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Abstract 

Triclosan (TCS) is a broad spectrum antibacterial agent present as an active ingredient in some personal care prod-
ucts such as soaps, toothpastes and sterilizers. It is an endocrine disrupting compound and its increasing presence in 
water resources as well as in biosolid-amended soils used in farming, its potential for bioaccumulation in fatty tissues 
and toxicity in aquatic organisms are a cause for concern to human and environmental health. TCS has also been 
detected in blood, breast milk, urine and nails of humans. The significance of this is not precisely understood. Data on 
its bioaccumulation in humans are also lacking. Cell based studies however showed that TCS is a pro-oxidant and may 
be cytotoxic via a number of mechanisms. Uncoupling of oxidative phosphorylation appears to be prevailing as a tox-
icity mechanism though the compound’s role in apoptosis has been cited. TCS is not known to be carcinogenic per se 
in vitro but has been reported to promote tumourigenesis in the presence of a carcinogen, in mice. Recent laboratory 
reports appear to support the view that TCS oestrogenicity as well as its anti-oestrogenicity play significant role in 
cancer progression. Results from epidemiological studies on the effect of TCS on human health have implicated the 
compound as responsible for certain allergies and reproductive defects. Its presence in chlorinated water also raises 
toxicity concern for humans as carcinogenic metabolites such as chlorophenols may be generated in the presence of 
the residual chlorine. In this paper, we carried out a detailed overview of TCS pollution and the implications for human 
and environmental health.
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Background
Triclosan (TCS) is a broad-spectrum antimicrobial agent 
in some personal care products such as soap, sanitizer 
and skin cream (Kirk–Othmer 1993; MacIsaac et  al. 
2014; Perencevich et al. 2001; Schweizer 2001). Its wide-
spread use in homes and in health care centres may have 
explained its versatility as a water micro-pollutant (Hel-
bing et al. 2011; Kolpin et al. 2002; Li et al. 2010; Loraine 
and Pettigrove 2006; Park and Yeo 2012; Reiss et  al. 
2002). TCS has been mentioned (Foran et al. 2000) as an 
endocrine disruptor (ED), a group of compounds known 
to interfere with hormone functions (Wingspread Con-
sensus Statement 1991).

Structurally, TCS molecule possesses functional groups 
for both phenol (5-chloro-2-(2,4-dichlorophenoxy) 

phenol) and ether (2,4,4-trichloro-2-hydroxydiphenyl 
ether) (Fig.  1). Its lipophilicity (log Kow  =  4.8 octanol–
water partition coefficient) suggests bioaccumulation in 
fatty tissues which raises toxicity concern.

�e hormonal activity of TCS (Crofton et  al. 2007) is 
widely acknowledged in  vitro (Huang et  al. 2014) and 
in  vivo, in laboratory (Stoker et  al. 2010) and aquatic 
(Ishibashi et  al. 2004) animals which raises fear for 
human health. Evidence of human toxicity is still a mat-
ter for debate in scientific circles, however some state 
authorities such as in Minnesota are considering a ban 
on all TCS-containing products (Dhillon et al. 2015) or a 
restriction (TIME 2014), partly due to the reported TCS-
resistant bacteria or ostensibly yielding to the pressure 
mounted by some professional bodies (APUA 2011b) for 
the perceived adverse effects on health. Apart from its 
widely reported adverse effects on cellular metabolism, 
its ecotoxicity also raises fear of dwindling economic for-
tunes from water resources. �e present work attempts 
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to review available data on environmental impact as well 
as evidence suggestive of human toxicity and to suggest 
future research directions.

Triclosan exposure for humans
TCS is approved for topical administration at maximum 
concentration of 0.3 % (w/w) in humans (European Com-
mission 2010; Larsson et al. 2014; MacIsaac et al. 2014) 
and 0.03  % (w/w) in oral medications in some coun-
tries (Canada 2007). It is used as an additive in polymer 
matrices such as polyolefin and polyethylene which may 
contain 1  % (w/w) to 10  % (w/w) TCS in some plastics 
industries (NICNAS 2009). Current annual global TCS 
production is not known to us but as many as are using 
the over 200 TCS-containing products as well as work-
ers where these products are manufactured risk TCS 
exposure. Previous reports estimated over ‘1500 tons’ of 
TCS per year entering consumer markets globally (Singer 
et al. 2002) and estimated value of well over 1.1 × 105 kg/
year of TCS have been released into wastewater in the 
United States (Heidler and Halden 2007). Direct applica-
tion of TCS-based products such as soaps, deodorants 
and toothpastes is the primary source of human exposure 
to TCS (Allmyr et  al. 2006; Fang et  al. 2014; MacIsaac 
et  al. 2014). Occupational and environmental exposures 
have also been documented in humans (Geens et  al. 
2009). Among workers, dermal as well as inhalation are 
the routes of exposure. TCS bioavailability via inhalation 
is thought to be 100 % (NICNAS 2009) but toxicokinetic 
data from this exposure route are lacking.

Ability of certain seafood to accumulate TCS is a 
route of TCS exposure to humans (Adolfsson-Erici et al. 
2002). Rüdel et  al. (2013) recorded maximum TCS of 
11.7 nmol/kg in fish. Certain plants can also accumulate 
TCS in their tissues (Pannu et  al. 2012) including plant 
foods such as lettuce (Prosser and Sibley 2015) which 
may occur following their cultivation in soils amended 
with biosolids, manure or irrigated with wastewater. For 
example Pannu et al. (2012) reported triclosan in radish 
at 31.8  µmol/kg dry weight (dw) when the plants were 
grown in soil with TCS concentration of 34.2  µmol/kg 
dw. However such accumulation becomes something of 
toxicological concern to humans (hazard quotients ≥ 0.1) 
(Health Canada and Environment Canada 2012; US FDA 
2010) if the accumulation has been stored in the edible 

portions of the plant (Aryal and Reinhold 2011; Wu et al. 
2012a) though it has been recorded that TCS transloca-
tion from the plant roots can reach the above-ground 
parts (Wu et al. 2010).

In infants exclusively on breastfeeding, breast milk pre-
sents major route of exposure to TCS (Table 1). In highly 
industrialized countries such as USA, TCS concentra-
tion in breast milk as high as 2.1 mol/kg lipid has been 
reported (Dayan 2007) which should be of health con-
cern to the young because of their immature drug metab-
olizing pathways making them vulnerable to the impact 
of TCS. On average, TCS concentration in drinking water 
is below parts per billion (Table  2) showing that it may 
not be a quantitative source of TCS exposure to humans.

�e estimated acceptable daily intake for TCS is 
0.17 nmol/kg/day (Blanset et al. 2007) and some drinking 
water levels of TCS have been found to be higher than 
this estimate (Table 2).

TCS after disposal, drains ultimately into underground 
(Sorensen et  al. 2015) and to surface waters (Table  3) 
where it may finally reach humans by drinking contami-
nated water or via the food chain such as consumption 
of animals and vegetation exposed to TCS (Park and 
Yeo 2012). An annual discharge of 18 tonnes of TCS to 
the surface water in USA had been reported, with more 
than half this volume coming from wastewater treatment 
plants (WWTPs) (Halden and Paul 2005). Underground 
water from shallow wells and boreholes has been reported 
to contain up to 0.10 nM TCS (Sorensen et al. 2015). Con-
centrations of TCS in some untreated surface waters were 
reported to range from 7.9 to 39 nM (Kolpin et al. 2002; 
Perez et al. 2013). High value of 297.7 nM was reported 
in the influents of certain wastewater treatment plants 
(Kumar et al. 2010) while effluents concentrations ranging 
from 0.41 to 3.5 nM were reported in treated wastewater 
effluents (Glassmeyer et al. 2005; Snyder et al. 2008).

Triclosan absorption in humans
TCS absorption in humans and animals can be through 
dermal (Fang et  al. 2014; Moss et  al. 2000; Quecken-
berg et  al. 2010), mucous membranes of the oral cavity 

Fig. 1 Structure of triclosan (CAS 3380-34-5)

Table 1 Infant exposure to  triclosan via  breast milk (NIC-

NAS 2009)

Age (month) Average milk 
intake (g/day)

Body weight 
(kg)

Internal triclosan 
dose (nmol/kg 
body wt/day)

1 751 4.7 10

2 725 5.6 8.5

3 723 6.2 7.6

4 740 6.7 7.3
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(Lin 2000) or gastrointestinal tract (Bagley and Lin 2000) 
routes and reaches systemic circulation (Hovander et al. 
2002). It penetrates the skin less rapidly and less exten-
sively in humans than in rats (Chedgzoy et al. 2002; Moss 
et al. 2000), a factor to consider in risk assessment. Ani-
mal experiments had shown that tissue levels of TCS are 
less when administered through dermal route than via 
oral route. Percutaneous absorption is interfered with by 
the vehicle of administration. Propylene glycol increases 
percutaneous absorption of TCS in mice however no 
such change is observed when 95 % ethanol is used (Fang 
et al. 2014).

TCS absorption and distribution are rapid in humans. 
Dermal absorption is generally 3–7 % (Moss et al. 2000; 
NICNAS 2009; Queckenberg et  al. 2010), 6.3  % was 
reported in  vitro using human skin (Moss et  al. 2000). 
Lin (2000) reported that 7.33 % TCS was retained from 
mouthwash containing 0.03  % TCS but when swal-
lowed the absorption was higher at the gastrointestinal 

tract (Bagley and Lin 2000) which has been reported to 
be near-completion (NICNAS 2009). Maximum blood 
level was reported to have been reached when exposed 
orally within 3  h while significant amount of the dose 
was excreted 24  h post-dose (Sandborgh-Englund et  al. 
2006). Studies carried out on human subjects using TCS-
containing cosmetics showed variable but significant 
amounts of TCS in their body fluids (Table 4) when com-
pared with the unexposed controls (Allmyr et  al. 2006; 
Sandborgh-Englund et  al. 2006). A single oral dose of 
13  µmol TCS to human subjects increased plasma TCS 
level to 0.84  µM 4  h after ingestion and when repeated 
thrice daily for 12  days increased the plasma level to 
1.2  µM (Bagley and Lin 2000) but administration of 
14  µmol TCS per oral increased the plasma level to 
0.75 µM, 3 h post-dose (Sandborgh-Englund et al. 2006). 
�e results are not comparable because of certain mili-
tating factors which included sample size and inter-sub-
ject variation. Before entry into the blood stream, TCS is 

Table 2 Triclosan concentrations in drinking water

Source Concentration (nM) Frequency-of detection (%) References

Tap water 0.17 34 Yang et al. (2014)

0.048 75

Tap water 0.21 63 Padhye et al. (2014)

Tap water 0.021–0.052 Li et al. (2010), Perez et al. (2013)

Fountain water 0.36 45 Yang et al. (2014)

0.028 75

Table 3 Triclosan concentrations in aquatic systems

nd not detected

Source Concentration (nM) References

Surface water

Natural streams/rivers nd–7.9 Ying et al. (2007)

0.26 Halden and Paul (2005)

Streams with input of raw wastewater 5.5 Fair et al. (2009)

Ebro basin (Spain) nd–0.98 Kantiani et al. (2008)

Danshuei River (Taiwan) 0.015–0.036 Shen et al. (2012)

River (SouthWest Spain) 0.25 ± 0.0017 Pintado-Herrera et al. (2014)

Sea (SouthWest Spain) 0.23 ± 0.0034 Pintado-Herrera et al. (2014)

Undergroundwater (boreholes/wells)

South West Spain 0.23 ± 0.0035 Pintado-Herrera et al. (2014)

Kabwe, Zambia 6.9 × 10−5–1.0 × 10−4 Sorensen et al. (2015)

West Texas USA nd–0.18 Karnjanapiboonwong et al. (2011)

Wastewater-treatment plants

Treated wastewater (Midlands, UK) Mean 0.25–1.51 Chi et al. (2013)

Influent (USA) 6.91–10.36 Anumol and Snyder (2015)

Final effluents (USA) 0.044–0.097 Anumol and Snyder (2015)

Effluent (South West Spain) 0.33 ± 0.028 Pintado-Herrera et al. (2014)
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conjugated by the skin (Moss et al. 2000). Both percuta-
neous and gastrointestinal tract absorptions are suscep-
tible to first-pass metabolism wherein TCS is conjugated 
with glucuronates and sulphates (Moss et  al. 2000), the 
process known to be the cellular means of detoxication. 
Toxicokinetic data on TCS oral and dermal administra-
tions in humans appear limited. In a controlled expo-
sure study, some 70  % of the total plasma TCS are in 
conjugated form (Sandborgh-Englund et  al. 2006) and 
would be voided predominantly via urine, the balance is 
in unconjugated form expected to evoke physiological 
responses. However, from data presented by Allmyr et al. 
(2009), the 30 % balance equal to 0.03–0.08 µM TCS in 
the plasma failed to activate pregnane X receptor (hPXR) 
regardless of the high level of exposure.

In addition to blood, detectable levels of TCS have been 
recorded in breast milk (Dayan 2007) and urine (Benny 
et  al. 2014; Table  4). Azzouz and colleagues (2016) 
reported 41.4, 7.3 and 7.3 nM in whole blood, breast milk 
and urine respectively as maximum TCS concentrations 
from healthy humans. In highly industrialized nations 
such as U S, about two-thirds of 90 girls, aged 6–8 years 
old have been reported to exhibit detectable urinary 
TCS ranging from 5.5 nM to 3.3 µM (Wolff et al. 2007). 
Among some Chinese school children aged 3–24  years 
old, higher TCS levels in urine (geometric mean of 
13  nM) were reported among females than their male 
counterparts, significantly (93  % detection frequency) 
among those between 18 and 24  years (Li et  al. 2013). 
It is presently not clear if gender plays a definitive role 
in TCS metabolism as reports by Clayton et  al. (2011) 
from National Health and Nutrition Examination Sur-
vey (NHANES) among US population aged 50 years had 
shown that males had higher urinary TCS than females 
(472.34 vs. 329.42 nM) whereas data of Yin et al. (2015) 
from respondents (<50  years) containing equal number 

of both sexes reported higher geometric mean for urinary 
TCS among females than males (1.83 nmol/g creatinine 
vs. 1.1 nmol/g creatinine). �e data from US CDC (2014) 
however appeared not in support of this observation.

Metabolism of triclosan
TCS is readily metabolized and may be extensively dis-
tributed in tissues including the brain (Geens et  al. 
2012) showing its ability to cross blood–brain barrier. 
It induces cytochrome P450 in rat hepatic microsomes, 
the enzymes responsible for its metabolism (Hanioka 
et al. 1997; Kanetoshi et al. 1992). It undergoes glucuro-
nidation and sulphation in animals and humans (Sand-
borgh-Englund et  al. 2006; Wang et  al. 2004) regardless 
of the route of administration. In mice, TCS is metaboliz-
able into sulphate, glucuronide, 2,4-dichlorophenol, and 
hydroxyl derivatives. Small amount (0.36 %) of unconju-
gated TCS has been detected in the blood plasma when 
administered intraperitoneally (Cherednichenko et  al. 
2012). In rats as well as in humans, topical application of 
TCS on the skin generates a fraction of the sulphate con-
jugation product of the compound leaving higher amount 
unconjugated (Moss et  al. 2000). In rats and mice, free 
TCS is excreted in the bile and voided via faeces (Fang 
et al. 2014).

TCS may inhibit the activities of the conjugating 
enzymes, glucuronyltransferases and sulphotransferases, 
towards 3-hydroxybenzo(α)pyrene, acetaminophen and 
bisphenol A in human liver microsomes (Wang et  al. 
2004) possibly blocking the elimination of these com-
pounds and at the same time increasing their toxicities 
when co-administered. Glucuronate conjugation pre-
dominates in humans and is secreted in urine along with 
the unconjugated specie (Arbuckle et  al. 2015; Benny 
et  al. 2014; Weiss et  al. 2015). Elimination half-life for 
TCS is higher in humans than in the laboratory animals 

Table 4 Triclosan concentrations in human �uids

a Non-obese

b Obese

Fluid Concentration (nM) Location References

Serum 4.1–41.4 Spain Azzouz et al. (2016)

Plasma 0.035–1200 Australia, Sweden Allmyr et al. (2006, 2008)

Urine 8.3–13,090 USA Calafat et al. (2008), Allmyr et al. (2008)

0.56 ± 1.8a India Xue et al. (2015)

0.16 ± 0.27b India Xue et al. (2015)

1630 USA US CDC (2014)

1.1–7.3 Spain Azzouz et al. (2016)

0.51 ± 0.53 USA MacIsaac et al. (2014)

Breast milk 0.86–7.3 Spain Azzouz et al.( 2016)

0.062–252 USA, Australia, Sweden Allmyr et al. (2008), Adolfsson-Erici et al. (2002)
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such as rats (for example, 13–29  h in humans, 25–32  h 
in hamsters, 10–15 h in rats and 8–12 h in mice) when 
orally administered (NICNAS 2009). Elimination half-
life is related to drug toxicity. Based on this, it is expected 
that TCS should be more toxic when applied under simi-
lar conditions to rats than humans and this needs be 
taken into consideration in human risk assessment using 
animal data.

Endocrine disruption activity and toxicity 
of triclosan
Mechanism of endocrine disruption by exogenous agents 
can take many forms (Colborn et al. 1993; Golden et al. 
1999; Hollander 1997; Solomon and Schettler 2000; 
Wingspread 1991), the commonly encountered is the 
inhibition of the hormone (agonist) from binding its 
receptors by competing for the receptor binding sites 
with the antagonist. �is is one mechanism through 
which TCS exhibits its endocrine disruption activity 
(Ahn et  al. 2008; Gee et  al. 2008; Jung et  al. 2012). �e 
occupation of the receptor site by a ligand is known to 
induce conformational change in the receptor leading 
to the generation of the transcription factors required 
for the expression of the hormone-sensitive genes. �e 
expression of oestrogen sensitive genes through the 
antagonist leads to various uncontrolled physiologi-
cal effects, such as hypospadia, cryochidism and cancer 
(Meng 2005). TCS oestrogenic, anti-oestrogenic, andro-
genic and anti-thyroid activities in  vitro and in  vivo in 
laboratory and aquatic animals have been demonstrated 
(Arancibia et  al. 2009; Crofton et  al. 2007; Henry and 
Fair 2013; Jung et  al. 2012; Schiffer et  al. 2014; Wallet 
et  al. 2013) at environmentally relevant concentrations. 
Its anti-estrogenic effect in sheep (James et al. 2010) and 
anti-androgenicity in albino rats (Kumara et  al. 2009) 
have also been demonstrated.

�e observed physiological effects such as precocious 
puberty (Stoker et al. 2010) and carcinogenicity (Lee et al. 
2012b) could be explained as a consequence of over-
stimulation of the receptors presumably by the high TCS 
concentration (Henry and Fair 2013) or as a consequence 
of its occupation of the ligand binding domain of the 
receptor (Ahn et al. 2008; Gee et al. 2008; Jung et al. 2012; 
Meng 2005). More data are required relating environ-
mentally relevant TCS concentration with the reported 
physiological effects such as adverse reproductive effects 
in animals (Kumara et al. 2009).

Data appear to be accumulating supporting aetio-
logic role for TCS in carcinogenesis (Lee et  al. 2012b; 
Rodricks et  al. 2010; Winitthana et  al. 2014; Wu et  al. 
2014; Yueh et al. 2014). Hepatic tumourigenesis in mice 
exposed to TCS has been reported to be mediated by 
peroxisome proliferator-activated receptor α (PPARα) 

signalling pathway (Rodricks et al. 2010; Wu et al. 2014). 
But the work of Yueh et  al. 2014 in which tumour was 
promoted in mice exposed to 0.1 mol/kg TCS in drink-
ing water for 8  months following diethylnitrosamine, (a 
pro-carcinogen) pre-treatment did not activate PPARα 
in cancer promotion. Additional data would be needed 
to deny or confirm these contrasting reports. PPARα is 
a ligand-activated transcription factor belonging to the 
nuclear receptor superfamily (Corton et al. 2014). It plays 
a key role in the regulation of lipid metabolism. Its acti-
vation by peroxisome proliferators is a well-characterized 
mode of action of hepatocarcinogenesis in rodents (Cor-
ton 2010; Corton et al. 2014). TCS hepatocarcinogenesis 
via PPARα signalling pathway is not expected in humans 
because the pathway is known to be several times less 
active in humans than in mice (Health Canada 2012; US 
EPA 2008).

�e report of Lu and Archer (2005) in which mammary 
tumour was inhibited in methylnitrosourea-treated rats 
fed with diets containing TCS may appear contrasting to 
the previous reports of tumour promoting activity of TCS 
but actually lends credence to the anti-oestrogenic effect 
of TCS since the presence of oestradiol is a requirement 
for developing breast cancer (Fernandez and Russo 2010; 
Gee et  al. 2008; Henry and Fair 2013). But report from 
more recent studies (Lee et  al. 2014) showed that TCS 
induced-cancer progression in MCF-7 human breast 
cancer cell occurred via oestrogen receptor-mediated sig-
nalling pathway implying that TCS participates through 
multiple mechanisms in breast cancer progression.

TCS perturbs thyroid homeostasis (Kodavanti and 
Curras-Collazo 2010; Veldhoen et  al. 2006). It reduces 
circulating levels of the hormones (hypothyroxinaemia) 
in the exposed animals (Crofton et  al. 2007; Petersen 
et al. 2013). �e compound interferes with thyroid‐medi-
ated developmental processes of tadpoles into frogs (Fort 
et al. 2010, 2011). �e effects are expected to be shared 
by all animals including humans whose cellular metabo-
lism involves thyroid signalling pathway. Multiple mecha-
nisms including induction of phases I and II enzymes 
through activation of pregnane X receptor are thought 
to be responsible for the anti-thyroid activity (Hanioka 
et al. 1996; Jacobs et al. 2005; Jinno et al. 1997; Paul et al. 
2010). Sodium/iodide symporter is the protein normally 
responsible for iodide uptake but its role in this scenario 
has not been defined (Friesema et  al. 2005; Paul et  al. 
2010).

TCS toxicity has been demonstrated in a number of 
cells including human live and cancer cells (Arancibia 
et  al. 2009; Wallet et  al. 2013) exhibiting different tox-
icities in different cells (Table  5). It is pro-apoptotic at 
≥1  nM and cytotoxic at ≥50  µM in human choriocar-
cinoma-derived placental JEG-3 cell line when exposed 
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for at least 24  h (Honkisz et  al. 2012) but may not in 
certain cells (Weatherly et  al. 2016). Its mitochondrial 
uncoupling activity resulting in the loss of oxidative 
phosphorylation and consequently reduced ATP gen-
eration has been documented in  vitro (Ajao et  al. 2015, 
Weatherly et  al. 2016) and in  vivo (Shim et  al. 2016) at 
micromolar exposure levels. TCS is a pro-oxidant (Ma 
et al. 2013; Tamura et al. 2012; Yueh et al. 2014). �e pro-
oxidant activity is thought to be related to the activity 
of 2,4-dichlorophenol (Gou et al. 2014), one of the TCS 
chlorinated by-products of photolysis. TCS oxidation of 
deoxyguanosine has been demonstrated to be inversely 
related to DNA methylation (Ma et al. 2013), a biomarker 
for tumour development and progression. �e generation 
of reactive oxygen species is significant in cells such as β 
cells known for low expression of antioxidant enzymes 
(Pi et  al. 2007) which definitely impacts on insulin syn-
thesis and function and ultimately diabetes pathogenesis.

TCS generally demonstrates low acute toxicity in 
rodents with LD50 values in excess of g/kg body weight 
(US FDA 2008). �ere are reports that rats showed 
pathologic changes in liver and blood when chroni-
cally exposed for more than 13  weeks at doses higher 
than 150 ppm in the diet (US FDA 2008) or in excess of 
300  ppm/day by oral gavage after 4  days (Bhargava and 
Leonard 1996; Crofton et  al. 2007; DeSalva et  al. 1989). 
Renal toxicity has also been reported in rats orally dosed 
200 ppm/day for 6 weeks (Hassan et al. 2014). �e activ-
ity of TCS in muscle Ca2+ dysregulation in mouse has 
been investigated (Cherednichenko et  al. 2012). Expo-
sure to TCS at 25  ppm (≥0.09  mol/kg) for ≤60  min 

intraperitoneally was recorded to impair excitation–con-
traction coupling showing that the compound may be 
myotoxic.

In vivo human toxicity of TCS has not been precisely 
demonstrated, but detectable levels of TCS reported in 
the body fluids such as blood, breast milk and urine of 
exposed humans (Table  4) as well as in human tissues 
such as adipose tissue, brain, liver and nails (Table 6) fuel 
the conception that the compound may possibly impact 
human physiology. �e high TCS concentrations in the 
tissues (Table 6) relative to the environmental concentra-
tions (Tables 2, 3) may imply that TCS bio-accumulates 
and extensively distributed in human tissues.

�ere have been reported cases of TCS-induced aller-
gic reactions in human subjects. Dermatitis following 
prolonged use of TCS-containing hand washes (Wong 
and Beck 2001) or when further exposed to sunlight 
after use (Schena et al. 2008) have been recorded. Simi-
larly, blisters were known to have erupted in the mouth 
and on the lips of human subjects following prolonged 
use of TCS-containing toothpaste (Robertshaw and Lep-
pard 2007). Epidemiological report has associated the 
increased TCS levels in urine with immune dysfunction 
(Clayton et  al. 2011), allergic reactions and production 
of asthma in the children (Bertelsen et al. 2013; Spanier 
et  al. 2014). Laboratory demonstration has shown that 
TCS is able to interact with human serum albumin 
resulting in conformational change of the protein (Chen 
et al. 2012a). �e binding of toxicants to serum albumin 
can impede the transport of endogenous substances and 
cause conformational changes in the protein molecule, 

Table 5 Reported triclosan (TCS) toxicities

Cell type TCS Concentration (µM) Exposure (h) Toxicity References

Human breast cancer cells MCF-7 ≥345.4 120 Proliferation (oestrogenicity) Henry and Fair (2013)

Human (A549) lung cancer cell 250 24 Cell membrane damage (LDH release) Kwon et al. (2013)

Human (H460) lung cancer cell 10 24 Apoptotic and proliferative effect, Cell 
membrane damage (LDH release)

Winitthana et al. (2014)

Human PBMC ≥8.6 30 Loss of mitochondrial transmembrane 
potential; metabolic acidosis; uncou-
pling of oxidative phosphorylation

Ajao et al. (2015)

Human keratinocytes HaCaT ≥8.6 30 Loss of mitochondrial transmembrane 
potential; necrosis

Ajao et al. (2015)

Rat fibroblast cells (RBL) ≥5 1 Uncoupling of mitochondrial oxidative 
phosphorylation

Weatherly et al. (2016)

Human mast cells (HMC-1.2) ≥5 1

Mouse JB6 Cl 41-5a cells ≥8 ≥48 Decreased growth; cell damage 
(increased LDH release); necrosis

Wu et al. (2015)

Zebrafish (Danio rerio, AB strain) 
embryos

15 1 Uncoupling of mitochondrial oxidative 
phosphorylation

Shim et al. (2016)

Freshwater Protozoan (Tetrahymena 
thermophile)

3.5 nM 1 DNA damage (20 % DNA) Gao et al. (2015)

Chironomus riparius Larvae. 35 nM 24 DNA damage Martínez-Paz et al. (2013)
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which may affect its activity or even change its physi-
ological function (Qin et al. 2010; Soares et al. 2007). A 
retrospective study (Vélez et  al. 2015) found that ele-
vated TCS in the maternal urine correlated positively 
with diminished fecundity. Whether or not this result is 
related to TCS oestrogenicity (Jung et  al. 2012) is pres-
ently not clear. �e adverse effects of TCS in humans are 
thought to be via the inhibition of fatty acid synthase type 
1 (FAS 1) (IC50 ≥ 10 µM) and partial inhibition of enoyl 
reductase of FAS 1 reactions (Liu et  al. 2002). �e TCS 
cytotoxic mechanism is being explored for drug target in 
cancer therapy (Sadowski et al. 2014).

Fate of triclosan in environmental water
Wastewater treatment plants (WWTPs) are not designed 
to remove pharmaceuticals or EDs; rather removals are 
based on the physical and chemical properties of the 
compounds. �e efficiency of WWTPs is measured using 
parameters, such as biochemical oxygen demand (BOD) 
and chemical oxygen demand (COD), which do not take 
into account ED removal. During sewage treatment, EDs 
are only partially removed and are therefore frequently 
detected in WWTP effluents (Gomez et  al. 2007; Sven-
son et  al. 2003). Consequently, TCS is not completely 
removed from influents of WWTPs, (Bock et  al. 2010; 
Snyder et al. 2007) or not at all during primary treatment 
(Lozano et  al. 2013) and whatever remains in the aque-
ous phase is released into the receiving water body which 
may impact on the aquatic ecosystems.

TCS is stable to hydrolysis; laboratory studies showed 
it was stable at pH 4, 7 and 9 (US EPA 2008b). TCS is not 
expected to volatilize significantly given its low vapour 
pressure of 4  ×  10−6  mm Hg at 20  °C (Ciba Speciality 
Chemicals 2003), however it undergoes biodegradation, 
photolysis and photochemical reactions, which are pro-
cesses thought to be responsible for its reduction in natu-
ral waters. In conventional treatment plants, substantial 
amount of TCS is removed from wastewater (Table 7) but 
advanced treatment processes such as ozonation, pho-
tolysis and microfiltration/nanofiltration with reverse 

osmosis (membrane process) have achieved somewhat 
total removal of pharmaceuticals (Watkinson et al. 2007; 
Ziylan and Ince 2011) (Table 8).

In wastewater treatment plants employing membrane 
bioreactor, an estimated amount of over 90 % mass of tri-
closan is expected to have been removed from the water 
(Wijekoon et  al. 2013). �e high proportion of TCS 
reported to have been removed in wastewater treatment 
plants especially those plants which employ the conven-
tional activated sludge process may be attributed to bio-
degradation under aerobic conditions (Bester 2003, 2005; 
Heidler and Halden 2007; Ying et  al. 2007). Sludge treat-
ment plants with biological treatment process showed 
the highest removal of TCS (Tohidi and Cai 2016). �e 
abundance of bacterial TCS degraders namely, ammonia-
oxidizing bacteria (AOB) and Sphingopyxis strain KCY1 
in activated sludge systems has been reported (Lee and 
Chu 2015). It is thought that ammonia monooxygenase 
expressed by AOB is responsible for TCS degradation 
(Roh et  al. 2009) while dioxygenase in the strain KCY1 
co-metabolize TCS (Lee et al. 2012b). Sphingopyxis strain 
KCY1, a wastewater bacterium dechlorinates TCS pre-
sumably via 2,3-dioxygenase pathway (Lee et  al. 2012b) 
producing androgenic metabolites (Lee et  al. 2012a). 
Trametes versicolor and Pycnoporus cinnabarinus, spe-
cies of white rot fungi which grow naturally on dead wood 
can degrade TCS. Trametes versicolor converts TCS into 
2-O-(2,4,4′-trichlorodiphenyl ether)-β-D-xylopyranoside, 
2-O-(2,4,4′-trichlorodiphenyl ether)-β-D-glycopyranoside, 

Table 6 Tissue distribution of triclosan in humans

nd not detected

Tissue Concentration (nmol/kg) References

Liver 10.8 Geens et al. (2012)

Adipose 2.1 Geens et al. (2012)

80.1 (7.6–80.1) Wang et al. (2015)

Brain 0.1 Geens et al. (2012)

Nails

Toes 19.6 (nd–3.62 µmol/kg) Yin et al. (2015)

Fingers 46.9 (nd–17.4 µmol/kg)

Table 7 Triclosan removal in wastewater treatment plants 

(Ying and Kookana 2007)

Level of treatment Removal rate (%)

Primary treatment 2–96

Secondary treatment

 1. Trickling filter 58–96

 2. Activated sludge 55–99

 3. Activated sludge (simple treat) 61–72

Tertiary treatment 87–99

Table 8 Triclosan removal e�ciencies (%) in  selected 

drinking water treatment processes [adapted from NWRI 

(2010), Snyder et al. (2007)]

a UV dose = 40 mJ/cm2

b Chlorine dose = 3 mg/l, contact time = 24 h

c Chloramine dose = 3 mg/l, contact time = 24 h

d Ozone dose = 2.5 mg/l, contact time = 2 min

UVa Chlorinationb Chloraminationc Ozonationd

50–80 80 80 95
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and 2,4-dichlorophenol whereas Pycnoporus cinnabarinus 
converts TCS into 2,4,4′-trichloro-2′-methoxydiphenyl 
ether and 2-O-(2,4,4′trichlorodiphenyl ether)-β-D-
glycopyranoside (Hundt et al. 2000). �e metabolites have 
been found less toxic but of lower microbiocidal activ-
ity than TCS (NICNAS 2009). Pseudomonas putida triRY 
and Alcaligenes xylosoxidans subsp. denitrificans TR1 have 
been reported to use TCS as their sole carbon source and 
clear particulate TCS from agar (Hundt et  al. 2000), this 
can be made use of in bioremediation. Recent laboratory 
evidence showed that maximum degradation to 2,4-dichlo-
rophenol and Cl− by Aspergillus versicolor occurred at 
pH 5 and 7, depending on the substratum (Taştana and 
Dönmeza 2015). Minor (7  %) transformation products of 
TCS biodegradation namely, monohydroxy-, dihydroxy-
triclosan derivatives and triclosan-O-sulfate in activated 
sludge have been reported recently (Chen et al. 2015). �e 
hydroxylated derivatives have been reported earlier as 
products of triclosan transformation by Sphingomonas sp. 
PH-07 (Kim et al. 2011). �e eco-toxicological significance 
of these minor transformation products appears obscure at 
this time. However, controversy still surrounds the impact 
of TCS on biodegradation of other co-pollutants in a given 
medium (Stasinakis et al. 2007; Svenningsen et al. 2011).

Chemical oxidants such as free chlorine (Canosa et al. 
2005a), ozone (Chen et  al. 2012b; Suarez et  al. 2007), 
permanganate (Zhang and Huang 2003) and mono-
chloramine (Wu et  al. 2012b) are capable of degrad-
ing TCS in aquatic environment. Of all these oxidants, 
permanganate was reported as capable of degrading all 
the TCS in water under natural conditions (pH 8.1) and 
unlike other oxidants is not affected by the matrix (Wu 
et al. 2012b). TCS that persists in the effluents after acti-
vated sludge treatment may be chemically transformed 
after the discharge. Water disinfecting oxidant, sodium 
hypochlorite, a source of free chlorine is generally used 
and could chlorinate TCS, generating chlorinated deriva-
tives such as 2,4-dichlorophenol and 2,4,6-trichlorophe-
nol (Canosa et  al. 2005a; Fiss et  al. 2007). Ozonolysis 
appears to be the most efficient method of removing TCS 
in aqueous medium (Table  8). It generates, in addition 
to the chlorinated derivatives chloro-catechol, mono-
hydroxy-triclosan and di-hydroxy-triclosan (Chen et  al. 
2012b) which are known to be more harmful than TCS to 
aquatic animals.

TCS is degradable under UV irradiation (photolysis) 
(Durán-Álvarez, et al. 2015; Lindstrom et al. 2002; Tixier 
et  al. 2002). �e UV-susceptibility in aqueous medium 
is related to the TCS large molar absorption coefficients 
(Carlson et al. 2015). Photolysis may be a significant route 
of TCS transformation in surface waters during summer. 
Laboratory evidence has shown that TCS is not appre-
ciably photo-degraded in soils when compared to water 

samples (Durán-Álvarez, et  al. 2015). It is believed that 
direct photolysis of TCS is hampered by the presence 
of organic substances which reflect incident photons 
(Hoigné et  al. 1989). TCS photolysis may be enhanced 
in aqueous medium, by high (alkaline) pH in the pres-
ence of a sensitizer such as Fe(III) ions (Martínez-Zapata 
et al. 2013) or in the presence of surfactant in the aque-
ous medium which plays an accelerating role (Qiao et al. 
2014). �e photolysis produces 2,4-dichlorophenol and 
2,4,6-trichlorophenol as stable TCS degradation prod-
ucts (Canosa et  al. 2005b; Chen et  al. 2012b; Fiss et  al. 
2007; Sanchez-Prado et al. 2006) while small amounts of 
derivatives of dioxin (2,8‐dichlorodibenzodioxin (DCDD) 
and furan (dichlorohydroxydibenzofuran) in the aque-
ous medium are produced as minor products (Latch et al. 
2003, 2005; Sanchez-Prado et  al. 2006; Son et  al. 2009). 
�ese photoproducts are more toxic than the parent 
(TCS) compound (Sanchez-Prado et al. 2006).

About 5  % of TCS was reportedly transformed into 
methyltriclosan (MCS) by microbial activity (Bester 2003, 
2005; Heidler and Halden 2007; Lozano et al. 2013). �e 
final destination of TCS and its hydrophobic metabo-
lites such as MCS is the sewage sludge (activated sludge 
and biosolids) through sorption wherein they are found 
in larger quantities than in the effluent aquatic medium 
(Chen et al. 2011; Heidler and Halden 2007; Kinney et al. 
2008; McAvoy et al. 2002; Ying and Kookana 2007). Stud-
ies carried out on WWTP which included a Swiss plant 
showed that higher fraction of the TCS was adsorbed by 
the sludge than was present in the aqueous phase (Bester 
2003; Singer et  al. 2002). �e work of Heidler and Hal-
den (2007) seems to have confirmed this which reported 
an average of 80 % of TCS bound to the particulate mat-
ters. Later reports from mass balance studies (Lozano 
et  al. 2013; Tohidi and Cai 2016) confirmed sorption of 
TCS on to the particulate matters and hence its removal 
from the aqueous phase. �e report of studies by Lozano 
et  al. 2013 on WWTP showed that most of the TCS is 
removed from aqueous phase during secondary treat-
ment and nitrification–denitrification processes and no 
removal takes place during primary treatment process. 
We suggest systematic approach in the interpretation 
of results from mass balance studies on TCS removal in 
WWTP effluents in view of the reported over-estimation 
when comparing with field studies (Lozano et al. 2013).

Sludge is the final destination of both TCS and its 
primary metabolite, MCS. Reported TCS concentra-
tions in sludges from different plants in Germany were 
from 1.4  µmol to 30.4  µmol/kg (Bester 2003) while the 
range in the United States was 1.8–53.9 µmol/kg (McA-
voy et  al. 2002) and 69.1  µmol–190  µmol/kg in biosol-
ids reported elsewhere in the USA (Heidler and Halden 
2007) (Table  9). �ese values are much higher when 
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compared with the results presented by Azzouz and Bal-
lesteros (2015) (Table 10) and may be related to increased 
usage of TCS. Both the parent compound and its metab-
olite find their way to the soil when it is amended with 
biosolids and are retained depending on the inter-play of 
biotic and abiotic factors (Butler et al. 2012). Clay has the 
least sorption for TCS while loamy soil the highest (Wu 
et al. 2009) and was reportedly more pronounced at top 
10 cm soil layer and markedly occurs in summer (Butler 
et al. 2012). TCS sorption to soil may reduce in alkaline 
environment (Wu et al. 2009) releasing TCS to the aque-
ous medium.

Soil samples from ten agricultural sites in Michigan 
previously amended with biosolids, collected over two 
years were shown to retain triclosan (0.55–3.5 nmol/kg) 
(Cha and Cupples 2009) while 0.31–24.4  µmol/kg tri-
closan was found in biosolids from three Michigan waste-
water treatment plants. In certain dewatered municipal 
biosolids, 37.6 µmol/kg of TCS were reported (Gottschall 
et al. 2012) considered high when compared with previ-
ous values (Table  9). �e practice of adding biosolids 
to agricultural soil has been reported in developed and 
developing countries (Table  10). In South Africa, six 
WWTP viz; Northern, Driefontein, Goudkoppie, Bush-
koppie, Olifantsvlei and Ennerdale had been reported to 
generate a total of 91,611 tons of dry sludge per annum 
(Johannesburg Water 2015) which is used in composting 
by interested private farmers.

�e concern is that biosolids may be an important 
source of TCS release to the environment as some 50 % 
mass of the incoming TCS in WWTP persist and are 

sequestered in the biosolids (Heidler and Halden 2007). 
�e work of Waria et al. (2011) showed that TCS could 
be persistent in biosolids longer in fine sand (half-life 
421  days) than silty clay loam (half-life 78  days) with 
MCS as a primary degradation product. TCS has been 
detected in soils amended with biosolids 33  years after 
application (Xia et  al. 2010). A report (Gottschall et  al. 
2012) detected TCS in the soil about a year after applica-
tion. �is raises fear that the use of biosolids in farming 
even after treatment (Angin and Yaganoglu 2009) may 
recycle TCS and/its toxic metabolites, given its potential 
to persist (high estimated partition coefficient Koc = 9200 
and stability to hydrolysis) in soil, thereby exposing soil 
dwelling animals such as earthworms to TCS toxicity and 
at the same time surreptitiously increasing the human 
body burden of TCS via trophic levels. In anaerobic 
digester, exposure to oft-high level TCS concentrations 
has been recorded as leading to the proliferation of TCS-
resistant genes (McNamara et  al. 2014). Application of 
biosolids from such digester to soil could also lead to the 
release of resistant bacteria to the environment (Burch 
et al. 2014; Fahrenfeld et al. 2014).

Some authorities (NICNAS 2009; Ying and Kookana 
2007) have attempted at determining the risk quotients 
associated with using effluents from sludge treatment 
plants in irrigation. However the kinetics of TCS in sew-
age sludges especially biosolids have not been intensively 
studied which continue to leave a gap in the knowledge 
about the amount of TCS present in the sludge and for 
how long. Further intensive research is also required 
beamed at elucidating the kinetics of degradation 

Table 9 Triclosan concentrations in wastewater sediments and sludge (Dann and Hontela 2011)

nd not detected

Medium Location Concentration (nmol/kg) References

Sediment

Freshwater Switzerland 180 Singer et al. (2002)

Spain nd–120 Morales et al. (2005)

Estuarine USA nd–2800 Miller et al. (2008)

Marine Spain 9.3–450 Agüera et al. (2003)

Sewage sludge

Activated sludge USA 1.7–53.9 McAvoy et al. (2002)

Spain 1.4–18.7 Morales et al. (2005)

Germany 4.1 Bester (2003)

Canada 2.1–5.0 Chu and Metcalfe (2007)

Biosolids Australia 311–58,000 Ying and Kookana (2007)

USA 36,300–103,600 Heidler and Halden (2007), Kinney et al. (2008), 
McClellan and Halden (2010)

Spain 5210 Morales et al. (2005)

Canada 2350–43,200 Lee and Peart (2002), Chu and Metcalfe (2007)
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products of TCS such as the dioxin derivatives known for 
their toxicity and persistence.

Triclosan bioaccumulation and ecotoxicity
Although TCS has the potential (log Kow = 4.76) to bio-
accumulate in fatty tissues, there is no evidence in human 
tissues. �ere is evidence that TCS and its metabolites 
bioaccumulate in mice (Kanetoshi et al. 1992) as well as 
in aquatic flora and fauna including algae, inverts and 
fish (Adolfsson-Erici et  al. 2002; Buser et  al. 2006; Cap-
devielle et al. 2008; Coogan and La Point 2008). TCS con-
centrations as high as 276.3 µmol/kg has been reported 
in the bile of fish (Abramis brama) (Houtman et al. 2004). 
Consequently toxic endpoints attributable to TCS have 
been recorded in these organisms. IC25 of 0.55 µmol/kg 
affected hatchability in Zebrafish Danio rerio after 9 days 
exposure (Tatarazako et al. 2004). �e swimming ability 
of fathead minnow (Pimephales promelas) was reduced 
when exposed to ≥0.52  μM TCS for 7  days (Chered-
nichenko et al. 2012) but the exposure level used in the 
study might be questionable as being environmentally 
irrelevant because TCS levels in surface waters normally 
occur at nanomolar levels (Table 3).

Microalgae and Hydra magnipapillata are important 
members of prisere in aquatic ecosystem. Microalgae 
communities are particularly sensitive to TCS at effective 
concentrations of about 0.035 nM (Wilson et al. 2009). It 
has been reported that at concentration (EC10) of 3.4 nM 
for 96  h exposure, TCS affected biomass of Anabaena 

flos-aquae the blue-green alga (Orvos et al. 2002). Among 
benthic microbial communities, TCS was found to act as 
a selective factor favouring the growth of cyanobacteria 
over algae (Drury et al. 2013). �e ecotoxicological impli-
cation is that cyanobacteria produce toxins which affect 
zooplanktons and which in turn threatens the survival of 
higher members of the trophic levels (Bláha et al. 2009). 
Exposure of Hydra magnipapillata to TCS (3.5  µM for 
4 h), resulted in epidermal tissue and nematocyst damage 
(Park and Yeo 2012). IC25 of 0.55 µmol/kg affected hatch-
ability in Zebrafish Danio rerio after 9  days exposure 
(Tatarazako et al. 2004). Plants and bacteria are thought 

to share the same fatty acids synthesis pathways; and 
experiments conducted with Arabidopsis family Brassi-

caceae have shown that enoyl-acyl carrier protein reduc-
tase is a common target of TCS (Serrano et  al. 2007), 
probably implying that it is toxic to plants as much as to 
bacteria.

Methyltriclosan (MCS) is a metabolite of TCS formed 
by bacterial methylation (Bester 2003, 2005). Its presence 
in aquatic animals first pronounced by Miyazaki et  al. 
(1984) is known to accumulate in aquatic animals than 
TCS presumably because of its higher partition coeffi-
cient (log Kow = 5; log Koc = 4.1); compare TCS (log Kow: 
4.2–4.8; log Koc: 4.3) (Chen et al. 2011). MCS concentra-
tions in lake fish have been reported to be between 4 and 
370  ng/g (Balmer et  al. 2004). Higher concentrations of 
520–596 μg/kg wet weight were reported in fresh water 
fish such as Cyprinus carpio (Leiker et al. 2009).

�e negative impact of TCS on ecosystem is expected 
to have economic consequences. �e United Nations 
Food and Agriculture Organization (FAO) reports (FAO 
2014) that about 25 million tonnes of seaweeds and 
other algae have been harvested annually for use as food, 
in cosmetics and for fertilizers, and are processed into 
thickening agents or animal feed additives. Given the 
negative effects of TCS on the aquatic flora and fauna 
such as algae and fish, all the economic advantages such 
as protein supply from water resources as well as employ-
ment provision, risk shortages if TCS circulation is not 
properly regulated.

Triclosan antimicrobial activity
�e antimicrobial activity of TCS spans against Gram 
positive and Gram negative non-sporulating bacteria, 
some fungi (Schweizer 2001), Plasmodium falciparum 
and Toxoplasma gondii (Al-Doori et  al. 2003). At low 
concentrations TCS is bacteriostatic which is predicated 
on its inhibitory effect on the bacterial enoyl acyl carrier 
protein reductase (Heath et al. 1999) of fatty acid elonga-
tion pathway, whereas at higher concentrations (as found 
in dermatological preparations) it has bactericidal effect 
through membrane intercalation and triclosan-induced 
K+ leakage (Escalada et  al. 2005; Russell 2004; Villalain 
et  al. 2001). Staphylococci, some Streptococci, some 
Mycobacteria, Escherichia coli and Proteus spp, Methi-
cillin-resistant Staphylococcus aureus (MRSA) strains 
are all sensitive to TCS (Al-Doori et al. 2003; Suller and 
Russell 1999). TCS minimum inhibitory concentration 
of 500 ppb as an effective bactericide in the products has 
been reported. Showering or bathing with 2 % (w/w) TCS 
has been shown to be an effective concentration for the 
decolonization of patients whose skin is carrying MRSA 
(Tuffnell et  al. 1987). TCS-based products have been 
used successfully to control MRSA (Brady et  al. 1990; 

Table 10 Triclosan concentrations in  agricultural soils, 

sewage sludge, river and pond sediments (Azzouz and Bal-

lesteros 2015)

Medium Location Concentration 
(nmol/kg)

Agricultural soils (4 points, n = 12) Spain 0.028–0.1

Pond sediments (2 points, n = 6) Spain 0.15–0.2

River sediments (3 points, n = 9) Spain 0–0.18

Sewage sludge (2 points, n = 6) Spain 0.5–0.52
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Zafar et al. 1995). Enterococci are much less susceptible 
than Staphylococci to TCS while Pseudomonas aerugi-

nosa is highly resistant (Russell 2003) to it.
Microbial resistance to TCS has been reported 

(McMurry et  al. 1998; Sanchez et  al. 2005) in which 
membrane impermeability and efflux pump are thought 
to play a major mechanistic role (Gomez-Escalda et  al. 
2001; Sanchez et  al. 2005). Studies conducted under 
environmentally relevant TCS concentrations produced 
TCS resistance (Nietch and Quinlan 2013). In the same 
vein, urbanization with regular discharge of TCS into the 
surface waters has been reported to favour TCS resist-
ance among benthic microbial communities (Drury et al. 
2013). �e report of McNamara and co-workers (2014) 
on anaerobic digesters showed that the structure of the 
microbial community as well as TCS concentration is 
critical to the selection of resistance strains. Recent 
report (Gantzhorn et  al. 2015) has demonstrated that 
mutation of one of the sigma factors (transcription initia-
tion factor required for RNA polymerase recognition of 
its promoter) in combination with that of fab I (encodes 
the enoyl-acyl carrier protein reductase), confers high-
level microbial resistance to TCS. It however remains 
to be elucidated the precise role of the sigma factors, in 
particular which of the factors, for example rpoS or rpoD 
is responsible for the mutation. Microbial resistance to 
TCS may lead to the worst scenario of the appearance 
of the antibiotic insensitive bacteria the so called super-
bugs, as well as cross-resistance to other antibiotics such 
as isoniazid and ethionamide (an anti-tuberculosis pro-
drugs), which target Mycobacterium tuberculosis enoyl 
acyl carrier protein reductase (InhA) (Freundlich et  al. 
2009) underscoring the need to regulate TCS with a view 
to preventing over-use. �e precise role of TCS on the 
selection of antibiotic resistance genes as well as multid-
rug resistance genes in the environment needs be deter-
mined. �e concentration of TCS that is required for 
resistance selection in environmental communities needs 
be worked out too.

Conclusion and future directions
Available data on the occurrence of TCS in various envi-
ronmental media, in human body and in wildlife show 
that the compound is not well regulated. Its uncoordi-
nated use and careless disposal may threaten lives and 
the ecosystem generally. Cell based studies have shown 
toxicity potentials of TCS in a number of cells. Results 
of epidemiological studies as enunciated in this review 
may have supported the in vitro study reports. Cell-based 
assays are short-term (hours–days) and cannot be used 
to directly address the effect of chronic exposures. Pur-
suant to this widely held criticism, additional data need 
be generated from in vitro and in vivo studies as well as 

carefully designed epidemiological studies in order to 
make a conclusive remark on the role of the chemical in 
health and disease.

�e detection of TCS in human fluids and tissues may 
not be an indicator of long term exposure as available data 
are insufficient to confirm its bio-accumulation in tissues 
(Geens et al. 2012), more so it is thought that TCS inhib-
its enzymes responsible for its metabolism (conjugation) 
(Wang et  al. 2004). �ere is presently paucity of data on 
both pharmacodynamics and pharmacokinetics of TCS. 
Sufficient data would provide leeway in understanding the 
toxicity of TCS. �e toxicological significance of the inhib-
itory effect of TCS on human fatty acid synthase (Liu et al. 
2002) is not well understood though its anti-proliferative 
effect has been reported in some cancer cells (Honkisz 
et al. 2012), however administration of TCS orally to rats, 
dogs and baboons was reported to produce minimum tox-
icity in these animals (Bhargava and Leonard 1996). �e 
presence of detectable levels of TCS in human tissues fuels 
the suspicion that the compound may impact negatively on 
human physiology. Its adverse effect on innate immunity 
has been reported and so are clinical reports purporting 
its management of human allergic skin disease (Sporik and 
Kemp 1997; Tan et al. 2010). Certain epidemiological stud-
ies have attempted to answer this question but sufficient 
consideration was not usually given to such confounding 
factors as inter-individual variability.

�e precise role of TCS on the selection of antibiotic 
resistance genes as well as multidrug resistance genes 
in the environment needs be elucidated. �e concentra-
tion of TCS that is required for resistance selection in 
environmental communities also needs be worked out. 
�e relationship between TCS exposure and bio-accu-
mulation in terrestrial animals is still inconclusive (Hig-
gins et al. 2011) and would require expansive work which 
should include the kinetics of TCS conversion in the soils 
to its primary metabolite and uptake by such terrestrial 
animals as earthworms and snails which among others 
are important in agriculture and nutrition.
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