) alone or in conjunction with TSA to the

lower chamber of transwell chambers for 48 h. The cells on the upper surface of the membrane

were removed by cotton swabs. Then, the cells on the lower surface of the membrane were

stained with Diff-Quik stain (Sysmex, Kobe, Japan). Images of the stained cells from five

selected views were captured under a microscope at 400x magnification.

Statistical analysis

Results were obtained from at least three independent experiments. The statistical significance

of the differences between control and experimental data was analyzed with unpaired two-way

analysis of variance (ANOVA) test or one-way ANOVA followed by Tukey’s test (GraphPad

Prism, version 5, Graph Pad Software, San Diego, CA). Significance was established at the 95%

confidence level; p values less than 0.05 were accepted as statistically significant.

Results

TSA inhibits TGF-β1-induced EMT in A549 cells

AnMTT assay was performed to examine the effects of TSA on survival of A549 cells. Serial

dilutions of A549 cells and MTT reagent were used to generate a cell titration curve. The stan-

dard curve indicated a linear relationship between number of cells and absorption at 570 nm.

Concentrations of TSA ranging from 0 to 1600 nM were examined. TSA did not affect cell sur-

vival at concentrations below 400 nM regardless of the presence of TGF- β1 (Fig 1).

TGF-β1 induces EMT in primary airway epithelial cells [12]. To determine whether TGF-β1

induces EMT in A549 cells, cells were treated with 5 ng/mL of TGF-β1 for 48 h and change in

Fig 1. Cytotoxicity of histamine determined by MTT assay.MTT, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide, *P < 0.05 vs. control.

doi:10.1371/journal.pone.0162058.g001
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their morphology was observed under a phase contrast microscope (Olympus japan, Dokyo,

Japan). TGF-β1 treatment for 48 h resulted in the conversion from normal epithelial morphol-

ogy with a cobblestone-like appearance into a migratory mesenchymal morphology with an

abnormally elongated appearance. TGF-β1-stimulated A549 cells pretreated with TSA for 1 h

returned to their normal epithelial morphology (Fig 2A). Expression of E-cadherin, vimentin,

fibronectin, and α-SMA proteins as a marker of EMT was examined using western blotting

and fluorescent immunocytochemical staining (Fig 2B and 2C). After treatment with TGF-β1

for 72 h, cells showed decreased E-cadherin and increased vimentin, fibronectin, and α-SMA

expression. TSA pretreatment for 1 h inhibited the effects of TGF-β1 on EMT in A549 cells. As

a last step in examining the inhibitory effect of TSA on EMT in TGF-β1-induced A549 cells,

the level of EMT-related transcription factors such as snail and slug mRNA and protein was

evaluated after 12 h for RT-PCR and 24 h for western blotting (Fig 3). TGF-β1 increased the

mRNA and protein expression levels of slug and snail, and TSA pretreatment reversed the

effect of TGF-β1.

Fig 2. (A) Effects of trichostatin A on morphology of TGF-β1-stimulated A549 cells as observed under a phase contrast microscope. Effects of
trichostatin A on expression of E-cadherin, vimentin, fibronectin, and α-smooth muscle actin protein in TGF-β1-stimulated A549 cells were determined by
western blotting (B) and immunofluorescent staining (C). Representative of independent experiments. Scale bar = 50 μm.

doi:10.1371/journal.pone.0162058.g002
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TSA inhibits the expression of HDAC2 and HDAC4 and induces
acetylation of histone H3 and H4

TSA inhibits the activity of HDAC, leading to an increase in histone acetylation. Histone acety-

lation is related with the enhancement of specific genes. To determine inhibition of HDAC and

hyperacetylation by TSA, the expression levels of HDAC2 and HDAC4 were measured by

using RT-PCR and western blotting in A549 cells. TGF-β1 induced mRNA expression of

HDAC2 and HDAC4 after 24 h, and HDAC2 and HDAC4 protein expression after 72 h. TSA

pretreatment blocked the effects of TGF-β1 on HDAC2 and HDAC4 expression in A549 cells

(Fig 4A and 4B). Next, we investigated acetylation of histone H3 and H4 with western blotting

in A549 cells. TSA induces hyperacetylation of histone H3 and H4 after 72 h, regardless of

TGF-β1 stimulation (Fig 4C). These results showed that TSA suppresses HDAC2 and HDAC4

and induces histone acetylation in A549 cells.

Silencing of HDAC2 and HDAC4 enhances EMT in TGF-β1-induced
A549 cells

Next, the effects of silencing of HDAC2 by siRNA on TGF-β1-induced EMT were examined in

A549 cells. After transfection of cells with siControl or siHDAC2, the mRNA and protein

expression levels of HDAC2, E-cadherin, vimentin, fibronectin, and α-SMA were determined

by RT-PCR and western blotting after 24 h and 72 h, respectively. In siHDAC2 pretreated cells,

stimulation with TGF-β1 did not affect the expression levels of HDAC2, E-cadherin, vimentin,

Fig 3. Effects of trichostatin A on expression of snail and slugmRNA and protein in TGF-β1-stimulated A549 cells were
determined by RT-PCR (A) and western blotting (B) (Representative of independent experiments). Values are expressed as the
mean ± standard error of the mean (SEM) of independent experiments. *P < 0.05 vs. control. †P < 0.05 vs. TGF-β1 alone. GAPDH,
glyceraldehyde-3-phosphate dehydrogenase.

doi:10.1371/journal.pone.0162058.g003
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fibronectin, and α-SMA that were observed in siControl cells (Fig 5A, 5B and 5C). We also

investigated the effects of silencing of HDAC4 in same manner. The results of silencing

HDAC4 mirrored those of silencing HDAC2 (Fig 5D, 5E and 5F). These data indicated that

epigenetic regulation by HDAC2 and HDAC4 is related with TGF-β1-stimulated EMT in

A549 cells.

TSA inhibits the migration of TGF-β1-induced A549 cells

As increased migratory ability is a functional characteristic of mesenchymal cells, we assessed

the change in migration capacity of A549 cells by using a cell migration assay. A straight

scratch was made in adherent cells with a pipette tip. Then, we measured the distance that cells

had migrated from the initial boundary after treatment with TGF-β1 with or without TSA.

After 48 h, compared with the controls, cells migrated significantly further from the boundary

of the initial wound area in TGF-β1-treated samples. However, pretreatment with TSA inhib-

ited cell migration in TGF-β1-treated A549 cells (Fig 6A). To confirm the inhibitory effect of

Fig 4. Effects of trichostatin A on expression of HDAC2 and HDAC4mRNA and protein in TGF-β1-stimulated A549 cells were determined
by RT-PCR (A) and western blotting (B) (representative of independent experiments). Effects of trichostatin A on hyperacetylation of
histone H3 and H4 were determined by western blotting (C) (representative of independent experiments). Values are expressed as the
mean ± SEM of independent experiments. *P < 0.05 vs. control. †P < 0.05 vs. TGF-β1 alone. GAPDH, glyceraldehyde-3-phosphate
dehydrogenase.

doi:10.1371/journal.pone.0162058.g004
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TSA on increased migratory ability of TGF-β1-induced A549 cells, we performed a transwell

invasion assay. After treatment with TGF-β1 with or without TSA for 48 h, we counted the

number of cells that had spread through the filter and adhered to the underside. The results

from the transwell invasion assay also showed that pretreatment with TSA blocks the increased

cell invasion in TGF-β1-treated cells (Fig 6B).

TSA inhibits TGF-β1-induced EMT in PNACs and organ culture

To assess whether the inhibitory effects of TSA on TGF-β1-induced EMT in A549 cells are also

seen in nasal tissue, we repeated several experiments in primary PNECs and in inferior turbi-

nate organ culture. To determine whether TGF-β1 induces EMT in PNECs, we treated cells

with 5 ng/mL of TGF-β1 for 72 h and observed E-cadherin, vimentin, fibronectin, and α-SMA

Fig 5. Effects of siHDACs on expression of HDAC2 and HDAC4mRNA and protein in TGF-β1-stimulated A549 cells were determined by RT-PCR (A, D)
and western blotting (B, E) (representative of independent experiments). Effects of siHDACs on expression of E-cadherin, vimentin, fibronectin, and α-
smooth muscle actin protein in A549 cells were determined by western blotting (C, F) (representative of independent experiments). Values are expressed
as the mean ± SEM of independent experiments. *P < 0.05 vs. control. †P < 0.05 vs. TGF-β1 alone. GAPDH, glyceraldehyde-3-phosphate
dehydrogenase.

doi:10.1371/journal.pone.0162058.g005

Trichostatin A and Epithelial Mesenchymal Transition

PLOS ONE | DOI:10.1371/journal.pone.0162058 August 29, 2016 9 / 14



protein expression using a fluorescence microscope. To determine protein expression of snail

and slug, we treated cells with TGF-β1 for 24 h. After the treatment with TGF-β1, cells showed

decreased E-cadherin and increased vimentin, fibronectin, α-SMA, snail, and slug expression.

TSA pretreatment for 1 h inhibited the effects of TGF-β1 on EMT in PNECs (Fig 7A and 7B).

To identify whether EMT is induced by TGF-β1 and inhibited by TSA in nasal inferior turbi-

nate organ cultures, organ cultures were exposed to TGF-β1 for 72 h with or without TSA, and

were checked for E-cadherin, vimentin, fibronectin, and α-SMA protein expression levels

using western blotting (Fig 7C). Expression levels of vimentin, fibronectin, and α-SMA were

increased and E-cadherin expression level was decreased in TGF-β1-treated inferior turbinate

organ cultures compared with the control. Pretreatment with TSA reversed the effect of TGF-

β1 on all mentioned EMT markers. These results indicate that TSA also suppresses EMT

induced by TGF-β1 in nasal cells and tissue.

Fig 6. Effects of trichostatin A onmigration ability of TGF-β1-stimulated A549 cells were measured using cell migration assay (A) and transwell
invasion assay (B). Values are expressed as the mean ± SEM of independent experiments. *P < 0.05 vs. control. †P < 0.05 vs. TGF-β1 alone. Scale
bar = 50 μm.

doi:10.1371/journal.pone.0162058.g006
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Discussion

The present study showed that TSA inhibits TGF-β1-induced EMT in A549 cells, PNECs, and

inferior turbinate organ culture. TGF-β1 altered the mRNA and protein expression levels of

EMT markers including E-cadherin, vimentin, fibronectin, α-SMA, slug, and snail, and pre-

treatment with TSA reversed the effect of TGF-β1. TSA inhibited the expression of HDAC2

and HDAC4, and induced histone acetylation in A549 cells. Silencing of HDAC2 and HDAC4

by siRNA enhanced TGF-β1-induced EMT in A549 cells. When we investigated the migratory

ability of A549 cells after TGF-β1 stimulation via cell migration assay and transwell invasion

assay, we found that they migrated significantly further than the control. However, TSA

blocked the effect of TGF-β1 on the migratory ability of cells. In the experiments using PNECs

and inferior turbinate tissue, TSA suppressed the expression of EMT markers induced by

TGF-β1.

Remodeling is an important feature of wound healing. It is a dynamic process involving

matrix production and degradation in response to inflammatory insult. Tissue remodeling can

Fig 7. Effects of trichostatin A on expression of E-cadherin, vimentin, fibronectin, α-smooth muscle actin, snail, and slug proteins in TGF-β1-stimulated
primary nasal epithelial cells were determined by immunofluorescent staining (A). Effects of trichostatin A on expression of E-cadherin, vimentin,
fibronectin, and α-smooth muscle actin protein in TGF-β1-stimulated inferior turbinate tissue were determined by western blotting (B). Representative of
independent experiments. Scale bar = 50 μm.

doi:10.1371/journal.pone.0162058.g007
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lead to a normal reconstruction process [14]. However, when remodeling causes many alter-

ations in the composition, content, and organization of constituents of the organs, thereby

causing morphological or functional disabilities, it can be considered pathological [15]. As in

numerous other chronic inflammatory diseases, CRS patients develop persistent chronic

inflammation of the mucosa. In a study examining histological specimens from 22 patients

with refractory CRS undergoing endoscopic sinus surgery, epithelial damage such as epithelial

shedding and basement membrane thickening was observed in all cases [16]. Because such

remodeling processes are somewhat irreversible, there is a growing consensus that functional

endoscopic sinus surgery that targets restoration of function by improving ventilation and

allowing mucociliary clearance to normalize is not perfect answer to the refractory CRS [17].

Prevention of EMT is now considered an effective measure for the inhibition of tissue

remodeling. Airway epithelium is a barrier between the host and the environment, and repre-

sents the first line of defense against microorganisms and allergens [18]. Airway epithelium

acts as a physical barrier and is composed of apical tight junctions and underlying adherens

junctions [19]. It is now recognized that airway epithelium attends a variety of immunological

mechanisms by releasing cytokines and interacting with immune cells. EMT is a process essen-

tial in wound healing and tissue remodeling after injury [20]. However, in an unsuccessful

attempt to repair the injured tissue that is can be happened in constant damage caused by

chronic inflammation, EMT can lead to the destruction of the functions of the epithelium as a

physical barrier and immune regulator. For this reason, EMT is a novel clinical therapeutic tar-

get in many chronic airway diseases. In fact, EMT was observed in several chronic inflamma-

tory airway diseases, including asthma, COPD, and bronchiolitis obliterans syndrome

[13,21,22]. There is also evidence demonstrating that epithelial cells express mesenchymal

markers in CRS. We supposed that functional loss of airway epithelium caused by EMT is one

of the main reasons for the unresponsiveness of recalcitrant CRS to maximal medical and sur-

gical treatment.

Epigenetic changes are changes in gene expression that do not alter the underlying DNA

sequence. DNA methylation and histone modification are the most well-known mechanisms

of epigenetics [23]. Histone acetylation, which is regulated by histone acetyltransferase and

histone deacetylase, is one type of chromatin modification [24]. Acetylation of histones

relaxes nucleosomes, thereby activating gene induction. On the contrary, histone deacetylase

induces gene silencing by removal of acetyl groups from histones. Imbalance between the

activities of HATs and HDACs can lead to disease states [25]. For this reason, TSA, which

inhibits HDACs in a noncompetitive and reversible way, has been studied in various diseases,

including cancer and fibrosis. Evidence has shown that the anti-fibrotic and anti-cancer

effects of TSA are related with EMT. Wang et al. [26] showed that TSA reverses EMT in colo-

rectal cancer cells and prostate cancer cells thereby explaining that TSA suppresses invasion

and migration of cancer cells. In a study with renal cells and hepatocytes, TSA exerted anti-

EMT effects[27,28]. Related with CRS, we have previously shown that HDAC2 is elevated in

nasal polyps, suggesting that they may serve as potential targets of treatment and that TSA

inhibits extracellular matrix production in nasal polyps [29,30]. Based on the above evidence,

we can draw a hypothesis that HDAC inhibition by TSA is associated with EMT in airway

epithelial cells.

In conclusion, we demonstrated that EMT is induced by TGF-β1 in airway epithelial cells

and nasal tissue via activation of HDAC2 and HDAC4, and that inhibition of HDAC2 and

HDAC4 by TSA reduces TGF-β1-induced EMT. This observation indicates that histone deace-

tylase inhibitors such as TSA could be considered as candidates for treatment of recalcitrant

CRS related with tissue remodeling.
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