
C O V E R F E A T U R E

0018-9162/07/$25.00 © 2007 IEEE28 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

expressed in an HDL. This process essentially synthe-
sizes a circuit from the HLL.

Trident,5 the recipient of a 2006 R&D 100 award for
innovative technology, synthesizes circuits from an HLL.
It provides an open framework for exploring algorith-
mic C computation on FPGAs by mapping the C pro-
gram’s floating-point operations to hardware
floating-point modules and automatically allocating
floating-point arrays to off-chip memory banks using
four schedulers and a loop pipelining scheme. Users are
free to select floating-point operators from a variety of
standard libraries, such as FPLibrary and Quixilica, or
to import their own. Adding hardware platforms is a
matter of defining new interface description files and
producing the code to tie the design to the description
interface. Trident’s open nature lets users rapidly pro-
totype hardware from data analysis and simulation algo-
rithms expressed in an HLL. The compiler’s open source
code is available on SourceForge (http://trident.sf.net).

Of the current research compilers such as the Riverside
Optimizing Compiler for Configurable Computing6 and
Spark,7 none support floating-point operations. As the
“Synthesizing Circuits: A Variety of Approaches” side-
bar describes, some commercial HLL-to-FPGA compil-
ers such as Impulse C and the SRC Carte environment
support floating-point operations as external libraries.
However, these compilers limit the programmer to
specific floating-point libraries and are mapped only to

Unlocking the potential of field-programmable gate arrays requires compilers that

translate algorithmic high-level language code into hardware circuits.The Trident

open source compiler translates C code to a hardware circuit description, providing

designers with extreme flexibility in prototyping reconfigurable supercomputers.

Justin L. Tripp, Los Alamos National Laboratory

Maya B. Gokhale, Lawrence Livermore National Laboratory

Kristopher D. Peterson, Imperial College of London

R
econfigurable supercomputing has shown
significant promise in bioinformatics, text
mining, and other data- and computation-
intensive tasks involving small fixed-point
integers.

In its traditional form, reconfigurable supercomput-
ing uses field-programmable gate arrays to augment
high-performance microprocessors in clusters, often
involving FPGAs with millions of system gates, as well
as dedicated arithmetic units and megabits of on-chip
memory. More recently, approaches based on reconfig-
urable logic have succeeded in including floating-point
tasks1 and have realized several floating-point libraries
(among them QnetiQ’s Quixilica Library and the
FPLibrary from the University of Lyon), computational
kernels,2,3 and applications4 in FPGAs.

Although the kernels and applications enable a per-
formance level much higher than that of micro-
processors, they come with the high cost of having
to hand-code a custom design in a hardware descrip-
tion language. This task is tedious and error prone
since HDLs were never designed to describe algo-
rithms, particularly those using pipelined floating-
point operators.

A better alternative in debugging functionality and
programmer productivity is to provide compilers that
translate fixed- and floating-point algorithms in a high-
level language (HLL) directly into circuit design

Trident: From
High-Level Language to
Hardware Circuitry

March 2007 29

The simplest approach to circuit synthesis is to com-

pile a subset of an existing language such as C or Java

to hardware. The base language typically omits opera-

tions such as dynamic memory allocation or recursion

as well as complex pointer-based data structures.

Trident accepts such a subset of sequential C, extracts

the available parallelism from the algorithmic descrip-

tion, and generates hardware circuits that execute the

algorithm.

An alternative approach is to extend a base sequential

language with constructs to manipulate bit widths,

explicitly describe parallelism, and connect pieces of

hardware. Celoxica’s Handel C, Impulse C, and the

MAP C compiler in SRC’s Carte programming environ-

ment use this approach.

Another alternative is to create a language for algorith-

mic description, which is the approach that the

University of Montreal’s SHard1 and the Mitrion-C data-

flow language take. This alternative simplifies the com-

piler’s work, but it can require programmers to

significantly restructure algorithmic description as well

as rewrite in a new syntax.

A graphical interface is yet another way to express an

algorithm. Two tools that take this approach are Xilinx’s

System Generator and Starbridge’s Viva. Graphical

tools provide a hierarchical block diagram view that lets

designers rapidly construct circuits. Such tools work

best in specific application domains, such as digital

signal processing.

However, without rapid prototyping through a high-

level language, it is difficult to explore different algo-

rithms and approaches. A high-level-language (HLL)

compiler for FPGAs, such as Trident, frees designers to

experiment with alternative hardware and software

partitioning schemes and quickly determine how an

algorithm will perform on a particular FPGA.

IMPULSE C

Impulse C from Impulse Accelerated Technologies

(www.ImpulseC.com) is a C-based development sys-

tem for coarse-grained programmable hardware tar-

gets, including mixed-processor and FPGA platforms.

At the root of this technology are the Impulse C com-

piler and related tools and the Impulse application

programmer interface (API). Impulse C can process

blocks of C code, most often represented by one or a

small number of C subroutines, into equivalent Verilog

Hardware Description Language (VHDL) or Verilog

hardware descriptions.

The Impulse compiler and optimizer enable the auto-

mated scheduling of C statements for increased paral-

lelism and automated and semiautomated

optimizations such as loop pipelining and unrolling.

Interactive tools provided with the compiler let design-

ers iteratively analyze and experiment with alternative

hardware pipelining strategies.

To support mixed hardware-software targets,

Impulse C’s API includes C-compatible functions that

let designers express system-level parallelism using a

multiple-process, streaming, or shared-memory pro-

gramming model. Impulse C also includes platform

support packages that simplify C-to-hardware compila-

tion for specific FPGA-based platforms. With these

packages, Impulse C can automatically generate the

required software-to-hardware interfaces. Figure A

shows the design flow in one such package.

MITRION-C

Mitrion-C and the Mitrion virtual processor from

Mitrionics (www.mitrionics.com) represent a new

approach to software programmability for FPGAs. The

virtual processor is a massively parallel high-perfor-

mance processor for FPGAs that executes software

written in the Mitrion-C programming language.

The processor’s architecture follows a cluster model,

placing all processing nodes within an FPGA. As Figure

B shows, the Mitrion-C compiler and the processor

configuration unit use the Mitrion-C source code to

create processing nodes and an ad hoc network-on-

a-chip.

Synthesizing Circuits: A Variety of Approaches

Figure A. Design flow in an Impulse C support package for an

FPGA-based platform. Platform support packages simplify C-to-

hardware compilation for specific FPGA-based platforms.

Impulse C uses these packages to automatically generate the

required software-to-hardware interfaces.

Generate
software
interfaces

Generate
hardware
interfaces

FPGA
platform

Generate
FPGA

interfaces

Compile
software

application

Synthesize
FPGA

hardware

C
applications

30 Computer

The network has simple point-to-point connections

wherever possible and switches wherever required. Its

latency of a single clock cycle is guaranteed, and net-

work nodes are optimized to run a single instruction

and communicate on every clock cycle. The result is a

cluster with full fine-grained parallelism. Adapting the

cluster to the program transforms the von Neumann

architecture’s inherently sequential problem of instruc-

tion scheduling into a parallelizable problem of data-

packet switching.

Mitrion-C complements the processor’s fine-grained

parallelism by offering a fully parallel programming

language. It differs from standard C in its language pro-

cessing model. In standard C, programmers describe the

program’s order-of-execution, which does not fit well

with parallel execution because it enforces a specific

(sequential) execution order. Mitrion-C’s processing

model is based on data dependencies, which is a much

better fit. A full description of a program’s data depen-

dencies is essentially a perfect description of that pro-

gram’s parallelism.

SRC CARTE

The Carte programming environment from SRC

Computers supports a traditional program development

methodology: Write code in a high-level language (C

and Fortran), compile, debug via standard debugger,

edit code, recompile, and so on, until correct implemen-

tation is obtained. When the application runs correctly in

a microprocessor environment, it is recompiled and

targeted for MAP, the direct execution logic processor.

Carte supports three compilation modes. In the Debug

mode Carte compiles microprocessor code using a MAP

emulator to verify the interaction between the CPU and

MAP. In this execution mode, programmers can use

standard debuggers to debug complete applications.

Compilation is fast enough to allow rapid debugging.

In Simulation mode, Carte supports applications com-

posed of C or Fortran and Verilog or VHDL. The compila-

tion produces an HDL simulation executable that

supports the simulation of generated logic.

Finally, in the Hardware compilation mode, the

target is the direct execution logic that runs in

MAP’s FPGAs. In this mode, Carte optimizes for

parallelism by pipelining loops, scheduling mem-

ory references, and supporting parallel code

blocks and streams. The compilation output is a

hybrid control-flow/data-flow circuit represented

in an HDL which Carte then compiles into the

final FPGA chip configuration bitstream.

As Figure C shows, the Carte programming

environment compiles from C or Fortran to the

FPGA configuration bitstream without program-

mer intervention and then further compiles the

codes targeted to microprocessors into object

modules. The final step is to create a unified

executable.

RC TOOLBOX

DSPlogic’s (www.dsplogic.com) Reconfigurable

Computing (RC) Toolbox for the Mathworks

Matlab/Simulink environment is a graphical pro-

Figure B. Mitrion virtual processor and Mitrion-C programming

language. From Mitrion-C, the compiler places all processing

nodes within an FPGA. The Mitrion-C compiler and the processor

configuration unit use the Mitrion-C source code to create process-

ing nodes and an ad hoc network-on-a-chip.

Virtual processor
machine-code

Virtual processor
configurator

Virtual processor
architecture

Mitrion-C
source code

Processor
hardware design

 FPGA

Mitrion software
development kit

Simulator and
debugger

Compiler

Figure C. The SRC Carte programming environment. From source code in

Fortran or C, the MAP compiler generates a single Linux executable file that

incorporates the microprocessor object modules, the MAP bit streams, and

all the required runtime libraries.

MAP compiling system

Parse

Optimize for parallelism

Place and route

Generate HDL

Generate hybrid control/data-flow graph

MAP
macros

Customer
macros

Runtime
library

Fortran
or C

source
code

Unified
executable

March 2007 31

gramming environment for reconfigurable comput-

ing applications. As Figure D shows, the RC Toolbox

consists of four key components.

RC Blockset allows the programming of sequential

and iterative constructs directly related to those in C

languages and includes four categories of blocks: pro-

gram flow for sequential, parallel, and pipelined con-

structs; math for math functions, including

floating-point types; parallel memory access for global

variables and memories; and RC abstraction layer for

integration with various RC platforms. Designers can

use the Matlab/Simulink design environment to easily

import third-party intellectual property (IP) cores as a

graphical block with inputs and outputs, and hardware

experts can use it to incorporate HDLs for access to

low-level programming.

RC I/O consists of hardware abstraction layer

libraries optimized for each RC platform.

With the RC Debugging Toolbox, users can validate

entire applications as well as generate, collect, and

visualize application data—all within the

Matlab/Simulink environment.

Finally, the RC Platform Builder automatically gener-

ates all required logic and compiles the entire bit-

stream without exposing the complex FPGA

implementation tools.

HANDEL-C

Handel-C, part of the DK Design Suite from

Celoxica (www.celoxica.com), synthesizes user code

to FPGAs. As Figure E shows, users replace the algo-

rithmic loop in the original Fortran, C, or C++ source

application with a Celoxica API call to elicit the C

code that is to be compiled into the FPGA. The FPGA

C compiler brings in the appropriate runtime pieces

to set up the interaction with the hardware environ-

ment.

Handel-C extends C with constructs for hardware

design, such as parallelism and timing. It is designed

around a simple timing model in which each assign-

ment in the program takes one clock cycle to execute.

Programmers define parallel processes using exten-

sions that instruct the compiler to create parallel

hardware. The compiler translates input Handel-C

code to an abstract syntax tree, which it then com-

piles to a high-level netlist that contains coarse func-

tion blocks. Handel-C then optimizes the high-level

netlist before expanding it to a technology-specific

netlist, which it then compiles to the FPGA bitstream.

The DK Design Suite also includes a GUI for inte-

grated project management, code editing, and source-

level debugging. It provides a cycle-accurate functional

simulation of Handel-C designs, hardware synthesis, and

a hardware and software debugging environment.

Reference

1. X. Saint-Mleux, M. Feeley, and J.-P. David, “SHard: A Scheme

to Hardware Compiler,” Proc. 2006 Scheme and Functional

Programming Workshop, Univ. of Chicago Press, 2006, pp.

39-49.

IP cores

Hardware description
languages

Other high-level
languages

RC Blockset
High-performance, rapid programming

RC I/O

Program flow:
sequential, parallel,

and pipelined

Math
(including floating

point types)

Parallel memory
access

Portable RC
abstraction layers

RC Debugging Toolbox:
Program validation, data visualization

RC platform builder:
Fully automated

bitstream compilation

Verified, robust, bitstream

Figure D. Four components in DSPlogic’s RC Toolbox.

Dynamic
library callC/C++

Fortran
source

C
inner
loop

Software
compiler

DK
RTL/EDIF
compiler

FPGA vendor place
and route tools

Hardware/software partitioning

Design/Verification/Debugging
P

A
L
 in

te
rf

ac
e

lib
ra

ri
es

Fl
o
at

in
g
-p

o
in

t
to

o
lk

it

Celoxica DK Design Suite

C/C++
Fortran
code

HW targetSW target

Figure E. Compilation in the DK Design Suite. Users replace the algo-

rithmic loop in the original Fortran, C, or C++ source application with

a call for the C code that is to be compiled into the FPGA. The FPGA C

compiler brings in the appropriate runtime pieces to set up the inter-

action with the hardware environment.

32 Computer

certain platforms. In contrast, designers can use Trident
to experiment with, analyze, and optimize a variety of
floating-point libraries and FPGA platforms.

COMPILATION PROCESS
To map algorithmic code to a hardware representa-

tion, Trident must combine traditional compiler analy-
sis and transformation methods with CAD techniques.
On the one hand, like compilers for traditional HLLs, it
must parse the source program, perform high-level
architecture-independent optimizations, and extract
instruction-level parallelism. On the other, like CAD
synthesis tools, it must schedule a sequence of concur-
rent operations and then generate circuits that control
the data flow from memories to registers to operation
units and back to memories. The FPGA area and rout-
ing resources—not the processor architecture—con-
strain the number of possible concurrent operations.

To meet the demands of its dual roles, Trident shares
code from and extends SeaCucumber, a compiler devel-
oped at Brigham Young University that translates Java
into FPGA circuit descriptions.8 To SeaCucumber, Trident
adds the ability to parse C input, accept floating-point
operations, perform extensive operation scheduling, and
generate VHDL. It also allows for additional compiler
optimization and research at different abstraction levels.

To use Trident, the programmer manually partitions
the program into software and hardware sections and
writes C code to coordinate the data communication
between the two parts. The C code to be mapped to hard-
ware must conform to the synthesizable subset of C that
Trident accepts: The code cannot contain print state-

ments, recursion, dynamic memory allocation, function
arguments or returned values, calls to functions with
variable-length argument lists, or arrays without a de-
clared size. Trident allocates arrays and variables stati-
cally during compilation and supports simple pointer
references.

As Figure 1 shows, compilation with Trident has four
main steps:

� IR creation. LLVM, a low-level virtual machine
compiler infrastructure,9 parses the C program to
produce low-level, platform-independent object
code, called LLVM bytecode. Trident uses the LLVM
bytecode to create its intermediate representation.

� IR transformation. From operations in if-statements,
Trident creates hyperblocks—a representation that
exposes more instruction-level parallelism—and a
control-flow graph that consists of hyperblock nodes.
Trident uses the control-flow graph to optimize the
code and map all operations into modules from hard-
ware libraries that the user selects.

� Array allocation and scheduling. Trident uses one of
four scheduling algorithms to schedule operations in
each hyperblock.

� Synthesis. Trident translates the scheduled control-
flow graph into a register-transfer-level HDL,
using a hierarchical hardware description to preserve
modularity.

The top-level circuit contains block subcircuits for
each hyperblock in the control-flow graph input, as well
as a global collection of registers. All block subcircuits

share the register file. Each block subcir-
cuit contains a state machine and a data
path subcircuit. The state machine controls
the timing of the block subcircuit’s data
path, and the data path subcircuit imple-
ments the logic needed to represent the
data flow through the associated hyper-
blocks. It contains operators, predicate
logic, local registers, and wires that con-
nect all the components. Control circuits
connect all the blocks to ensure properly
ordered execution. All these elements com-
bine to produce an optimized application-
specific circuit.

IR creation
LLVM uses the Gnu C compiler as a front

end to parse C and convert it to LLVM byte-
code—a low-level object code representa-
tion that uses simple instructions similar to
those in reduced-instruction-set computing
(RISC)—but it also offers rich, language-
independent type and data flow informa-
tion about operands. LLVM bytecode

Figure 1. Compilation in Trident. A low-level virtual machine compiler parses

the C program to produce platform-independent object code. Optimized LLVM

object code is converted to a hardware-oriented intermediate representation,

which Trident further optimizes to remove unnecessary operations. Finally, Tri-

dent maps all floating-point operations to a hardware library that the user

selects.

Trident

Bytecode to intermediate
representation

Optimization

Gnu C compiler to bytecode Predication

Hyperblock formation

Optimization

Operation mapping

1. IR creation

Array allocation

Scheduling selection

Loop pipelining

3. Scheduling

2. IR transformation

4. Synthesis

Datapath

State machine

Register file

Interblock control

representation is rich enough for
LLVM to perform sophisticated
optimizations, yet remains light-
weight enough to attach to the
executable. Consequently, trans-
formations are possible throughout
the program’s lifetime.

LLVM accepts C and C++ pro-
grams as input and generates
architecture-independent assem-
bly language, which Trident parses
into a hardware-oriented IR. By
using LLVM as a front end, Tri-
dent can focus on hardware com-
pilation concerns and leave the
parsing and baseline optimizations
to LLVM.

The generated bytecode is in sta-
tic single assignment form. At this
point in compilation, Trident dis-
ables optimizations and library
linkage. It will complete optimiza-
tions in a later step, but Trident
must resolve all library function ref-
erences in the bytecode. A Trident
tool written in the LLVM frame-
work then optimizes the LLVM
bytecode using optimization passes
that LLVM provides. These passes
include but are not limited to con-
stant propagation, small function
in-lining, loop invariant hoisting,
tail-call elimination, small loop
unrolling, and common subexpres-
sion elimination. Calling the opti-
mizations from the Trident-specific
LLVM tool gives Trident the flexi-
bility of adding or removing opti-
mizations as needed.

The final Trident pass in LLVM
creates a textual representation
of the LLVM bytecode, which
Trident reads and then uses in the
hardware scheduling and alloca-
tion and synthesis phases. The textual representation
includes basic blocks, loop information, control-flow
graphs, and static single assignment variables—all the
program information needed to build an FPGA circuit
representation.

IR transformation
We designed the Trident IR to combine standard com-

piler IR with the data structures needed to generate
lower level hardware. Trident’s IR extends LLVM’s sta-
tic single assignment representation by adding predi-
cated operations, scheduling information, resource use,

and more operator types. Predicates specify the condi-
tion under which the operation should execute.

Trident creates hyperblocks using if-conversion and
predication so that it can replace branches with predi-
cated operations. A hyperblock is an extended basic
instruction block with one input path but potentially
any number of output paths.

As Figure 2 shows, Trident eliminates the if-statements
and merges the then- and else-statements into a hyper-
block until the control-flow graph contains only loop-
control edges. Because the hyperblock representation
exposes more instruction-level parallelism than the stan-

March 2007 33

cmplt a_1, b_1 −> p_1 (true)

cmplt a_1, 0 −> p_2 (~p_1)add d_1, e_1 −> c_2 (p_1)

subt d_1, e_1 −> c_3 (~p_1 & p_2)

mux c_2, c_5 (p_1) −> c_6 (true)

mux c_3, c_4 (p_2) −> c_5 (~p_1)

shl c_1 1 −> c_4 (~p_1 & ~p_2)

p_1

true true true

~p_2

~p_1

P_2

cmplt a_1, b_1 −> p_1 (true)
add d_1, e_1 −> c_2 (p_1)
cmplt a_1, 0 −> p_2 (~p_1)
subt d_1, e_1 −> c_3 (~p_1 & p_2)
shl c_1, 1 −> c_4 (~p_1 & ~p_2)
mux c_3, c_4 (p_2) −> c_5 (~p_1)
mux c_2, c_5 (p_1) −> c_6 (true)

operation predicate

} else {

} else {

}

}

if (a_1 < b_1) {

c_2 = d_1 + e_1;

if (a_1 < 0) {

c_3 = d_1 − e_1;

c_4 = c_1 * 2;

c_6 = (c_2, c_3, c_4)Φ(a)

(b)

(c)

Figure 2. How Trident converts static single assignment representation to

hyperblocks—extended basic instruction blocks with one input path and potentially

any number of output paths.The conversion process begins with LLVM static single

assignment code, (a) to which Trident adds predicates to replace branches. (b) The result

is the merging of operations to form a hyperblock (c) that has more instruction-level

parallelism than a standard basic block.

34 Computer

dard basic block, the scheduling phase has additional
opportunities to schedule concurrent operations.

To remove the redundant and unnecessary instruc-
tions from converting if-statements and forming hyper-
blocks, Trident repeats the LLVM standard optimiza-
tions (common subexpression and dead-code elimina-
tion, strength reduction, constant propagation, alias
analysis, and so on). These optimizations decrease the
number of operations that Trident must synthesize into
hardware. To select specific floating-point hardware
operators, Trident maps a generic set of operations into
a particular floating-point library. Trident can map dif-
ferent libraries to a common set of floating-point oper-
ations, so users can easily trade off area, resources, clock
speed, and latency.

Array allocation and scheduling
The Trident compiler performs all memory allocation

during compilation, which means that it can schedule
accesses to memory banks statically, resulting in low-
latency, deterministic access to static RAMs. Trident
allocates scalar variables to on-chip registers when
required, but arrays often require resources that are not
available on the FPGA chip. Likewise, floating-point
data types (single and double precision) present a chal-
lenge to FPGA resources. Relative to integer operations,
floating-point modules require significantly more logic
blocks on the FPGA, and the large operand sizes com-
plicate memory allocation and require more memory
bandwidth. Finally, because floating-point operations
are highly pipelined, scheduling must take care to pre-
vent write/read data hazards.

Array allocation. In most data-intensive, streaming
computation, data arrays are too large to be stored on
the FPGA chip and must go to off-chip memory. This
makes external memory bandwidth the primary limita-
tion on parallelism within the circuit. Most reconfig-

urable computing FPGA boards contain
independent parallel banks of static
RAMs which act as a noncached memory
subsystem with deterministic access time.

Array allocation assigns arrays to the
memory banks. But allocation interacts
with operation scheduling. Thus, where
the arrays are located in memory banks
determines the extent to which the mem-
ory subsystems can read and write
operands concurrently and the extent to
which operations that use those operands
can be scheduled concurrently. The degree
of concurrent operation also depends on
the extent to which the operand modules
are shared.

Relative to operands for small integer
arrays, the 32- or 64-bit width of floating-
point arrays reduces the number of

operands that the memory subsystem can access con-
currently. For example, if the FPGA board has four
external memories, each 64 bits wide with a single
read/write bus, the memory subsystem can access only
four double-precision floating-point numbers in a sin-
gle clock cycle.

If the computation has sufficient parallelism to con-
sume more than the four operands from memory per
clock cycle, there is no way to exploit it. When memory
bandwidth is insufficient, the scheduler must order
memory accesses sequentially, and the data path circuit
might need additional pipeline registers, which con-
sumes on-chip logic resources. The scheduler might also
need a longer interval for introducing new operands into
the pipeline, which reduces overall throughput. If the
operands are 8-bit pixels, in contrast, the memory sub-
system could access 32 operands concurrently from four
64-bit memories and 16 or more operations could be
scheduled concurrently.

Optimizing array allocation to the memory banks
requires considering several factors. The pattern of array
allocation to memory influences throughput.10,11 To
maximize communication bandwidth, it makes sense to
allocate arrays to different memories so that multiple
independent memories can be accessed concurrently. It
also makes sense to allocate arrays to memories with
multiple read/write buses, since the memory subsystem
would have parallel access to a single memory.

Another consideration is memory access latency—
how many cycles it takes to satisfy a read or write
request and if it is possible to schedule array accesses to
the same memory at different times and thus not
lengthen the schedule.

Finally, a possible optimization is to pack arrays in
the memory data word to minimize memory accesses.
If a memory is 64 bits wide, and two arrays use 32-bit
operands, it is possible to pack corresponding elements

Figure 3. Memory allocation algorithm for mapping arrays into available mem-

ory resources.The algorithm uses an initial allocation to create a preliminary

schedule. It then adjusts the array allocation (box at right).Trident uses the

results of memory allocation to determine a final operation schedule.

Array allocation algorithm
Memory allocation algorithm

Preliminary schedule
Array allocation

Choose initial allocation
− Conservative estimate
− Ideal parallel allocation

 for each array A do

if arrays still unmapped increase total cycles

While (mem free and arrays > 0)

Loop3

Loop2

Loop1

 for each memory M do
 s <- test Mapping in M
 if (s - t >= 0) then
 continue
 else
 keep A in M

 if A not mapped
 t++

of the two arrays into the same memory location and
access both arrays simultaneously with one read or write
operation. However, this strategy is desirable only if
three conditions hold: The memory subsystem accesses
the arrays with the same index, it performs the same
operation (either read or write) on both arrays, and it
can schedule the two operations concurrently.

As Figure 3 shows, memory allocation starts with one
of two methods, which the user specifies. The first
method schedules the graph with a conservative esti-
mate of access times that uses the read and write laten-
cies of the slowest memory for all arrays. The second
method attempts an ideal allocation in which the mem-
ory subsystem accesses all arrays in parallel or in the
fewest possible cycles. Both methods attempt to make
the best use of memories with different access latencies.

The next step is to construct a preliminary schedule
and adjust allocation to best meet the preliminary sched-
ule constraints. If additional optimization is desired, the
user can request multiple iterations of these steps for
some specified period.

The array allocation algorithm is a greedy search using
a cost function c = s � t, where s represents the increase
or decrease of schedule length and t is the number of
attempts made to allocate the array. The longer the
schedule, the higher the value of s, and at each allocation
attempt, the algorithm increments t.

The array allocation algorithm consists of three nested
loops. Loop 1 repeats as long as memory is not full and
unallocated arrays exist. Loop 2 iterates through every
unallocated array in random order. Loop 3 iterates over
the memories in random order and calculates the cost (c)
of allocating the array under consideration to that memory.

The algorithm will allocate the array only if the cost is
less than or equal to zero (c � 0). If it cannot find a mem-
ory for this array, the algorithm continues with the next
array. After attempting to allocate every array, the algo-
rithm tries again with any remaining unallocated arrays.

Scheduling. Once Trident has an array allocation, it
invokes a user-selected scheduler to determine an exe-
cution order for the operations. Because Trident targets
programmable hardware, it can schedule an arbitrary
number of independent operations in parallel. In Figure
4, the scheduler defines a partial order of operations in
the assignment expression O = (A � B) + D � (C + D)
and breaks it into four operations. Data dependence and
memory access requirements partially constrain the
sequence of those operations.

At this point, any of four scheduling algorithms are
possible: as soon as possible, which schedules opera-
tions as soon as their inputs are available; as late as pos-
sible, which schedules operations typically just before
they are used; force directed, which schedules opera-
tions within an execution window somewhere between
the ASAP and ALAP extremes; and iterative modulo,
for scheduling loops.

The force-directed algorithm is useful because it
spreads operations of the same type (such as adds)
within the execution window. Consequently, the syn-
thesizer can build fewer of these operator types in the
hardware and share them. In Figure 4d, for example,
the force-directed scheduler places the operation
tmp1 = A � B in the first cycle, thus reducing the num-
ber of multiplications in cycle 2.

The iterative modulo scheduling algorithm12 sched-
ules loops by pipelining them and beginning a new loop
iteration i + 1 before its predecessor iteration (i) has com-
pleted. The number of clock cycles that elapse between
the start of iteration i and i + 1 is the initiation interval.

Modulo scheduling uses a heuristic to find an initiation
interval that does not violate dependence or array access
constraints. Dependence constraints arise when an oper-
ation in iteration i + 1 uses data produced in iteration i.
Array access constraints occur when the memory sub-
system requests more read or write operations to a mem-
ory in a time slot than the memory can satisfy. When this
conflict occurs, the operations must be scheduled in suc-
ceeding time slots, increasing the initiation interval.
Trident’s modulo scheduling algorithm also schedules
reads and writes to packed arrays in the same time slot.

Given the initiation interval, the compiler generates a
prologue to collect intermediate results from the initial
iterations, a steady-state loop body, and an epilogue to
collect results from the final iterations. The scheduling
phase output is a time-annotated control-flow graph,

March 2007 35

Figure 4. Scheduling in Trident. (a) Trident breaks code into indi-

vidual steps, and the user selects one of Trident’s four schedul-

ing modes. (b) In the as soon as possible mode, Trident sched-

ules operations as soon as their inputs are available. (c) In the

as late as possible mode, Trident schedules operations as late

as possible, as in just before they are used. (d) In the force-

directed mode, Trident uses a system of forces to schedule

operations between the ASAP and ALAP extremes.

tmp1 = A*B
tmp2 = C + D
tmp3 = tmp2*D
O = tmp1 + tmp3

O = (A*B) + D*(C + D)

tmp1 = A*B
tmp2 = C + D O = tmp1 + tmp3tmp3 = tmp2*D

tmp2 = C + D tmp3 = tmp2*D
tmp1 = A*B tmp1 = A*B

O = tmp1 + tmp3

tmp1 = A*B
tmp3 = tmp2*Dtmp2 = C + D O = tmp1 + tmp3

Chosen location

Cycle 1 Cycle 2 Cycle 3

Cycle 1 Cycle 2 Cycle 3

Cycle 1 Cycle 2 Cycle 3

(a)

(b)

(c)

(d)

36 Computer

each node of which represents a hyperblock. The time
annotation describes the number of clock cycles that the
scheduled hyperblock consumes. For loops, the time
annotation gives the number of clock cycles that one
iteration of the loop uses. The schedule associated with
each hyperblock lists the operations that occur concur-
rently in each time step of the schedule.

Synthesis
After the scheduler schedules all operations, it passes

the timing-annotated control-flow graph to the synthe-
sizer, which creates a data path and control structure to
implement the desired behavior. The synthesizer must
also create any board-level circuit structures and make
all necessary external connections to the synthesized cir-
cuit. It accomplishes these tasks in four major stages:
library mapping, abstract design generation, board-level
synthesis, and output generation.

Library mapping. The synthesizer begins by building
each operation in the control-flow graph as a circuit ele-
ment—an element with data path operations whose
operators are either native or library. Native operators
are suitable for integer and Boolean operations. External
data files define library operators, which include

required input and output ports, required
external library declarations, and the input
and output mappings. Mappings can be to
internal ports or constants or can be left
open.

Although existing libraries provide some
floating-point operations, most are incom-
plete and do not include all possible float-
ing-point operations; a notable omission is
casts from various integer types to float
types and vice versa. To account for the
incompleteness of these libraries, the
library operation mapping configuration
makes it possible to select individual oper-
ations from different libraries.

Abstract design generation. This stage
generates a top-level design blueprint, such
as that in Figure 5, while leaving the cir-
cuit’s underlying technology open until the
final code generation stage. The underly-
ing technology consists of the target HDL
and hardware modules, such as the float-
ing-point cores.

The block’s data path implements the
logic that represents the data flow through
all the operations in the control-flow
graph—operators, predicate logic, local
registers, and the wires that connect all the
components. If the target is a pipelined
design, the circuit generator adds pipeline
registers between data path operators to
preserve correct data-flow behavior.

Board-level synthesis. The circuit generator must
insert not only hierarchy, control, and data path ele-
ments, but also the interface to the board-level design.
A board description file similar to the library operator
file describes the top-level interface and the required
input and output mappings. If additional low-level
details of signaling protocols are needed to describe
board-level interactions, designers can supply these as
additional code during this phase.

Output generation. Trident’s internal technology-
independent circuit representation can accommodate
multiple output representations and currently supports
VHDL. In addition, Trident can output a file that will
help users visually debug the design’s structure. Back-
end generation is simple enough to allow relatively
straightforward additions to the list of target technolo-
gies. Each target technology’s back-end generator
extends the abstract circuit generator’s class. Thus, the
target technology’s back-end generator actually gener-
ates each abstract component.

COMPILER BENCHMARKS
Table 1 shows benchmark results from Trident exper-

iments, in which Trident targeted the Cray XD1 (Xilinx

Table 1. Synthesis results with Trident.

Benchmark Clock (MHz) Slice count Area (%) Blocks States

Photon 193 11,810 50 1 112

Photon-hand 98 8,819 20 1 98

Euclid 200 6,071 25 1 71

Figure 5. Abstract circuit design hierarchy.The top level contains subcircuits

for each block in the control-flow graph input as well as a register set that all

block subcircuits share. Each block subcircuit contains a state machine and

a data path subcircuit.The state machine controls the timing of the block’s

data path.

Register
file

Datapath

machine
State

Block 1

Datapath

machine
State

Block N

Control
module

Memory bus

Memory bus

Control

Virtex2Pro 50) using the Xilinx ISE 6.3p3 tools with the
Quixilica floating-point library. The overhead for inter-
facing to the Cray FPGA board is about 10 to 15 percent
of the total area.

Photon is a compiler-generated inner loop from a
Monte Carlo radiative heat transfer simulation. Photon-
hand is a design for Photon that an engineer generated.
The results for Photon-hand target a Virtex2Pro 100
and are just for the design pipeline; they exclude any
overhead required to interface with a particular board.
Euclid calculates the Euclidean distance between two
points in 3D space.

As the table shows, Photon is almost twice as fast as
Photon-hand. Factoring in the overhead of the XD1
interface logic, Photon is also competitive in area rela-
tive to Photon-hand.

C
urrently, partitioning the hardware and software
portions of an algorithm must be completed man-
ually. To move toward automating this process, we

could use LLVM capability to do a runtime analysis since
it can provide profiling information. With the profiling
information, we can potentially identify the computation-
intensive code portions, identify functional block reuse,
and understand data movement. With this insight, we
could partition the code automatically and better allocate
external memory when both dynamic and static RAM
are available. Also, combining the execution profile infor-
mation with an FPGA execution model would deepen the
understanding of overall system speedup. Our hope is
that Trident’s open source nature will facilitate the inter-
action needed to further development in these areas. ■

References

1. K. Underwood, “FPGAs vs. CPUs: Trends in Peak Floating-

Point Performance,” Proc. 12th ACM Int’l Symp. Field-Pro-

grammable Gate Arrays (FPGA 04), ACM Press, 2004, pp.

171-180.

2. G. Govindu et al., “Area and Power Performance Analysis of

Floating-Point-Based Application on FPGAs,” Proc. 7th Ann.

Workshop High-Performance Embedded Computing (HPEC

03), Sept. 2003; www.ll.mit.edu/HPEC/agenda03.htm.

3. M. Gokhale et al., “Monte Carlo Radiative Heat Transfer

Simulation on a Reconfigurable Computer,” Proc. Int’l Conf.

Field-Programmable Logic and Applications (FPL 04),

Springer, 2004, pp. 95-104.

4. J.P. Durbano et al., “FPGA-Based Acceleration of 3D Finite-

Difference Time-Domain Method,” Proc. IEEE Symp. Field-

Programmable Custom Computing Machines, IEEE Press,

2004, pp. 156-163.

5. J.L. Tripp et al., “Trident: An FPGA Compiler Framework for

Floating-Point Algorithms,” Proc. Int’l Conf. Field-Program-

mable Logic and Applications (FPL 05), IEEE Press, 2005, pp.

317-322.

6. Z. Guo and W. Najjar, “A Compiler Intermediate Represen-

tation for Reconfigurable Fabrics,” Proc. Int’l Conf. Field-

Programmable Logic and Applications (FPL 06), IEEE Press,

2006, pp. 741-744.

7. S. Gupta, R.G. Nikil, and D. Dutt, Spark: A Parallelizing

Approach to the High-Level Synthesis of Digital Circuits,

Springer, 2005.

8. J.L. Tripp, P.A. Jackson, and B.L. Hutchings, “SeaCucumber:

A Synthesizing Compiler for FPGAs,” Proc. 12th Int’l Conf.

Field Programmable Logic and Applications (FPL 02),

Springer-Verlag, 2002, pp. 875-885.

9. C. Lattner and V. Adve, “LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation,” Proc. Int’l

Symp. Code Generation and Optimization (CGO 04), IEEE

CS Press, 2004, pp. 75-86.

10. M.B. Gokhale and J.M. Stone, “Automatic Allocation of

Arrays to Memories,” Proc. IEEE Symp. Field-Programma-

ble Custom Computing Machines, IEEE CS Press, 1999, pp.

63-69.

11. H. Lange and A. Koch, “Memory Access Schemes for Con-

figurable Processors,” Proc. 12th Int’l Conf. Field-Program-

mable Logic and Applications (FPL 00), Springer-Verlag,

2000, pp. 615-625.

12. B.R. Rau, “Iterative Modulo Scheduling: An Algorithm for

Software Pipelining Loops,” Proc. 27th Ann. Int’l Symp.

Microarchitecture, ACM Press, 1994, pp. 63-74.

Justin L. Tripp is a technical staff member on the Applica-

tion-Specific Architectures Team in the Advanced Com-

puting Laboratory at Los Alamos National Laboratory. His

research interests include reconfigurable logic designs, syn-

thesis, compilers, and parallel computing. Tripp received a

PhD in electrical engineering from Brigham Young Uni-

versity. He is a member of the IEEE Computer Society. Con-

tact him at jtripp@lanl.gov.

Maya B. Gokhale is a member of the staff at the Center for

Applied Scientific Computing at Lawrence Livermore

National Laboratory. Her research interests include recon-

figurable computing with FPGAs, high-performance com-

puting, parallel languages, and embeddable architectures.

Gokhale received a PhD in computer and information sci-

ences from the University of Pennsylvania. She is an IEEE

Fellow and a member of Phi Beta Kappa. Contact her at

maya@llnl.gov.

Kristopher D. Peterson is a PhD student in the Bioengi-

neering Department at the Imperial College of London. His

research interests are insect neuroscience and vision and

robotics. He received an MS in evolutionary and adaptive

systems from the University of Sussex. Contact him at kris-

dpeterson@gmail.com.

March 2007 37

