
Trickle: A Userland Bandwidth Shaper for Unix-like Systems

Marius A. Eriksen∗

Google, Inc.
mae@google.com

Abstract

As with any finite resource, it is often necessary to ap-
ply policies to the shared usage of network resources.
Existing solutions typically implement this by employ-
ing traffic management in edge routers. However, users
of smaller networks regularly find themselves in need
of nothing more than ad-hoc rate limiting. Such net-
works are typically unmanaged, with no network admin-
istrator(s) to manage complicated traffic management
schemes. Trickle bridges this gap by providing a simple
and portable solution to rate limit the TCP connections
of a given process or group of processes.
Trickle takes advantage of the Unix dynamic loader’s
preloading functionality to interposition itself in front of
the BSD socket API provided by the system’s libc. Run-
ning entirely in user space, shapes network traffic by de-
laying and truncating socket I/Os without requiring ad-
ministrator privileges. Instances of Trickle can coop-
erate, even across networks allowing for the specifica-
tion of global rate limiting policies. Due to the preva-
lence of BSD sockets and dynamic loaders, Trickle enjoys
the benefit of portability accross a multitude of Unix-like
platforms.

1 Introduction

Bandwidth shaping is traditionally employed monolith-
ically as part of network infrastructure or in the local
operating system kernel which works well for provid-
ing traffic management to large networks. Such solutions
typically require dedicated administration and privileged
access levels to network routers or the local operating
system.
Unmanaged network environments without any set
bandwidth usage policies (for example home and small
office networks) typically do not necessitate mandatory

∗Work done by the author while at the University of Michigan.

traffic management. More likely, the need for band-
width shaping is largely ad-hoc, to be employed when
and where it is needed. For example,

• bulk transfers may adversely impact an interactive
session and the two should receive differentiated
services, or

• bulk transfers may need to be prioritized.

Furthermore, such users may not have administrative ac-
cess to their operating system(s) or network infrastruc-
ture in order to apply traditional bandwidth shaping tech-
niques.
Some operating systems provide the ability to shape
traffic of local origin (these are usually extensions to the
router functionality provided by the OS). This function-
ality is usually embedded directly in the network stack
and resides in the operating system kernel. Network traf-
fic is not associated with the local processes responsible
for generating the traffic. Rather, other criteria such as
IP, TCP or UDP protocols and destination IP addresses
are used in classifying network traffic for shaping. These
policies are typically global to the host (thus applying to
all users on it). Since these policies are mandatory and
global, it is the task of the system administrator to man-
age the traffic policies.
These are the many burdens that become evident if one
would like to employ bandwidth shaping in an ad-hoc
manner. While there have been a few attempts to add
voluntary bandwidth shaping capabilities to the afore-
mentioned in-kernel shapers[25], there is still a lack of
a viable implementation and there is no use of collabo-
ration between multiple hosts. These solutions are also
non-portable and there is a lack of any standard applica-
tion or user interfaces.
We would like to be able to empower any unprivi-
leged user to employ rate limiting on a case-by-case ba-
sis, without the need for special kernel support. Trickle
addresses precisely this scenario: Voluntary ad-hoc rate

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 61



limiting without the use of a network wide policy.
Trickle is a portable solution to rate limiting and it runs
entirely in user space. Instances of Trickle may col-
laborate with each other to enforce a network wide rate
limiting policy, or they may run independently. Trickle
only works properly with applications utilizing the BSD
socket layer with TCP connections. We do not feel this
is a serious restriction: Recent measurements attribute
TCP to be responsible for over 90% of the volume of
traffic in one major provider’s backbone[16]. The major-
ity of non-TCP traffic is DNS (UDP) – which is rarely
desirable to shape anyway.
We strive to maintain a few sensible design criteria for
Trickle:

• Semantic transparency: Trickle should never
change the behavior or correctness of the process
it is shaping (Other than the data transfer rates).

• Portability: Trickle should be extraordinarily
portable, working with any Unix-like operating sys-
tem that has shared library and preloading support.

• Simplicity: No need for excessively expressive poli-
cies that confuse users. Don’t add features that will
be used by only 1 in 20 users. No setup cost, a user
should be able to immediately make use of Trickle
after examining just the command line options (and
there should be very few command line options).

The remainder of this paper is organized as follows:
Section 2 describes the linking and preloading features
of modern Unix-like systems. Section 3 provides a high-
level overview of Trickle. Section 4 discusses the details
of Trickle’s scheduler. In section 5 we discuss related
work. Finally, section 9 concludes.

2 Linking and (Pre)Loading

Dynamic linking and loading have been widely used in
Unix-like environments for more than a decade. Dy-
namic linking and loading allow an application to refer
to an external symbol which does not need to be resolved
to an address in memory until the runtime of the particu-
lar binary. The canonical use of this capability has been
to implement shared libraries. Shared libraries allow an
operating system to share one copy of commonly used
code among any number of processes. We refer to re-
solving these references to external objects as link edit-
ing, and to unresolved external symbols simply as exter-
nal symbols.
After compilation, at link time, the linker specifies a
list of libraries that are needed to resolve all external
symbols. This list is then embedded in the final exe-
cutable file. At load time (before program execution),

the link editor maps the specified libraries into memory
and resolves all external symbols. The existence of any
unresolved symbols at this stage results in a run time er-
ror.
To load load its middleware into memory, Trickle
uses a feature of link editors in Unix-like systems called
preloading. Preloading allows the user to specify a list of
shared objects that are to be loaded together the shared li-
braries. The link editor will first try to resolve symbols to
the preload objects (in order), thus selectively bypassing
symbols provided by the shared libraries specified by the
program. Trickle uses preloading to provide an alterna-
tive version of the BSD socket API, and thus socket calls
are now handled by Trickle. This feature has been used
chiefly for program and systems diagnostics; for exam-
ple, to match malloc to free calls, one would provide
an alternative of these functions via a preload library that
has the additional matching functionality.
In practice, this feature is used by listing the libraries
to preload in an environment variable. Preloading does
not work for set-UID or set-GID binaries for security rea-
sons: A user could perform privilege elevation or arbi-
trary code execution by specifying a preload object that
defines some functionality that is known to be used by
the target application.
We are interested in interpositioning Trickle in be-
tween the shaped process and the socket implementa-
tion provided by the system. Another way to look at
it, is that Trickle acts as a proxy between the two. We
need some way to call the procedures Trickle is proxy-
ing. The link editor provides this functionality through
an API that allows a program to load an arbitrary shared
object to resolve any symbol contained therein. The API
is very simple: Given a string representation of the sym-
bol to resolve, a pointer to the location of that symbol
is returned. A common use of this feature is to provide
plug-in functionality wherein plugins are shared objects
and may be loaded and unloaded dynamically.
Figure 1 illustrates Trickle’s interpositioning.

3 How Trickle Works

We describe a generic rate limiting scheme defining a
black-box scheduler. We then look at the practical as-
pects of how Trickle interpositions its middleware in or-
der to intercept socket calls. Finally we discuss howmul-
tiple instances of Trickle collaborate to limit their aggre-
gate bandwidth usage.

3.1 A Simple Rate Limiting Scheme

A process utilizing BSD sockets may perform its own
rate limiting. For upstream limiting, the application can

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association62



do this by simply limiting the rate of data that is writ-
ten to a socket. Similarly, for downstream limiting, an
application may limit the rate of data it reads from a
socket. However, the reason why this works is not imme-
diately obvious. When the application neglects to read
some data from a socket, its socket receive buffers fill up.
This in turn will cause the receiving TCP to advertise a
smaller receiver window (rwnd), creating back pressure
on the underlying TCP connection thus limiting its data
flow. Eventually this “trickle-down” effect achieves end-
to-end rate limiting. Depending on buffering in all layers
of the network stack, this effect may take some time to
propagate. More detail regarding the interaction between
this scheme and TCP is provided in section 4.
While this scheme is practical, two issues would hin-
der widespread employment. Firstly, the scheme out-
lined is deceptively simple. As we will see in section 4,
there are many details which make shaping at this level
of abstraction complicated. The second issue is that there
are no standard protocols or APIs for multiple processes
to collaborate.
We also argue that employing bandwidth shaping in-
side of an application breaks abstraction layers. It is re-
ally the task of the operating system to apply policies to
bandwidth usage, and it should not need to be a feature
of the application. Even if libraries were developed to
assist application developers, employing rate limiting in
this manner would still put considerable burden on the
developers and it should not be expected that every de-
veloper would even support it. The socket API provided
by the OS provides certain functionality, and it should
be the freedom of the application to use it unchanged,
and not have to rely on semantics at the lower levels of
abstraction in order to limit bandwidth usage.
There are also exceptions to these arguments. For ex-
ample, certain protocols may benefit from application
level semantics to perform shaping. Another example is
that some applications may be able to instruct the send-
ing party to limit its rate of outbound traffic[9] which is
clearly preferable over relying on TCP semantics to per-
form traffic shaping.
Trickle provides a bandwidth shaping service without
the need to modify applications. Trickle augments the
operating system by interpositioning its middleware in
front of the libc socket interface. From there, Trickle
applies rate limiting to any dynamically linked binary
that uses the BSD socket layer. By providing a stan-
dard command line utility, Trickle provides a simple and
consistent user interface to specify rate limiting param-
eters. Communicating with the trickle daemon, allows
all instances of Trickle to participate in collaborative rate
limiting, even across hosts.
In addition to allowing portability, this approach of-
fers several advantages. There is no need for extending

libtrickle.so

libc.so

OS kernel

printf()ioctl()

write()

send()

delaysmooth()

sys_ioctl()
sys_write()sys_recv()

sys_send()

application
recv()

Figure 1: libtrickle.so is preloaded in the
application’s address space, calls to recv() and
send() are handled by libtrickle.so and
passed down to libc.

the kernel nor configuring such extensions; any user may
use and configure Trickle any way she wants, making it
ideal for ad-hoc rate limiting. There are also a number of
advantages to this approach from the developer’s point
of view. Furthermore, being entirely contained in user-
land has made Trickle inherently easier to develop. It is
easier to perform experiments and the software is easier
to maintain and will be understood by a wider audience.
The primary disadvantage to using this approach is
that all usage of Trickle is voluntary – that is, one cannot
enforce rate limiting by policy (though some operating
systems provide a mechanism for administrators to en-
force preload libraries, there are still ways to get around
its interpositioning). For its intended usage, this is not a
big drawback as ad-hoc bandwidth shaping implies users
do so voluntarily. Secondly and with smaller impact,
Trickle cannot work with statically linked binaries.

3.2 The Mechanics of Library Interposi-
tioning

With very rare exceptions, network software for Unix-
like systems uses the socket abstraction provided by the
operating system. In reality, the socket abstraction is en-
tirely contained in the system call layer with correspond-
ing libc shims1. Thus, with the use of the link editor’s
preload functionality, we interposition the Trickle mid-
dleware at a convenient level of abstraction and we do so
entirely in user space.
Using preload objects, we replace the BSD socket ab-
straction layer provided by libc. However, to success-
fully interposition the Trickle middleware, we must be
able to call the original version of the very interface we
have replaced. To resolve this issue, we need to take ad-
vantage of the second feature of the link editor we dis-
cussed: We simply explicitly resolve the libc shims
and call them as needed. This is done by opening the

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 63



actual object file that contains libc, and using the link-
editor API to resolve the symbols needed. The location
of the libc shared object is discovered in the configura-
tion/compilation cycle, but could just as easily be discov-
ered dynamically at run time. Figure 1 attempts to illus-
trate the mechanics of the interpositioning of the Trickle
middleware.
In practice, preload objects are specified by the envi-
ronment variable LD PRELOAD. Trickle’s command line
utility, trickle, sets this environment variable to the
object that contains Trickle’s middleware. Additionally,
it passes any parameters specified by the user in other en-
vironment variables in a well defined namespace. These
parameters may include upstream or downstream rates to
apply, as well as whether or not this instance of Trickle
should collaborate with other instances of Trickle.

3.3 The Life of a Socket

New sockets are created with either the socket() or
accept() interfaces. An old socket is aliased with
calls to dup() or dup2(). Any new or duplicated
socket is marked by Trickle by keeping an internal table
indexing every such socket. File descriptors that are not
marked are ignored by Trickle, and relevant calls spec-
ifying these as the file descriptor argument are simply
passed through to the libc shims without any process-
ing. Note that it is also possible for an application to per-
form file descriptor passing: An application may send an
arbitrary file descriptor to another over local inter pro-
cess communication (IPC), and the receiving application
may use that file descriptor as any other. File descrip-
tor passing is currently not detected by Trickle. When a
socket is closed, it is unmarked by Trickle. We say that
any marked socket is tracked by Trickle.
Two categories of socket operations are most pertinent
to Trickle: Socket I/O and socket I/O multiplexing. In
the following discussion we assume that we possess a
black box. This black box has as its input a unique socket
identifier (e.g. file descriptor number) and the direction
and length of the I/O operation to be performed on the
socket. A priority for every socket may also be specified
as a means to indicate the wish for differentiated service
levels between them. The black box outputs a recom-
mendation to either delay the I/O, to truncate the length
of the I/O, or a combination of the two. We refer to this
black box as the Trickle scheduler and it discussed in de-
tail in a later section.
The operation of Trickle, then, is quite simple: Given a
socket I/O operation, Trickle simply consults the sched-
uler and delays the operation by the time specified, and
when that delay has elapsed, it reads or writes at most the
number of bytes specified by the scheduler. If the socket
is marked non-blocking, the scheduler will specify the

length of I/O that is immediately allowable. Trickle will
perform this (possibly truncated) I/O and return immedi-
ately, as to not block and violate the semantics of non-
blocking sockets. Note that BSD socket semantics allow
socket I/O operations to return short counts – that is, an
operation is not required to complete in its entirety and
it is up to the caller to ensure all data is sent (for exam-
ple by looping or multiplexing over a calls to send()
and recv()). In practice, this means that the Trickle
middleware is also allowed to return short I/O counts for
socket I/O operations without affecting the semantics of
the socket abstraction. This is an essential property of
the BSD socket abstraction that we use in Trickle.

Multiplexing I/O operations, namely calls to
select() and poll()2 are more complex. The
purpose of the I/O multiplexing interface is to, given a
set of file descriptors and conditions to watch for each,
notify the caller when any condition is satisfied (e.g.
file descriptor x is ready for reading). One or more of
these file descriptors may be tracked by Trickle, so it is
pertinent for Trickle to wrap these interfaces as well.
Specifically, select() and poll() are wrapped,
these may additionally wait for a timeout event (which
is satisfied as soon as the specified timeout value has
elapsed).

To simplify the discussion around how Trickle han-
dles multiplexing I/O, we abstract away the particular in-
terface used and assume that we deal only with a set of
file descriptors, one or more of which may be tracked by
trickle. Also specified is a global timeout. For every file
descriptor that is in the set and tracked by Trickle, the
scheduler is invoked to see if the file descriptor would
be capable of I/O immediately. If it is not, it is removed
from the set and added to a holding set. The scheduler
also returns the amount of time needed for the file de-
scriptor to become capable of I/O, the holding time. The
scheduler calculates this on the basis of previously ob-
served I/O rates on that socket. Trickle now recalculates
the timeout to use for the multiplexing call: This is the
minimum of the set of holding times and the global time-
out.

Trickle then proceeds to invoke the multiplexing call
with the new set of file descriptors (that is, the original
set minus the holding set) and the new timeout. If the
call returns because a given condition has been satisfied,
Trickle returns control to the caller. If it returns due to a
timeout imposed by Trickle, the process is repeated, with
the global timeout reduced by the time elapsed since the
original invocation of the multiplexing call (wrapper). In
practice, a shortcut is taken here, where only file descrip-
tors from the holding set are examined, and rolled in if
ready. The process is repeated until any user specified
condition is satisfied by the underlying multiplexing call.

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association64



3.4 Collaboration
We have detailed how Trickle works with a set of sock-
ets in a single process, though more often than not it is
highly practical to apply global rate limits to a set of pro-
cesses that perform network I/O. These processes do not
necessarily reside a single host; it is often useful to ap-
ply them on every process that contributes to the network
traffic passing through a particular gateway router, or to
use a global limit to control the utilization of the local
area network. It may also be desirable to apply indi-
vidual rate limiting policies for processes or classes of
processes.
Trickle solves this by running a daemon, trickled
which coordinates among multiple instances of Trickle.
The user specifies to trickled the global rate limita-
tions which apply across all instances of Trickle. That
is, the aggregate I/O rates over all processes shaped by
Trickle may not exceed the global rates. Furthermore,
the user can specify a priority per instance or type of in-
stance (e.g. interactive applications), allowing her to pro-
vide differentiated network services to the various client
applications.
By default, trickled listens on a BSD domain
socket and accepts connections from instances of Trickle
running on the local host. These instances then request a
bandwidth allocation from trickled. The bandwidth
allocation is computed using the same black box sched-
uler described previously. It is used in a slightly different
mode where the scheduler simply outputs the current rate
the entity is assigned. These rate allocations may change
frequently, and so the instances of Trickle get updated
allocations with some preset regularity.
It is worth noting that there is a simple denial of ser-
vice attack should a rogue user exist on the system. This
user could simply create as many fake Trickle instances
as necessary and, without actually doing any socket I/O,
report data transfers to trickled. Of course, such a
user could, though using more resources to do so, also
consume as much network resources as possible, in effect
achieving the same result by exploiting TCP fairness.
The samemodel of collaboration is applied across sev-
eral hosts. Instead of listening on a Unix domain socket,
trickled listens on a TCP socket, and can thus sched-
ule network resource usage across any number of hosts.
In this scenario, rate allocation updates may start to con-
sume a lot of local network resources, so care must be
taken when setting the frequency at which updates are
sent.

4 I/O Scheduling With Rate Restrictions

The problem of rate limiting in Trickle can be general-
ized to the following abstraction: Given a number of en-

tities capable of transmitting or receiving data, a global
rate limit must be enforced. Furthermore, entities may
have different priorities relative to each other as to dif-
ferentiate their relative service levels. In Trickle, we use
this abstraction twice: In a shaped process, a socket is
represented as an entity with priority 1. In trickled
every collaborating process is represented by an entity
(the collaborating processes may even reside on different
hosts) and every entity is assigned a priority according to
a user specified policy.
When an entity is ready to perform some I/O, it must
consult the scheduler. The scheduler may then advise
the entity to delay its request, to partially complete the
request (i.e. truncate the I/O operation), or a combination
of the two. In this capacity, the scheduler is global and
coordinates the I/O allocation over all entities. In another
mode, the scheduler simply outputs the current global
rate allocation for the requesting entity.
After an entity has performed an I/O operation, it no-
tifies the Trickle scheduler with the direction (sent or
received) and length of the I/O. Trickle then updates a
bandwidth statistics structure associated with that entity
and direction of data. This structure stores the average
data throughput rate for the entire lifetime of that entity
as well as a windowed average over a fixed number of
bytes. Also, an aggregate statistic covering all entities is
updated.
Before an entity performs I/O, it consults the Trickle
scheduler to see how much delay it must apply and how
much data it is allowed to send or receive after the de-
lay has elapsed. Let us assume for the moment that the
scheduler need only decide for how long to delay the re-
quested I/O operation.

4.1 Distribution and allocation

Every entity has an assigned number of points inversely
proportional to that entity’s priority. The global rate limit
is divided by the total number of points over all entities,
and this is the rate allotment per point. If every entity per-
formed I/O with a rate equal to its number of points mul-
tiplied by the per point allotment, the total rate over all
entities would be at the rate limit and every entity would
perform I/O at a rate proportional to their assigned prior-
ity. Since Trickle is performing bandwidth shaping, most
often the entities has the ability to exceed the transfer
rates that they are assigned by the scheduler. The entities
only very seldomly behave in any predictable manner:
Their data transfer rates may be bursty, they may have
consistent transfer rates lower than their alloted rates, or
they might be idle. At the same time, the scheduler needs
to make sure that the entities in aggregate may transfer
data at a rate capped only by the total rate limit: Trickle
should never hinder its client applications from fully uti-

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 65



lizing the bandwidth allocated to them.
Statistics structures as well as limits are kept inde-
pendently per-direction and thus Trickle is fully asym-
metric. Furthermore, it is worthy to note that Trickle
makes scheduling decisions based on a windowed aver-
age. Dealing with instantaneous bursts is discussed later.

4.2 Scheduling

Trickle uses a simple but effective algorithm to schedule
I/O requests. It is a global scheduler that preserves ev-
ery requirement outlines above. We maintain a total T ,
which is initialized with the total number of points al-
loted over all entities. We also maintain a per-point allot-
ment P which is initially calculated as outlined above.
An entity consumes bandwidth less than its allotment
if its measured (windowed average) consumption is less
than its number of points Ep multiplied by the per-point
allotment P .
For every entity that consumes bandwidth less than
its allotment, we subtract Ep from T , and then add the
difference between E’s actual consumption and it’s al-
loted consumption to a free pool, F . After iterating over
the entities, the value of the free pool is redistributed
amongst the remaining entities. In practice, this is done
by inflating the per-point allotment: P = P + F/T .
This process is then repeated until there are either no
remaining entities that have more allotment than their
consumption or all remaining entities have more allot-
ment than their consumption. This is the stable state. We
call the final allotment of each entity after this process
the adjusted allotment.
After the adjustment process, if the entity being sched-
uled is currently consuming bandwidth at a rate less than
its adjusted allotment, Trickle allows the operation to
proceed immediately. If not, it requests the entity to de-
lay the operation by the time it would take to send the
requested number of bytes at the adjusted rate.
Figure 2 shows bandwidth consumption at the receiv-
ing end of two bulk transfers shaped collaboratively by
Trickle, one having a lower priority. The aggregate band-
width consumption (i.e. the sum of the two) is also
shown. Trickle was configured with a global receive
limit of 10 kB/s. The lower priority transfer has an av-
erage transfer rate of 3,984 bytes/second with a standard
deviation of 180 bytes/second. The higher priority trans-
fer averages at 5,952 bytes/sec with a standard deviation
of 455 bytes/second.

4.3 Smoothing

This naı̈ve approach of delaying I/O operations tends
to result in very bursty network behavior since we are

750 800 850 900 950
Time (s)

0

5000

10000

R
ec

ei
ve

 ra
te

 (b
yt

es
/s

)

Priority 2 bulk transfer
Priority 8 bulk transfer
Aggregate

Differentiated Services in Trickle

Figure 2: Measuring a windowed-average band-
width consumption of two bulk transfers with dif-
ferentiated service. Trickle was configured with a
global limit of 10 kB/s.

blocking an I/O of any length for some time, and then let-
ting it complete in full. As expected, this behavior is es-
pecially prevalent when operations are large. In the short
term, burstiness may even result in over shaping as net-
work conditions are changing, and the scheduler might
have been able allocate more I/O to the stream in ques-
tion. Figure 4 shows the extremity of this effect, where
operations are large and rate limiting very aggressive.
The length of an I/O may also be unpredictable, espe-
cially in applications with network traffic driven by user
input (e.g. interactive login sessions or games). Such
applications are naturally bursty and it would be advan-
tageous for Trickle to dampen these bursts.
Note that even if Trickle considered instantaneous
bandwidth consumption in addition to the windowed av-
erage as netbrake[5] does, bursty behavior would still be
present in many applications. When shaping is based on
both instantaneous and average bandwidths, it is the hope
that the buffers underneath the application layer will pro-
vide dampening. For I/Os (keep in mind that applica-
tions are allowed to make arbitrarily large I/O requests to
the socket layer) with lengths approaching and exceeding
the bandwidth × delay product, buffering provides little
dampening.
Thus, we introduce techniques to smooth these bursts.
The techniques we introduce are generic and apply
equally to both instantaneous and TCP burstiness. Our
technique makes use of two parameters to normalize traf-
fic transmitted or received by the socket layer.
In the following discussion, we use the variable

pointvalue to indicate the value of a point after schedul-
ing, numpoints is the number of points allocated to

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association66



Figure 3: Measuring a windowed-average band-
width consumption at the receiving end, this plot
shows the effects of smoothing in Trickle.

the entity in question and length refers to the (original)
length of the I/O being scheduled.
We first introduce a time smoothing parameter. We set
the delay imposed on a socket to the minimum of the
time smoothing parameter and the delay requested (by
the process outlined in the previous subsection). If the
time smoothing delay is the smaller of the two, the length
is truncated so that the entity meets its adjusted rate al-
lotment. This is called the adjusted length: adjlen =
pointvalue∗numpoints∗timesmoothingparam. The pur-
pose of the time smoothing parameter is to introduce a
certain continuity in the data transfer.
We must be able to handle the case where the adjusted
length is 0. That is, the time smoothing parameter is too
small to send even one byte. To mitigate this situation,
we introduce a length smoothing parameter. When the
adjusted length is 0, we simply set the length to the length
smoothing parameter, and adjust the delay accordingly:
delay = length/(pointvalue ∗ numpoints).
The effect of smoothing is illustrated in figure 3. Here,
Iperf[27], a network measurement tool, was run for 60
seconds. The source node was rate limited with Trickle,
which was configured to rate limit at 80 KB/s. The thin
line indicates the resulting Iperf behavior without any
smoothing applied. The thick line applies a time smooth-
ing parameter of 500 ms. The transfer rates shown are
instantaneous with a sampling rate once per second.
In practice, the scheduler deployed as follows: In a
single Trickle instance, the entities are sockets, all with
priority 1 and the global limit is either user specified or
by trickled. trickled again uses the same sched-
uler: Here the entities are the instances of Trickle, and
the global limit is specified by the user. Note that in

5 10 15 20 25 30
time (s)

0

20

40

60

80

100

120

in
st

an
ta

ne
ou

s 
ba

nd
w

id
th

 (k
B

/s
)

Not smoothed
Smoothed

Instantaneous Bandwidth and Smoothing
Sample length is one second.

Figure 4: When dealing with large I/O operations,
smoothing helps amortize bandwidth consumption.

this case, the scheduler does not need to apply delay or
smoothing, it simply needs to report back to each in-
stance of Trickle what its allotment is at that point in
time.

4.4 Streams vs. Packets
One big difference between Trickle and in-kernel rate
limiters is that Trickle only has access to much higher
levels of the OSI layers. The only context available
to Trickle are BSD sockets, while in-kernel rate lim-
iters typically schedule discrete packets and reside in or
around the network layer.
Trickle can only provide bandwidth shaping by delay-
ing and truncating I/O on a socket (e.g. TCP/IP stream),
and must rely on the underlying semantics in order to
be effective. Furthermore, Trickle is affected by local
buffering in every OSI[24] layer, and this effectively re-
duces the best reaction time Trickle can provide. To-
gether, these conditions severely reduces the granularity
at which Trickle can operate.
Since in-kernel rate limiters reside so low in the net-
work stack, they may exercise complete control of the
actual outgoing date rates. These rate limiters typically
provide ingress rate limiting by a technique called “polic-
ing”. Policing amounts to simply dropping matching in-
coming packets even though there is no real local con-
tention that would otherwise prevent them from being
delivered. Note that policing is a different strategy for
shaping incoming traffic. When a policing router drops
a packet, it creates congestion in the view of the send-
ing TCP as it will need to retransmit the lost packet(s).
When detecting congestion, the sending TCP will reduce
its congestion window, effectively throttling its rate of

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 67



transmission. After shrinking its congestion window, the
sending TCP has to expand its congestion window again
by the slow start and congestion avoidance strategies.
Trickle’s approach avoids artificial congestion by shrink-
ing the advertised TCP receiver window (rwnd), caus-
ing the sending TCP to artificially limit the amount of
data it can send. One advantage of this technique is that
policing makes TCP more volatile in a somewhat subtle
way. In its steady-state, TCP is self-clocking, that is, it
tries to inject a packet into the network for every packet
that leaves the network. Thus, as networks get more con-
gested, router queues fill up and round trip times (RTTs)
increase, and thus the sending TCP slows its transmis-
sion rate. When policing, packets are dropped indiscrim-
inately, and TCP has no chance to avoid the congestion
by observing increasing RTTs. This results in a more
volatile TCP state as the sending TCP will have to enter
fast retransmit/recovery mode more frequently.

4.5 The Interactions of Delay, Smoothing
and TCP

To recapitulate, Trickle shapes network traffic by delay-
ing and truncating I/O requests according to a few sim-
ple parameters. Trickle attempts to reduce burstiness
by smoothing, which in effect introduces some time and
length normalization for the emitted I/O operations. We
now explore how our shaping techniques interact with
TCP.
For ingress traffic, this should result in a less
volatilerwnd in the receiving TCP since the utilization
of socket receive buffers have smaller variance.
Smoothing is also beneficial for the transmitting TCP.
Because the data flow from the application layer is less
bursty, the TCP does not have to deal with long idle times
which may reduce responsiveness: It is standard practice
to reduce the congestion window (cwnd) and perform
slow start upon TCP idleness beyond one retransmission
timeout (RTO)[20].
Smoothing may also be used for adapting to inter-
active network protocols. For example, a smaller time
smoothing parameter should cause data to be sent in
a more continuous and consistent manner, whereas the
lack of smoothing would likely cause awkward pauses in
user interactions.
Another tradeoff made when smoothing is that you are
likely to loose some accuracy because of timing. When
using timers in userland, the value used is the floor of the
actual timeout you will get, and thus when sleeping on
a timer just once for some I/O, the inaccuracy is amor-
tized over the entirety of that I/O. However, smoothing
is likely to break this I/O up into many smaller I/Os, and
the timer inaccuracies may be more pronounced. The
ultimate compromise here would be to use the effects of

buffering whenever you can, and to use smoothing when-
ever you have to. This is left for future work.

5 Related Work

There are a number of generic rate limiting software so-
lutions and one is included in nearly every major open
source operating system. These operate in a mostly
traditional manner (defining discrete packet queues and
applying policies on these queues). What differenti-
ates these utilities are what operating system(s) they
run on and how expressive their policies are. Ex-
amples are AltQ[14], Netnice[21], Dummynet[23] and
Netfilter[26].
Several network client and server applications in-
corporate rate limiting as a feature. For example,
OpenSSH[8]’s has the ability to rate limit scp file trans-
fers. rsync[9] too, features rate limiting. Both use
a simple scheme that sleeps whenever the average or
instantaneous bandwidth rates go beyond their thresh-
old(s). rsync has the additional advantage that they
may control the sender as well (their protocol is propri-
etary) and so bandwidth is shaped at the sender, which is
easier and more sensible.
There are a few modules for Apache[1] which incor-
porate more advanced bandwidth shaping. These mod-
ules are typically application layer shapers: they exploit
additional context within Apache and the HTTP proto-
col. For example, such modules could have the ability to
perform rate limiting by particular cookies, or on CPU
intensive CGI scripts.
Many peer-to-peer applications also offer traffic shap-
ing. Again, here there is great opportunity to use applica-
tion level knowledge to apply policies for shaping[2, 4].
Netbrake[5] is another bandwidth shaper that uses
shared library preloading.3 Like Trickle, it delays I/Os
on sockets. Netbrake does not have the ability to coor-
dinate bandwidth allocation amongst several instances.
Netbrake calculates aggregate bandwidth usage for all
sockets in a process, and shapes only according to this:
That is, if a given socket I/O causes the global rate to
exceed the specified limit, that socket is penalized with
a delay as for bandwidth consumption to converge to
the limit, and there no equivalent to the smoothing in
Trickle. Thus, Netbrake does not retain a sense of “fair-
ness” among sockets: One “overzealous” socket could
cause delays in other sockets performing I/O at lower
rates. This does not retain the TCP fairness semantics
(nor does it attempt to), and could cause uneven applica-
tion performance, one example being an application that
uses different streams for control and data. Netbrake also
does not distinguish between the two directions of data;
incoming data will add to the same observed rate as out-
going data.

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association68



Netbrake is not semantically transparent (nor does it
aim to be);

• it does not handle non-blocking I/O nor

• I/O multiplexing (select(), poll(), etc.) nor

• socket aliasing (dup(), etc.).

Trickle provides semantic transparency and the ability
to provide fairness or managed differentiated bandwidth
usage to different sockets or applications. Trickle also
allows applications to cooperate as to retain (a) global
bandwidth limit(s).

6 Future Work

Trickle does not have much control over how the lower
layers of the network stack behave. A future area of ex-
ploration is to dynamically adjust any relevant socket
options. Especially interesting is to adjust the socket
send and receive buffers as to lessen the reaction time
of Trickle’s actions. Another area of future work is dy-
namic adjustment of smoothing settings, parameterized
by various observed network characteristics and usage
patterns (e.g. interactive, bulk transfers) of a particular
socket.
There also exists a need for Trickle to employ more
expressive and dynamic policies, for example adding the
ability to shape by remote host or by protocol.
There are a few new and disparate interfaces for deal-
ing with socket I/O multiplexing. In the BSD oper-
ating systems, there is the kqueue[18] event notifi-
cation layer, Solaris has /dev/poll[13] and Linux
epoll[19]. Trickle stands to gain from supporting these
interfaces as they are becoming more pervasive.
By using a system call filter such as Systrace[22] or
Ostia[17], Trickle could address its two highest impact
issues. By using such a system call filter, Trickle could
interposition itself in the system call layer, while still
running entirely in userland, hence gaining the ability to
work with statically linked binaries. Furthermore, these
tools provide the means to actually enforce the usage of
Trickle, thus enforcing bandwidth policies.
In order to do collaborative rate limiting when joining
a new network, a user would have to manually find which
host (if any) is running trickled. Trickle would thus
benefit from some sort of service discovery protocol akin
to DHCP[15]. Using Zeroconf[12] technologies could
potentially prove beneficial.

7 Acknowledgments

The author would like to thank the following people for
their sharp minds and eyes: Evan Cooke, Crispin Cowan

(our shepherd), Kamran Kashef, Ken MacInnis, Joe Mc-
Clain, Niels Provos (also for pushing and prodding to
submit this paper), Andrew de los Reyes, Cynthia Wong,
as well as the anonymous reviewers.

8 Availability

Trickle source code, documentation and other informa-
tion is available under a BSD style license from

http://monkey.org/˜marius/trickle/

9 Summary and Conclusion

Trickle provides a practical and portable solution to ad-
hoc rate limiting which runs entirely in userland. It has
been shown to work extremely well in practice, and none
of its inherent limitations seem to be a problem for its
target set of users.
Since the time Trickle was released in March, 2003,
it has enjoyed a steady user base. It is widely used, es-
pecially by home users in need of ad-hoc rate limiting.
Trickle has also been used in research.
Trickle works by interpositioning its middleware at the
BSD socket abstraction layer which it can do this en-
tirely in userland by preloading itself using the link editor
present in Unix-like systems. Trickle has been reported
to work on a wide variety of Unix-like operating sys-
tems including OpenBSD[7], NetBSD[6], FreeBSD[3],
Linux[10] and Sun Solaris[11], and is by its very nature
also architecture agnostic.
At the socket layer the number of ways an operation
can be manipulated is limited. Furthermore, we gain no
access to lower layers in the network stack at which rate
limiters typically reside, and so we have to rely on the
semantics of TCP to cause reductions in bandwidth con-
sumption. We developed several techniques including
smoothing that help normalize the behavior observed in
the lower network layers and avoids bursty throughput.
There are many venues to explore in the future devel-
opment of Trickle, and we believe it will remain a very
useful utility for ad-hoc rate limiting. Furthermore, we
expect that this is the typical usage case for rate limit-
ing by end users requiring occasional service differentia-
tion.

References
[1] Apache. http://www.apache.org/.

[2] Azureus - java bittorrent client. http://azureus.
sourceforge.net/.

[3] FreeBSD: An advanced operating system. http://www.
freebsd.org/.

[4] Kazaa 3.0. http://www.kazaa.com/.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 69



[5] Netbrake. http://www.hping.org/netbrake/.

[6] NetBSD: the free, secure, and highly portable Unix-like Open
Source operating system. http://www.netbsd.org/.

[7] OpenBSD: The proactively secure Unix-like operating system.
http://www.openbsd.org/.

[8] OpenSSH. http://www.openssh.com/.

[9] Rsync. http://samba.anu.edu.au/rsync/.

[10] The Linux Kernel. http://www.kernel.org/.

[11] The Sun Solaris Operating System. http://wwws.sun.
com/software/solaris/.

[12] The Zeroconf Working Group. http://www.zeroconf.
org/.

[13] ACHARYA, S. Using the devpoll (/dev/poll) interface. http://
access1.sun.com/techarticles/devpoll.html .

[14] CHO, K. Managing traffic with ALTQ. In Proceedings of
the USENIX 1999 Annual Technical Conference (June 1999),
pp. 121–128.

[15] DROMS, R. Dynamic Host Configuration Protocol. RFC 2131,
1997.

[16] FRALEIGH, C., MOON, S., LYLES, B., COTTON, C., KHAN,
M., MOLL, D., ROCKELL, R., SEELY, T., AND DIOT, C.
Packet-level traffic measurements from the sprint IP backbone.
IEEE Network (2003).

[17] GARFINKEL, T., PFAFF, B., AND ROSENBLUM, M. Ostia:
A delegating architecture for secure system call interposition.
In Proc. Network and Distributed Systems Security Symposium
(February 2004).

[18] LEMON, J. Kqueue - a generic and scalable event notifica-
tion facility. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference (2001), USENIX Asso-
ciation, pp. 141–153.

[19] LIBENZI, D. /dev/epoll home page. http://www.
xmailserver.org/linux-patches/nio-improve.
html.

[20] M. ALLMAN, V. PAXSON, W. S. TCP Congestion Control. RFC
2581, Apr 1999.

[21] OKUMURA, T., AND MOSSÉ, D. Virtualizing network i/o on
end-host operating system: Operating system support for network
control and resource protection. IEEE Transactions on Comput-
ers (2004).

[22] PROVOS, N. Improving host security with system call policies.
In Proceedings of the 11th USENIX Security Symposium (Aug.
2003), USENIX, pp. 257–272.

[23] RIZZO, L. Dummynet: a simple approach to the evaluation of
network protocols. SIGCOMM Comput. Commun. Rev. 27, 1
(1997), 31–41.

[24] ROSE, M. T. The Open Book: A Practical Perspective on OSI.
Prentice Hall, 1990.

[25] S. BOTTOMS, T. L., AND WASH, R. nlimit: A New Voluntary
Bandwidth Limiting Facility. Unpublished manuscript, 2002.

[26] TEAM, T. N. C. The Netfilter Project: Packet Mangling for
Linux 2.4. http://www.netfilter.org/, 1999.

[27] TIRUMALA, A. End-to-end bandwidth measurement using
iperf. In SC’2001 Conference CD (Denver, Nov. 2001), ACM
SIGARCH/IEEE. National Laboratory for Applied Network Re-
search (NLANR).

Notes
1A small software component used to provide an interface to an-

other software component (a trivial “adapter”)
2Modern operating systems have introduced new and more efficient

interfaces for multiplexing. These are discussed in section 6
3The author of Netbrake notes that Netbrake is intended to simply

be a hack, and that it is not mature software.[5]

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association70


