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ABSTRACT
In this paper we introduce a novel algorithm called tri-

Cluster, for mining coherent clusters in three-dimensional
(3D) gene expression datasets. triCluster can mine arbi-
trarily positioned and overlapping clusters, and depending
on different parameter values, it can mine different types
of clusters, including those with constant or similar values
along each dimension, as well as scaling and shifting ex-
pression patterns. triCluster relies on graph-based ap-
proach to mine all valid clusters. For each time slice, i.e., a
gene×sample matrix, it constructs the range multigraph, a
compact representation of all similar value ranges between
any two sample columns. It then searches for constrained
maximal cliques in this multigraph to yield the set of bi-
clusters for this time slice. Then triCluster constructs
another graph using the biclusters (as vertices) from each
time slice; mining cliques from this graph yields the final
set of triclusters. Optionally, triCluster merges/deletes
some clusters having large overlaps. We present a useful set
of metrics to evaluate the clustering quality, and we show
that triCluster can find significant triclusters in the real
microarray datasets.

1. INTRODUCTION
Traditional clustering algorithms work in the full dimen-

sional space, which consider the value of each point in all
the dimensions and try to group the similar points together.
Biclustering [7], however, does not have such a strict re-
quirement. If some points are similar in several dimensions
(a subspace), they will be clustered together in that sub-
space. This is very useful, especially for clustering in a
high dimensional space where often only some dimensions
are meaningful for some subset of points. Biclustering has
proved of great value for finding the interesting patterns
in the microarray expression data [8], which records the ex-
pression levels of many genes (the rows/points), for different
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biological samples (the columns/dimensions). Biclustering
is able to identify the co-expression patterns of a subset of
genes that might be relevant to a subset of the samples of
interest.

Besides biclustering along the gene-sample dimensions,
there has been a lot of interest in mining gene expression
patterns across time [4]. The proposed approaches are also
mainly two-dimensional, i.e., finding patterns along the gene-
time dimensions. In this paper, we are interested in mining
tri-clusters, i.e., mining coherent clusters along the gene-
sample-time (temporal) or gene-sample-region (spatial) di-
mensions. To the best of our knowledge, triCluster is the
first 3D microarray subspace clustering method.

There are several challenges while mining microarray data
for bi- and tri-clusters. First, biclustering itself is known to
be a NP-hard problem [7], and thus many proposed algo-
rithms of mining bicusters use heuristic methods or proba-
bilistic approximations, which as a tradeoff decrease the ac-
curacy of the final clustering results. Extending these meth-
ods to triclustering will be even harder. Second, microarray
data is inherently susceptible to noise, due to varying ex-
perimental conditions, thus it is essential that the methods
be robust to noise. Third, given that we do not understand
the complex gene regulation circuitry in the cell, it is im-
portant that clustering methods allow overlapping clusters
that share subsets of genes, samples or time-courses/spatial-
regions. Furthermore, the methods should be flexible enough
to mine several (interesting) types of clusters, and should not
be too sensitive to input parameters.

In this paper, we present a novel, efficient, determinis-
tic, triclustering method called triCluster, that addresses
the above challenges. The key features of our approach in-
clude: 1) We mine only the maximal triclusters satisfying
certain homogeneity criteria. 2) The clusters can be arbi-
trarily positioned anywhere in the input data matrix and
they can have arbitrary overlapping regions. 3) we use a
flexible definition of a cluster which can mine several types
of triclusters, such as triclusters having identical or approx-
imately identical values for all dimensions or a subset of the
dimensions, and triclusters that exhibit a scaling or shifting
expression values (where one dimension is a approximately
constant multiple of or is at an approximately constant off-
set from another dimension, respectively). 4) triCluster

is a deterministic and complete algorithm, which utilizes the
inherent unbalanced property (number of genes being a lot
more than the number of samples or time-slices) in microar-
ray data, for efficient mining. 5) triCluster can optionally



merge/delete triclusters that have large overlaps, and can
also automatically relax the similarity criteria. It can thus
tolerate some noise in the dataset, and lets the user focus on
the most important clusters. 6) We present a useful set of
metrics to evaluate the clustering quality, and we show that
triCluster can find substantially significant triclusters in
the real microarray datasets.

2. PRELIMINARY CONCEPTS
Let G = {g0, g1, · · · , gn−1} be a set of n genes, let S =
{s0, s1, · · · , sm−1} be a set of m biological samples (e.g., dif-
ferent tissues or experiments), and let T = {t0, t1, · · · , tl−1}
be a set of l experimental time points. A three dimen-
sional microarray dataset is a real-valued n×m×l matrix
D = G×S×T = {dijk} (with i ∈ [0, n−1], j ∈ [0, m−1], k ∈
[0, l−1]), whose three dimensions correspond to genes, sam-
ples and times respectively (note that the 3rd dimension can
also be a spatial region of interest, but without loss of gener-
ality (w.l.o.g.), we will consider time as the 3rd dimension).
Each entry dijk records the (absolute or relative) expression
level of gene gi in sample sj at time tk. For example, Ta-
ble 1(a) shows a dataset with 10 genes, 7 samples and 2
time points. For clarity certain cells have been left blank;
we assume that these are filled by some random expression
values.

A tricluster C is a submatrix of the dataset D, where
C = X×Y×Z = {cijk}, with X ⊆ G, Y ⊆ S and Z ⊆ T
provided certain conditions of homogeneity are satisfied. For
example, a simple condition might be that all values {cijk}
are identical or approximately equal. If we are interested in
finding common gene co-expression patterns across different
samples and times, we can find clusters that have similar
values in the G dimension, but can have different values in
the S and T dimensions. Other homogeneity conditions can
also be defined, such as similar values in S dimension, order
preserving submatrix, and so on [16].

Let C = X×Y×Z = {cijk} be a tricluster and let C2,2 =
»

cia cib

cja cjb

–

be any arbitrary 2×2 submatrix of C, i.e.,

C2,2 ⊆ X × Y (for some z ∈ Z) or C2,2 ⊆ X × Z(for some
y ∈ Y ) or C2,2 ⊆ Y × Z(for some x ∈ X). We call C a
scaling cluster if we have cib = αicia and cjb = αjcja, and
further |αi − αj | ≤ ε, i.e., the expression values differ by
an approximately (within ε) constant multiplicative factor
α. We call C a shifting cluster iff we have cib = βi + cia and
cjb = βj + cja, and further |βi − βj | ≤ ε, i.e., the expression
values differ by a approximately (within ε) constant additive
factor β.

We say that cluster C = X × Y × Z is a subset of C ′ =
X ′×Y ′×Z′, iff X ⊆ X ′, Y ⊆ Y ′ and Z ⊆ Z ′. Let B be
the set of all triclusters that satisfy the given homogeneity
conditions, then C ∈ B is called a maximal tricluster iff there
doesn’t exist another cluster C ′ ∈ B such that C ⊂ C ′ Let

C = X×Y×Z be a tricluster, and let C2,2 =

»

cia cib

cja cjb

–

an

arbitrary 2×2 submatrix of C, i.e., C2,2 ⊆ X × Y (for some
z ∈ Z) or C2,2 ⊆ X×Z(for some y ∈ Y ) or C2,2 ⊆ Y ×Z(for
some x ∈ X). We call C a valid cluster iff it is a maximal
tricluster satisfying the following properties:

1. Let ri = | cib

cia
| and rj = |

cjb

cja
| be the ratio of two col-

umn values for a given row (i or j). We require that
max(ri,rj)

min(ri,rj)
− 1 ≤ ε, where ε is a maximum ratio value.

Time t0

s0 s1 s2 s3 s4 s5 s6

g0 3.6 1.0 1.0 1.0 1.0 1.0
g1 3.0 2.5 2.0 1.0
g2 5.0 5.0 5.0
g3 6.6 5.5 2.0
g4 9.0 7.5 6.0 3.0
g5 6.6 4.4 2.0
g6 3.0 3.0 3.0
g7 8.0 8.0 8.0 8.0
g8 6.0 5.0 4.0 2.0
g9 4.0 4.0 4.0 4.0 4.0

Time t1

s0 s1 s2 s3 s4 s5 s6

g0 0.5 0.5 0.5 0.5 0.5
g1 3.0 2.4 1.2
g2 2.5 2.5 2.5
g3 5.5 2.0
g4 9.0 7.2 3.6
g5 4.4 2.0
g6 1.5 1.5 1.5
g7 4.0 4.0 4.0 4.0
g8 6.0 4.8 2.4
g9 2.0 2.0 2.0 2.0 2.0

(a)

Time t0

s3 s0 s6 s4 s1 s5 s2

g5 6.6 2.0 4.4
g2 5.0 5.0 5.0
g6 3.0 3.0 3.0
g0 3.6 1.0 1.0 1.0 1.0 1.0
g9 4.0 4.0 4.0 4.0 4.0
g7 8.0 8.0 8.0 8.0
g3 6.6 2.0 5.5
g4 9.0 3.0 6.0 7.5
g8 6.0 2.0 4.0 5.0
g1 3.0 1.0 2.0 2.5

Time t1

s3 s0 s6 s4 s1 s5 s2

g5

g2 2.5 2.5 2.5
g6 1.5 1.5 1.5
g0 0.5 0.5 0.5 0.5 0.5
g9 2.0 2.0 2.0 2.0 2.0
g7 4.0 4.0 4.0 4.0
g3

g4 3.6 7.2 9.0
g8 2.4 4.8 6.0
g1 1.2 2.4 3.0

(b)

Table 1: (a) Example Microarray Dataset. (b) Some
Clusters

2. If cia× cib < 0 then sign(cia) = sign(cja) and sign(cib)
= sign(cjb), where sign(x) returns -1/1 if x is negative/non-
negative (expression values of zero are replaced with a
small random positive correction value, in the prepro-
cessing step). This allows us to easily mine datasets
having negative expression values. 1

1It also prevents us from reporting that, for example, ex-
pression ratio −5/5 is equal to 5/− 5.



3. We require that the cluster satisfy maximum range
thresholds along each dimension. For any ci1j1k1 ∈ C
and ci2j2k2 ∈ C, let δ = |ci1j1k1 − ci2j2k2 |. We require
the following conditions: a) If j1 = j2 and k1 = k2,
then δ ≤ δx, b) if i1 = i2 and k1 = k2, then δ ≤ δy, and
c) if i1 = i2 and j1 = j2, then δ ≤ δz. where δx, δy and
δz represent the maximum range of expression values
allowed along the gene, sample, and time dimensions.

4. We require that |X| ≥ mx, |Y | ≥ my and |Z| ≥ mz,
where mx, my and mz denote minimum cardinality
thresholds for each dimension.

Lemma 1. (Symmetry Property) Let C = X×Y×Z be

a tricluster, and let

»

cia cib

cja cjb

–

an arbitrary 2×2 subma-

trix of X×Y (for some z ∈ Z) or X×Z(for some y ∈ Y )
or Y×Z(for some x ∈ X). Let ri = | cib

cia
|, rj = |

cjb

cja
|,

ra = |
cja

cia
|, and rb = |

cjb

cib
| then

max(ri,rj)

min(ri,rj)
− 1 ≤ ε ⇐⇒

max(ra,rb)
min(ra,rb)

− 1 ≤ ε.

Proof: W.l.o.g. assume that ri ≥ rj , then | cib

cia
| ≥

|
cjb

cja
| ⇐⇒ |

cja

cia
| ≥ |

cjb

cib
| ⇐⇒ ra ≥ rb. We now have

max(ri,rj)

min(ri,rj)
= ri

rj
= |cib/cia|

|cjb/cja|
=

|cja/cia|

|cjb/cib|
= ra

rb
= max(ra,rb)

min(ra,rb)
.

Thus
max(ri,rj)

min(ri,rj)
− 1 ≤ ε ⇐⇒ max(ra,rb)

min(ra,rb)
− 1 ≤ ε.

The symmetric property of our cluster definition allows for
very efficient cluster mining. The reason is that we are now
free to mine clusters searching over the dimensions with the
least cardinality. For example, instead of searching for sub-
space clusters over subsets of the genes (which can be large),
we can search over subsets of samples (which are typically
very few) or over subsets of time-courses (which are also not
large).

Note that by definition, a cluster represents a scaling clus-
ter (if the ratio is 1.0, then it is a uniform cluster). However,
our our definition allows for the mining of shifting clusters
as well, as indicated by the lemma below.

Lemma 2. (Shifting Cluster) Let C = X×Y ×Z = {cxyz}
be a maximal tricluster. Let eC = {ecxyz} be the triclus-
ter obtained by applying the exponential function (base e) to
each value in C. If eC is a (scaling) cluster, then C is a
shifting cluster.

Proof: Let C2,2 =

»

cia cib

cja cjb

–

an arbitrary 2×2 sub-

matrix of C. Assume that eC is a valid scaling cluster. Then
by definition, ecib = αie

cia . But this immediately implies
that ln(ecib) = ln(αie

cia), which gives us cib = ln(αi) + cia.
Likewise, we have cjb = ln(αj) + cja. Setting βi = ln(αi)
and βj = ln(αj), we have that C is a shifting cluster.

Note that the clusters can have arbitrary positions any-
where in the data matrix, and they can have arbitrary over-
lapping regions (though, triCluster can optionally merge
or delete overlapping clusters under certain scenarios). We
impose the minimum size constraints i.e. mx, my and mz
to mine large enough clusters. Typically ε ≈ 0, so that the
ratios of the values along one dimension in the cluster are
similar (by symmetry Lemma 1, this property is also ap-
plicable for the other two dimensions), i.e., the ratios can
differ by at most ε. Further, different choices of dimensional
range thresholds (δx, δy and δz) produce different kinds of
clusters:

a) If δx = δy = δz = 0, then we obtain a cluster that has
identical values along all dimensions.

b) If δx = δy = δz ≈ 0, then we obtain clusters with ap-
proximately identical values.

c) If δx ≈ 0, δy 6= 0 and δz 6= 0, then we obtain a clus-
ter (X × Y × Z), where each gene gi ∈ X has similar
expression values across the different samples Y and the
different times Z, and different genes’ expression values
cannot differ by more than the threshold δx. Similarly
we can obtain other cases by setting i) δx 6= 0, δy ≈ 0
and δz 6= 0 or ii) δx 6= 0, δy 6= 0 and δz ≈ 0.

d) δx ≈ 0, δy ≈ 0 and δz 6= 0, we obtain a cluster with
similar values for genes and samples, but the time-courses
are allowed to differ by some arbitrary scaling factor.
Similar cases are obtained by setting i) δx ≈ 0, δy 6= 0
and δz ≈ 0, and ii) δx 6= 0, δy ≈ 0 and δz ≈ 0.

e) If δx 6= 0, δy 6= 0 and δz 6= 0, then we obtain a clus-
ter that exhibits scaling behavior on genes, samples and
times, and the expression values are bounded by δx, δy

and δz respectively.

Note also that triCluster also allows different ε values
for different pairs of dimensions. For example, we may use
one value of ε to constrain the expression values for, say, the
gene-sample slice, but we may then relax the maximum ratio
threshold for the temporal dimension to capture more inter-
esting (and big) changes in expression as time progresses.

For example, Table 1(b) shows some examples of different
clusters that can be obtained by permuting some dimen-
sions. Let mx = my = 3, mz = 2 and let ε = 0.01. If we
let δx = δy = δz = ∞, i.e., if they are unconstrained, then
C1 = {g1, g4, g8} × {s1, s4, s6} × {t0, t1} is an example of a
scaling cluster, i.e., each point values along one dimension
is some scalar multiple of another point values along the
same dimension. We also discover two other maximal over-
lapping clusters, C2 = {g0, g2, g6, g9}×{s1, s4, s6}×{t0, t1},
C3 = {g0, g7, g9} × {s1, s2, s4, s5} × {t0, t1}. Note that if
we set my = 2 we would find another maximal cluster
C4 = {g0, g2, g6, g7, g9} × {s1, s4} × {t0, t1}, which is sub-
sumed by C2 and C3. We shall see later that triCluster

can optionally delete such a cluster in the final steps. If we
set δx = 0, and let δy and δz be unconstrained, then we will
not find cluster C1, whereas all other clusters will remain
valid. This is because if δx = 0, then the values for each
gene in the cluster must be identical, however since δy and
δz are unconstrained the cluster can have different coherent
values along the samples and times. Since ε is symmetric
for each dimension, triCluster first discovers all uncon-
strained clusters rapidly, and then prunes unwanted clusters
if δx, δy or δz are constrained. Finally, it optionally deletes
or merges mined clusters if certain overlapping criteria are
met.

3. RELATED WORK
While there has been work on mining gene expression pat-

terns across time, to the best of our knowledge there is no
previous method that mines tri-clusters. On the other hand,
there are many full-space and biclustering algorithms de-
signed to work with microarray datasets, such as feature
based clustering [1, 2, 27], graph based clustering [13, 28,



24], and pattern based clustering [7, 15, 26, 18, 5]. Below,
we briefly review some of these methods, and refer the reader
to an excellent, recent survey on biclustering [16] for more
details. We first begin by discussing time-series expression
clustering methods.

3.1 Time-based Microarray Clustering
Jiang et al [14] gave a method to analyze the gene-sample-

time microarray data. It treats the gene-sample-time mi-
croarray data as a gene×sample matrix with each entry as
a vector of the values along the time dimension. For any
two such vectors, it uses their Pearson’s correlation coeffi-
cient as the distance. Then for each gene, it groups similar
time-vectors together to form a sample subset. After that,
it enumerates the subset of all the genes to find those sub-
sets of genes whose corresponding sample subsets result in
a considerable intersection set. The paper discussed two
methods: grouping samples first and grouping genes first.
Although the paper dealt with three dimensional microar-
ray data, it considers the time dimension in full space (i.e.
all the values along the time dimension), and is thus unable
to find temporal trends that are applicable to only a subset
of the times, and as such it casts the 3D problem into a
biclustering problem.

In general, most previous methods apply traditional full
space clustering (with some improvements) to the gene time-
series data. Thus these methods are not capable of mining
coherent subspace clusters, i.e., these methods sometimes
will miss important information obscured by the data noise.
For example, Erdal et al. [9] extract a 0/1 vector for each
gene, such that there is a ’1’ whenever there is a big change
in its expression from one time to the next. Using longest
common subsequence length as similarity, they perform a
full-dimensional clustering. The subspaces of time-points
are not considered, and the sample space is ignored. Moller
et al [17] present another time-series microarray clustering
algorithm. For any two time vectors [x1(t1), x2(t2), · · · ,
xk(tk)] and [y1(t1), y2(t2), · · · yk(tk)] they calculate sim(x, y)

=
Pn

k=1

(xk+1−xk)−(yk+1−yk)

tk+1−tk
. Then they use a full-space re-

peated fuzzy clustering algorithm to partition the time-series
clusters. Ramoni et al [20] presents a Bayesian method for
model-based gene expression clustering. It represents gene
expression dynamics as autoregressive equations and uses
an agglomerative method to search for the clusters. Feng et
al [10] proposed a time-frequency based full-space algorithm
using a measure of functional correlation set between time-
course vectors of different genes. Filkov et al [11] addressed
the analysis of short-term time-series gene microarray data,
by detecting the period in a predominantly cycling dataset,
and the phase between phase-shifted cyclic datasets. It too
is a fullspace clustering method on gene time-series data.
For a more comprehensive look at time-series gene expres-
sion analysis, see the recent paper by Bar-Joseph [4]. The
paper divides the computational challenges into four analy-
sis levels: experimental design, analysis, pattern recognition
and gene networks. It discusses the computational and bi-
ological problems at each level and reviews some methods
proposed to deal with these issues. It also highlights some
open problems.

3.2 Feature- and Graph-based Clustering
PROCLUS[1] and ORCLUS [2] use projective clustering

to partition the dataset into clusters occurring in possi-

bly different subsets of dimensions in a high dimensional
dataset. PROCLUS seeks to find axis-aligned subspaces by
partitioning the set of points and then uses a hill-climbing
technique to refine the partitions. ORCLUS finds arbitrar-
ily oriented clusters by using ideas related to singular value
decomposition. Other subspace clustering methods include
CLIQUE [3] and DOC [19]. These methods are not designed
to mine coherent patterns from microarray datasets.

CLIFF [27] iterates between feature (genes) filtering and
sample partitioning. It first calculates k best features (genes)
according to their intrinsic discriminability using current
partitions. Then it partitions the samples with these fea-
tures by keeping the minimum normalized weights. This
process iterates until convergence. COSA [12] allows tradi-
tional clustering algorithms to cluster on a subset of at-
tributes, rather than all of them. Principal Component
Analysis for gene expression clustering has also been pro-
posed [30].

HCS [13] is a fullspace clustering algorithm. It cuts a
graph into subgraphs by removing some edges, and repeats
until all the vertices in each subgraph are similar enough.
MST [28] is also a fullspace clustering method. It uses
greedy method to construct a minimum spanning tree, and
splits the current tree(s) repeatedly, until the average edges
length in each subtree is below some threshold. Then each
tree is a cluster. SAMBA [24] uses a bipartite graph to
model and implement the clustering. It repeatedly finds
the maximal highly-connected sub-graph in the bipartite
graph. Then it performs local improvement by adding or
deleting a single vertex until no further improvement is pos-
sible. Other graph-theoretic clustering algorithms include
CLICK [21] and CAST [6].

There are some common drawbacks concerning the above
algorithms applied to microarray datasets. First, some of
them are randomized methods based on shrinking and ex-
pansion, which sometimes results in incomplete clusters. Sec-
ond, none of them can deal with overlapped clusters prop-
erly. Third, the greedy methods will lead to a local optimum
that may miss some important (part of) clusters. Moreover,
fullspace clustering is even not biclustering and will com-
promise the important clusters by considering irrelevant di-
mensions. In general, none of them are deterministic, and
thus cannot guarantee that all valid (overlapped) clusters
are found.

3.3 Pattern-based Clustering
δ-biclustering [7] uses mean squared residue of a subma-

trix (X×Y ) to find biclusters. If a submatrix with enough
size has a mean squared residue less than threshold δ, it is
a δ-bicluster. Initially, the algorithm starts with the whole
data matrix, and repeatedly adds/deletes a row/column from
the current matrix in a greedy way until convergence. Af-
ter having found a cluster, it replaces the submatrix with
random values, and continues to find the next best cluster.
This process iterates until no further clusters can be found.
One limitation of δ-biclustering is that it may converge to
a local optimum, and cannot guarantee all clusters will be
found. Also it can easily miss overlapping clusters due to the
random value substitutions it does. Another move-based δ-
biclustering method was proposed in [29]. However, it too
is an iterative improvement based method.

pCluster [26] defines a cluster C as a submatrix of the
original dataset, such that for any two by two submatrix



»

cxa cxb

cya cyb

–

of C, |(cxa − cya) − (cxb − cyb)| < δ, where

δ is a threshold. The algorithm first scans the dataset to
find all column-pair and row-pair maximal clusters called
MDS. Then it does the pruning in turn using the row-pair
MDS and the column-pair MDS. It then mines the final
clusters based on a prefix tree. pCluster is symmetric, i.e., it
treats rows and columns equally, and it is capable of finding
similar clusters as triCluster, but it does not merge/prune
clusters and is not robust to noise. Further, we show that
it runs much slower than triCluster on real microarray
datasets.

xMotif [18] requires all genes expressions in a bicluster
to be similar across all the samples. It randomly picks a
seed sample s and a sample subset d (called discriminating
set), and then finds all such genes that are conserved across
all the samples in d. xMotif uses Monte Carlo method to
find the clusters that cover all genes and samples. However
it cannot guarantee to find all the clusters because of its
random sampling process.

Another stochastic algorithm OPSM [5] has similar draw-
back as xMotif, but uses a different cluster definition. It
defines a cluster as a submatrix of the original data matrix
after row and column permutation, whose row values are in
a non-decreasing pattern. Another method using this defini-
tion is OP-Cluster [15]. Gene clustering methods using Self
Organizing Maps [23], and iterated two-way clustering [25]
have also been proposed; a systematic comparison these and
other biclustering methods can be found in [16].

4. THE triCluster ALGORITHM
As outlined above, triCluster mines arbitrarily posi-

tioned and overlapping scaling and shifting patterns from
a three dimensional dataset, as well as several specializa-
tions. Typically 3D microarray datasets have more genes
than samples, and perhaps an equal number of time points
and samples, i.e., |G| ≥ |T | ≈ |S|. Due to the symmet-
ric property, triCluster always transposes the input 3D
matrix such that the dimension with the largest cardinality
(say G) is 1st dimension; we then make S as the 2nd and T
as the 3rd dimension. triCluster has three main steps: 1)
For each G×S time slice matrix, find the valid ratio-ranges
for all pair of samples, and construct a range multigraph,
2) Mine the maximal biclusters from the range multigraph,
3) Construct a graph based on the mined biclusters (as ver-
tices) and get the maximal triclusters, and 4) Optionally,
delete or merge clusters if certain overlapping criteria are
met. We look at each step below.

4.1 Construct Range Multigraph
Given a dataset D, the minimum size thresholds, mx, my

and mz, and the maximum ratio threshold ε, let sa and sb

be any two sample columns in some time t of D and let
rab

x = dxa

dxb
be the ratio of the expression values of gene gx

in columns sa and sb, where x ∈ [0, n− 1]. A ratio range is
defined as an interval of ratio values, [rl, ru], with rl ≤ ru.
Let Gab([rl, ru]) = {gx : rab

x ∈ [rl, ru]} be the set of genes,
called the gene-set, whose ratios w.r.t. columns sa and sb lie
in the given ratio range, and if rab

x < 0 all the values in the
same column have same signs (negative/non-negative).

In the first step triCluster quickly tires to summa-
rize the valid ratio ranges that can contribute to some bi-
cluster. More formally, we call a ratio range valid iff: 1)

max(|ru|,|rl|)
min(|ru|,|rl|)

− 1 ≤ ε, i.e., the range satisfies the maxi-

mum ratio threshold imposed in our cluster definition. 2)
|Gab([rl, ru])| ≥ mx, i.e., there are enough (at least mx)
genes in the gene-set. This is imposed since our cluster def-
inition requires any cluster to have at least mx genes. 3)
If there exists a rab

x < 0, all the values {dxa}/{dxb} in the
same column have same signs (negative/non-negative). 4)
[rl, ru] is maximal w.r.t. ε, i.e., we cannot add another gene
to Gab([rl, ru]) and yet preserve the ε bound. Intuitively, we
want to find all the maximal ratio ranges that satisfy the ε
threshold, and span at least mx genes. Note that there can
be multiple ranges between two columns and also that some
genes may not belong to any range.

Figure 1 shows the ratio values for different genes using
columns s0/s6 at time t0 for our running example in Ta-
ble 1. Assume ε = 0.01, and mx = 3, then there is only one
valid ratio range, [3.0, 3.0] and the corresponding gene-set is
Gs0s6([3.0, 3.0]) = {g1, g4, g8}. Using a sliding window ap-
proach (with window size: r06

x × ε for each gene gx) over the
sorted ratio values, triCluster find all valid ratio ranges
for all pairs of columns sa, sb ∈ S. If at any stage there are
more than mx rows within the window, a range is generated.
It is clear that different ranges may overlap. For instance,
if we let ε = 0.1 we would obtain two valid ranges, [3.0, 3.3]
and [3.3, 3.6], with overlapping gene-sets {g1, g4, g8, g3, g5}
and {g3, g5, g0} respectively. If there are consecutive over-
lapping valid ranges, we merge them into an extended range,
even though the maximum ratio threshold ε is exceeded. If
the extended range is too wide, say more than 2ε, we split
the extended range into several blocks of range at most 2ε
(split ranges). To avoid missing any potential clusters, we
also add some overlapping patched ranges. This process is
illustrated in Figure 1(b). Note that an added advantage of
allowing extended ranges is that it makes the method more
robust to noise, since often the users may set a stringent ε
condition, whereas the data might require a larger value.

Given the set of all valid, as well as the extended split
or patched ranges, across any pairs of columns sa, sb with
a < b, given as Rab = {Rab

i = [rab
li

, rab
ui

] : sa, sb ∈ S},
we construct a weighted, directed, range multigraph M =
(V, E), where V = S (the set of all samples), and for each
Rab

i ∈ R
ab there exists a weighted, directed edge (sa, sb) ∈ E

with weight w =
rab

ui

rab
li

. In addition, each edge in the range

multigraph has associated with it the gene-set corresponding
to the range on that edge. For example, suppose my = 3,
mx = 3, and ε = 0.01. Figure 2 shows the range multi-
graph constructed from Table 1, for time t0. Another range
multigraph is obtained for time t1.

4.2 Mine Biclusters from Range Multigraph
The range multigraph represents in a compact way all the

valid ranges that can be used to mine potential biclusters
corresponding to each time slice, and thus filters out most
of the unrelated data. biCluster uses a depth first search
(DFS) on the range multigraph to mine all the biclusters,
as shown in pseudo-code in Figure 3. It takes as input the
set of parameter values ε, mx, my, δx, δy, the range graph
M t for a given time point t, and the set of genes all G and
samples S. It will output the final set of all biclusters Ct for
that time course. biCluster is a recursive algorithm, that
at each call accepts a current candidate bicluster C = X×Y ,
and a set of not yet expanded samples P . The initial call
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Input : parameters: ε, mx, my, δx, δy, range
graph Mt, set of genes G and
samples S

Output : bicluster set Ct

Initialization: Ct = ∅, call
biCluster(C = G×∅, S)

biCluster (C = X×Y, P ):1

if C satisfies δx, δy then2

if |C.Y | ≥ my then3

if 6 ∃C′ ∈ Ct, such that C ⊂ C ′ then4

Delete any C ′′ ∈ C, if C′′ ⊂ C5

Ct ←− Ct + C6

foreach sb ∈ P do7

Cnew ←− C8

Cnew.Y ←− Cnew.Y + sb9

P ←− P − sb10

if C.Y = ∅ then11

biCluster(Cnew, P )12

else13

forall sa ∈ C.Y and each Rab
i ∈ R

ab
14

satisfying |G(Rab
i ) ∩ C.X| ≥ mx do

Cnew.X ←− (
T

all sa∈C.Y G(R
ab
i )) ∩ C.X15

if |Cnew.X| ≥ mx then16

biCluster(Cnew, P )17

Figure 3: biCluster Algorithm

is made with a cluster C = G × ∅ with all genes G, but no
samples, and with P = S, since we have not processed any
samples yet. Before passing C to the recursive call we make
sure that |C.X| ≥ mx (which is certainly true in the initial
call, and also at line 16). Line 2 checks if the cluster meets
the the maximum gene and sample range thresholds δx, δy,
and also the minimum sample cardinality my (line 3). If so,
we next check if C is not already contained in some maximal
cluster C ′ ∈ Ct (line 3). If not, then we add C to the set of
final clusters Ct (line 6), and we remove any cluster C ′′ ∈ C
already subsumed by C (line 5).

Lines 7-17 generate a new candidate cluster by expand-
ing the current candidate by one more sample, constructs
the appropriate gene-set for the new candidate, before mak-
ing a recursive call. biCluster begins by adding to the
current cluster C, each new sample sb ∈ P (line 7), to ob-
tain a new candidate Cnew (lines 8-9). Samples already
processed are removed from P (line 10). Let sa be all sam-
ples added to C until previous recursive call. If no previous
vertex sa exists (which will happen during the initial call,
when C.Y = ∅), then we simply call biCluster with the
new candidate. Otherwise, biCluster tries all combina-
tions of each qualified range edge Rab

i between sa and sb for
all sa ∈ C.Y (line 14), obtains their gene-set intersection
T

all sa∈C.Y G(R
ab
i ) and intersects with C.X to obtain the

valid genes in the new cluster Cnew (line 15). If the new
cluster has at least mx genes, then another recursive call to
biCluster is made (lines 16-17).

For example, let’s consider how the clusters are mined
from the range graph M t0 shown in Figure 2. Let mx =
3, my = 3, ε = 0.01 as before. Initially biCluster starts
at vertex s0 with the candidate cluster {g0, · · · , g9} × {s0}.



We next process vertex s1; since there is only one edge, we
obtain a new candidate {g1, g3, g4, g8} × {s0, s1}. From s1

we process s4 and consider both the edges: for w = 5/4,G =
{g1, g4, g8}, we obtain the new candidate {g1, g4, g8}×{s0, s1, s4},
but the other edge w = 1/1,G = {g0, g2, g6, g7, g9} will not
have enough genes. We then further process s6. Out of the
two edges between s4 and s6, only one (with weight 2/1) will
yield a candidate cluster {g1, g4, g8} × {s0, s1, s4, s6}. Since
this is maximal, and meets all parameters, at this point
we have found one (C1) of the three final clusters shown
in Figure 1(b). Likewise, when we start from s1, we will
find the other two clusters C3 = {g0, g7, g9}×{s1, s2, s4, s5}
and C2 = {g0, g2, g6, g9} × {s1, s4, s6}. Intuitively, we are
searching for maximal cliques (on samples), with cardinal-
ity at least my, that also satisfy the minimum number of
genes constraint mx.

4.3 Get Triclusters from Bicluster Graph

Input : parameters:
ε, mx, my, mz, δx, δy, δz, bicluster
sets {Ct} of all times, set of genes
G, samples S and times T

Output : cluster set C
Initialization: C = ∅, call

triCluster(C = G×S×∅, T )

triCluster (C = X×Y×Z, P );1

if C satisfies δx, δy, δz then2

if |C.Z| ≥ mz then3

if 6 ∃C′ ∈ C, such that C ⊂ C ′ then4

Delete any C ′′ ∈ C, if C′′ ⊂ C5

C ←− C + C6

foreach tb ∈ P do7

Cnew.Z ←− C.Z + tb8

P ←− P − tb9

forall ta ∈ C.Z and each bicluster cta
i ∈ C

ta
10

satisfying |cta
i .X ∩ C.X| ≥ mx and

|cta
i .Y ∩ C.Y | ≥ my do

Cnew.X ←− (
T

all ta∈C.Z cta
i .X) ∩ C.X11

Cnew.Y ←− (
T

all ta∈C.Z cta
i .Y ) ∩ C.Y12

if |Cnew.X| ≥ mx and |Cnew.Y | ≥ my and13

the ratios at time tb, ta are coherent then
triCluster(Cnew, P )14

Figure 4: triCluster Algorithm

After having got the maximal bicluster set Ct for each time
slice t, we use them to mine the maximal triclusters. This is
accomplished by enumerating the subsets of the time slices
as shown in Figure 4, using a process similar to the biClus-

ter clique mining (Figure 3). For example, from Table 1,
we can get the biclusters from the two time points t0 and t1
as shown in Figure 5. Since the clusters are identical, to ade-
quately illustrate our tricluster mining method, let’s assume
that we also obtain other biclusters at times points t3 and
t8. Assume the minimum size threshold is mx×my×mz =
3×3×3. triCluster starts from time t0, which contains
three biclusters. Let’s begin with cluster C1 at time t0,
given as Ct0

1 . For each bicluster Ct1 , only Ct1
1 can be used

for extension since Ct0
1 ∩Ct1

1 = {g1, g4, g8}× {s0, s1, s4, s6},

t1

t8t3

t0

C1

C2

C1

C2

C1

C2

C3

C1

C2

C3 SS S1 S542( )0g g7 g9( ) x

g g g1 4 8)(

4 6SS S1( )g0 g2 g6 g9

SS S1 4 6S0( )g g g1 4 8)(

g0 g2 g6 g9( ) 4 6SS S1( )

SS S1 S542( )0g g7 g9( )

SS S1 4 6S0( )

S S4 5S0( )g g g1 86( ) x g g g1 4 8( ) SS1 4S0( )x
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x

x( )

x

x
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Figure 5: Tricluster example

which can satisfy the cardinality constraints (Figure 4, line
15). We continue by processing time t3, but the cluster
cannot be extended. So we try t8, and we may find that
we can extend it via Ct8

1 . The final result of this path is
{g1, g4, g8} × {s0, s1, s4, } × {t0, t1, t8}. Similarly we try all
such paths and keep maximal triclusters only. During this
process we also need to check the coherent property along
the time dimension, as the tricluster definition requires, be-
tween the new time slice and the previous one. For example,
for the three biclusters in Table 1, the ratios between t1 and
t0 are 1.2 (for C1) and 0.5 (for C2 and C3) respectively. If
the extended bicluster has no such coherent values in the
intersection region, triCluster will prune it.

The complexity of this part (along the time dimension) is
the same as that of biclusters generation (biCluster) for
one time slice. But since the biCluster need to run |T |
times, the total running time is |T | × (time(multigraph) +
time(biCluster)) + time(triCluster).

4.4 Merge and Prune Clusters
After mining the set of all clusters, triCluster optionally

merges or deletes certain clusters with large overlap. This
is important, since real data can be noisy, and the users
may not know the correct values for different parameters.
Furthermore, many clusters having large overlaps only make
it harder for the users to select the important ones.

Let A = XA×YA×ZA, and B = XB×YB×ZB be any
two mined clusters. We define the span of a cluster C =
X×Y×Z, to be the set of gene-sample-time tuples that be-
long to the cluster, given as LC = {(gi, sj , tk)|gi ∈ X, sj ∈
Y, tk ∈ Z}. Then we can define the following derived spans:

• LA∪B = LA ∪ LB ,

• LA−B = LA − LB , and

• LA+B = L(XA∪XB)×(YA∪YB)×(ZA∪ZB)

If any of the following three overlap conditions are met,
triCluster either deletes or merges the clusters involved:
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Figure 6: Three pruning or merging cases

1. 1) For any two clusters A and B, if LA > LB , and

if
|LB−A|

|LB |
< η, then delete B. As illustrated in Fig-

ure 6(a) (for clarity, we use two dimensional figures
here), this means that if the cluster with the smaller
span (B) has only a few extra elements, then delete
the smaller cluster.

2. 2) This is a generalization of case 1). For a cluster
A, if there exists a set of clusters {Bi}, such that
|LA−LS

iBi
|

|LA|
< η, then delete cluster A. As shown in

Figure 6(b), A is mostly covered by the {Bi}’s. There-
fore it can be deleted.

3. 3) For two clusters A and B, if
|L(A+B)−A−B |

|LA+B |
< γ,

merge A and B into one cluster (XA ∪ XB) × (YA ∪
YB) × (ZA ∪ ZB). This case is shown in Figure 6(c).
Here η, γ are user-defined thresholds.

4.5 Complexity Analysis
Since we have to evaluate all pairs of samples, compute

their ratios, and find the valid ranges over all the genes, the
range multigraph construction step takes time O(|G||S|2|T |).
The bicluster mining step and tricluster mining step cor-
respond to constrained maximal clique enumeration (i.e.,
cliques satisfying the mx, my, mz, δx, δy, δz parameters) from
the range multigraph and bicluster graph. Since in the worst
case there can be an exponential number of clusters, these
two steps are the most expensive. The precise number of
clusters mined depends on the dataset and the input param-
eters. Nevertheless, for microarray datasets triCluster is
likely to be very efficient due to the following reasons: First,
the range multigraph prunes away much of the noise and
irrelevant information. Second, the depth of the search is
likely to be small, since microarray datasets have far fewer
samples and times than genes. Third, triCluster keeps
intermediate gene-sets for all candidate clusters, which can
prune the search the moment the input criteria are not met.
The merging and pruning step apply only to those pairs of
clusters that actually overlap, which can be determined in
O(|C| log(|C|)) time.

5. EXPERIMENTS
Unless otherwise noted, all experiments were done on a

Linux/Fedora virtual machine (Pentium-M, 1.4GHz, 448M
memory) over Windows XP through middleware VMware.
We used both synthetic and real microarray datasets to eval-
uate triCluster algorithm. For the real dataset we used

the yeast cell-cycle regulated genes [22] (http:// genome-
www.stanford.edu/cellcycle). The goal is the study was to
identify all genes whose mRNA levels are regulated by the
cell cycle.

Synthetic datasets allow us to embed clusters, and then
to test how triCluster performs for varying input param-
eters. We generate synthetic data using the following steps:
The input parameters to the generator are the total number
of genes, samples and times; number of clusters to embed;
percentage of overlapping clusters; dimensional ranges for
the cluster sizes; and the amount of noise for the expression
values. The program randomly picks cluster positions in the
data matrix, ensuring that no more than the required num-
ber of clusters overlap. The cluster sizes are generated uni-
formly between each dimensional ranges. For generating the
expression values within a cluster, we generate at random,
base values (vi, vj and vk) for each dimension in the cluster.
Then the expression value is set as dijk = vi · vj · vk · (1+ ρ),
where ρ doesn’t exceed the random noise level. Once all
clusters are generated, the non-cluster regions are assigned
random values.

5.1 Results on Synthetic Datasets
We first wanted to see how triCluster behaves with

varying input parameters in isolation. We generated syn-
thetic data with the following default parameters: data ma-
trix size 4000 × 30 × 20(G × S × T ), number of clusters
10, cluster size 150 × 6 × 4(X × Y × Z), percentage over-
lap 20%, noise level 3%. For each experiment, we keep all
default parameters, except for the varying parameter. We
also choose appropriate parameter values for triCluster

so that all embedded clusters were found. Figure7(a)-(f)
shows triCluster’s sensitivity to different parameters. We
found that the time increases approximately linearly with
the number of genes in a cluster (a). This is because, the
range multi-graph is constructed on the samples, and not on
the genes; more genes lead to longer gene-sets (per edge),
but the intersection time is essentially linear in gene-set size.
The time is exponential with the number of samples (b),
since we search over the sample subset space. Finally, the
time for increasing time-slices is also linear for the range
shown (c), but in general the dependence will be exponen-
tial, since triCluster searches over subsets of time points
after mining the biclusters for each time-slice. The time is
linear w.r.t. number of clusters (d), whereas the overlap per-
centage doesn’t seem to have much impact on the time (e).
Finally, as we add more noise, the more the time to mine
the clusters (f), since there is more chance that a random
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Figure 7: Evaluation of triCluster on Synthetic Datasets

gene or sample can belong to some cluster.

5.2 Results from Real Microarray Datasets
We define several metrics to analyze the output from dif-

ferent biclustering algorithms. If C is the set of all clusters
output, then

1. Cluster# is just |C|

2. Element Sum is the sum of the spans of all clusters,
i.e., Element Sum =

P

C∈C |LC |

3. Coverage is the span of the union of all clusters, i.e.,
Coverage = |LS

C∈C C |

4. Overlap is given as Element Sum−Coverage
Coverage

5. Fluctuation is the average variance across a given di-
mension across all clusters.

For the yeast cell cycle data we looked at the time slices
for the Elutritration experiments. There are a total of 7679
genes whose expression value is measured from time 0 to
390 minutes at 30 minute intervals. Thus there are 14 total
time points. Finally, we use 13 of the attributes of the raw
data as the samples (e.g., the raw values for the average and
normalized signal for Cy5 & Cy3 dyes, the ratio of those
values, etc.). Thus we obtain a 3D expression matrix of
size: T × S × G = 14 × 13 × 7679. We mined this data

looking for triclusters with minimum size at least mx = 50
(genes), my = 4 (samples), mz = 5 (time points), and we
set ε = 0.003 (however, we relax the ε threshold along the
time dimension). The per dimension thresholds δx, δy, δz

were left unconstrained. triCluster output 5 clusters in
17.8s, with the following metrics:

Clusters# 5
Elements# 6520
Coverage 6520
Overlap 0.00%

Fluctuation T:626.53, S:163.05, G:407.3

We can see that none of the 5 clusters was overlapping.
The values for the total span across the clusters was 6520
cells, and the variances along each dimension are also shown.
To visually see a mined tricluster, we plot various 2D views
of one of the clusters (C0) in Figure 8, Figure 9, and Fig-
ure 10. Figure 8 shows how the expression values for the
genes (X axis) changes across the samples (Y axis), for dif-
ferent time points (the different sun-plots). Figure 9 shows
how the gene expression (X axis) changes across the differ-
ent time slices (Y axis), for different samples (the different
sub-plots). Finally Figure 9 shows what happens at different
times (X axis) for different genes (Y axis), across different
samples (the different sub-plots). These figures show that
triCluster is able to mine coherent clusters across any



 1000

 1500

 2000

ex
pr

es
si

on
 v

al
ue

t=120min

 2000

 3000

 4000

 5000

 6000

 7000

ex
pr

es
si

on
 v

al
ue

t=210min

 2000

 3000

 4000

 5000

 6000

ex
pr

es
si

on
 v

al
ue

s

t=270min

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

ex
pr

es
si

on
 v

al
ue

s

t=330min

 2000

 2500

 3000

 3500

 0  10  20  30  40  50

ex
pr

es
si

on
 v

al
ue

s

genes

t=390min

Figure 8: Sample-Curves
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Figure 9: Time-Curves
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Figure 10: Gene-Curves

combination of the gene-sample-time dimensions.
The gene ontology (GO) project (www.geneontology.org)

aims at developing three structured, controlled vocabularies
(ontologies) that describe gene products in terms of their as-
sociated biological processes, cellular components and molec-
ular functions in a species-independent manner. We used the
yeast genome gene ontology term finder (www.yeastgenome.org)
to verify the biological significance of triCluster’s result.
We obtained a hierarchy of GO terms for each gene within
each cluster, for each of the three categories: processes, cel-
lular components and gene functions. Table 2 shows the
significant shared GO terms (or parents of GO terms) used

to describe the set of genes in each cluster. The table shows
the number of genes in each cluster and the significant GO
terms for the process, function and component ontologies.
Only the most significant common terms are shown. For
example for cluster C0, we find that the genes are mainly
involved in ubiquitin cycle. The tuple (n = 3, p = 0.00346)
means that out of the 51 genes, 3 belong to this process, and
the statistical significance is given by the p-value of 0.00346.
Within each category, the terms are given in descending or-
der of significance (i.e., increasing p-values). Further, only
p-values lower than 0.01 are shown; the other genes in the
cluster share other terms, but at a lower significance. From



Cluster #Genes Process Function Cellular Component
C0 51 ubiquitin cycle (n=3,

p=0.00346), protein
polyubiquitination (n=2,
p=0.00796), carbohy-
drate biosynthesis (n=3,
p=0.00946)

C1 52 G1/S transition of mi-
totic cell cycle (n=3,
p=0.00468), mRNA
polyadenylylation (n=2,
p=0.00826)

protein phosphatase
regulator activity
(n=2,p=0.00397) , phos-
phatase regulator activity
(n=2, p=0.00397)

C2 57 lipid transport (n=2,
p=0.0089)

oxidoreductase activity
(n=7, p=0.00239), lipid
transporter activity (n=2,
p=0.00627), antioxidant
activity (n=2, p=0.00797)

cytoplasm (n=41,
p=0.00052), micro-
some (n=2, p=0.00627),
vesicular fraction (n=2,
0.00627), microbody (n=3,
p=0.00929), peroxisome
(n=3, p=0.00929)

C3 97 physiological process
(n=76, p=0.0017), or-
ganelle organization
and biogenesis (n=15,
p=0.00173), localization
(n=21, p=0.00537)

MAP kinase activity (n=2,
p=0.00209), deaminase
activity (n=2, p=0.00804),
hydrolase activity, act-
ing on carbon-nitrogen,
but not peptide, bonds
(n=4, p=0.00918), re-
ceptor signaling protein
serine/threonine kinase
activity (n=2, p=0.00964)

membrane (n=29, p=9.36e-
06), cell (n=86, p=0.0003),
endoplasmic reticulum
(n=13, p=0.00112), vac-
uolar membrane (n=6,
p=0.0015), cytoplasm
(n=63, p=0.00169)
intracellular (n=79,
p=0.00209), endoplas-
mic reticulum membrane
(n=6, p=0.00289), in-
tegral to endoplasmic
reticulum membrane
(n=3, p=0.00328), nu-
clear envelope-endoplasmic
reticulum network (n=6,
p=0.00488)

C4 66 pantothenate biosynthe-
sis (n=2, p=0.00246),
pantothenate metabolism
(n=2, p=0.00245), trans-
port (n=16, p=0.00332),
localization (n=16,
p=0.00453)

ubiquitin conjugating
enzyme activity (n=2,
p=0.00833), lipid trans-
porter activity (n=2,
p=0.00833)

Golgi vesicle (n=2,
p=0.00729)

Table 2: Significant Shared GO Terms (Process, Function, Component) for Genes in Different Clusters

the table it is clear that the clusters are distinct along each
category. For example, the most significant process for C0

is ubiquitin cycle, for C1 it is G1/S transition of mitotic cell
cycle, for C2 it is lipid transport, for C3 it is physiological
process/organelle organization and biogenesis, and for C4 it
is pantothenate biosynthesis. Looking at function we find
the most significant terms to be protein phosphatase regu-
lator activity for C1, oxidoreductase activity for C2, MAP
kinase activity for C3, and ubiquitin conjugating enzyme
activity for C4. Finally, the clusters also differ in terms of
cellular component: C2 genes belong to cytoplasm, C3 genes
to membrane, and C4 to Golgi vesicle.

These results indicate that triCluster can find poten-
tially biologically significant clusters either in genes or sam-
ples or times, or any combinations of these three dimensions.
Since the method can mine coherent subspace clusters in
any 3D dataset, triCluster will also prove to be useful
in mining temporal and/or spatial dimensions. For exam-
ple, if one of the dimensions represents genes, another the
spatial region of interest, and the third dimension the time,
then triCluster can find interesting expression patterns in
different regions at different times.

6. CONCLUSIONS
In this paper we introduced a novel deterministic triclus-

tering algorithm called triCluster, which can mine arbi-
trarily positioned and overlapping clusters. Depending on
different parameter values, triCluster can mine different
types of clusters, including those with constant or similar
values along each dimension, as well as scaling and shifting
expression patterns. triCluster first constructs a range
multigraph, which is a compact representation of all sim-
ilar value ranges in the dataset between any two sample
columns. It then searches for constrained maximal cliques
in this multigraph to yield the set of biclusters for this time
slice. Then triCluster constructs another bicluster graph
using the biclusters (as vertices) from each time slice. The
clique mining of the bicluster graph will give the final set
of triclusters. Optionally, triCluster merges/deletes some
clusters having large overlaps. We present a useful set of
metrics to evaluate the clustering quality, and we evaluate
the sensitivity of triCluster to different parameters. We
also show that it can find meaningful clusters in real data.
Since cluster enumeration is still the most expensive step,
in the future we plan to develop new techniques for pruning
the search space.
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