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ABSTRACT

We present Trickle, an algorithm for propagating and

maintaining code updates in wireless sensor networks.

Borrowing techniques from the epidemic/gossip, scal-

able multicast, and wireless broadcast literature, Trickle

uses a “polite gossip” policy, where motes periodically

broadcast a code summary to local neighbors but stay

quiet if they have recently heard a summary identical to

theirs. When a mote hears an older summary than its

own, it broadcasts an update. Instead of flooding a net-

work with packets, the algorithm controls the send rate so

each mote hears a small trickle of packets, just enough to

stay up to date. We show that with this simple mecha-

nism, Trickle can scale to thousand-fold changes in net-

work density, propagate new code in the order of sec-

onds, and impose a maintenance cost on the order of a

few sends an hour.

1. INTRODUCTION

Composed of large numbers of small, resource con-

strained computing nodes (“motes”), sensor networks of-

ten must operate unattended for months or years. As re-

quirements and environments evolve in lengthy deploy-

ments, users need to be able to introduce new code to re-

task a network. The scale and embedded nature of these

systems – buried in bird burrows or collared on roving

herds of zebras for months or years – requires network

code propagation. Networking has a tremendous energy

cost, however, and defines the system lifetime: laptops

can be recharged, but sensor networks die. An effective

reprogramming protocol must send few packets.

While code is propagating, a network can be in a use-

less state due to there being multiple programs running

concurrently. Transition time is wasted time, and wasted

time is wasted energy. Therefore, an effective repro-

gramming protocol must also propagate new code quickly.

The cost of transmitting new code must be measured

against the duty cycle of an application. For some appli-

cations, sending a binary image (tens of kilobytes) can

have the same cost as days of operation. Some sensor

network applications, such as Tiny Diffusion [8], Maté [13],

and TinyDB [18], use concise, high-level virtual code

representations to reduce this cost. In these applications,

programs are 20-400 bytes long, a handful of packets.

Wireless sensor networks may operate at a scale of

hundreds, thousands, or more. Unlike Internet based sys-

tems, which represent a wide range of devices linked

through a common network protocol, sensor networks

are independent, application specific deployments. They

exhibit highly transient loss patterns that are susceptible

to changes in environmental conditions [22]. Asymmet-

ric links are common, and prior work has shown network

behavior to often be worse indoors than out, predomi-

nantly due to multi-path effects [23]. Motes come and

go, due to temporary disconnections, failure, and net-

work repopulation. As new code must eventually propa-

gate to every mote in a network, but network membership

is not static, propagation must be a continuous effort.

Propagating code is costly; learning when to propagate

code is even more so. Motes must periodically commu-

nicate to learn when there is new code. To reduce energy

costs, motes can transmit metadata to determine when

code is needed. Even for binary images, this periodic

metadata exchange overwhelms the cost of transmitting

code when it is needed. Sending a full TinyDB binary

image (≈ 64 KB) costs approximately the same as trans-

mitting a forty byte metadata summary once a minute for

a day. In Maté, Tiny Diffusion, Tiny DB, and similar sys-

tems, this tradeoff is even more pronounced: sending a

few metadata packets costs the same as sending an en-

tire program. The communication to learn when code is

needed overwhelms the cost of actually propagating that

code.



The first step towards sensor network reprogramming,

then, is an efficient algorithm for determining when motes

should propagate code, which can be used to trigger the

actual code transfer. Such an algorithm has three needed

properties:

Low Maintenance: When a network is in a stable state,

metadata exchanges should be infrequent, just enough to

ensure that the network has a single program. The trans-

mission rate should be configurable to meet an applica-

tion energy budget; this can vary from transmitting once

a minute to every few hours.

Rapid Propagation: When the network discovers motes

that need updates, code must propagate rapidly. Propa-

gation should not take more than a minute or two more

than the time required for transmission, even for large

networks that are tens of hops across. Code must even-

tually propagate to every mote.

Scalability: The protocol must maintain its other proper-

ties in wide ranges of network density, from motes hav-

ing a few to hundreds of network neighbors. It cannot re-

quire a priori density information, as density will change

due to environmental effects and node failure.

In this paper, we propose Trickle, an algorithm for

code propagation and maintenance in wireless sensor net-

works. Borrowing techniques from the epidemic, scal-

able multicast, and wireless broadcast literatures, Trickle

regulates itself using a local “polite gossip” to exchange

code metadata (we defer a detailed discussion of Trickle

with regards to this prior work to Section 6). Each mote

periodically broadcasts metadata describing what code

it has. However, if a mote hears gossip about identical

metadata to its own, it stays quiet. When a mote hears

old gossip, it triggers a code update, so the gossiper can

be brought up to date. To achieve both rapid propagation

and a low maintenance overhead, motes adjust the length

of their gossiping attention spans, communicating more

often when there is new code.

Trickle meets the three requirements. It imposes a

maintenance overhead on the order of a few packets an

hour (which can easily be pushed lower), propagates up-

dates across multi-hop networks in tens of seconds, and

scales to thousand-fold changes in network density. In

addition, it handles network repopulation, is robust to

network transience, loss, and disconnection, and requires

very little state (in our implementation, eleven bytes).

In Section 2, we outline the experimental methodolo-

gies of this study. In Section 3, we describe the basic

primitive of Trickle and its conceptual basis. In Sec-

tion 4, we present Trickle’s maintenance algorithm, eval-

uating its scalability with regards to network density. In

Section 5, we show how the maintenance algorithm can

be modified slightly to enable rapid propagation, and eval-

Figure 1: TOSSIM Packet Loss Rates over Distance

uate how quickly Trickle propagates code. We review

related work in Section 6, and conclude in Section 7.

2. METHODOLOGY

We use three different platforms to investigate and eval-

uate Trickle. The first is a high-level, abstract algorith-

mic simulator written especially for this study. The sec-

ond is TOSSIM [14], a bit-level mote simulator for TinyOS,

a sensor network operating system [11]. TOSSIM com-

piles directly from TinyOS code. Finally, we used TinyOS

mica-2 motes for empirical studies, to validate our sim-

ulation results and prove the real-world effectiveness of

Trickle. The same implementation of Trickle ran on motes

and in TOSSIM.

2.1 Abstract Simulation

To quickly evaluate Trickle under controlled condi-

tions, we implemented a Trickle-specific algorithmic sim-

ulator. Little more than an event queue, it allows config-

uration of all of Trickle’s parameters, run duration, the

boot time of motes, and a uniform packet loss rate (same

for all links) across a single hop network. Its output is a

packet send count.

2.2 TOSSIM

The TOSSIM simulator compiles directly from TinyOS

code, simulating complete programs from application level

logic to the network at a bit level [14]. It simulates the

implementation of the entire TinyOS network stack, in-

cluding its CSMA protocol, data encodings, CRC checks,

collisions, and packet timing. TOSSIM models mote

connectivity as a directed graph, where vertices are motes

and edges are links; each link has a bit error rate, and as

the graph is directed, link error rates can be asymmetric.

This occurs when only one direction has good connec-

tivity, a phenomenon that several empirical studies have

observed [7, 23, 3]. The networking stack (based on

the mica platform implementation) can handle approx-

imately forty packets per second, with each carrying a

36 byte payload.



Figure 2: The TinyOS mica2

To generate network topologies, we used TOSSIM’s

empirical model, based on data gathered from TinyOS

motes [7]. Figure 1 shows an experiment illustrating the

model’s packet loss rates over distance (in feet). As link

directions are sampled independently, intermediate dis-

tances such as twenty feet commonly exhibit link asym-

metry. Physical topologies are fed into the loss distribu-

tion function, producing a loss topology. In our studies,

link error rates were constant for the duration of a simu-

lation, but packet loss rates could be affected by dynamic

interactions such as collisions at a receiver.

In addition to standard bit-level simulations, we used a

modified version of TOSSIM that supports packet-level

simulations. This version simulates loss due to packet

corruption from bit errors, but does not model collisions.

By comparing the results of the full bit-level simulation

and this simpler packet-level simulation, we can ascer-

tain when packet collisions – failures of the underlying

MAC – are the cause of protocol behavior. In this paper,

we refer to the full TOSSIM simulation as TOSSIM-bit,

and the packet level simulation as TOSSIM-packet.

2.3 TinyOS motes

In our empirical experiments, we used TinyOS mica2

motes, with a 916MHz radio.1 These motes provide 128KB

of program memory, 4KB of RAM, and a 7MHz 8-bit

microcontroller for a processor. The radio transmits at

19.2 Kbit, which after encoding and media access, is

approximately forty TinyOS packets/second, each with

a thirty-six byte data payload. For propagation experi-

ments, we instrumented mica2 motes with a special hard-

ware device that bridges their UART to TCP; other com-

puters can connect to the mote with a TCP socket to read

and write data to the mote. We used this to obtain mil-

lisecond granularity timestamps on network events. Fig-

ure 2 shows a picture of one of the mica2 motes used in

our experiments.

We performed two empirical studies. One involved

placing varying number of motes on a table, with the

transmission strength set very low to create a small multi-

hop network. The other was a nineteen mote network

1There is also a 433 MHz variety.

in an office area, approximately 160’ by 40’. Section 5

presents the latter experiment in greater depth.

3. TRICKLE OVERVIEW

In the next three sections, we introduce and evaluate

Trickle. In this section, we describe the basic algorithm

primitive colloquially, as well as its conceptual basis. In

Section 4, we describe the algorithm more formally, and

evaluate the scalability of Trickle’s maintenance cost, start-

ing with an ideal case – a lossless and perfectly synchro-

nized single-hop network. Incrementally, we remove each

of these three constraints, quantifying scalability in sim-

ulation and validating the simulation results with an em-

pirical study. In Section 5, we show how, by adjust-

ing the length of time intervals, Trickle’s maintenance

algorithm can be easily adapted to also rapidly propa-

gate code while imposing a minimal overhead. Trickle

assumes that motes can succinctly describe their code

with metadata, and by comparing two different pieces of

metadata can determine which mote needs an update.

Trickle’s basic primitive is simple: every so often, a

mote transmits code metadata if it has not heard a few

other motes transmit the same thing. This allows Trickle

to scale to thousand-fold variations in network density,

quickly propagate updates, distribute transmission load

evenly, be robust to transient disconnections, handle net-

work repopulations, and impose a maintenance overhead

on the order of a few packets per hour per mote.

Trickle sends all messages to the local broadcast ad-

dress. There are two possible results to a Trickle broad-

cast: either every mote that hears the message is up to

date, or a recipient detects the need for an update. Detec-

tion can be the result of either an out-of-date mote hear-

ing someone has new code, or an updated mote hearing

someone has old code. As long as every mote communi-

cates somehow – either receives or transmits – the need

for an update will be detected.

For example, if mote A broadcasts that it has code φx,

but B has code φx+1, then B knows that A needs an

update. Similarly, if B broadcasts that it has φx+1, A

knows that it needs an update. If B broadcasts updates,

then all of its neighbors can receive them without having

to advertise their need. Some of these recipients might

not even have heard A’s transmission.

In this example, it does not matter who first transmits,

A or B; either case will detect the inconsistency. All that

matters is that some motes communicate with one an-

other at some nonzero rate; we will informally call this

the “communication rate.” As long as the network is con-

nected and there is some minimum communication rate

for each mote, everyone will stay up to date.

The fact that communication can be either transmis-

sion or reception enables Trickle to operate in sparse as

well as dense networks. A single, disconnected mote



Figure 3: Trickle Maintenance with a k of 1. Dark

boxes are transmissions, gray boxes are suppressed

transmissions, and dotted lines are heard transmissions.

Solid lines mark interval boundaries. Both I1 and I2 are

of length τ .

must transmit at the communication rate. In a lossless,

single-hop network of size n, the sum of transmissions

over the network is the communication rate, so for each

mote it is 1
n

. Sparser networks require more transmis-

sions per mote, but utilization of the radio channel over

space will not increase. This is an important property in

wireless networks, where the channel is a valuable shared

resource. Additionally, reducing transmissions in dense

networks conserves system energy.

We begin in Section 4 by describing Trickle’s mainte-

nance algorithm, which tries to keep a constant commu-

nication rate. We analyze its performance (in terms of

transmissions and communication) in the idealized case

of a single-hop lossless network with perfect time syn-

chronization. We relax each of these assumptions by in-

troducing loss, removing synchronization, and using a

multi-hop network. We show how each relaxation changes

the behavior of Trickle, and, in the case of synchroniza-

tion, modify the algorithm slightly to accommodate.

4. MAINTENANCE

Trickle uses “polite gossip” to exchange code metadata

with nearby network neighbors. It breaks time into inter-

vals, and at a random point in each interval, it considers

broadcasting its code metadata. If Trickle has already

heard several other motes gossip the same metadata in

this interval, it politely stays quiet: repeating what some-

one else has said is rude.

When a mote hears that a neighbor is behind the times

(it hears older metadata), it brings everyone nearby up to

date by broadcasting the needed pieces of code. When a

mote hears that it is behind the times, it repeats the latest

news it knows of (its own metadata); following the first

rule, this triggers motes with newer code to broadcast it.

More formally, each mote maintains a counter c, a

threshold k, and a timer t in the range [0, τ ]. k is a small,

fixed integer (e.g., 1 or 2) and τ is a time constant. We

discuss the selection of τ in depth in Section 5. When

a mote hears metadata identical to its own, it increments

c. At time t, the mote broadcasts its metadata if c < k.

When the interval of size τ completes, c is reset to zero

and t is reset to a new random value in the range [0, τ ].
If a mote with code φx hears a summary for φx−y , it

broadcasts the code necessary to bring φx−y up to φx. If

it hears a summary for φx+y , it broadcasts its own sum-

mary, triggering the mote with φx+y to send updates.

Figure 3 has a visualization of Trickle in operation on a

single mote for two intervals of length τ with a k of 1 and

no new code. In the first interval, I1, the mote does not

hear any transmissions before its t, and broadcasts. In the

second interval, I2, it hears two broadcasts of metadata

identical to its, and so suppresses its broadcast.

Using the Trickle algorithm, each mote broadcasts a

summary of its data at most once per period τ . If a mote

hears k motes with the same program before it transmits,

it suppresses its own transmission. In perfect network

conditions – a lossless, single-hop topology – there will

be k transmissions every τ . If there are n motes and

m non-interfering single-hop networks, there will be km

transmissions, which is independent of n. Instead of fix-

ing the per-mote send rate, Trickle dynamically regulates

its send rate to the network density to meet a communica-

tion rate, requiring no a priori assumptions on the topol-

ogy. In each interval τ , the sum of receptions and sends

of each mote is k.

The random selection of t uniformly distributes the

choice of who broadcasts in a given interval. This evenly

spreads the transmission energy load across the network.

If a mote with n neighbors needs an update, the expected

latency to discover this from the beginning of the inter-

val is τ
n+1 . Detection happens either because the mote

transmits its summary, which will cause others to send

updates, or because another mote transmits a newer sum-

mary. A large τ has a lower energy overhead (in terms of

packet send rate), but also has a higher discovery latency.

Conversely, a small τ sends more messages but discovers

updates more quickly.

This km transmission count depends on three assump-

tions: no packet loss, perfect interval synchronization,

and a single-hop network. We visit and then relax each

of these assumptions in turn. Discussing each assump-

tion separately allows us to examine the effect of each,

and in the case of interval synchronization, helps us make

a slight modification to restore scalability.

4.1 Maintenance with Loss

The above results assume that motes hear every trans-

mission; in real-world sensor networks, this is rarely the

case. Figure 4 shows how packet loss rates affect the

number of Trickle transmissions per interval in a single-

hop network as density increases. These results are from

the abstract simulator, with k = 1. Each line is a uniform

loss rate for all node pairs. For a given rate, the number

of transmissions grows with density at O(log(n)).



Figure 4: Number of Transmissions as Density In-

creases for Different Packet Loss Rates.

Figure 5: The Short Listen Problem For Motes A, B,

C, and D. Dark bars represent transmissions, light bars

suppressed transmissions, and dashed lines are recep-

tions. Tick marks indicate interval boundaries. Mote B

transmits in all three intervals.

This logarithmic behavior represents the probability

that a single mote misses a number of transmissions. For

example, with a 10% loss rate, there is a 10% chance a

mote will miss a single packet. If a mote misses a packet,

it will transmit, resulting in two transmissions. There is

correspondingly a 1% chance it will miss two, leading to

three transmissions, and a 0.1% chance it will miss three,

leading to four. In the extreme case of a 100% loss rate,

each mote is by itself: transmissions scale linearly.

Unfortunately, to maintain a per-interval minimum com-

munication rate, this logarithmic scaling is inescapable:

O(log(n)) is the best-case behavior. The increase in

communication represents satisfying the requirements of

the worst case mote; in order to do so, the expected case

must transmit a little bit more. Some motes don’t hear

the gossip the first time someone says it, and need it re-

peated. In the rest of this work, we consider O(log(n))
to be the desired scalability.

4.2 Maintenance without Synchronization

The above results assume that all motes have synchro-

nized intervals. Inevitably, time synchronization imposes

a communication, and therefore energy, overhead. While

some networks can provide time synchronization to Trickle,

others cannot. Therefore, Trickle should be able to work

in the absence of this primitive.

Unfortunately, without synchronization, Trickle can suf-

fer from the short-listen problem. Some subset of motes

Figure 6: The Short Listen Problem’s Effect on Scal-

ability, k = 1. Without synchronization, Trickle scales

with O(
√

n). A listening period restores this to asymp-

totically bounded by a constant.

gossip soon after the beginning of their interval, listening

for only a short time, before anyone else has a chance to

speak up. If all of the intervals are synchronized, the first

gossip will quiet everyone else. However, if not synchro-

nized, it might be that a mote’s interval begins just after

the broadcast, and it too has chosen a short listening pe-

riod. This results in redundant transmissions.

Figure 5 shows an instance of this phenomenon. In

this example, mote B selects a small t on each of its

three intervals. Although other motes transmit, mote B

never hears those transmissions before its own, and its

transmissions are never suppressed. Figure 6 shows how

the short-listen problem effects the transmission rate in

a lossless network with k = 1. A perfectly synchro-

nized single-hop network scales perfectly, with a con-

stant number of transmissions. In a network without any

synchronization between intervals, however, the number

of transmissions per interval increases significantly.

The short-listen problem causes the number of trans-

missions to scale as O(
√

n) with network density. 2 Un-

like loss, where extra O(log(n)) transmissions are sent to

keep the worst case mote up to date, the additional trans-

missions due to a lack of synchronization are completely

redundant, and represent avoidable inefficiency.

To remove the short-listen effect, we modified Trickle

slightly. Instead of picking a t in the range [0, τ ], t is se-

lected in the range [ τ
2 , τ ], defining a “listen-only” period

of the first half of an interval. Figure 7 depicts the mod-

ified algorithm. A listening period improves scalability

by enforcing a simple constraint. If sending a message

guarantees a silent period of some time T that is inde-

2To see this, assume the network of n motes with an interval
τ is in a steady state. If interval skew is uniformly distributed,
then the expectation is that one mote will start its interval every
τ

n
. For time t after a transmission, nt

τ
will have started their

intervals. From this, we can compute the expected time after a
transmission that another transmission will occur. This is when∏

n

t=0
(1 − t

n
) <

1

2

which is when t ≈
√

n, that is, when
√

n

τ
time has passed.

There will therefore be O(
√

n) transmissions.



Figure 7: Trickle Maintenance with a k of 1 and

a Listen-Only Period. Dark boxes are transmissions,

gray boxes are suppressed transmissions, and dotted

lines are heard transmissions.

pendent of density, then the send rate is bounded above

(independent of the density). When a mote transmits, it

suppresses all other motes for at least the length of the

listening period. With a listen period of τ
2 , it bounds the

total sends in a lossless single-hop network to be 2k, and

with loss scales as 2k · log(n), returning scalability to the

O(log(n)) goal.

The “Listening” line in Figure 6 shows the number of

transmissions in a single-hop network with no synchro-

nization when Trickle uses this listening period. As the

network density increases, the number of transmissions

per interval asymptotically approaches two. The listen-

ing period does not harm performance when the network

is synchronized: there are k transmissions, but they are

all in the second half of the interval.

To work properly, Trickle needs a source of random-

ness; this can come from either the selection of t or from

a lack of synchronization. By using both sources, Trickle

works in either circumstance, or any point between the

two (e.g., partial or loose synchronization).

4.3 Maintenance in a Multi­hop Network

To understand Trickle’s behavior in a multi-hop net-

work, we used TOSSIM, randomly placing motes in a

50’x50’ area with a uniform distribution, a τ of one sec-

ond, and a k of 1. To discern the effect of packet col-

lisions, we used both TOSSIM-bit and TOSSIM-packet

(the former models collisions, and the latter does not).

Drawing from the loss distributions in Figure 1, a 50’x50’

grid is a few hops wide. Figure 8 shows the results of this

experiment.

Figure 8(a) shows how the number of transmissions

per interval scales as the number of motes increases. In

the absence of collisions, Trickle scales as expected, at

O(log(n)). This is also true in the more accurate TOSSIM-

bit simulations for low to medium densities; however,

once there is over 128 motes, the number of transmis-

sions increases significantly.

This result is troubling – it suggests that Trickle can-

not scale to very dense networks. However, this turns out

to be a limitation of TinyOS’s CSMA as network utiliza-

Figure 9: The Effect of Proximity on the Hidden Terminal Prob-

lem. When C is within range of both A and B, CSMA will prevent C

from interfering with transmissions between A and B. But when C is in

range of A but not B, B might start transmitting without knowing that C

is already transmitting, corrupting B’s transmission. Note that when A

and B are farther apart, the region where C might cause this “hidden

terminal” problem is larger.

tion increases, and not Trickle itself. Figure 8(b) shows

the average number of receptions per transmission for

the same experiments. Without packet collisions, as net-

work density increases exponentially, so does the recep-

tion/transmission ratio. Packet collisions increase loss,

and therefore the base of the logarithm in Trickle’s O(log(n))
scalability. The increase is so great that Trickle’s aggre-

gate transmission count begins to scale linearly. As the

number of transmissions over space increases, so does

the probability that two will collide.

As the network becomes very dense, it succumbs to

the hidden terminal problem, a known issue with CSMA

protocols. In the classic hidden terminal situation, there

are three nodes, a, b, and c, with effective carrier sense

between a and b and a and c. However, as b and c do not

hear one another, a CSMA protocol will let them transmit

at the same time, colliding at b, who will hear neither. In

this situation, c is a hidden terminal to b and vice versa.

Figure 9 shows an instance of this phenomenon in a sim-

plistic disk model.

In TOSSIM-bit, the reception/transmission ratio plateaus

around seventy-five: each mote thinks it has about seventy-

five one-hop network neighbors. At high densities, many

packets are being lost due to collisions due to the hid-

den terminal problem. In the perfect scaling model, the

number of transmissions for m isolated and independent

single-hop networks is mk. In a network, there is a phys-

ical density (defined by the radio range), but the hidden

terminal problem causes motes to lose packets; hearing

less traffic, they are aware of a smaller observed density.

Physical density represents the number of motes who can

hear a transmission in the absence of any other traffic,

while observed density is a function of other, possibly

conflicting, traffic in the network. Increasing physical

density also make collision more likely; observed den-

sity does not necessarily increase at the same rate.
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Figure 8: Simulated Trickle Scalability for a Multi-hop Network with Increasing Density. Motes were uniformly

distributed in a 50’x50’ square area.

When collisions make observed density lower than phys-

ical density, the set of motes observed to be neighbors is

tied to physical proximity. The set of motes that can in-

terfere with communication by the hidden terminal prob-

lem is larger when two motes are far away than when

they are close. Figure 9 depicts this relationship.

Returning to Figure 8(b), from each mote’s perspec-

tive in the 512 and 1024 mote experiments, the observed

density is seventy-five neighbors. This does not change

significantly as physical density increases. As a mote

that can hear n neighbors, ignoring loss and other com-

plexities, will broadcast in an interval with probability
1
n

, the lack of increase in observed density increases the

number of transmissions (e.g., 512
75 → 1024

75 ).

TOSSIM simulates the mica network stack, which can

handle approximately forty packets a second. As utiliza-

tion reaches a reasonable fraction of this (e.g., 10 pack-

ets/second, with 128 nodes), the probability of a collision

becomes significant enough to affect Trickle’s behavior.

As long as Trickle’s network utilization is low, it scales as

expected. However, increased utilization affects connec-

tivity patterns, so that Trickle must transmit more than in

an quiet network. The circumstances of Figure 8, very

dense networks and a tiny interval, represent a corner

case. As we present in Section 5, maintenance intervals

are more likely to be on the order of tens of minutes. At

these interval sizes, network utilization will never grow

large as long as k is small.

To better understand Trickle in multi-hop networks,

we use the metric of redundancy. Redundancy is the

portion of messages heard in an interval that were un-

necessary communication. Specifically, it is each mote’s

expected value of c+s
k

− 1, where s is 1 if the mote trans-

mitted and 0 if not. A redundancy of 0 means Trickle

works perfectly; every mote communicates k times. For

example, a mote with a k of 2, that transmitted (s = 1),

and then received twice (c = 2), would have a redun-

dancy of 0.5 ( 2+1
2 −1): it communicated 50% more than

the optimum of k.

Redundancy can be computed for the single-hop ex-

periments with uniform loss (Figures 4 and 6). For ex-

ample, in a single-hop network with a uniform 20% loss

rate and a k of 1, 3 transmissions/interval has a redun-

dancy of 1.4= ((3 · 0.8) − 1), as the expectation is that

each mote receives 2.4 packets, and three motes transmit.

Figure 8(c) shows a plot of Trickle redundancy as net-

work density increases. For a one-thousand mote– larger

than any yet deployed – multi-hop network, in the pres-

ence of link asymmetry, variable packet loss, and the hid-

den terminal problem, the redundancy is just over 3.

Redundancy grows with a simple logarithm of the ob-

served density, and is due to the simple problem outlined

in Section 4.1: packets are lost. To maintain a communi-

cation rate for the worst case mote, the average case must

communicate a little bit more. Although the communi-

cation increases, the actual per-mote transmission rate

shrinks. Barring MAC failures, Trickle scales as hoped –

O(log(n)) – in multi-hop networks.

4.4 Load Distribution

One of the goals of Trickle is to impose a low over-

head. The above simulation results show that few pack-

ets are sent in a network. However, this raises the ques-

tion of which motes sent those packets; 500 transmis-

sions evenly distributed over 500 motes does not impose

a high cost, but 500 messages by one mote does.

Figure 10(a) shows the transmission distribution for a

simulated 400 mote network in a 20 mote by 20 mote

grid with a 5 foot spacing (the entire grid was 95’x95’),

run in TOSSIM-bit. Drawing from the empirical distri-



(a) Transmissions (b) Receptions

Figure 10: Communication topography of a simu-

lated 400 mote network in a 20x20 grid with 5 foot

spacing (95’x95’), running for twenty minutes with a

τ of one minute. The x and y axes represent space, with

motes being at line intersections. Color denotes the num-

ber of transmissions or receptions at a given mote.

butions in Figure 1, a five foot spacing forms a six hop

network from grid corner to corner. This simulation was

run with a τ of one minute, and ran for twenty minutes of

virtual time. The topology shows that some motes send

more than others, in a mostly random pattern. Given that

the predominant range is one, two, or three packets, this

non-uniformity is easily attributed to statistical variation.

A few motes show markedly more transmissions, for ex-

ample, six. This is the result of some motes being poor

receivers. If many of their incoming links have high loss

rates (drawn from the distribution in Figure 1), they will

have a small observed density, as they receive few pack-

ets.

Figure 10(b) shows the reception distribution. Unlike

the transmission distribution, this shows clear patterns.

motes toward the edges and corners of the grid receive

fewer packets than those in the center. This is due to

the non-uniform network density; a mote at a corner has

one quarter the neighbors as one in the center. Addition-

ally, a mote in the center has many more neighbors that

cannot hear one another; so that a transmission in one

will not suppress a transmission in another. In contrast,

almost all of the neighbors of a corner mote can hear

one another. Although the transmission topology is quite

noisy, the reception topography is smooth. The number

of transmissions is very small compared to the number of

receptions: the communication rate across the network is

fairly uniform.

4.5 Empirical Study

To evaluate Trickle’s scalability in a real network, we

recreated, as best we could, the experiments shown in

Figures 6 and 8. We placed motes on a small table, with

their transmission signal strength set very low, making

Figure 11: Empirical and Simulated over Density.

The simulated data is the same as Figure 8.

Event Action

τ Expires Double τ , up to τh. Reset c, pick a new t.

t Expires If c < k, transmit.

Receive same metadata Increment c.

Receive newer metadata Set τ to τl. Reset c, pick a new t.

Receive newer code Set τ to τl. Reset c, pick a new t.

Receive older metadata Send updates.

t is picked from the range [ τ

2
, τ ]

Figure 12: Trickle Pseudocode.

the table a small multi-hop network. With a τ of one

minute, we measured Trickle redundancy over a twenty

minute period for increasing numbers of motes. Fig-

ure 11 shows the results. They show similar scaling to the

results from TOSSIM-bit. For example, the TOSSIM-bit

results in Figure 8(c) show a 64 mote network having

an redundancy of 1.1; the empirical results show 1.35.

The empirical results show that maintenance scales as

the simulation results indicate it should: logarithmically.

The above results quantified the maintenance overhead.

Evaluating propagation requires an implementation; among

other things, there must be code to propagate. In the next

section, we present an implementation of Trickle, evalu-

ating it in simulation and empirically.

5. PROPAGATION

A large τ (gossiping interval) has a low communica-

tion overhead, but slowly propagates information. Con-

versely, a small τ has a higher communication overhead,

but propagates more quickly. These two goals, rapid

propagation and low overhead, are fundamentally at odds:

the former requires communication to be frequent, while

the latter requires it to be infrequent.

By dynamically scaling τ , Trickle can use its mainte-

nance algorithm to rapidly propagate updates with a very

small cost. τ has a lower bound, τl, and an upper bound

τh. When τ expires, it doubles, up to τh. When a mote

hears a summary with newer data than it has, it resets τ

to be τl. When a mote hears a summary with older code

than it has, it sends the code, to bring the other mote up

to date. When a mote installs new code, it resets τ to τl,

to make sure that it spreads quickly. This is necessary



Figure 13: Simulated Code Propagation Rate for Dif-

ferent τhs.

for when a mote receives code it did not request, that is,

didn’t reset its τ for. Figure 12 shows pseudocode for

this complete version of Trickle.

Essentially, when there’s nothing new to say, motes

gossip infrequently: τ is set to τh. However, as soon as

a mote hears something new, it gossips more frequently,

so those who haven’t heard it yet find out. The chatter

then dies down, as τ grows from τl to τh.

By adjusting τ in this way, Trickle can get the best

of both worlds: rapid propagation, and low maintenance

overhead. The cost of a propagation event, in terms of

additional sends caused by shrinking τ , is approximately

log( τh

τl

). For a τl of one second and a τh of one hour,

this is a cost of eleven packets to obtain a three-thousand

fold increase in propagation rate (or, from the other per-

spective, a three thousand fold decrease in maintenance

overhead). The simple Trickle policy, “every once in a

while, transmit unless you’ve heard a few other transmis-

sions,” can be used both to inexpensively maintain code

and quickly propagate it.

We evaluate an implementation of Trickle, incorpo-

rated into Maté, a tiny bytecode interpreter for TinyOS

sensor networks [13]. We first present a brief overview

of Maté and its Trickle implementation. Using TOSSIM,

we evaluate how how rapidly Trickle can propagate an

update through reasonably sized (i.e., 400 mote) networks

of varying density. We then evaluate Trickle’s propaga-

tion rate in a small (20 mote) real-world network.

5.1 Maté, a Trickle Implementation

Maté has a small, static set of code routines. Each rou-

tine can have many versions, but the runtime only keeps

the most recent one. By replacing these routines, a user

can update a network’s program. Each routine fits in a

single TinyOS packet and has a version number. The run-

time installs routines with a newer version number when

it receives them.

Instead of sending entire routines, motes can broadcast

version summaries. A version summary contains the ver-

sion numbers of all of the routines currently installed. A

mote determines that someone else needs an update by

hearing that they have an older version.

(a) 5’ Spacing, 6
hops

(b) 10’ Spacing, 16
hops

(c) 15’ Spacing, 32
hops

(d) 20’ Spacing, 40
hops

Figure 14: Simulated Time to Code Propagation To-

pography in Seconds. The hop count values in each leg-

end are the expected number of transmissions necessary

to get from corner to corner, considering loss.

Maté uses Trickle to periodically broadcast version sum-

maries. In all experiments, code routines fit in a single

TinyOS packet (30 bytes). The runtime registers rou-

tines with a propagation service, which then maintains

all of the necessary timers and broadcasts, notifying the

runtime when it installs new code. The actual code prop-

agation mechanism is outside the scope of Trickle, but

we describe it here for completeness. When a mote hears

an older vector, it broadcasts the missing routines three

times: one second, three seconds, and seven seconds af-

ter hearing the vector. If code transmission redundancy

were a performance issue, it could also use Trickle’s sup-

pression mechanism. For the purpose of our experiments,

however, it was not.

The Maté implementation maintains a 10Hz timer, which

it uses to increment a counter. t and τ are represented

in ticks of this 10Hz clock. Given that the current mote

platforms can transmit on the order of 40 packets/second,

we found this granularity of time to be sufficient. If the

power consumption of maintaining a 10Hz clock were an

issue (as it may be in some deployments), a non-periodic

implementation could be used instead.

5.2 Simulation

We used TOSSIM-bit to observe the behavior of Trickle

during a propagation event. We ran a series of simula-



Figure 15: Empirical Testbed

(a) τh of 1 minute, k = 1

(b) τh of 20 minutes, k = 1

(c) τh of 20 minutes, k = 2

Figure 16: Empirical Network Propagation Time.

The graphs on the left show the time to complete re-

programming for 40 experiments, sorted with increasing

time. The graphs on the right show the distribution of

individual mote reprogramming times for all of the ex-

periments.

tions, each of which had 400 motes regularly placed in

a 20x20 grid, and varied the spacing between motes. By

varying network density, we could examine how Trickle’s

propagation rate scales over different loss rates and phys-

ical densities. Density ranged from a five foot spacing

between motes up to twenty feet (the networks were 95’x95’

to 380’x380’). We set τl to one second and τh to one

minute. From corner to corner, these topologies range

from six to forty hops. 3

The simulations ran for five virtual minutes. motes

booted with randomized times in the first minute, se-

lected from a uniform distribution. After two minutes,

a mote near one corner of the grid advertised a new Maté

routine. We measured the propagation time (time for

the last mote to install the new routine from the time

it first appeared) as well as the topographical distribu-

tion of routine installation time. The results are shown in

Figures 13 and 14. Time to complete propagation varied

from 16 seconds in the densest network to about 70 sec-

onds for the sparsest. Figure 13 shows curves for only

the 5’ and 20’ grids; the 10’ and 15’ grid had similar

curves.

Figure 14(a) shows a manifestation of the hidden ter-

minal problem. This topography doesn’t have the wave

pattern we see in the experiments with sparser networks.

Because the network was only a few hops in area, motes

near the edges of the grid were able to receive and install

the new capsule quickly, causing their subsequent trans-

missions to collide in the upper right corner. In contrast,

the sparser networks exhibited a wave-like propagation

because the sends mostly came from a single direction

throughout the propagation event.

Figure 13 shows how adjusting τh changes the prop-

agation time for the five and twenty foot spacings. In-

creasing τh from one minute to five does not significantly

3These hop count values come from computing the minimum
cost path across the network loss topology, where each link has

a weight of 1

1−loss
, or the expected number of transmissions to

successfully traverse that link.



affect the propagation time; indeed, in the sparse case, it

propagates faster until roughly the 95th percentile. This

result indicates that there may be little trade-off between

the maintenance overhead of Trickle and its effectiveness

in the face of a propagation event.

A very large τh can increase the time to discover in-

consistencies to be approximately τh

2 . However, this is

only true when two stable subnets (τ = τh) with differ-

ent code reconnect. If new code is introduced, it immedi-

ately triggers motes to τl, bringing the network to action.

5.3 Empirical Study

As Trickle was implemented as part of Maté, several

other services run concurrently with it. The only one

of possible importance is the ad-hoc routing protocol,

which periodically sends out network beacons to esti-

mate link qualities. However, as both Trickle packets

and these beacons are very infrequent compared to chan-

nel capacity (e.g., at most 1 packet/second), this does not

represent a significant source of noise.

We deployed a nineteen mote network in an office area,

approximately 160’ by 40’. We instrumented fourteen of

the motes with the TCP interface described in Section 2,

for precise timestamping. When Maté installed a new

piece of code, it sent out a UART packet; by opening

sockets to all of the motes and timestamping when this

packet is received, we can measure the propagation of

code over a distributed area.

Figure 15 shows a picture of the office space and the

placement of the motes. motes 4, 11, 17, 18 and 19 were

not instrumented; motes 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13,

14, 15, and 20 were. mote 16 did not exist.

As with the above experiments, Trickle was configured

with a τl of one second and a τh of one minute. The ex-

periments began with the injection of a new piece of code

through a TinyOS GenericBase, which is a simple bridge

between a PC and a TinyOS network. The GenericBase

broadcast the new piece of code three times in quick suc-

cession. We then logged when each mote had received

the code update, and calculated the time between the first

transmission and installation.

The left hand column of Figure 16 shows the results of

these experiments. Each bar is a separate experiment (40

in all). The worst-case reprogramming time for the in-

strumentation points was just over a minute; the best case

was about seven seconds. The average, shown by the

dark dotted line, was just over twenty-two seconds for a

τh of sixty seconds (Figure 16(a)), while it was thirty-

two seconds for a τh of twenty minutes (Figure 16(b)).

The right hand column of Figure 16 shows a distribu-

tion of the time to reprogramming for individual motes

across all the experiments. This shows that almost all

motes are reprogrammed in the first ten seconds: the

longer times in Figure 16 are from the very long tail on

this distribution. The high loss characteristics of the mote

radio, combined with t’s exponential scaling, make this

an issue. When scaling involves sending only a handful

(e.g., log2(60)) of packets in a neighborhood in order to

conserve energy, long tails are inevitable.

In Figure 16, very few motes reprogram between one

and two seconds after code is introduced. This is an ar-

tifact of the granularity of the timers used, the capsule

propagation timing, and the listening period. Essentially,

from the first broadcast, three timers expire: [ τl
2 , τl] for

motes with the new code,[ τl
2 , τl] for motes saying they

have old code, then one second before the first capsule is

sent. This is approximately 2 · τl

2 + 1; with a τl of one

second, this latency is two seconds.

5.4 State

The Maté implementation of Trickle requires few sys-

tem resources. It requires approximately seventy bytes of

RAM; half of this is a message buffer for transmissions,

a quarter is pointers to the Maté routines. Trickle itself

requires only eleven bytes for its counters; the remain-

ing RAM is used by coordinating state such as pending

and initialization flags. The executable code is 2.5 KB;

TinyOS’s inlining and optimizations can reduce this by

roughly 30%, to 1.8K. The algorithm requires few CPU

cycles, and can operate at a very low duty cycle.

6. RELATED WORK

Trickle draws on two major areas of prior research.

Both assume network characteristics distinct from low-

power wireless sensor networks, such as cheap commu-

nication, end-to-end transport, and limited (but existing)

loss. The first area is controlled, density-aware flooding

algorithms for wireless and multicast networks [6, 16,

19]. The second is epidemic and gossiping algorithms

for maintaining data consistency in distributed systems [2,

4, 5].

Prior work in network broadcasts has dealt with a dif-

ferent problem than the one Trickle tackles: delivering

a piece of data to as many nodes as possible within a

certain time period. Early work showed that in wireless

networks, simple broadcast retransmission could easily

lead to the broadcast storm problem [19], where compet-

ing broadcasts saturate the network. This observation led

to work in probabilistic broadcasts [16, 21], and adaptive

dissemination [9]. Just as with earlier work in bimodal

epidemic algorithms [1], all of these algorithms approach

the problem of making a best-effort attempt to send a

message to all nodes in a network, then eventually stop.

For example, Ni et al. propose a counter-based algo-

rithm to prevent the broadcast storm problem by sup-

pressing retransmissions [19]. This algorithm operates

on a single interval, instead of continuously. As results

in Figure 16 show, the loss rates in the class of wire-



less sensor network we study preclude a single interval

from being sufficient. Additionally, their studies were on

lossless, disk-based network topologies; it is unclear how

they would perform in the sort of connectivity observed

in the real world [12].

This is insufficient for sensor network code propaga-

tion. For example, it is unclear what happens if a mote

rejoins three days after the broadcast. For configurations

or code, the new mote should be brought up to date. Us-

ing prior wireless broadcast techniques, the only way to

do so is periodically rebroadcast to the entire network.

This imposes a significant cost on the entire network. In

contrast, Trickle locally distributes data where needed.

The problem of propagating data updates through a

distributed system has similar goals to Trickle, but prior

work has been based on traditional wired network mod-

els. Demers et al. proposed the idea of using epidemic

algorithms for managing replicated databases [5], while

the PlanetP project [4] uses epidemic gossiping for a a

distributed peer-to-peer index. Our techniques and mech-

anisms draw from these efforts. However, while tradi-

tional gossiping protocols use unicast links to a random

member of a neighbor set, or based on a routing over-

lay [2], Trickle uses only a local wireless broadcast, and

its mechanisms are predominantly designed to address

the complexities that result.

Gossiping through the exchange of metadata is rem-

iniscent of SPIN’s three-way handshaking protocol [9];

the Impala system, deployed in ZebraNet, uses a similar

approach [15]. Specifically, Trickle is similar to SPIN-

RL, which works in broadcast environments and pro-

vides reliability in lossy networks. Trickle differs from

and builds on SPIN in three major ways. First, the SPIN

protocols are designed for transmitting when they detect

an update is needed; Trickle’s purpose is to perform that

detection. Second, the SPIN work points out that periodi-

cally re-advertising data can improve reliability, but does

not suggest a policy for doing so; Trickle is such a pol-

icy. Finally, the SPIN family, although connectionless, is

session oriented. When a node A hears an advertisement

from node B, it then requests the data from node B. In

contrast, Trickle never considers addresses. Taking the

previous example, with Trickle B sends an implicit re-

quest, which a node besides A may respond to.

Trickle’s suppression mechanism is inspired by the re-

quest/repair algorithm used in Scalable and Reliable Mul-

ticast (SRM) [6]. However, SRM focuses on reliable de-

livery of data through a multicast group in a wired IP net-

work. Using IP multicast as a primitive, SRM has a fully

connected network where latency is a concern. Trickle

adapts SRM’s suppression mechanisms to the domain of

multi-hop wireless sensor networks.

Although both techniques – broadcasts and epidemics

– have assumptions that make them inappropriate to prob-

lem of code propagation and maintenance in sensor net-

works, they are powerful techniques that we draw from.

An effective algorithm must adjust to local network den-

sity as controlled floods do, but continually maintain con-

sistency in a manner similar to epidemic algorithms. Tak-

ing advantage of the broadcast nature of the medium,

a sensor network can use SRM-like duplicate suppres-

sion to conserve precious transmission energy and scale

to dense networks.

In the sensor network space, Reijers et al. propose en-

ergy efficient code distribution by only distributing changes

to currently running code [20]. The work focuses on de-

veloping an efficient technique to compute and update

changes to a code image through memory manipulation,

but does not address the question of how to distribute the

code updates in a network or how to validate that nodes

have the right code. It is a program encoding that Trickle

or a Trickle-like protocol can use to transmit updates.

The TinyDB sensor network query system uses an epi-

demic style of code forwarding [17]. However, it de-

pends on periodic data collection with embedded meta-

data. Every tuple routed through the network has a query

ID associated with it and a mote requests a new query

when it hears it. In this case, the metadata has no cost,

as it would be sent anyways. Also, this approach does

not handle event-driven queries for rare events well; the

query propagates when the event occurs, which may be

too late.

7. DISCUSSION AND CONCLUSION

Using listen periods and dynamic τ values, Trickle

meets the requirements set out in Section 1. It can quickly

propagate new code into a network, while imposing a

very small overhead. It does so using a very simple mech-

anism, and requires very little state. Scaling logarithmi-

cally with density, it can be used effectively in a wide

range of networks. In one of our empirical experiments,

Trickle imposes an overhead of less than three packets

per hour, but reprograms the entire network in thirty sec-

onds, with no effort from an end user.

A trade-off emerges between energy overhead and re-

programming rate. By using a dynamic communication

rate, Trickle achieves a reprogramming rate comparable

to frequent transmissions while keeping overhead com-

parable to infrequent transmissions. However, as Fig-

ure 16 shows, the exact relationship between constants

such as τh and k is unclear in the context of these high

loss networks. τl affects the head of the distribution ,

while τh affects the tail.

In this study, we have largely ignored the actual policy

used to propagate code once Trickle detects the need to

do so: Maté merely broadcasts code routines three times.

Trickle suppression techniques can also be used to con-

trol the rate of code transmission. In the current Maté



implementation, the blind code broadcast is a form of

localized flood; Trickle acts as a flood control protocol.

This behavior is almost the inverse of protocols such as

SPIN [9], which transmits metadata freely but controls

data transmission.

Assuming complete network propagation allows Trickle

to decouple code advertisement from code transmission.

As the protocol does not consider network addresses, the

mote that advertises code – leading to an implicit request

– may not be the one that transmits it. Instead of try-

ing to enforce suppression on an abstraction of a logi-

cal group, which can become difficult in multi-hop net-

works, Trickle suppresses in terms of space, implicitly

defining a group. Correspondingly, Trickle does not im-

pose the overhead of discovering and maintaining logical

groups, which can be significant.

One limitation of Trickle is that it currently assumes

motes are always on. To conserve energy, long-term mote

deployments often have very low duty cycles (e.g., 1%).

Correspondingly, motes are rarely awake, and rarely able

to receive messages. Communication scheduling schemes

can define times for code communication, during which

motes in the network wake up to run Trickle. Essentially,

the Trickle time intervals become logical time, spread

over all of the periods motes are actually awake. Un-

derstandably, this might require alternative tunings of τh

and k. Trickle’s scalability, however, stems from ran-

domization and idle listening. As Section 4.3 showed,

Trickle’s transmission scalability suffers under a CSMA

protocol as utilization increases. Another, and perhaps

more promising, option is to use low power listening,

where transmitters send very long start symbols so re-

ceivers can detect packets when sampling the channel at

a very low rate [10]. For more dense networks, the re-

ceiver energy savings could make up for the transmitter

energy cost.

Trickle was designed as a code propagation mecha-

nism over an entire network, but it has greater appli-

cability, and could be used to disseminate any sort of

data. Additionally, one could change propagation scope

by adding predicates to summaries, limiting the set of

motes that consider them. For example, by adding a “hop

count” predicate to local routing data, summaries of a

mote’s routing state could reach only two-hop network

neighbors of the summary owner; this could be used to

propagate copies of mote-specific information.

As sensor networks move from research to deploy-

ment, from laboratory to the real world, issues of man-

agement and reconfiguration will grow in importance.

We have identified what we believe to be a core network-

ing primitive in these systems, update distribution, and

designed a scalable, lightweight algorithm to provide it.
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