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Abstract. The aim of this paper is to leverage foreground segmentation to improve

classification performance on weakly annotated datasets – those with no additional

annotation other than class labels. We introduce TriCoS, a new co-segmentation

algorithm that looks at all training images jointly and automatically segments out

the most class-discriminative foregrounds for each image. Ultimately, those fore-

ground segmentations are used to train a classification system.

TriCoS solves the co-segmentation problem by minimizing losses at three dif-

ferent levels: the category level for foreground/background consistency across

images belonging to the same category, the image level for spatial continuity

within each image, and the dataset level for discrimination between classes.

In an extensive set of experiments, we evaluate the algorithm on three bench-

mark datasets: the UCSD-Caltech Birds-200-2010, the Stanford Dogs, and the

Oxford Flowers 102. With the help of a modern image classifier, we show su-

perior performance compared to previously published classification methods and

other co-segmentation methods.

1 Introduction

The impact of foreground/background segmentation on the overall performance of an

image classification system depends strongly on the type of image data that the sys-

tem has to work with. In general, backgrounds can contain important cues to support

the discrimination [22,27], but sometimes the background appearance can also be non-

informative or even shared across different classes and therefore cause confusion in the

system. For fine-grained visual categorization or image search, there is corroborative

evidence that foreground-background segmentation can improve the accuracy consid-

erably [2,6,17].

Here, we focus on the segmentation of the training images for the task of fine-grained

image classification (e.g. discrimination between a large number of bird, dog, or flower

species). To be practical, and to achieve sufficient accuracy, fine-grained classification

systems need to discriminate between large number of classes (hundreds to many thou-

sands [8]) and to process relatively large number of training images per class. This

means that the traditional supervised-learning approach that requires manual segmen-

tation of a large number of images, may be expensive or even infeasible. Even if pos-

sible, supervised learning-based segmentation of training images [16] assumes that the
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Fig. 1. An overview of the flow of the discriminative co-segmentation pipeline TriCoS. We start

with the input images and their initialization segmentation masks on the top left. They are then

processed by the BiCoS [6]. Although BiCoS often improves the segmentation quality, in this

example, it preserves both the birds and the tree branches as foreground because they appear

multiple times across the images from the same category. The new dataset-level step finds leaves

to be less discriminative since most birds fly around trees and therefore discards the leaves in the

segmentation.

foreground-background segmentation that is most natural for a human is also the most

useful for fine-grained classification, which might not be the case for some datasets.

In the remainder of the paper, the word “foreground” can mean both the human-seen

foreground or the most class-discriminative region depending on the context.

Co-segmentation [21] provides an unsupervised alternative for the segmentation of

training image sets. In this paper, we introduce a new scalable co-segmentation method

that directly augments the co-segmentation objective with the discriminability of the cat-

egories for image classification. In more detail, the method operates on three levels: the

category level, the image level and the dataset level.The category level reflects the similar-

ity of foreground and background appearances across the images from the same category.

The image level promotes the consistency of color distributions between the foreground

and the background regions within each image separately. And the dataset level improves

the discriminability of the foreground object for the fine-grained classification.

A component-wise scheme within our method, which we call TriCoS for Tri-level

Co-Segmentation, has a complexity linear in the total number of images and does not

assume any global geometric shape or foreground color distribution throughout the set.

Thus, the method can be applied to rather large training sets and we are able to eval-

uate it through a series of experiments on the UCSD-Caltech bird dataset 200-2010

[25], the recently introduced Stanford dogs [15], and the Oxford-102 Flowers [17]. In

our experiments, we observe that a modern image representation (Fisher Vectors [18])

trained on the datasets pre-segmented with TriCoS achieves considerably better than

state-of-the-art classification accuracies.
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2 Related Work

Depending on what information is assumed to be shared across images, the difficulty of

the co-segmentation problem can vary greatly. While some early works only consider

the co-segmentation of two images belonging to the same rigid object instance [21],

later ones co-segment a set of dozens to hundreds of images taken from different object

instances.

Our method builds on our earlier algorithm BiCoS [6], which is a co-segmentation

algorithm that works on each image category separately. It operates under the mild

assumption that many foreground objects are centered in the image, and initializes the

alternation-based algorithm with a rectangle at the center of each image. During the

iteration, it alternates between a GrabCut-like step that propagates information within

each image and a superpixel-based SVM-like step that propagates information across

all images in the category. In addition to these two levels of BiCoS, TriCoS embeds

class-discriminative information into the co-segmentation process.

The variant of BiCoS, called BiCoS-MT [6] indirectly promotes the discriminability

of the foreground regions by sharing the background appearance distributions across

classes in the training dataset. It however has a limited scalability, and more importantly

does not optimize the discriminability of the foreground in a direct way as TriCoS

does. The experiments demonstrate that TriCoS is more efficient than BiCoS-MT at

improving the final classification accuracy using the dataset-level information.

Related to the idea of training-set foreground-background segmentation are meth-

ods that generate real-valued saliency masks for training images. For example, Kanan

and Cottrell [13] used natural image statistics to create saliency maps emphasizing re-

gions that are likely to have more discriminative information. The saliency map is then

treated as a probability density map of the image, according to which features are ex-

tracted and classification is done using a generative model in an iterative way. TriCoS is

different from this approach as it generates segmentations using a segmentation model

that is self-trained for a particular dataset with the goal of better discrimination between

classes.

Yao et al. [26] proposed a random forest-based algorithm for fine-grained classifica-

tion. Unlike conventional random forests, which use the same feature vector throughout

entire trees, the authors let each tree node learn the location of the most discriminative

features and use those combined with some inherited information from the parent node

to make the decision. During the traversal of the tree, information of different locations

is pulled together which results in the final decision. One limitation of this approach is

the requirement of a bounding box during test time in order to have a normalized image.

Another work aiming at benefiting image classification with proper segmentation is

[12]. There, the authors split each image into segment proposals and assume that one

of the proposals contains the desired foreground object. By applying multiple-instance

learning, the object location and the image classification can be achieved at the same

time and evidence of improvement in classification accuracy was observed.

As our purpose is to evaluate the segmentation stage as a part of the joint system

for fine-grained categorization, our work also relates to the vast body of work on im-

age classification. To achieve the highest possible accuracy, for the classification stage

we use Fisher Vectors [18], which is the state-of-the-art image encoding method, and
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has achieved the best performance in a number of classification challenges [10] and

comparisons [7].

3 Segmentation Methods

In the following sub-sections, we explain each of the modules shown in Fig. 1 in more

detail. We start with the initialization step of the segmentation masks in Sec. 3.1, and

then move on with a brief description of BiCoS [6], which consists of the category-level

(Sec. 3.2) and the image-level steps (Sec. 3.3). On top of BiCoS, we introduce the new

dataset level in Sec. 3.4. The pipeline terminates in our experiments after another BiCoS

iteration appended to the dataset level. Further iterations between levels are possible,

but in our experience, do not result in a significant improvement in the classification

accuracy. Sec. 3.5 contains implementation details, including the choice of features for

each of the levels.

Information is carried from one level to another in the form of masks, which, de-

pending on the level, can be either hard segmentation masks (binary, either foreground

or background) or soft saliency maps (real valued).

3.1 Initialization

BiCoS initialized the co-segmentation process using the central σ percent of pixels

as a GrabCut initialization, with the hope that the category level can correct any error

made by this simple assumption. While it performs well on many datasets where people

tend to put the object of interest at the center of the images, we propose here a more

principled way to initialize the foreground masks in each image that is based on a recent

interest region detector. Other methods, e.g. [5,9], could equally well be used, but are

more expensive than the method we propose.

The method proceeds in two stages. First, initial proposals are generated in two

ways: the first approach follows [23], which starts from superpixels [11], and itera-

tively merges the two most similar regions (based on size and gradient orientation his-

togram) together until the whole image is a single region. All superpixels generated in

the process are included as separate proposals. The second approach applies a saliency

map [19] as a cue. For each superpixel, we compute the mean saliency value as well

as the 70th, 80th and 90th percentiles of saliency values. These four values are then

assigned to the pixels inside the superpixel, one at a time, and the resulting image is

thresholded to get a binary image. All the connected components from the resulting

four binary images are considered as separate proposals.

In the second stage, we compute a simple saliency based score for each proposal in

the initial set. The definition is similar to the multi-scale saliency score in [1]:

score =

∑

i∈P δ(s(i) > 0.7)

area(P )
·
∑

i∈P

s(i), (1)

where δ(a) = 1 if a is true and 0 otherwise, P refers to pixels inside the proposal, s(i)
is a saliency value at pixel i, and area(P ) is the area of the proposal. The score (1)



798 Y. Chai et al.

Fig. 2. Examples of initializations. The initializations themselves can already be very good, as

seen in the first 3 columns. However, if the foreground object is flat or smooth, the background

can become more interesting. TriCoS is able to remedy this problem.

favors large proposals with a small number of non salient pixels for which s(i) < 0.7.

Finally, the best scoring proposal is selected for the foreground initialization. Examples

of initializations can be found in Fig. 2.

3.2 Category-Level Co-Segmentation: BiCoS [6]

Using the foreground initialization from Sec. 3.1, we perform the discriminative learn-

ing part of BiCoS, which builds the core of the co-segmentation algorithm. Here, each

category is treated independently, hence the name category level.

The algorithm operates on the same superpixels as mentioned in the last sub-section.

A set of high dimensional descriptors is extracted for each of the superpixels. Super-

pixels are then classified into either foreground or background using a standard linear

support-vector-machine (SVM) learned from themselves with labels according to the

initializations or the output of a previous iteration. Given a set of {x1,x2, . . . ,xN} of

descriptors belonging to all N superpixels of a single category, and let {y1, y2, . . . , yN}
to be hard labels (either 1 or -1). The separating hyperplane w in the descriptor space

is defined using a standard ℓ2-SVM:

1

2
||w||2 + C

N
∑

i=1

ℓ(yi ·w
T
xi) −→ min

w

, (2)

where ℓ(t) = max(0, 1 − t) is the hinge loss function, and C is the regularization

constant set to 2 in all our experiments.

By applying the trained w back to each xi, we update each input superpixel labels

yi with:

yi = w
T
x (3)

and reconstruct a soft saliency mask using these labels.

Using such a simple self-training scheme in the high-dimensional superpixel de-

scriptor space, BiCoS enforces that superpixels with similar appearance across different

images tend to be assigned similar values in the resulting saliency maps.
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3.3 Image-Level Segmentation: GrabCut [20]

The second part of BiCoS, which is taken from the very popular GrabCut algorithm, han-

dles each image independently. The initial Gaussian mixture model (GMM) for GrabCut

is trained based on the saliency maps from Sec. 3.2, where pixels are weighted by their

saliency. GrabCut ensures that within each image, pixels with similar appearance (color)

tend to be assigned to the same class (either the foreground or the background). It alter-

nates between: (1) (re)estimating foreground and background probability densities via

Gaussian mixture model given the binary labels for each pixel of the entire image [3], and

(2) the graphcut inference of labels in a random field with unary terms equal to the prob-

abilities estimated from the GMM and binary terms according to local image gradients

[4].

GrabCut strives for high local smoothness within the image while maintaining global

color consistency. Unlike other levels that work with superpixels and high-dimensional

descriptors, this procedure operates on pixels and uses simple RGB color as the feature

describing each pixel. The result of this GrabCut step is a binary segmentation mask for

each image.

3.4 Dataset-Level Class-Discriminative Segmentation

The idea behind class-discriminative segmentation is to figure out which parts of the

images actually contribute toward differentiation of the categories and which parts do

not. To do so, we first train a multi-class classifier for the different categories using

features summed over the foreground given by the preceding level (GrabCut). We then

apply the learned classifier back to individual superpixels in each image of the class,

thus obtaining a score for the discriminating power of each superpixel.

Before we introduce the class-discriminative information into the process, we ap-

ply a pre-processing data balancing step: where the process discussed in Sec. 3.2 is

applied to the whole dataset jointly, ignoring class labels, and with slightly richer fea-

tures (see Sec. 3.5). We found that such process balances the sizes of the foreground

segments across classes, which decreases the amount of bias towards classes during

the subsequent procedure. After such balancing, we introduce the class-discriminative

information into the co-segmentation using the following approach.

For each image, we then extract a very high-dimensional feature vector (e.g. Fisher

vector) from the given foreground area only for the multi-category classification task.

As in the standard multi-class SVM, the goal is to train K separating hyperplanes in

the feature space. Given a set of {x1,x2, . . . ,xN} of descriptors for each of the N im-

ages and their category labels {y1, y2, . . . , yN}, we train a 1-vs-all SVM via quadratic

optimization:

1

2
||wk||2 + C

N
∑

i=1

ℓ(yki · (wk)Txi) −→ min
w

k

, ∀k ∈ 1, 2, . . . ,K (4)

where ℓ(t) = max(0, 1 − t) is the hinge loss function, and C is the regularization

constant set to 10 in all our experiments. yki is 1 if it belongs to the class k and −1
otherwise.
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Once the classification model is trained, the question is how to use it to update the

segmentation masks. To our best knowledge, there is no common solution to this type

of propagation, and we propose the following solution.

Let us first consider the case of a dataset that has just two classes. As we use a

linear SVM for classification, we have a single weight vector w. Furthermore, we again

extract superpixels as described in Sec. 3.2. For each superpixel, we extract the same

feature vector xj in the same way as in classification (note the change of the subscript as

each feature vector x is composed in the same way as for classification, but is extracted

from individual superpixels rather than images):

mj = sign(ywT
xj + ǫ) (5)

where ǫ is the bias term, y is the binary class label of the image the superpixel belongs

to, and mj is a binary foreground/background label for the superpixel xj .

In principle, superpixels with a positive score from w
T
xj increase the margin of

the right class and therefore should belong to foreground, while superpixels with a

negative score should belong to background. However, as a result of overfitting in a

high-dimensional space, the foreground area from where the classification model was

trained will typically remain foreground after this process, while the background which

was discarded during classification will be split into a foreground and a background

part. To avoid such a uniform growth of a foreground superpixel, we introduce the

bias ǫ which should have a small negative value. Intuitively, the model discards image

superpixels that lie too close to the decision boundary as they can easily flip the side. As

a result, the signal to noise ratio is increased. A high value of ǫ causes every superpixel

to turn to foreground. And a low ǫ results in taking only a small but most discriminative

part for classification, which may result in poor generalization.

Moving from the binary case to multi-class image classification, the propagation rule

can be modified, in a way similar to the 1-vs-all classification rule. We thus compute

the label of each superpixel as:

mj = sign

[

(wk)Txj − max
k′={1,2,...,K\k}

((wk′

)Txj) + ǫ

]

(6)

The superpixel label is now determined by the difference between the response of the

true class and the maximum response of all other classes. In principle this may be sub-

optimal as a superpixel with positive score surely contributes to classification, an image

superpixel with negative score may not be necessarily confusing, as it can contribute

to discriminating from other classes. However, the category level that follows after the

dataset level is designed to prefer consistency across the category and typically com-

pensates for this sub-optimality.

By mapping all mj onto the superpixels, we obtain a new set of binary segmentation

masks which can be fed back to the category level.

3.5 Implementation Details

All superpixels we use in the entire pipeline are extracted using the graph-based method

[11], with k = 200, σ and minsize set proportional to the image size. Typically, around

40-100 superpixels are generated for each image.
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The descriptors for the superpixels in Sec. 3.2, are stacked from five fairly standard

sub-descriptors covering information over color, shape, size and location, as described

in [6]. The color and SIFT histograms are of length 20 and 80, respectively. However

for the global category-level step in Sec. 3.4, the histogram sizes are increased to 200

and 800, respectively.

For the multi-class SVM in Sec. 3.4, we sample SIFT features at multiple scales and

Lab color features at dense grid locations within the category-independent segmenta-

tion masks for each image. Feature points outside the masks are discarded. Lab features

are then encoded using LLC [24] with 1000 dictionary entries, while PCA is applied

to dense SIFT, and the 80 most principal dimensions are encoded using the Fisher vec-

tors [18] with a Gaussian mixture of 256 components. The total feature dimension is

therefore 41960 after stacking the two descriptors.

4 Experimental Results

As we aim at class-discriminative co-segmentation, which may well differ from human-

annotated foreground segmentations, we skip any segmentation accuracy measure and

only measure the class-average classification accuracy. Note that our method only con-

siders the segmentation of the training images. At test time, we apply a pipeline con-

sisting of two steps: class-independent segmentation and image classification.

Class-Independent Segmenter. We propagate co-segmented masks of training images

onto test images, which cannot be co-segmented as these are to be classified individ-

ually. Based on the co-segmented images, we train a class-independent segmenter in

the same way as described at the beginning of Sec. 3.4. This class-independent seg-

menter can then be used to give binary segmentation masks on test image superpixels

and therefore accurate foreground segmentations during testing.

Final Image Classifier. We train a 1-vs-all linear SVM classifier in the same way as

described in Sec. 3.4. Unlike [6], the classifier is not trained on the output of the co-

segmentation directly, but on the segmentations produced by the newly trained class-

independent segmenter, with the rationale to make the data pre-processing for the final

classifier training as similar to the data pre-processing at test-time as possible. During

test time, we simply first apply the class-independent segmenter to each test image, and

classify the image using the 1-vs-all linear SVM on the features from the foreground

area.

The overall pipeline can be seen as an improved version of [6]. A direct comparison

can be found in Sec. 4.1.

The BiCoS results in the second row in each comparison table use the new initializa-

tion described in Sec. 3.1. In our experiments with the particular datasets, the proposed

initialization scheme did not give significant advantage over a simpler initialization with

a central box (as in [6]). We, however, stick to the new initialization as it does not rely

on the assumption that most objects are large and centered in images, and is, therefore,

more general.

In the experiments we compare our system to previous methods from three differ-

ent domains: (1) co-segmentation or, if available, ground truth segmentations/bounding
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boxes, (2) methods that segment each image individually at training and at test time and

(3) classification without any segmentation.

During all evaluations, TriCoS starts at the category level, moves to image level and

iterates one whole loop before stopping at the image level.

4.1 Caltech-UCSD Birds 200-2010

Caltech-UCSD Birds 200-2010 [25] contains 200 classes with each class having ex-

actly 15 training images and 15+ test images, resulting in 6033 images in total. The

training/test split is fixed by the dataset. The dataset is very challenging, as it is de-

signed for a classifier with human in the loop during test time. There are both coarse

foreground segmentation and bounding box available for each image. Some of the pre-

viously published results make use of those hand annotations both during training and

testing time [25,26].

We show our evaluation in Tab. 1 while qualitative examples can be found in Fig. 3

and Fig. 4. For the experiment with GrabCut, GrabCut is directly applied on both train-

ing and test images using the initialization introduced in Sec. 3.1. For the experiments

using ground truth bounding box or foreground/background segmentations, we do not

use the hand annotated data during test time. Instead, we use ground truth data from the

training images to train the class-independent segmenter and apply it to the test images

for the classification.

Most importantly, TriCoS outperform BiCoS, justifying our class-discriminative co-

segmentation approach. We observe a huge decrease if all extracted features are used

for classification (“no segmentation”), which once again shows the importance of object

localization in classification in general. Moreover, we observe that only bounding box

is not sufficient as using accurate ground truth foreground segmentation has a clear gain

over using ground truth bounding box.

The comparison between the BiCoS in combination with our class-independent seg-

mentation and the classification, and the previously published BiCoS results from [6]

clearly shows our new pipelines being significantly superior than the one proposed in

[6]. The majority of the gain is achieved using Fisher encoding [18] instead of LLC

[24].

While TriCoS has a significant gain over hand annotated bounding boxes, it is still

not as good as hand annotated pixel-level foreground segmentation. This is most likely

caused by the insufficient amount of training data, as discriminative information can be

discarded by TriCoS if it does not occur often enough in the training set.

The baseline accuracies provided by Welinder et al. [25] uses ground truth fore-

ground segmentation both during training and testing, in combination with a multiple

kernel learning approach for color and shape features, whereas Khan et al. [14] mainly

focus on the way to better combine those features.

4.2 Stanford Dogs

The Stanford Dogs dataset originally consists of 120 dog species and 20580 images.

There are 100 images per class for training and about 80 images for testing. Bounding

boxes are also provided. In order to get a similar number of training images per class
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Fig. 3. Bird segmentations: (top) original images, (middle) BiCoS outputs, (bottom) TriCoS out-

puts. The three columns on the left show that TriCoS finds the yellow head of the bird to be not

discriminative and cuts it off during the co-segmentation. The right columns show that several

images of one bird species contain red plastics, which misleads BiCoS to classify the red plastics

as foreground. TriCoS finds the red plastics to be confusing for the classification and classifies

them as background.

Table 1. Comparison on the Caltech-UCSD Birds 200-2010 dataset (15 training images per

class). The last column shows whether ground truth (GT) information is used during either train-

ing or testing. seg: accurate foreground/background segmentation, bb: bounding box. [14] did not

mention the usage of GT during test time, however directly compares their results to methods that

make use of the GT.

Coseg Class-indep. seg. Final classifier Acc. GT used?

TriCoS (this work) ours ours 25.5 no

BiCoS [6] ours ours 23.7 no

BiCoS-MT ours ours 24.2 no

- GrabCut ours 19.2 no

- no segmentation ours 14.1 no

BiCoS Chai [6] Chai 15.7 no

BiCoS-MT Chai Chai 16.1 no

GT ours ours 26.7 seg/trn

GT ours ours 22.7 bb/trn

- - Welinder et al. [25] 19.0 seg/trn+tst

- - Yao et al. CVPR’11 [26] 19.2 bb/trn+tst

- - Khan et al. NIPS’11 [14] 22.4 unsure
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Fig. 4. More Bird segmentations: (top) original images, (middle) BiCoS outputs, (bottom) Tri-

CoS outputs. The most noticeable difference between BiCoS and TriCoS is the removal of tree

branches of leaves. These often appear in many images in one category, so that BiCoS seg-

ments them as foreground. But they appear across categories as well and are therefore not class-

discriminative and are discarded in TriCoS.

Fig. 5. Dogs segmentations: (top) original images, (middle) BiCoS outputs, (bottom) TriCoS out-

puts. If an image patch only appears once in the co-segmentation set, BiCoS is unable to flip its

binary label from its initialization. However, using discriminative information across the entire

dataset, TriCoS is sometimes able to correct this.



TriCoS 805

Table 2. Comparison on the Stanford Dogs dataset. Note that TriCoS performs better than BiCoS

and hand-annotated bounding boxes.

Coseg Class-indep. seg. Final classifier Acc. GT used?

TriCoS ours ours 26.9 no

BiCoS ours ours 25.7 no

- GrabCut ours 17.3 no

- no segmentation ours 21.0 no

- - Khosla et al. [15] 14.5 no

GT ours ours 26.0 bb/trn

Table 3. Comparison on the Oxford Flowers 102 dataset. TriCoS, BiCoS and Nilsback’s super-

vised segmentation method give more or less the same accuracy.

Coseg Class-indep. seg. Final classifier Acc. GT used?

TriCoS ours ours 85.2 no

BiCoS ours ours 85.5 no

- GrabCut ours 81.7 no

- no segmentation ours 81.5 no

BiCoS Chai Chai 79.1 no

BiCoS-MT Chai Chai 80.0 no

- - Kanan and Cottrell et al. [13] 71.4 no

- - Khan et al. [14] 73.3 no

GT Nilsback [17] ours 85.6 seg/trn

GT Nilsback Chai 76.8 seg/trn

GT Nilsback Nilsback 76.3 seg/trn

as the bird and flower datasets, we randomly selected 30 images per class for training,

while keeping the test set as it is.

The dog dataset was introduced very recently, along with a baseline classification

accuracy using SIFT and LLC. Tab. 2 leads to similar conclusions as in Tab. 1. GrabCut

alone seems to make a lot of mistakes, and therefore achieves lower accuracy than

not using any segmentation. However, both TriCoS and BiCoS remedy these errors.

Examples can be found in Fig. 5.

4.3 Oxford Flowers 102

The Oxford Flower dataset is the earliest published dataset on fine-grained classifica-

tion. It contains 102 flower species and 8189 images in total, with 20 images per class

fixed for training and the rest for test.

The evaluation is shown in Tab. 3. Nilsback et al. [17] use hand annotated pixel-

level segmentations to train a geometry-based segmentation model that is optimized for

flowers and a multiple kernel learning (MKL) in conjunction with a non-linear SVM

for classification.
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Unfortunately, TriCoS performs worse than BiCoS and Nilsback’s supervised seg-

mentation method, but only by a small margin. We argue that the Fisher vector encoding

of the densely sampled and SIFT features already saturates the performance so that no

more gain can be achieved with better segmentation. Our argument is supported by the

fact that Nilsback’s segmentations, which were much worse than BiCoS in [6], now

performs equally as well as BiCoS.

5 Discussion

We have demonstrated the importance of class-discriminative co-segmentation by com-

paring TriCoS to its predecessor BiCoS on the challenging Caltech-UCSD Birds, Stan-

ford Dogs and Oxford Flowers 102 datasets, where TriCoS outperforms BiCoS in two

of the three cases and is only worse by a very small margin on the flowers.

Moreover, we use an interest region detection-based method to initialize the system.

In this way, it does not require any guess of the location of the foreground object as is

done in [6].

TriCoS outperforms hand-annotated bounding boxes on both birds and dogs, despite

only requiring image class labels and no additional annotation. Our experimental re-

sults agree with previous findings that accurate foreground segmentation is of great

importance in fine-grained classification systems.

Last but not least, using our state-of-the-art classification system in conjunction with

TriCoS, we achieve classification accuracy improvement over previously published re-

sults by a margin of 3.1%, 12.4% and 5.2% on the birds, dogs and flowers, respectively.
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