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SUMMARY

The eigenvalues and eigenvectors of tridiagonal Toeplitz matrices are known in closed form. This
property is in the first part of the paper used to investigate the sensitivity of the spectrum. Explicit
expressions for the structured distance to the closest normal matrix, the departure from normality, and
the ε-pseudospectrum are derived. The second part of the paper discusses applications of the theory to
inverse eigenvalue problems, the construction of Chebyshev polynomial-based Krylov subspace bases,
and Tikhonov regularization. Copyright c© 2006 John Wiley & Sons, Ltd.

1. Introduction

Tridiagonal Toeplitz matrices and low-rank perturbations of such matrices arise in numerous
applications, including the solution of ordinary and partial differential equations [12, 15, 37, 41],
time series analysis [26], and as regularization matrices in Tikhonov regularization for the
solution of discrete ill-posed problems [17, 33]. It is therefore important to understand
properties of tridiagonal Toeplitz matrices relevant for computation.

The eigenvalues of real and complex tridiagonal Toeplitz matrices can be very sensitive to
perturbations of the matrix. Using explicit formulas for the eigenvalues and eigenvectors of
tridiagonal Toeplitz matrices, we derive explicit expressions that shed light on this sensitivity.
Exploiting the Toeplitz and tridiagonal structures, we derive simple formulas for the distance
to normality, the structured distance to normality, the departure from normality, and the
ε-pseudospectrum, as well as for individual and global eigenvalue condition numbers. These
quantities provide us with a thorough understanding of the sensitivity of the eigenvalues of
tridiagonal Toeplitz matrices. In particular, we show that the sensitivity of the eigenvalues
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Table I. Definitions of sets used in the paper.

T the subspace of C
n×n formed by tridiagonal Toeplitz matrices

N the algebraic variety of normal matrices in C
n×n

NT N ∩ T
M the algebraic variety of matrices in C

n×n with multiple eigenvalues
MT M∩ T

grows exponentially with the ratio of the absolute values of the sub- and super-diagonal
matrix entries; the sensitivity of the eigenvalues is independent of the diagonal entry and of
the arguments of off diagonal entries. The distance to normality also depends on the difference
between the absolute values of the sub- and super-diagonal entries.

Matrix nearness problems have received considerable attention in the literature; see, e.g.,
[11, 20, 25, 30, 31] and references therein. The ε-pseudospectra of banded Toeplitz matrices are
analyzed in detail in [3, 34, 40]. Our interest in tridiagonal Toeplitz matrices stems from the
possibility of deriving explicit formulas for quantities of interest and from the many applications
of these matrices.

This paper is organized as follows. The eigenvalue sensitivity is investigated in Sections
2-6. Numerical illustrations also are provided. The latter part of this paper describes a few
applications that are believed to be new. We consider an inverse eigenvalue problem in Section
7, where we also introduce a minimization problem, whose solution is a trapezoidal tridiagonal
Toeplitz matrix. The latter matrices can be applied as regularization matrices in Tikhonov
regularization. This application is described in Section 8. Section 9 is concerned with the
construction of nonorthogonal Krylov subspace bases based on the recursion formulas for
suitably chosen translated and scaled Chebyshev polynomials. The use of such bases in Krylov
subspace methods for the solution of large linear systems of equations or for the computation
of a few eigenvalues of a large matrix is attractive in parallel computing environments that do
not allow efficient execution of the Arnoldi process for generating an orthonormal basis; see
[21, 22, 32] for discussions. We describe how tridiagonal Toeplitz matrices can be applied to
determine a suitable interval on which the translated and scaled Chebyshev polynomials are
required to be orthogonal. Concluding remarks can be found in Section 10.

Several of the topics of this paper have been studied by Biswa Datta in the context of
Control Theory. This includes inverse eigenvalue problems [1, 6, 7, 9] and Krylov subspace
methods [8]. It is a pleasure to dedicate this paper to him.

We conclude this section by introducing notation to be used in the sequel. The Euclidean
vector norm as well as the associated induced matrix norm are denoted by ‖ · ‖2, and ‖ · ‖F

stands for the Frobenius matrix or vector norms. Table I defines sets of interest. The distance
to normality in the Frobenius norm of a matrix A ∈ C

n×n is given by

dF (A,N ) = min
AN∈N

‖A − AN ‖F ; (1)

see, e.g., [13, 19, 20, 24, 30, 38] for results and discussions on the distance to normality. The
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tridiagonal Toeplitz matrix

T =




δ τ O
σ δ τ

σ · ·
· · ·

· · ·
· · τ

O σ δ




∈ C
n×n (2)

is denoted by T = (n;σ, δ, τ), and we let

α = arg σ, β = arg τ, γ = arg δ. (3)

The matrix T0 = (n;σ, 0, τ) is of particular interest.
The quantity dF (T,NT ) denotes the structured distance of T ∈ T to NT in the Frobenius

norm, i.e.,
dF (T,NT ) = min

TN∈NT

‖T − TN ‖F .

Clearly, dF (T,NT ) ≥ dF (T,N ) and for some matrices T ∈ T , dF (T,NT ) is much larger than
dF (T,N ). This is, for instance, the case for T = (n; 0, δ, τ) when τ 6= 0; see [30, Example 9.1].

For T ∈ T , dF (T,MT ) denotes the structured distance of T to MT in the Frobenius norm,
i.e.,

dF (T,MT ) = min
TM∈MT

‖T − TM‖F .

2. Eigenvalues and eigenvectors

It is well known that the eigenvalues of T = (n;σ, δ, τ) are given by

λh(T ) = δ + 2
√

στ cos
hπ

n + 1
, h = 1 : n; (4)

see, e.g., [37], and using (3), we obtain

λh(T ) = δ + 2
√
|στ | ei(α+β)/2 cos

hπ

n + 1
, h = 1 : n. (5)

In particular, if στ 6= 0, the matrix (2) has n simple eigenvalues, which lie on the closed line
segment

Sλ(T ) =

{
δ + t ei(α+β)/2 : t ∈ R, |t| ≤ 2

√
|στ | cos

π

n + 1

}
⊂ C. (6)

The eigenvalues are allocated symmetrically with respect to δ.
The spectral radius of the matrix (2) is given by

ρ(T ) = max

{∣∣∣∣δ + 2
√

|στ |ei(α+β)/2 cos
π

n + 1

∣∣∣∣ ,

∣∣∣∣δ + 2
√

|στ | ei(α+β)/2 cos
nπ

n + 1

∣∣∣∣
}

and, if T is nonsingular, i.e. λh(T ) 6= 0 for all h = 1 : n, taking (5) into account, one has

ρ(T−1) = max
h=1:n

∣∣∣∣δ + 2
√

|στ | ei(α+β)/2 cos
hπ

n + 1

∣∣∣∣
−1

.

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 0:0–0
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For n odd, we have rank(T0) = n − 1.
When στ 6= 0, the components of the right eigenvector xh = [xh,1, xh,2, . . . , xh,n]T associated

with the eigenvalue λh(T ) are given by

xh,k = (σ/τ)k/2 sin
hkπ

n + 1
, k = 1 : n, h = 1 : n, (7)

and the corresponding left eigenvector yh = [yh,1, yh,2, . . . , yh,n]T has the components

yh,k = (τ̄ /σ̄)k/2 sin
hkπ

n + 1
, k = 1 : n, h = 1 : n, (8)

where the bar denotes complex conjugation. Throughout this paper the superscript (·)T stands
for transposition and the superscript (·)H for transposition and complex conjugation.

If σ = 0 and τ 6= 0 (or σ 6= 0 and τ = 0), then the matrix (2) has the unique eigenvalue δ of
geometric multiplicity one. The right and left eigenvectors are the first and last columns (or
the last and first columns) of the identity matrix, respectively.

Note that, given the dimension of the matrix, knowing the ratio σ/τ is enough to uniquely
determine all the right and left eigenvectors of T up to a scaling factor.

3. Distance to and departure from normality

This section discusses the distance and structured distance of tridiagonal Toeplitz matrices to
normality, as well as the departure and structured departure from normality.

Theorem 3.1. The matrix (2) is normal if and only if

|σ| = |τ |. (9)

Proof: The condition in (9) is equivalent to the equality THT = T TH .

The above theorem shows that a normal tridiagonal Toeplitz matrix can be written in the
form

T ′ = (n; ρeiα′

, δ, ρeiβ′

) =




δ ρeiβ′

O

ρeiα′

δ ρeiβ′

ρeiα′ · ·
· · ·

· · ·
· · ρeiβ′

O ρeiα′

δ




, (10)

where δ ∈ C, ρ ≥ 0, and α′, β′ ∈ R. It follows from (5) that the eigenvalues of (10) are given
by

λh(T ′) = δ + 2 ρ ei(α′+β′)/2 cos
hπ

n + 1
, h = 1 : n.

In particular, the eigenvalues lie on the closed line segment

Sλ(T ′) =

{
δ + t ei(α′+β′)/2 : t ∈ R, |t| ≤ 2 ρ cos

π

n + 1

}
⊂ C.

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 0:0–0
Prepared using nlaauth.cls



4 S. NOSCHESE, L. PASQUINI, AND L. REICHEL

Theorem 3.2. Let T = (n;σ, δ, τ) be a matrix in T . There is a unique matrix T ∗ =
(n;σ∗, δ∗, τ∗) ∈ NT that minimizes ‖TN − T‖F over NT . This matrix is defined by

σ∗ =
|σ| + |τ |

2
ei α,

δ∗ = δ,

τ∗ =
|σ| + |τ |

2
ei β ,

where α and β are given by (3).

Proof: Theorem 3.1 gives the condition |σ∗| = |τ∗|. Consequently, to minimize ‖TN − T‖F

over TN ∈ NT , we must take

δ∗ = δ, σ∗ = ρ∗ eiα, τ∗ = ρ∗ eiβ ,

where ρ∗ denotes the common value of |σ∗| and |τ∗|. In addition, ρ∗ has to minimize the
function ρ → (ρ − |σ|)2 + (ρ − |τ |)2. The unique minimum is ρ∗ = (|σ| + |τ |)/2.

Corollary 3.1. The eigenvalues of the normal tridiagonal Toeplitz matrix T ∗ = (n;σ∗, δ∗, τ∗)
closest to T = (n;σ, δ, τ) are given by

λh(T ∗) = δ + (|σ| + |τ |) ei(α+β)/2 cos
hπ

n + 1
, h = 1 : n, (11)

where as usual α and β are defined by (3). The eigenvalues lie on the closed line segment

Sλ(T∗) =

{
δ + t ei(α+β)/2 : t ∈ R, |t| ≤ (|σ| + |τ |) cos

π

n + 1

}
.

Since

|σ| + |τ | − 2
√
|στ | =

(√
|σ| −

√
|τ |

)2

,

this line segment properly contains the line segment in (6) if and only if T /∈ NT . Moreover,
T ∗ has the spectral radius

ρ(T ∗) = max

{∣∣∣∣δ + (|σ| + |τ |) ei(α+β)/2 cos
π

n + 1

∣∣∣∣ ,

∣∣∣∣δ + (|σ| + |τ |) ei(α+β)/2 cos
nπ

n + 1

∣∣∣∣
}

.

The following result provides a simple formula for the distance to normality of a tridiagonal
Toeplitz matrix.

Theorem 3.3. Let T = (n;σ, δ, τ). Then

dF (T,NT ) =

√
n − 1

2
(max{|σ|, |τ |} − min{|σ|, |τ |}). (12)

Proof: We obtain from Theorem 3.2 that

‖T − T ∗‖2
F = (n − 1)(|σ − σ∗|2 + |τ − τ∗|2)

= (n − 1)
(
||σ| − |σ∗||2 + ||τ | − |τ∗||2

)

= (n − 1)
(
||σ| − ρ∗|2 + ||τ | − ρ∗|2

)

=
n − 1

2
||σ| − |τ ||2.

This proves the assertion.

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 0:0–0
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Remark 3.1. The distance dF (T,NT ) is independent of δ, but the closest normal matrix T ∗

to T depends on δ. In other words, matrices that differ only in δ have the same distance
to the algebraic variety NT , but they have different projections onto NT . Also note that
T1 = (n, σ, δ1, τ) and T2 = (n, σ, δ2, τ) yields

‖T ∗
1 − T ∗

2 ‖F = ‖T1 − T2‖F =
√

n |δ1 − δ2| .

3.1. The relation between the distance to and departure from normality

The departure from normality

∆F (A) =

(
‖A‖2

F −
n∑

h=1

|λh|2
) 1

2

, A ∈ C
n×n,

was introduced by Henrici [19] to measure the nonnormality of a matrix. It is easily shown,
by using the trigonometric identity

n∑

k=1

cos2
(

kπ

n + 1

)
=

n − 1

2
, (13)

that
∆F (T0) =

√
n − 1 (max{|σ|, |τ |} − min{|σ|, |τ |}).

It follows from (12) that ∆F (T0) =
√

2 dF (T0,NT ). László [24] has shown that for any
A ∈ C

n×n,
∆F (A)√

n
≤ dF (A,N ) ≤ ∆F (A),

where dF (A,N ) denotes the distance to normality (1). We conclude that
√

2√
n

dF (T0,NT ) ≤ dF (T0,N ) ≤
√

2 dF (T0,NT ). (14)

3.2. The distance between the spectra of T and T ∗

We are in a position to bound the distance between the spectra of a tridiagonal Toeplitz matrix
T and of its closest normal tridiagonal Toeplitz matrix T ∗.

Theorem 3.4. Let T ∗ be the closest normal tridiagonal Toeplitz matrix to T = (n;σ, δ, τ).
Define the eigenvalue vectors

λ = [λ1(T ), λ2(T ), . . . , λn(T )], λ∗ = [λ1(T
∗), λ2(T

∗), . . . , λn(T ∗)],

where we assume that the eigenvalues of T and T ∗ are ordered in the same manner. Then

‖λ − λ∗‖2 =

√
n − 1

2
(
√

|σ| −
√
|τ |)2.

Proof: We obtain from (4) and (11) that

|λh(T ) − λh(T ∗)| =
(√

|σ| −
√
|τ |

)2
∣∣∣∣cos

hπ

n + 1

∣∣∣∣ , h = 1 : n.

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 0:0–0
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The theorem now follows from (13).

The following result is a consequence of Theorems 3.3 and 3.4, and shows that

lim
T→T∗

‖λ − λ∗‖2

dF (T,NT )
= 0.

Theorem 3.5. Let T /∈ NT . Using the notation of Theorems 3.3 and 3.4, we have

‖λ − λ∗‖2

dF (T,NT )
=

∣∣∣
√
|σ| −

√
|τ |

∣∣∣
√
|σ| +

√
|τ |

. (15)

Proof: It follows from Theorems 3.3 and 3.4 that

‖λ − λ∗‖2

dF (T,NT )
=

(√
|σ| −

√
|τ |

)2

||σ| − |τ || =

∣∣∣
√

|σ| −
√
|τ |

∣∣∣
√
|σ| +

√
|τ |

.

3.3. Normalized structured distance to normality

We first consider the matrices T0 with (σ, τ) 6= (0, 0). Theorem 3.3 leads to the following
observations:

• When σ τ 6= 0, we have

dF (T0,NT )

‖T0‖F

=

√
n−1

2 ||σ| − |τ ||
√

n − 1
√

|σ|2 + |τ |2
=

||σ/τ | − 1|√
2
√

|σ/τ |2 + 1
=

||τ/σ| − 1|√
2
√

1 + |τ/σ|2
,

and, therefore,

0 ≤ dF (T0,NT )

‖T0‖F

<
1√
2
.

Moreover, the normalized structured distance to normality decreases from
√

2/2 to 0
when one of the two ratios |σ/τ | or |τ/σ| increases from 0 to 1.

•
dF (T0,NT )

‖T0‖F

= 0, if and only if |σ| = |τ |.

• When σ = 0, τ 6= 0 or σ 6= 0, τ = 0, we have

dF (T0,NT )

‖T0‖F

=
1√
2
. (16)

Remark 3.1 yields that dF (T,NT ) = dF (T0,NT ). Therefore,

0 ≤ dF (T,NT )

‖T‖F

=
dF (T0,NT )

‖T0‖F

‖T0‖F

‖T‖F

=
dF (T0,NT )

‖T0‖F

√
(n − 1) (|σ|2 + |τ |2)

(n − 1) (|σ|2 + |τ |2) + n|δ|2

≤ dF (T0,NT )

‖T0‖F

≤ 1√
2
.

The upper bound is achieved if and only if δ = 0 and T is bidiagonal.

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 0:0–0
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3.4. Normalized departure and distance from normality

It is straightforward to show that the upper bound for the normalized departure from normality
of the matrix T0 is one, and that the upper bound for the normalized distance to normality is
1/
√

2. Moreover, the following result holds.

Theorem 3.6. Let T0 = (n;σ, 0, τ) with σ = 0, τ 6= 0, or σ 6= 0, τ = 0. Then

dF (T0,N )

‖T0‖F

=
1√
n

.

Proof: The inequality dF (T0)/ ‖T0‖F ≥ 1/
√

n follows from (14) and (16). To show equality,
we construct a normal (circulant) matrix N at normalized distance 1/

√
n from T0. Specifically,

if σ 6= 0 and τ = 0, then we let

N =
n − 1

n
(T0 + σe1e

T
n ),

where ej denotes the jth axis vector, and if σ = 0 and τ 6= 0, then we choose

N =
n − 1

n
(T0 + τeneT

1 ).

4. Distance and structured distance to MT

The matrices in MT are multiples of the identity, which are normal matrices, or bidiagonal
matrices, which have the unique eigenvalue δ with geometric multiplicity 1. This observation
leads to the following result.

Theorem 4.1. Let T = (n;σ, δ, τ). If |σ| = min{|σ|, |τ |} (or |τ | = min{|σ|, |τ |}), then
T+ = (n; 0, δ, τ) (or T+ = (n;σ, δ, 0)) is the closest matrix to T in MT , when the distance is
measured in the Frobenius norm.

Corollary 4.1. For any T ∈ T , we have

dF (T,MT ) =
√

n − 1 min{|σ|, |τ |}.
In particular, if T ∈ NT , then

dF (T,MT ) =
√

n − 1 |σ| =
√

n − 1 |τ |.
Further, if T /∈ NT , then

dF (T ∗,MT ) =
√

n − 1
|σ| + |τ |

2
,

where T ∗ denotes the closest matrix to T in NT in the Frobenius norm.

We remark that for any T ∈ T , it holds

dF (T ∗,MT ) − dF (T,MT ) =
√

n − 1

( |σ| + |τ |
2

− min{|σ|, |τ |}
)

=
√

n − 1
max{|σ|, |τ |} − min{|σ|, |τ |}

2

=
1√
2
dF (T,NT ).

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 0:0–0
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This shows that the larger the difference between |σ| and |τ | is, the larger is the difference in
the structured distances of T and T ∗ from MT .

Introduce the ratio

r =
min{|σ|, |τ |}
max{|σ|, |τ |} . (17)

This ratio is used in the proof of the following theorem, which provides a bound for the
normalized structured distance of T0 to MT .

Theorem 4.2.
dF (T0,MT )

‖T0‖F

≤ 1√
2
.

The upper bound is achieved if and only if T0 is normal.

Proof: Assume that min{|σ|, |τ |} = |σ|. Then

dF (T0,MT )

‖T0‖F

=
|σ|√

|σ|2 + |τ |2
=

1√
1 + |τ/σ|2

≤ 1√
2

,

and it follows that the normalized structured distance decreases from 1/
√

2 to 0 when the ratio
(17) decreases from 1 to 0. The proof is analogous when min{|σ|, |τ |} = |τ |.

We conclude this section with a few observations:

dF (T0,MT )

‖T0‖F

=
1√
2

if and only if |σ| = |τ |,

lim
|σ|→0

dF (T0,MT )

‖T0‖F

= 0 for τ 6= 0,

lim
|τ |→0

dF (T0,MT )

‖T0‖F

= 0 for σ 6= 0.

5. Eigenvalue sensitivity

We investigate the sensitivity of the eigenvalues of the matrices T0 and T in several ways, and
begin by studying the sensitivity of the vector

λ(T0) = [λ1(T0), λ2(T0), . . . , λn(T0)]

to perturbations in σ and τ . To this end, introduce the function

f : D ⊂ C
2 → f(D) ⊂ C

n, D = {(σ, τ) ∈ C
2 : στ 6= 0} : λ(T0) = f(σ, τ).

The sensitivity of λ(T0) to perturbations in σ and τ is determined by the Jacobian of f . Using
(4), we obtain the representation

Jf (σ, τ) =




√
τ
σ cos π

n+1

√
σ
τ cos π

n+1√
τ
σ cos 2π

n+1

√
σ
τ cos 2π

n+1

· ·
· ·√

τ
σ cos nπ

n+1

√
σ
τ cos nπ

n+1



∈ C

n×2 (18)

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 0:0–0
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of the Jacobian matrix. Application of (13) yields

‖Jf (σ, τ)‖F =

√
n − 1

2

√∣∣∣
σ

τ

∣∣∣ +
∣∣∣
τ

σ

∣∣∣ =

√
n − 1

2

√
|σ|2 + |τ |2

|σ||τ | . (19)

If we instead consider relative errors in the data σ, τ and in λh(T0), then the analogue of
(18) is the n × 2 matrix

Γf (σ, τ) =




σ
λ1(T0)

(Jf (σ, τ))1,1
τ

λ1(T0)
(Jf (σ, τ))1,2

σ
λ2(T0)

(Jf (σ, τ))2,1
τ

λ2(T0)
(Jf (σ, τ))2,2

· ·
· ·

σ
λn(T0)

(Jf (σ, τ))n,1
τ

λn(T0)
(Jf (σ, τ))n,2




=




1
2

1
2

1
2

1
2

· ·
· ·
1
2

1
2




.

We obtain

Γf (σ, τ)H Γf (σ, τ) =
n

4

[
1 1
1 1

]

and

‖Γf (σ, τ)‖2 = ‖Γf (σ, τ)‖F =

√
n

2
.

Remark 5.1. The norm of Γf is independent of σ and τ , but the norm of Jf depends on the
ratio |σ/τ |. The norm of Jf achieves its minimum,

√
n − 1, if and only if |σ| = |τ |, i.e., if and

only if T is normal. The norm of Jf tends to +∞ when the ratio (17) decreases.

Remark 5.2. The sensitivity of the eigenvalue λh(T0) to perturbations increases with its
magnitude.

Theorem 5.1. Let στ 6= 0. Then

‖Jf (σ, τ)‖F =

√√√√ n − 1

1 − 2dF (T0,NT )2

‖T0‖2

F

.

Proof: If στ 6= 0, then

dF (T0,NT )2

‖T0‖2
F

=
n−1

2 (|σ|2 + |τ |2 − 2|σ||τ |)
‖T0‖2

F

=
1

2

(
1 − 2|σ||τ |

|σ|2 + |τ |2
)

.

The last equality in (19) now gives

dF (T0,NT )2

‖T0‖2
F

=
1

2

(
1 − n − 1

‖Jf (σ, τ)‖2
F

)
,

and the desired result follows.
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10 S. NOSCHESE, L. PASQUINI, AND L. REICHEL

5.1. Individual eigenvalue condition numbers

Condition numbers for individual eigenvalues are discussed, e.g., in [16, 42, 43]. When στ 6= 0,
these condition numbers can be obtained from (7) and (8). Standard computations and the
trigonometric identity

n∑

k=1

sin2

(
hkπ

n + 1

)
=

n + 1

2
, h = 1 : n,

yield, for h = 1 : n,

‖xh‖2
2 =

n∑

k=1

∣∣∣
σ

τ

∣∣∣
k

sin2

(
hkπ

n + 1

)
,

‖yh‖2
2 =

n∑

k=1

∣∣∣
τ

σ

∣∣∣
k

sin2

(
hkπ

n + 1

)
,

|yH
h xh| =

n∑

k=1

sin2

(
hkπ

n + 1

)
=

n + 1

2
.

Consequently, the individual condition numbers are, for h = 1 : n, given by

κ(λh(T )) =
‖xh‖2‖yh‖2∣∣yH

h xh

∣∣

=
2

n + 1

√√√√
n∑

k=1

∣∣∣
σ

τ

∣∣∣
k

sin2

(
hkπ

n + 1

)
·

n∑

k=1

∣∣∣
τ

σ

∣∣∣
k

sin2

(
hkπ

n + 1

)
. (20)

In the special case when |σ| = |τ |, the matrix T is normal, cf. Theorem 3.1, and

‖xh‖2
2 = ‖yh‖2

2 =
n∑

k=1

sin2

(
hk π

n + 1

)
=

n + 1

2
, h = 1 : n.

It follows that

κ(λh(T )) =
‖xh‖2 ‖yh‖2∣∣yH

h xh

∣∣ = 1.

In the general case when |σ| 6= |τ |, we obtain from (20) the expressions

κ(λh(T )) =
1 − rn+1

rn/2(n + 1)

√
Sn,r(h)Sn,1/r(h), h = 1 : n,

where r is defined by (17) and

Sn,r(h) =
1

1 − r
−

1 − r cos 2hπ
n+1

(1 − r cos 2hπ
n+1 )2 + r2 sin2

(
2hπ
n+1

) ,

Sn,1/r(h) =
1

1 − r
−

cos 2nhπ
n+1 − r

(cos 2nhπ
n+1 − r)2 + sin2

(
2nhπ
n+1

) .
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A straightforward computation yields

κ(λh(T )) =
(1 − rn+1)(1 + r)(1 − cos 2hπ

n+1 )

r(n−1)/2(n + 1)(1 − r)(1 + r2 − 2r cos 2hπ
n+1 )

, h = 1 : n, (21)

where the factor that depends on h satisfies the bounds

1

2
≤

1 − cos 2hπ
n+1

1 + r2 − 2r cos 2hπ
n+1

≤ 2. (22)

This factor is the largest for h = ⌊n/2⌋, where ⌊t⌋ denotes the largest integer smaller
than or equal to t. It follows that the eigenvalues in the middle of the spectrum are the
worst conditioned. Moreover, for 0 < r < 1, κ(λh(T )) grows exponentially with n. Further,
κ(λh(T )) → 1 as r → 1, and κ(λh(T )) → ∞ as r → 0. In the latter case, we have the estimates

κ(λh(T )) ≈
1 − cos 2hπ

n+1

n + 1

(
1

r

)n−1

2

, h = 1 : n.

5.2. The global eigenvalue condition number

Properties of the global condition number

κF (λ) =

n∑

h=1

κ(λh(T ))

are discussed by Stewart and Sun [39]. It can be evaluated by summing the individual condition
numbers. We would like to determine a simple explicit approximation that provides insight into
the conditioning. Using (21) and (22), we obtain for any diagonalizable matrix T = (n;σ, δ, τ)
with |σ| 6= |τ | the bounds

Kn,r

2
≤ κF (λ) ≤ 2Kn,r,

where

Kn,r =
1

r(n−1)/2

1 − rn+1

1 − r
(1 + r)

n

n + 1
, 0 < r < 1, (23)

and r is given by (17).

5.3. The ε-pseudospectrum

For a given ε > 0, the ε-pseudospectrum of A ∈ C
n×n is the set

Λε(A) =
{
z :

∥∥(zI − A)−1
∥∥

2
≥ ε−1

}
;

see, e.g., Trefethen and Embree [40]. The following alternative definition will be used in Section
7:

Λε(A) = {z : ∃u ∈ C
n, ‖u‖2 = 1, such that ‖(zI − A)u‖2 ≤ ε} . (24)

The vectors u in the above definition are referred to as ε-pseudoeigenvectors.
The ε-pseudospectrum Λε(T ) of T = (n;σ, δ, τ) approximates the spectrum of the Toeplitz

operator T∞ = (∞;σ, δ, τ) as ε ց 0 and n → ∞; see [34, 40]. Introduce the symbol of the
matrix T ,

f(z) = τz + δ + σz−1.
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12 S. NOSCHESE, L. PASQUINI, AND L. REICHEL

Then the ellipse
f(S) = {f(z) : z ∈ C, |z| = 1} (25)

is the boundary of the spectrum of T∞. The major axis of f(S) is

Smajor axis =
{

δ + t ei(α+β)/2, t ∈ R, |t| ≤ |σ| + |τ |
}

(26)

and the interval between the foci of f(S) is given by

Sfoci =
{

δ + t ei(α+β)/2, t ∈ R, |t| ≤ 2
√

|στ |
}

. (27)

According to (6), the spectrum T = (n;σ, δ, τ) lives in the interval Sfoci for every finite n ≥ 1
and there is no shorter interval with this property. Moreover, by (11), the spectrum of the
normal matrix T ∗ closest to T lives in the interval (26).

5.4. Structured perturbations

Let |σ| = min{|σ|, |τ |} and consider the tridiagonal perturbation Es = (n;−s, 0, 0) of the
matrix T = (n;σ, δ, τ). For s = υσ with 0 < υ < 1, we obtain a family of diagonalizable
matrices T +Es with simple eigenvalues. The matrices T +Es converge to the defective matrix
T+ = (n; 0, δ, τ) when υ ր 1. The latter matrix has the unique eigenvalue δ of geometric
multiplicity one. Thus, the structured perturbation

Eσ = (n;−σ, 0, 0), ‖Eσ‖F =
√

n − 1|σ|,

moves all the eigenvalues to δ. The rate of change for the hth eigenvalue of T is, for 0 < |σ| ≤ |τ |,
given by

|λh(T + Eσ) − λh(T )|
‖Eσ‖F

=
2
√
|στ |

∣∣∣cos hπ
n+1

∣∣∣
√

n − 1|σ| =
2√

(n − 1)r

∣∣∣∣cos
hπ

n + 1

∣∣∣∣ (28)

with r defined by (17). The closer r is to unity, the smaller is the rate of change (28) of the
eigenvalues. This rate is minimal when r = 1 and T is normal.

Analogously, let Es,t = (n;−s, 0,−t) with s = υσ and t = υτ for 0 < υ < 1. Then

lim
ν→1

(T + Es,t) = δI,

where I denotes the identity matrix. Thus, the limit matrix is normal. The structured
perturbation

Eσ,τ = (n;−σ, 0,−τ), ‖Eσ,τ‖F =
√

n − 1
√

|σ|2 + |τ |2,
gives the limit matrix. The rate of change of the eigenvalue under this perturbation is given
by

|λh(T + Eσ,τ ) − λh(T )|
‖Eσ,τ‖F

=
2
√
|στ |

∣∣∣cos hπ
n+1

∣∣∣
√

n − 1
√

|σ|2 + |τ |2
=

√
2

‖Jf (σ, τ)‖F

∣∣∣∣cos
hπ

n + 1

∣∣∣∣ .

Thus, the rate is inversely proportional to the norm of the Jacobian matrix (18); cf. (19). The
rate is the largest when T is normal; see Remark 5.1. Also note that the further the eigenvalues
of T are from δ, the higher is their sensitivity to the structured perturbation; cf. Remark 5.2.
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λ κ(λ(T )) κT (λ(T ))
λ1 7.0463 · 104 8.7215 · 10−1

λ2 2.5759 · 105 8.2610 · 10−1

λ3 5.0517 · 105 7.5194 · 10−1

λ4 7.5633 · 105 6.5374 · 10−1

λ5 9.7209 · 105 5.3790 · 10−1

λ6 1.1325 · 106 4.1511 · 10−1

λ7 1.2300 · 106 3.0680 · 10−1

λ8 1.2626 · 106 2.5820 · 10−1

λ9 1.2300 · 106 3.0680 · 10−1

λ10 1.1325 · 106 4.1511 · 10−1

λ11 9.7209 · 105 5.3790 · 10−1

λ12 7.5633 · 105 6.5374 · 10−1

λ13 5.0517 · 105 7.5194 · 10−1

λ14 2.5759 · 105 8.2610 · 10−1

λ15 7.0463 · 104 8.7215 · 10−1

Table II. Traditional and structured individual eigenvalue condition numbers, κ(λh(T )) and
κT (λh(T )), respectively, for the matrix T = (15;−i, 11 − 2i, 6 + 8i).

In order to be able to discuss the sensitivity of the eigenvalues to structured perturbations,
we introduce the right and left eigenvectors of unit length,

x̃h =
xh

‖xh‖
, ỹh =

yh

‖yh‖
, h = 1 : n,

where xh and yh are defined by (7) and (8), respectively. The smaller |σ/τ | < 1 is, the larger
is the first component of x̃h and the last component of ỹh. Similarly, the larger |σ/τ | > 1 is,
the larger is the last component of x̃h and the first component of ỹh.

Consider the Wilkinson perturbation,

Wh = ỹhx̃H
h ,

associated with λh. This is a unit-norm perturbation of T that yields the largest perturbation
in λh; see, e.g., [43]. The entries of largest magnitude of Wh are in the bottom-left corner when
|σ/τ | < 1 and in the top-right corner when |σ/τ | > 1. In particular, the largest entries are not
in Wh|T , the orthogonal projection of Wh in the subspace T of tridiagonal Toeplitz matrices.
The (tridiagonal Toeplitz) structured condition number of the eigenvalue λh of the tridiagonal
Toeplitz matrix T is given by

κT (λh(T )) = κ(λh(T ))‖Wh|T ‖F ;

see [23, 28, 29]. It follows that a large (traditional) condition number κ(λh(T )) does not imply
that the structured condition number is large. Thus, an eigenvalue λh(T ) may be much more
sensitive to a general perturbation of T than to a structured perturbation. This is illustrated
in the following example.

Example 5.1. Let T = (15;σ, δ, τ) for σ = −i, δ = 11 − 2i, and τ = 6 + 8i. The ratio (17)
for this matrix is r = 1/10. Table II shows traditional and structured individual eigenvalue
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14 S. NOSCHESE, L. PASQUINI, AND L. REICHEL

r dF (T(r),NT ) K50,r ‖λ(T(r)) − λ(T ∗
(r))‖2

0.1 2.23 · 101 3.79 · 1024 1.16 · 101

0.3 1.73 · 101 1.18 · 1013 5.06 · 100

0.5 1.24 · 101 6.98 · 107 2.12 · 100

0.9 2.47 · 100 2.45 · 102 6.52 · 10−2

Table III. Quantities related to the matrices T(r) defined by (29) and the closest normal matrices T ∗

(r).

condition numbers, κ(λh(T )) and κT (λh(T )), respectively, for all eigenvalues. These condition
numbers are independent of δ, as well as of σ and τ that correspond to the same ratio r. The
structured condition numbers are seen to be much smaller than the traditional ones. 2

6. Illustrations of eigenvalue sensitivity

This section presents computations that illustrate properties of tridiagonal Toeplitz matrices
and their eigenvalues discussed in the previous sections. All computations shown in this paper
were carried out in MATLAB with about 16 significant decimal digits.

Table III displays quantities associated with matrices of the form

T(r) = (50; (4 + 3i)r, 16 − 3i,−5) (29)

for several values of the parameter 0 < r < 1, which is the ratio (17). Note that T(0) is defective
and T(1) is normal. The latter property follows from the fact that |4+3i| = |− 5|; cf. Theorem
3.1. The distance dF (T(r),NT ) is computed using (12). The quantity K50,r, defined by (23),
is an indicator of the sensitivity of the eigenvalues. We use the formula (15) to measure the
distance between the spectra of T(r) and of the closest normal matrix T ∗

(r), i.e.,

‖λ(T(r)) − λ(T ∗
(r))‖2 =

1 −√
r

1 +
√

r
dF (T,NT ).

Figures 1-4 show the eigenvalues of the matrices T(r) and T ∗
(r) considered in Table III. The

eigenvalues are computed with the formulas (4) and (11). The figures also display the image of
the unit circle under the symbol for the matrices T(r); see (25). These images are ellipses, each of
which is the boundary of the spectrum of the Toeplitz operators T∞ = (∞; (4+3i)r, 16−3i,−5).

If, instead of using formula (4), the eigenvalues of T(0.1) were computed with the QR
algorithm, then Figure 1 would look quite different. This is illustrated by Figure 5, which
displays the computed spectra of the matrices TT

(0.1) and (TT
(0.1))

∗ using the QR algorithm as

implemented by the MATLAB function eig. The fact that the matrices T(0.1) and TT
(0.1) have

the same eigenvalues is not apparent from Figures 1 and 5. Indeed the spectrum of the matrix
TT

(0.1) in Figure 5 is close to the boundary of the ε-pseudospectrum for ε equal to machine

epsilon 2 · 10−16.
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spectrum of T

spectrum of T*

Figure 1. Spectra of the matrix T(r) and of the closest normal tridiagonal matrix T ∗

(r), as well as the
image of the unit circle under the symbol for T(r) for r = 0.1. The horizontal axis shows the real part

and the vertical axis the imaginary part of the eigenvalues.

7. Inverse problems for tridiagonal Toeplitz matrices

This section first discusses an inverse eigenvalue problem for tridiagonal Toeplitz matrices,
and then considers an inverse vector problem for tridiagonal Toeplitz matrices. The latter
problem determines a trapezoidal tridiagonal Toeplitz matrix by minimizing the norm of the
matrix-vector product with a given vector. The solution of this problem finds application to
Tikhonov regularization. Details about this application are discussed in Section 8.

Inverse problem 1: Given two distinct complex numbers a and b, and a natural number
n, determine a tridiagonal Toeplitz matrix T = (n;σ, δ, τ) with extreme eigenvalues a and b.
Results of Sections 2-4 shed light on this problem. We note that the problem does not have
a unique solution. However, all eigenvalues of T are uniquely determined by the data. The
following discussion shows how constraints can be added to achieve unicity. It follows from

λ1 = a = δ + 2
√

στ cos
π

n + 1
, λn = b = δ + 2

√
στ cos

nπ

n + 1
,

that the diagonal entry δ and the product of the sub- and super-diagonal entries, στ , are
uniquely determined by

√
στ =

a − b

2(cos π
n+1 − cos nπ

n+1 )
, δ =

b cos π
n+1 − a cos nπ

n+1

cos π
n+1 − cos nπ

n+1

.

Thus, the absolute value |στ | and the angle arg(σ)+arg(τ) are determined by the data. We may
arbitrarily choose the angle of the sub- or super-diagonal entries as well as the ratio 0 < r ≤ 1
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Figure 2. Spectra of the matrix T(r) and of the closest normal tridiagonal matrix T ∗

(r), as well as the
image of the unit circle under the symbol for T(r) for r = 0.3. The horizontal axis shows the real part

and the vertical axis the imaginary part of the eigenvalues.

defined by (17). The closer r is to zero, the more the ill-conditioned are the eigenvalues. The
choice r = 1, i.e., |σ| = |τ |, yields a normal matrix. Since we may choose the angle of the sub-
or super-diagonal entries, the normal matrix is not unique. Unicity can be achieved, e.g., by
also prescribing arg(σ) or arg(τ).

Inverse problem 2: Given a vector x ∈ C
n, determine an upper trapezoidal Toeplitz matrix

T ∈ C
(n−2)×n with first row [σ, 1, τ, 0, . . . , 0] such that T solves

min
σ,τ

‖Tx‖2. (30)

Let x = [ξ1, ξ2, . . . , ξn]T . Then the minimization problem (30) can be expressed as

min
σ,τ

∥∥∥∥∥∥∥∥∥∥




ξ1 ξ3

ξ2 ξ4

· ·
· ·

ξn−2 ξn




[
σ
τ

]
+




ξ2

ξ3

·
·

ξn−1




∥∥∥∥∥∥∥∥∥∥
2

. (31)

This least-squares problem has a unique solution unless the matrix has linearly dependent
columns. The columns are linearly dependent if and only if the components of x satisfy

ξk+2 = αξk, k = 1 : n − 2,

for some α ∈ C. In this case, we determine the unique solution of minimal Euclidean norm.
Note that when

ξk+1 = αξk, k = 1 : n − 1,
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Figure 3. Spectra of the matrix T(r) and of the closest normal tridiagonal matrix T ∗

(r), as well as the
image of the unit circle under the symbol for T(r) for r = 0.5. The horizontal axis shows the real part

and the vertical axis the imaginary part of the eigenvalues.

for some α ∈ C, the least-squares problem (31) is consistent.
Having determined the solution T of (30), it is interesting to investigate for which unit

vectors x the norm ‖Tx‖2 is small. Let T̂ ∈ C
n×n denote the tridiagonal Toeplitz matrix

obtained by prepending and appending suitable rows to T. It follows from definition (24) that
the ε-pseudoeigenvectors of T̂ associated with z = 0 form a subset of

{u : ‖Tu‖2 ≤ ε, ‖u‖2 = 1} .

If zero is in the ε-pseudospectrum of T̂ , then the corresponding ε-pseudoeigenvectors will be
essentially undamped in the Tikhonov regularization method below.

8. Tikhonov regularization

This section considers the computation of an approximate solution of the minimization problem

min
x∈Cn

‖Ax − b‖2, (32)

where A ∈ C
m×n is a matrix with many singular values of different orders of magnitude close

to the origin. Minimization problems (32) with a matrix of this kind are commonly referred
to as discrete ill-posed problems. They arise, for example, from the discretization of linear
ill-posed problems, such as Fredholm integral equations of the first kind. The vector b ∈ C

m in
(32) represents error-contaminated data. We will for notational simplicity assume that m ≥ n.
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Figure 4. Spectra of the matrix T(r) and of the closest normal tridiagonal matrix T ∗

(r), as well as the
image of the unit circle under the symbol for T(r) for r = 0.9. The horizontal axis shows the real part

and the vertical axis the imaginary part of the eigenvalues.

Let e ∈ C
m denote the (unknown) error in b, and let b̂ ∈ C

m be the error-free vector
associated with b, i.e.,

b = b̂ + e.

The unavailable linear system of equations with error-free right-hand side,

Ax = b̂, (33)

is assumed to be consistent. Let A† denote the Moore-Penrose pseudoinverse of A. We are
interested in computing an approximation of the solution x̂ = A†b̂ of minimal Euclidean norm
of the unavailable linear system (33) by determining an approximate solution of the available
least-squares problem (32). Note that the solution of (32),

x̆ = A†b = A†(b̂ + e) = x̂ + A†e,

typically is dominated by the propagated error A†e and therefore is meaningless.
Tikhonov regularization seeks to determine a useful approximation of x̂ by replacing the

minimization problem (32) by a penalized least-squares problem of the form

min
x∈Cn

{‖Ax − b‖2
2 + µ‖Lx‖2

2}, (34)

where the matrix L ∈ C
k×n, k ≤ n, is referred to as the regularization matrix. It is commonly

chosen to be a square or trapezoidal Toeplitz matrix, such as the identity matrix, the (n−1)×n
matrix T ′ obtained by removing the first row from T = (n; 0, 1,−1), or the (n− 2)×n matrix
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Figure 5. Spectra of the matrices T T
(0.1) and (T T

(0.1))
∗ (denoted by T ′ and (T ′)∗, respectively, in the

legend) computed with the QR algorithm as implemented by the MATLAB function eig. The horizontal
axis shows the real part and the vertical axis the imaginary part of the eigenvalues.

T ′′ determined by removing the first and last rows from T = (n;−1, 2,−1). The regularization
matrices T ′ and T ′′ are finite difference approximations of the first and second derivatives
in one space-dimension, respectively. The scalar µ > 0 is the regularization parameter. In
many discrete ill-posed problems (32), the matrix A has a numerical null space of dimension
larger than zero. It is the purpose of the regularization term µ‖Lx‖2

2 in (34) to damp unwanted
behavior of the computed solution; see, e.g., [5, 17, 27, 33] and references therein for discussions
on Tikhonov regularization and the choice of regularization matrices.

Let L be such that the null spaces of A and L intersect trivially. Then the minimization
problem (34) has the unique solution

xL,µ = (AT A + µLT L)−1AT b,

The size of µ determines how well the vector xL,µ approximates x̂ and how sensitive xL,µ is
to the error e in b. The quality of xL,µ also depends on the choice of regularization matrix L.
This is illustrated below.

It is the purpose of this section to show that the solution T ∈ C
(n−2)×n of Inverse Problem

2 of Section 7 with x an available approximate solution of (32), such as x = xI,µ, can be
a suitable regularization matrix for (34). The rationale for using the regularization matrix
L = T is that we do not want the regularization matrix to damp important features of the
desired solution x̂ when solving (34). Ideally, we would like to solve (30) for L = T with x = x̂;
however, since x̂ is not known, we let x in (30) be the best available approximation of x̂.
Example 8.1 below illustrates application of this approach in an iterative fashion.
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We assume that an estimate δ of ‖e‖ is available. This allows us to determine the
regularization parameter µ with the aid of the discrepancy principle. Specifically, we choose
µ > 0 so that

‖AxL,µ − b‖2 = δ; (35)

however, we remark that other approaches to determine µ also can be used, such as the L-curve
and generalized cross validation; see, e.g., [17].

We will solve (34) for a general matrix L by using the generalized singular value
decomposition (GSVD) of the matrix pair {A,L}. It is then easy to determine µ from the
nonlinear equation (35). When L = I, the generalized singular value decomposition can be
replaced by the (standard) singular value decomposition (SVD); see, e.g., Hansen [17] for
details on the applications of the GSVD or SVD to the solution of (34).
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Figure 6. Solution x̂ to the error-free problem (33) (solid curves) and computed approximations (dash-
dotted curves); the approximate solutions are xI,µ in (a) and x4 in (b). Note the different scalings of

the vertical axes.

Example 8.1. Consider the Fredholm integral equation of the first kind
∫ 1

0

k(s, t)x(t)dt = es + (1 − e)s − 1, 0 ≤ s ≤ 1, (36)

where

k(s, t) =

{
s(t − 1), s < t,
t(s − 1), s ≥ t.

This equation is discussed, e.g., by Delves and Mohamed [10, p. 315]. We discretize the integral
equation by a Galerkin method with orthonormal box functions as test and trial functions using
the MATLAB function deriv2 from Regularization Tools [18]. The function yields a symmetric
indefinite matrix A ∈ R

200×200 and a scaled discrete approximation x̂ ∈ R
200 of the solution

x(t) = et of (36). The error-free right-hand side vector in (33) is computed as b̂ = Ax̂. The
entries of the error e in b are normally distributed with zero mean, and they are scaled to
correspond to 1% error.

We first compute the approximate solution xI,µ of (32) by solving (34) with L = I, and with
µ > 0 determined by the discrepancy principle. Figure 6(a) displays xI,µ (dash-dotted curve)
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as well as the desired solution x̂ (solid curve) of the error-free system (33). The error xI,µ − x̂
is seen to be quite large; we have ‖xI,µ − x̂‖2 = 2.42 · 10−1.

Next we determine a trapezoidal tridiagonal Toeplitz regularization matrix T ∈ R
198×200

by solving Inverse Problem 2 with x = xI,µ. The regularization matrix L = T so obtained
is used in (34) to compute a new approximate solution, x1, of (32) with the aid of the
discrepancy principle. The vector x1 is a better approximation of x̂ than xI,µ; we have
‖x1 − x̂‖2 = 8.98 · 10−2. We now can solve (30) with x = x1 to determine a new trapezoidal
tridiagonal Toeplitz regularization matrix L = T . Using this regularization matrix in (34)
yields an improved approximate solution, x2, of x̂ with ‖x2 − x̂‖2 = 4.08 · 10−2. Similarly, we
compute x3 and x4 with errors ‖x3− x̂‖2 = 2.53 ·10−2 and ‖x4− x̂‖2 = 1.74 ·10−3. Figure 6(b)
displays x4. The values of the regularization parameters µ are determined by the discrepancy
principle for all solutions xj .

The regularization matrix obtained by solving (30) generally is of better quality, the better
the vector x in (30) approximates x̂. For instance, when x = x̂, solution of (30) gives a
regularization matrix L = T such that the error in the subsequently computed Tikhonov
solution xL,µ is ‖xL,µ − x̂‖2 = 1.19 · 10−3.

Commonly used regularization matrices L in (34) include the rectangular bidiagonal Toeplitz
matrix T ′ ∈ R

(n−1)×n and the rectangular tridiagonal Toeplitz matrix T ′′ ∈ R
(n−2)×n

introduced above; see, e.g., [5, 17, 33]. When using L = T ′ with n = 200 in (34) for the
present example, and determining µ by the discrepancy principle, we obtain the approximate
solution x′ with error ‖x′ − x̂‖2 = 3.05 · 10−2. Similarly, solving (34) with L = T ′′ yields the
approximate solution x′′ with ‖x′′ − x̂‖2 = 5.79 · 10−3. Thus, x4 is a better approximation of
x̂ than x′ and x′′.

We remark that determining a regularization matrix by solving the minimization problem
(30) obviates the need to guess the appropriate form of the regularization matrix. 2

9. Generation of Krylov subspace bases

Restarted GMRES is one of the most popular iterative methods for the solution of linear
systems of equations

Ax = b, A ∈ C
m×m, x, b ∈ C

m, (37)

with a large sparse nonsymmetric and nonsingular matrix; see [35]. The method is based on
repeatedly projecting the system (37) into Krylov subspaces of smaller size and solving the
sequence of reduced problems so obtained.

Let x0 be an available approximate solution of (37) and define the associated residual error
r = b−Ax0. GMRES computes an improved approximation x1 = x0 + ∆x0 by determining a
correction ∆x0 in a Krylov subspace

Kn(A, r) = span{r,Ar,A2r, . . . , An−1r} (38)

of dimension n ≪ m. The standard GMRES implementation uses the Arnoldi process to
compute an orthonormal basis for (38). Application of n < m steps of the Arnoldi process to
A with initial vector r ∈ C

m yields the decompositions

AVn = Vn+1Hn+1,n = VnHn + αnvn+1e
T
n , (39)
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where the columns of Vn form an orthonormal basis for (38) and Hn+1,n ∈ C
(n+1)×n is an

upper Hessenberg matrix. The matrix Hn ∈ C
n×n is obtained by removing the last row of

Hn+1,n and the vector vn+1 is the last columns of Vn+1.
The correction ∆x0 = Vny of x0 is the solution of the least-squares problem

min
∆x0∈Kn(A,r)

‖A∆x0 − r‖2 = min
y∈Cn

‖Hn+1,ny − e1‖b‖2 ‖2.

Due to storage and work considerations, n generally is chosen much smaller than m; in many
applications 20 ≤ n ≤ 50. Therefore, the computed approximate solution x1 of (37) typically
is not of desired accuracy. One then seeks to determine an improved approximate solution
x2 = x1 +∆x1 by determining a correction ∆x1 in (38) with r = b−Ax1. The vector ∆x1 can
be computed similarly as ∆x0, i.e., by application of n steps of the Arnoldi process. Generally,
several corrections ∆xj have to be computed until a sufficiently accurate approximate solution
of (37) has been found.

The Arnoldi process determines one column of the matrix Vn at a time. Each new column is
orthogonalized against all already available columns by the modified Gram-Schmidt method.
This makes it difficult to achieve high performance on parallel computers. Therefore, the use of
nonorthogonal Krylov subspace bases, that circumvent the sequential orthogonalization of the
Arnoldi process and lend themselves better to efficient implementation on parallel computers,
has received considerable attention; see, e.g., [2, 14, 21, 22, 32, 36]. We remark that the basis
in (38) generally cannot be used, because for many matrices A it is very ill-conditioned; in fact
the vectors Ajb in (38) may be numerically linearly dependent already for n of modest size.

We would like to use a Krylov subspace basis that is easy to construct and is numerically
linearly independent in finite precision arithmetic. Krylov subspace bases based on translated
and scaled Chebyshev polynomials p0, p1, p2, . . . of the first kind, that are orthogonal with
respect to an inner product on some interval in the complex plane,

S = {tz1 + (1 − t)z2 : 0 ≤ t ≤ 1}, z1, z2 ∈ C, z1 6= z2, (40)

are convenient to use; see [21, 22, 32] and references therein. Here pj is a polynomial of degree
j. One can evaluate the basis

{p0(A)r, p1(A)r, . . . , pn−1(A)r} (41)

for (38) without sequential orthogonalization, by using the three-term recursion formula for
the pj . Subsequent orthogonalization of the basis (41) by QR factorization of the matrix
with columns pj(A)r, 0 ≤ j < n, can be carried out efficiently on a parallel computer; see
[4, 21, 22, 32] for discussions. The computations require the vectors (41) to be numerically
linearly independent. This is typically satisfied with an appropriate choice of the interval (40);
see [21, 32] for analyses. The polynomials are scaled so that the vectors pj(A)r are of unit
length.

A suitable interval (40) for defining the translated and scaled Chebyshev polynomials often
can be determined from the spectrum of the matrix Hn computed by the Arnoldi process (39)
when computing the initial correction ∆x0. A common approach described in the literature,
see, e.g., [21, 22, 32] and references therein, is to determine the smallest ellipse that contains
the spectrum of Hn, and let z1 and z2 be the foci of this ellipse. The translated Chebyshev
polynomials associated with the interval (40), suitable scaled, are used in all subsequent restarts
until a sufficiently accurate approximate solution of (37) has been found. The use of bases of the
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form (41) sidesteps the need to apply the Arnoldi process in restarts and yields an algorithm
that is well suited for implementation on parallel computers; see, e.g., [22, 32] for discussions.

However, the determination of the smallest ellipse that contains a given point set is a fairly
complicated computational task. We describe two ways, based on properties of tridiagonal
Toeplitz matrices, to simplify the computations. First we transform Hn to a similar non-
Hermitian tridiagonal matrix Tn by application of the non-Hermitian Lanczos process to Hn

with initial vectors e1. Our first approach to determine a suitable interval (40) is to solve the
minimization problem

min
T∈T

‖T − Tn‖F (42)

for the matrix T̂ = (n;σ, δ, τ). We then let (40) be the line segment (6) determined by T̂ . These
computations are very simple. Since the spectrum of T̂ is explicitly known, the smallest interval
containing all eigenvalues can be determined accurately also when T̂ is highly nonnormal.

Alternatively, we may determine the interval (40) by using the field of values of Tn, defined
by

W(Tn) =

{
xHTnx

xHx
, x ∈ C

n\{0}
}

.

Let T̂ = (n;σ, δ, τ) be the solution of (42). We now determine a region in C that contains
W(Tn) as follows; see [31] for further details. The closest normal tridiagonal Toeplitz matrix
to Tn, denoted by T ∗, is the normal tridiagonal Toeplitz matrix closest to T̂ . Therefore,

W(T ∗) =

{
δ + t ei(arg σ+arg τ)/2 : t ∈ R, |t| ≤ (|σ| + |τ |) cos

π

n + 1

}
; (43)

cf. Corollary 3.1. Moreover,

W(Tn) ⊂ W(T ∗) + W(Tn − T ∗),

W(Tn − T ∗) ⊂ {z ∈ C : |z| ≤ ‖Tn − T ∗‖F }.
The evaluation of ‖Tn − T ∗‖F is straightforward and so is the computation of a sports field-
shaped region R that contains W(Tn). We may let (40) be the interval between the foci of the
largest ellipse that can be inscribed in R or, simpler, the interval (43).

Example 9.1. We illustrate the first approach. Consider the elliptic boundary value problem

−∆u + γ
∂u

∂s
= f in Ω, (44)

u = 0 on ∂Ω,

where Ω is the unit square in the (s, t)-plane with boundary ∂Ω and γ = 60. We approximate
∆ and ∂/∂s by standard 2nd order finite differences, using 38 equidistant interior grid points in
both the s- and t-directions. This yields a nonsymmetric nonsingular matrix A ∈ R

1444×1444,
which can be expressed as I⊗T1+T2⊗I, where T1 and T2 are tridiagonal Toeplitz matrices and
⊗ denotes Kronecker product. Using (4), one can derive explicit expressions for the eigenvalues
of A; they are allocated in a rectangle that is symmetric with respect to the real axis in C. We
let f ≡ 1.

Figure 7 displays the computed spectrum of the matrix A (blue dots) in the complex plane;
the horizontal and vertical axes are the real and imaginary axes, respectively. The computed
eigenvalues are not very accurate, because one of the tridiagonal matrices Tj that determine
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Figure 7. Computed spectra in the complex plane C of the matrices A (blue dots), H15 and T15 (black
circles), and of the tridiagonal Toeplitz matrix T closest to T15 (black crosses). The horizontal black
line segment displays the interval between the foci of the ellipse associated with T . The horizontal

axis marks the real part and the vertical axis the imaginary part of the eigenvalues.

A is far from normal. The eigenvalues are computed with the MATLAB function eig. The
difficulty of eig to compute accurate eigenvalue approximations already has been illustrated
by Figure 5.

The black circles in Figure 7 mark 15 Ritz values, i.e., the 15 eigenvalues of the matrix H15

in (39) determined by 15 steps of the Arnoldi process applied to A with the initial vector a
multiple of [1, 1, . . . , 1]T . A common approach to determine an interval that defines a family of
Chebyshev polynomials pj is to compute the smallest ellipse that contains these Ritz values.

We instead proceed to determine a nonsymmetric tridiagonal matrix Tn that is similar to
Hn by the nonsymmetric Lanczos process, and then compute the tridiagonal Toeplitz matrix
T̂ that satisfies (42). The spectrum of the latter matrix is marked by black crosses in Figure 7,
which also shows the interval between the foci associated with T̂ ; cf. (27). This interval contains
all the eigenvalues of T̂ . We propose to use a scaled and translated Chebyshev polynomial basis
associated with this interval.

We have ‖T̂ −Tn‖F = 4.15 · 101. Moreover, ‖T̂ −T ∗‖F = 6.17, where T ∗ denotes the closest
matrix to T̂ in NT , which shows that T̂ is quite close to normal.

Since the coefficient γ in (44) is large, the solution displays a steep transient. Figure 8 shows
the solution of the discretized problem at interior and boundary grid points. We remark that
similar results are obtained for other discretizations of the boundary value problem (44). 2

Example 9.2. The boundary value problem and discretization are the same as in Example
9.1, except that the coefficient in (44) is γ = 6. This makes the spectrum of the nonsymmetric
matrix A ∈ R

1444×1444 real; the smallest and largest eigenvalues of A are 1.89 · 10−2 and 7.98,
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Figure 8. The solution of the discretized boundary value problem (44) with γ = 60 at interior and
boundary grid points.

respectively.

Figure 9 shows 15 Ritz values of A, i.e., the spectra of the matrices H15 in (39) and of the
nonsymmetric tridiagonal matrix T15 (black circles). All Ritz values are seen to be real. The
spectrum of the closest tridiagonal Toeplitz matrix T̂ , i.e., the solution of (42), is displayed by
black crosses. The figure also shows the interval between the foci associated with T̂ ; cf. (27).
This interval contains all the eigenvalues of T̂ . We may use a scaled and translated Chebyshev
polynomial basis associated with this interval. Finally, Figure 9 depicts the eigenvalues of the
closest normal tridiagonal Toeplitz matrix T ∗ to T̂ ; they are marked by red plus signs. We
also can use the interval between the foci of T ∗ to define the translated and scaled Chebyshev
polynomials pj in (41). We have ‖T̂ − Tn‖F = 4.91 and ‖T̂ − T ∗‖F = 1.46 · 10−1.

Figure 10 shows the solution of the discretized problem at interior and boundary grid points.
2

10. Conclusion

This paper discusses the conditioning of eigenvalues of tridiagonal Toeplitz matrices. The
simple structure of these matrices makes it possible to derive simple expressions and bounds
for the individual, global, traditional, and structured condition numbers. This led us to discuss
several applications, including an inverse eigenvalue problem. New applications of tridiagonal
Toeplitz matrices to the construction of regularization matrices for Tikhonov regularization
and to the construction of Krylov subspace bases are described. These applications are very
promising and will be investigated in more detail in forthcoming work.
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Figure 9. Spectra of the matrices H15 and T15 (black circles), of the tridiagonal Toeplitz matrix T̂

closest to T15 (black crosses), and of T ∗, the closest matrix in NT to T̂ (red pluses). The horizontal

black line segment displays the interval between the foci of the ellipse associated with T̂ . The
eigenvalues are shown in C, but they are all real.
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3. A. Böttcher and S. Grudsky, Spectral Properties of Banded Toeplitz Matrices, SIAM, Philadelphia, 2005.
4. D. Calvetti, J. Petersen, and L. Reichel, A parallel implementation of the GMRES algorithm, in Numerical

Linear Algebra, eds. L. Reichel, A. Ruttan, and R. S. Varga, de Gruyter, Berlin, 1993, pp. 31–46
5. D. Calvetti, L. Reichel, and A. Shuibi, Invertible smoothing preconditioners for linear discrete ill-posed

problems, Appl. Numer. Math., 54 (2005), pp. 135–149.
6. B. N. Datta, An algorithm to assign eigenvalues in a Hessenberg matrix: single input case, IEEE Trans

Autom. Control, AC-32, (1987), pp. 414–417.
7. B. N. Datta, W.-W. Lin, and J.-N. Wang, Robust partial pole assignment for vibrating systems with

aerodynamic effects, IEEE Trans. Autom. Control, 51 (2006), pp. 1979–1984.
8. B. N. Datta and Y. Saad, Arnoldi methods for large Sylvester-like observer matrix equations, and an

associated algorithm for partial spectrum assignment, Linear Algebra Appl., 154-156 (1991), pp. 225–244.
9. B. N. Datta and V. Sokolov, A solution of the affine quadratic inverse eigenvalue problem, Linear Algebra

Appl., 434 (2011), pp. 1745–1760.
10. L. M. Delves and J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University

Press, Cambridge, 1985.

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 0:0–0
Prepared using nlaauth.cls



TRIDIAGONAL TOEPLITZ MATRICES 27

0

10

20

30

40

0

10

20

30

40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 10. The solution of the discretized boundary value problem (44) with γ = 6 at interior and
boundary grid points.

11. J. W. Demmel, Nearest defective matrices and the geometry of ill-conditioning, in Reliable Numerical
Computation, M. G. Cox and S. Hammarling, eds., Clarendon Press, Oxford, 1990, pp. 35–55.

12. F. Diele and L. Lopez, The use of the factorization of five-diagonal matrices by tridiagonal Toeplitz
matrices, Appl. Math. Lett., 11 (1998), pp. 61–69.

13. L. Elsner and M. H. C. Paardekooper, On measures of nonnormality of matrices, Linear Algebra Appl.,
92 (1987), pp. 107–124.

14. J. Erhel, A parallel GMRES version for general sparse matrices, Electron. Trans. Numer. Anal., 3 (1995),
pp. 160–176.

15. D. Fischer, G. Golub, O. Hald, C. Leiva, and O. Widlund, On Fourier-Toeplitz methods for separable
elliptic problems, Math. Comp., 28 (1974), pp. 349–368.

16. G. H. Golub and J. H. Wilkinson, Ill-conditioned eigensystems and the computation of the Jordan canonical
form, SIAM Rev., 18 (1976), pp. 578–619.

17. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.
18. P. C. Hansen, Regularization tools version 4.0 for MATLAB 7.3, Numer. Algorithms, 46 (2007), pp. 189–

194.
19. P. Henrici, Bounds for iterates, inverses, spectral variation and field of values of non-normal matrices,

Numer. Math., 4 (1962), pp. 24–40.
20. N. J. Higham, Matrix nearness problems and applications, in Applications of Matrix Theory, M. J. C.

Gover and S. Barnett, eds., Oxford University Press, Oxford, 1989, pp. 1–27.
21. W. D. Joubert and G. F. Carey, Parallelizable restarted iterative methods for nonsymmetric linear systems.

Part I: Theory, Intern. J. Computer Math., 44 (1992), pp. 243–267.
22. W. D. Joubert and G. F. Carey, Parallelizable restarted iterative methods for nonsymmetric linear systems.

Part II: Parallel implementation, Intern. J. Computer Math., 44 (1992), pp. 269–290.
23. M. Karow, D. Kressner, and F. Tisseur, Structured eigenvalue condition numbers, SIAM J. Matrix Anal.

Appl., 28 (2006), pp. 1052–1068.
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