
TRIÈST: Counting Local and Global Triangles
in Fully-dynamic Streams with Fixed Memory Size

Lorenzo De Stefani∗, Alessandro Epasto*, Matteo Riondato†, Eli Upfal*

{lorenzo,epasto,eli}@cs.brown.edu, matteo@twosigma.com

February 12, 2016

“Ogni lassada xe persa”1 – Proverb from Trieste, Italy.

Abstract

We present trièst, a suite of one-pass streaming algorithms to compute unbiased, low-variance,
high-quality approximations of the global and local (i.e., incident to each vertex) number of triangles
in a fully-dynamic graph represented as an adversarial stream of edge insertions and deletions. Our
algorithms use reservoir sampling and its variants to exploit the user-specified memory space at all
times. This is in contrast with previous approaches which use hard-to-choose parameters (e.g., a fixed
sampling probability) and offer no guarantees on the amount of memory they will use. We show a full
analysis of the variance of the estimations and novel concentration bounds for these quantities.

Our experimental results on very large graphs show that trièst outperforms state-of-the-art ap-
proaches in accuracy and exhibits a small update time.

1 Introduction

Exact computation of characteristic quantities of Web-scale networks is often impractical or even infeasible
due to the humongous size of these graphs. In these cases, it is natural to resort to efficient-to-compute
approximations of these quantities that, when of sufficiently high quality, can be used as proxies for the
exact values.

In addition to being huge, many interesting networks are fully-dynamic and can be represented as a
stream whose elements are edges/nodes insertions and deletions which occur in an arbitrary (even adversarial)
order. Characteristic quantities in these graphs are intrinsically volatile, hence there is limited added value
in maintaining them exactly. Rather, one is interested in keeping track, at all times, of a high-quality
approximation of these quantities. For efficiency, the algorithms should aim at exploiting the available
memory space as much as possible and they should require only one pass over the stream.

We introduce trièst, a suite of sampling-based, one-pass algorithms for adversarial fully-dynamic streams
to approximate the global number of triangles and the local number of triangles incident to each vertex, which
are primitives with many applications (e.g., community detection [4], topic mining [10], spam/anomaly
detection [3, 26], and the analysis of protein interaction networks [28].)

Many previous works on triangle estimation in streams also employ sampling (see Sect. 3), but they
usually require the user to specify in advance a edge sampling probability p that is fixed for the entire stream.
This approach presents several significant drawbacks. First, choosing a p that allows to obtain the desired
approximation quality requires to know or guess a number of properties of the input (e.g., the size of the
stream). Second, a fixed p implies that the sample size grows with the size of the stream, which is problematic
when the stream size is not known in advance: if the user specifies a large p, the algorithm may run out of

∗Department of Computer Science – Brown University.
†Two Sigma Investments, LLC. Part of the work done while affiliated to Brown University.
1Any missed chance is lost forever.

1

{lorenzo, epasto, eli}@cs.brown.edu
matteo@twosigma.com


memory, while for a smaller p it will provide a suboptimal estimation. Third, even assuming to be able to
compute a p that ensures (in expectation) full use of the available space, the memory would be fully utilized
only the end of the stream, and the estimations computed throughout the execution would be suboptimal.

Contributions. We address all the above issues by taking a significant departure from the fixed-probability,
independent edge sampling approach taken even by state-of-the-art methods. Specifically:

• We introduce trièst (TRI angle Estimation from ST reams), a suite of one-pass streaming algorithms
to approximate, at each time instant, the global and local number of triangles in a fully-dynamic graph
stream (i.e., a sequence of edges additions and deletions in arbitrary order) using a fixed amount of
memory. This is the first contribution that enjoys all these properties. trièst only requires the user
to specify the amount of available memory, an interpretable parameter that is definitively known to
the user.

• Our algorithms maintain a sample of edges, using the reservoir sampling [38] and random pairing [13]
sampling schemes to exploit the available memory as much as possible. To the best of our knowledge,
ours is the first application of these techniques to subgraph counting in fully-dynamic, arbitrarily long,
adversarially ordered streams. We present an analysis of the unbiasedness and of the variance of our
estimators, and establish strong concentration results for them. The use of reservoir sampling and
random pairing requires additional sophistication in the analysis, as the presence of an edge in the
sample is not independent from the concurrent presence of another edge. Hence, in our proofs we must
consider the complex dependencies in events involving sets of edges. The gain is worth the effort: we
prove that the variance of our algorithms is smaller than that of state-of-the-art methods [26], and this
is confirmed by our experiments.

• We conduct an extensive experimental evaluation of trièst on very large graphs, some with billions
of edges, comparing the performances of our algorithms to those of existing state-of-the-art contribu-
tions [17, 26, 32]. Our algorithms significantly and consistently reduce the average estimation error by
up to 90% w.r.t. the state of the art, both in the global and local estimation problems, while using
the same amount of memory. Our algorithms are also extremely scalable, showing update times in the
order of hundreds of microseconds for graphs with billions of edges.

Paper organization. We formally introduce the settings and the problem in Sect. 2. In Sect. 3 we discuss
related works. We present and analyze our algorithm trièst and discuss our design choices in Sect. 4.
The results of our experimental evaluation are presented in Sect. 5. We draw our conclusions and outline
direction for future work in Sect. 6. The proofs of our theoretical results can be found in Appendix A.

2 Preliminaries

We study the problem of counting global and local triangles in a fully-dynamic undirected graph as an
arbitrary (adversarial) stream of edge insertions and deletions.

Formally, for any (discrete) time instant t ≥ 0, let G(t) = (V (t), E(t)) be the graph observed up to and
including time t. At time t = 0 we have V (t) = E(t) = ∅. For any t > 0, at time t + 1 we receive an
element et+1 = (•, (u, v)) from a stream, where • ∈ {+,−} and u, v are two distinct vertices. The graph
G(t+1) = (V (t+1), E(t+1)) is obtained by inserting a new edge or deleting an existing edge as follows:

E(t+1) =

{

E(t) ∪ {(u, v)} if • = “ + ”
E(t) \ {(u, v)} if • = “ − ”

.

If u or v do not belong to V (t), they are added to V (t+1). Nodes are deleted from V (t) when they have degree
zero.

2



Edges can be added and deleted in the graph in an arbitrary adversarial order: i.e., as to cause the worst
outcome for the algorithm, but we assume that the adversary has no access to the random bits used by the
algorithm. We assume that all operations have effect: if e ∈ E(t) (resp. e 6∈ E(t)), (+, e) (resp. (−, e)) can
not be on the stream at time t+ 1.

Given a graph G(t) = (V (t), E(t)), a triangle in G(t) is a set of three vertices {u, v, w} ⊆ V (t) such that
{(u, v), (v, w), (w, u)} ⊆ E(t). We refer to the vertices forming a triangle as its corners. We denote with ∆(t)

the set of all triangles in G(t), and, for any vertex u ∈ V (t), with ∆
(t)
u the subset of ∆(t) containing all and

only the triangles that have u as a corner.

Problem definition. We study the Global (resp. Local) Triangle Counting Problem in Fully-dynamic
Streams, which requires to compute, at each time t ≥ 0 an estimation of |∆(t)| (resp. for each u ∈ V an
estimation of |∆(t)

u |).

3 Related work

The literature on exact and approximate triangle counting is extremely rich, including exact algorithms,
graph sparsifiers [36, 37], complex-valued sketches [19, 27], and MapReduce algorithms [30, 31, 34]. Here we
restrict the discussion to the works most related to ours, i.e., to those presenting algorithms for counting
or approximating the number of triangles from data streams. We refer to the survey by Latapy [24] for an
in-depth discussion of other works.

Many previous contributions presented algorithms for more restricted (i.e., less generic) settings than
ours, or for which the constraints on the computation are more lax [2, 6, 18, 21]. For example, Becchetti
et al. [3] and Kolountzakis et al. [20] present algorithms for approximate triangle counting from static graphs
by performing multiple passes over the data. Pavan et al. [32] and Jha et al. [17] propose algorithms for
approximating only the global number of triangles from edge-insertion-only streams. Kutzkov and Pagh [22]
present a one-pass algorithm for fully-dynamic graphs, but the triangle count estimation is (expensively)
computed only at the end of the stream and the algorithm requires, in the worst case, more memory
than what is needed to store the entire graph. Ahmed et al. [1] apply the sampling-and-hold approach to
insertion-only graph stream mining to obtain, only at the end of the stream and using non-constant space,
an estimation of many network measures including triangles.

None of these works has all the features offered by trièst: performs a single pass over the data, handles
fully-dynamic streams, uses a fixed amount of memory space, requires a single interpretable parameter, and
returns an estimation at each time instant. Furthermore, our experimental results show that we outperform
the algorithms from [17, 32] on insertion-only streams.

Lim and Kang [26] present an algorithm for insertion-only streams that is based on independent edge
sampling with a fixed probability. Since the memory is not fully utilized during most of the stream, the
variance of the estimate is large. Our approach handles fully-dynamic streams and makes better use of the
available memory space at each time instant, resulting in a better estimation, as shown by our analytical
and experimental results.

Vitter [38] presents a detailed analysis of the reservoir sampling scheme and discusses methods to speed
up the algorithm by reducing the number of calls to the random number generator. Random Pairing [13]
is an extension of reservoir sampling to handle fully-dynamic streams with insertions and deletions. Cohen
et al. [8] generalize and extend the Random Pairing approach to the case where the elements on the stream
are key-value pairs, where the value may be negative (and less than −1). In our settings, where the value
is not less than −1 (for an edge deletion), these generalizations do not apply and the algorithm presented
by Cohen et al. [8] reduces essentially to Random Pairing.

3



4 Algorithms

We present three novel algorithms for approximate global and local triangle counting from edge streams.
The first two work on insertion-only streams, while the third can handle fully-dynamic streams where edge
deletions are allowed.

Parameters. Our algorithms keep an edge sample S containing up to M edges from the stream, where
M is a positive integer parameter. For ease of presentation we realistically assume M ≥ 6. In Sect. 1 we
motivated the design choice of only requiring M as a parameter and remarked its advantages over using a
fixed sampling probability p. Our algorithms are designed to use the available space as much as possible.

Counters. Our algorithms keep counters which are used for computing the estimations of the global and
local number of triangles. They always keep one global counter τ for the estimation of the global number
of triangles. Only the global counter is needed to estimate the total triangle count. To estimate the local
triangle counts, we keep a set of local counters τu for a subset of the nodes u ∈ V (t). The local counters are
created on the fly as needed, and always destroyed as soon as they have a value of 0. Hence our algorithms
use O(M) space (with one exception, see Sect. 4.2).

Notation. For any t ≥ 0, let GS = (V S , ES) be the subgraph of G(t) containing all and only the edges in
the current sample S. We denote with NSu the neighborhood of u in GS : NSu = {v ∈ V (t) : (u, v) ∈ S} and
with NSu,v = NSu ∩ NSv the shared neighborhood of u and v in GS .

4.1 A first algorithm – trièst-base

We first present trièst-base, which works on insertion-only streams and uses standard reservoir sam-
pling [38] to maintain the edge sample S:

• If t ≤ M , then the edge et = (u, v) on the stream at time t is deterministically inserted in S.

• If t > M , we flip a biased coin with heads probability M/t. If the outcome is tails, S is not modified.
Otherwise, we choose an edge (w, z) ∈ S uniformly at random, remove (w, z) from S, and insert (u, v)
in S.

After each insertion (resp. removal) of an edge (u, v) from S, trièst-base calls the procedure Update-

Counters that increments (resp. decrements) τ , τu and τv by |NSu,v|, and τc by one, for each c ∈ NSu,v.
The pseudocode for trièst-base is presented in Alg. 1.

Estimation. For any t ≥ 0, let ξ(t) = max
{

1, t(t−1)(t−2)
M(M−1)(M−2)

}

. Let τ (t) (resp. τ (t)
u ) be the value of the

counter τ at the end of time step t (i.e., after the edge on the stream at time t has been processed by trièst-

base) (resp. the value of the counter τu at the end of time step t if there is such a counter, 0 otherwise).
When queried at the end of time t, trièst-base returns ξ(t)τ (t) (resp. ξ(t)τ

(t)
u ) as the estimation for the

global (resp. local for u ∈ V (t)) triangle count.

Analysis.

Theorem 1. We have

ξ(t)τ (t) = τ (t) = |∆(t)| if t ≤ M

E

[

ξ(t)τ (t)
]

= |∆(t)| if t > M .

4



Algorithm 1 trièst-base

Input: Graph stream Σ, integer M ≥ 6
1: S ← ∅, t← 0, τ ← 0
2: for each edge (u, v) from Σ do

3: t← t + 1
4: if SampleEdge((u, v), t) then

5: S ← S ∪ {(u, v)}
6: UpdateCounters(+, (u, v))

7: function SampleEdge((u, v), t)
8: if t ≤M then

9: return True
10: else if FlipBiasedCoin( M

t
) = heads then

11: (u′, v′)← random edge from S
12: S ← S \ {(u′, v′)}
13: UpdateCounters(−, (u′, v′))
14: return True
15: return False

16: function UpdateCounters((•, (u, v)))

17: NS

u,v ← NS

u ∩ NS

v

18: for all c ∈ NS

u,v do

19: τ ← τ • 1
20: τc ← τc • 1
21: τu ← τu • 1
22: τv ← τv • 1

The trièst-base estimations are not only unbiased in all cases, but actually exact for t ≤ M , i.e., for
t ≤ M , they are the true global/local number of triangles in G(t). We now analyze the variance of the
estimation returned by trièst-base for t > M (the variance is 0 for t ≤ M .)

Let t ≥ 0. For any u ∈ V (t), let r(t)
u be the number of unordered pairs of distinct triangles from ∆

(t)
u

that share an edge.2 Similarly, let r(t) = 1
3

∑

u∈V (t) r
(t)
u be the total number of unordered pairs of distinct

triangles from ∆(t) that share an edge. We also define w(t) =
(|∆(t)|

2

)

− r(t) as the number of unordered pairs

of distinct triangles that do not share any edge, and analogously for w(t)
u .

Theorem 2. For any t > M , let f(t) = ξ(t) − 1,

g(t) = ξ(t) (M − 3)(M − 4)

(t− 3)(t− 4)
− 1

and

h(t) = ξ(t) (M − 3)(M − 4)(M − 5)

(t− 3)(t− 4)(t− 5)
− 1 (≤ 0).

We have:
Var

[

ξ(t)τ (t)
]

= |∆(t)|f(t) + r(t)g(t) + w(t)h(t). (1)

In our proofs, we carefully account for the fact that, as we use reservoir sampling [38], the presence of an
edge a in S is not independent from the concurrent presence of another edge b in S. This is not the case for
samples built using fixed-probability independent edge sampling. When computing the variance, we must
consider not only pairs of triangles that share an edge (as for independent edge sampling approaches), but
also pairs of triangles that share no edge, as their respective presences in the sample are not independent
events. The gain is worth the additional sophistication needed in the analysis, because the contribution of
triangles that do not share edges to the variance is non-positive (h(t) ≤ 0), i.e., it reduces the variance. A
comparison of the variance of our estimator with that obtained with a fixed-probability independent edge
sampling approach, is discussed below.

Let h(t) denote the maximum number of triangles sharing a single edge in G(t). The following concentra-
tion theorem relies on 1. a result by Hajnal and Szemerédi [14] on graph coloring, 2. a novel concentration

2Two distinct triangles can share at most one edge.

5



result for fixed-probability independent edge sampling, and 3. a Poisson-approximation-like result on proba-
bilities of general events under reservoir sampling w.r.t. their probabilities under independent edge sampling.
These ingredients are then combined to obtain the following result. The details can be found in our extended
online version [9].

Theorem 3. Let t ≥ 0 and assume |∆(t)| > 0.3 For any ε, δ ∈ (0, 1), let

Φ = 3

√

8ε−2
3h(t) + 1

|∆(t)| ln

(

(3h(t) + 1)e

δ

)

.

If

M ≥ max

{

tΦ

(

1 +
1

2
ln2/3 (tΦ)

)

, 12ε−1 + e2, 25

}

,

then |ξ(t)τ (t) − |∆(t)|| < ε|∆(t)| with probability > 1 − δ.

Results analogous to those in Thms. 1, 2, and 3 hold for the local triangle count for any u ∈ V (t),
replacing the global quantities with the corresponding local ones.

Comparison with fixed-probability approaches. We now compare the variance of trièst-base to
the variance of a fixed probability sampling approach (mascot-c [26]), which samples edges independently
with a fixed probability p and uses the p−3|∆S | as the estimate for the global number of triangles at time t.
As shown by Lim and Kang [26, Lemma 2], the variance of this estimator is

Var[p−3|∆S |] = |∆(t)|f̄(p) + r(t)ḡ(p),

where f̄(p) = p−3 − 1 and ḡ(p) = p−1 − 1.
Assume that we give mascot-c the additional information that the stream has finite length T , and

assume we run mascot-c with p = M/T so that the expected sample size at the end of the stream is M .4

Let V
(t)
fix be the resulting variance of the mascot-c estimator at time t, and let V

(t) be the variance of our
estimator at time t (see (1)). For t ≤ M , V(t) = 0, hence V

(t) ≤ V
(t)
fix .

For M < t < T , we can show the following result.

Lemma 1. Let 0 < α < 1 be a constant. For any constant M > max( 8α
1−α , 42) and any t ≤ αT we have

V
(t) < V

(t)
fix .

For example, if we set α = 0.99 and run trièst-base with M ≥ 400 and mascot-c with p = M/T , we
have that trièst-base has strictly smaller variance than mascot-c for 99% of the stream.

What about t = T? The difference between the definitions of V(t)
fix and V

(t) is in the presence of f̄(M/T )
instead of f(t) (resp. ḡ(M/T ) instead of g(t)) as well as the additional term w(t)h(M, t) ≤ 0 in our V(t). Let

M(T ) be an arbitrary slowly increasing function of T . For T → ∞ we can show that limT→∞
f̄(M(T )/T )

f(T ) =

limT→∞
ḡ(M(T )/T )

g(T ) = 1, hence, informally, V(T ) → V
(T )
fix , for T → ∞.

A similar discussion also holds for the method we present in Sect. 4.2, and explains the results of our
experimental evaluations, which shows that our algorithms have strictly lower (empirical) variance than fixed
probability approaches for most of the stream.

Update time. The time to process an element of the stream is dominated by the computation of the shared
neighborhood Nu,v in UpdateCounters. A Mergesort-based algorithm for the intersection requires
O (deg(u) + deg(v)) time, where the degrees are w.r.t. the graph GS . By storing the neighborhood of each
vertex in a Hash Table (resp. an AVL tree), the update time can be reduced to O(min{deg(v),deg(u)})
(resp. amortized time O(min{deg(v),deg(u)} + log max{deg(v),deg(u)})).

3If |∆(t)| = 0, our algorithms correctly estimate 0 triangles.
4We are giving mascot-c a relevant advantage: if only space M were available, we should run mascot-c with a sufficiently

smaller p′ < p, otherwise there would be a constant probability that mascot-c would run out of memory.

6



4.2 Improved insertion algorithm - trièst-impr

trièst-impr is a variant of trièst-base with small modifications that result in higher-quality (i.e., lower
variance) estimations. The changes are:

1. UpdateCounters is called unconditionally for each element on the stream, before the algorithm de-
cides whether or not to insert the edge into S. W.r.t. the pseudocode in Alg. 1, this change corresponds
to moving the call to UpdateCounters on line 6 to before the if block. mascot [26] uses a similar
idea, but trièst-impr is significantly different as we allow edges to be removed from the sample, since
we use reservoir sampling.

2. trièst-impr never decrements the counters when an edge is removed from S. W.r.t. the pseudocode
in Alg. 1, we remove the call to UpdateCounters on line 13.

3. UpdateCounters performs a weighted increase of the counters using η(t) = max{1, (t − 1)(t −
2)/(M(M − 1))} as weight. W.r.t. the pseudocode in Alg. 1, we replace “1” with η(t) on lines 19–
22 (given change 2 above, all the calls to UpdateCounters have • = +).

Counters. If we are interested only in estimating the global number of triangles in G(t), trièst-impr

needs to maintain only the counter τ and the edge sample S of size M , so it still requires space O(M). If
instead we are interested in estimating the local triangle counts, at any time t trièst maintains (non-zero)
local counters only for the nodes u such that at least one triangle with a corner u has been detected by the
algorithm up until time t. The number of such nodes may be greater than O(M), but this is the price to
pay to obtain estimations with lower variance (Thm. 5).

Estimation. When queried for an estimation, trièst-impr returns the value of the corresponding counter,
unmodified.

Analysis.

Theorem 4. We have τ (t) = |∆(t)| if t ≤ M and E
[

τ (t)
]

= |∆(t)| if t > M .

As in trièst-base, the estimations by trièst-impr are exact at time t ≤ M and unbiased for t > M .
We now show an upper bound to the variance of the trièst-impr estimations for t > M . The proof relies on
a very careful analysis of the covariance of two triangles which depends on the order of arrival of the edges
in the stream (which we assume to be adversarial).

Let z(t) be the number of unordered pairs (λ, γ) of distinct triangles in G(t) that share an edge g and are
such that g is neither the last edge of λ on the stream nor the last edge of γ on the stream. For any node
u ∈ V (t), let z(t)

u be similarly defined, but considering only the triangles incident to u.

Theorem 5. Then, for any time t > M , we have

Var
[

τ (t)
]

≤ |∆(t)|(η(t) − 1) + z(t) t− 2 −M

M
.

For the sake of clarity, in Thm. 5, we chose not to present a stricter but more complex bound involving
triangles that do not share any edge, which, as in Thm. 2, would add a non-positive term to the variance.

The following result relies on Chebyshev’s inequality, leveraging the above result on the variance.

Theorem 6. Let t ≥ 0 and assume |∆(t)| > 0. For any ε, δ ∈ (0, 1), if

M > max

{
√

2(t− 1)(t− 2)

δε2|∆(t)| + 2
+

1

4
+

1

2
,

2z(t)(t− 2)

δε2|∆(t)|2 + 2z(t)

}

then |τ (t) − |∆(t)|| < ε|∆(t)| with probability > 1 − δ.

7



Algorithm 2 trièst-fd

Input: Fully Dynamic edge stream Σ, integer M ≥ 6
1: S ← ∅, di ← 0, do ← 0, t← 0, s← 0
2: for each element (•, (u, v)) from Σ do

3: t← t + 1
4: s← s • 1
5: if • = + then

6: if SampleEdge (u, v) then

7: UpdateCounters(+, (u, v))

8: else if (u, v) ∈ S then

9: UpdateCounters(−, (u, v))
10: S ← S \ {(u, v)}
11: di ← di + 1
12: else do ← do + 1

13: function SampleEdge(u, v)
14: if do + di = 0 then

15: if |S| < M then

16: S ← S ∪ {(u, v)}
17: return True
18: else if FlipBiasedCoin( M

t
) = heads then

19: Select (z, w) uniformly at random from S
20: UpdateCounters(−, (z, w))
21: S ← (S \ {(z, w)}) ∪ {(u, v)}
22: return True
23: else if FlipBiasedCoin

(

di
di+do

)

= heads then

24: S ← S ∪ {(u, v)}
25: di ← di − 1
26: return True
27: else

28: do ← do − 1
29: return False

In Thms. 5 and 6, it is possible to replace the value z(t) with the more interpretable r(t), which is agnostic
to the order of the edges on the stream but gives a looser upper bound to the variance.

Results analogous to those in Thms. 4, 5, and 6 hold for the local triangle count for any u ∈ V (t),
replacing the global quantities with the corresponding local ones.

4.3 Fully-dynamic algorithm - trièst-fd

trièst-fd computes unbiased estimates of the global and local triangle counts in a fully-dynamic stream
where edges are inserted/deleted in any arbitrary, adversarial order. It is based on random pairing (RP) [13],
a sampling scheme that extends reservoir sampling and can handle deletions. The idea behind the RP scheme
is that edge deletions seen on the stream will be “compensated” by future edge insertions. Following RP,
trièst-fd keeps a counter di (resp. do) to keep track of the number of uncompensated edge deletions
involving an edge e that was (resp. was not) in S at the time the deletion for e was on the stream.

When an edge deletion for an edge e ∈ E(t−1) is on the stream at the beginning of time step t, then, if
e ∈ S at this time, trièst-fd removes e from S (effectively decreasing the number of edges stored in the
sample by one) and increases di by one. Otherwise, it just increases do by one. When an edge insertion
for an edge e 6∈ E(t−1) is on the stream at the beginning of time step t, if di + do = 0, then trièst-fd

follows the standard reservoir sampling scheme. If |S| < M , then e is deterministically inserted in S without
removing any edge from S already in S, otherwise it is inserted in S with probability M/t, replacing an
uniformly-chosen edge already in S. If instead di+do > 0, then e is inserted in S with probability di/(di+do);
since it must be di > 0, then it must be |S| < M and no edge already in S needs to be removed. In any case,
after having handled the eventual insertion of e into S, the algorithm decreases di by 1 if e was inserted in
S, otherwise it decreases do by 1. trièst-fd also keeps track of s(t) = |E(t)| by appropriately incrementing
or decrementing a counter by 1 depending on whether the element on the stream is an edge insertion or
deletion. The pseudocode for trièst-fd is presented in Alg. 2 where the UpdateCounters procedure is
the same as Alg. 1.

8



Estimation. We denote as M (t) the size of S at the end of time t (we always have M (t) ≤ M). For any
time t, let d(t)

i and d
(t)
o be the value of the counters di and do at the end of time t respectively, and let

ω(t) = min{M, s(t) + d
(t)
i + d

(t)
o }. Define

κ(t) = 1 −
2
∑

j=0

(

s(t)

j

)(

d
(t)
i + d

(t)
o

ω(t) − j

)/(

s(t) + d
(t)
i + d

(t)
o

ω(t)

)

. (2)

For any three positive integers a, b, c s.t. a ≤ b ≤ c, define

ψa,b,c =

a−1
∏

i=0

c− i

b− i
.

When queried at the end of time t, for an estimation of the global number of triangles, trièst-fd returns

ρ(t) =

{

0 if M (t) < 3
τ(t)

κ(t)ψ3,M(t),s(t) = τ(t)

κ(t)

s(t)(s(t)−1)(s(t)−2)
M(t)(M(t)−1)(M(t)−2)

othw.

When estimating |∆(t)
u | for u ∈ V (t), the definition for ρ(t)

u uses τ (t)
u and has the additional condition that

ρ
(t)
u = 0 if there is no counter τu. trièst-fd can keep track of κ(t) during the execution, each update of κ(t)

taking time O(1). Hence the time to return the estimations is still O(1).

Analysis. Let t∗ be the first t ≥ M + 1 such that |E(t)| = M + 1, if such a time step exists (otherwise
t∗ = +∞).

Theorem 7. We have ρ(t) = |∆(t)| for all t < t∗, and E
[

ρ(t)
]

= |∆(t)| for t ≥ t∗.

The proof relies on properties of RP and on the definitions of κ(t) and ρ(t).

Theorem 8. Let t > t∗ s.t. |∆(t)| > 0 and s(t) ≥ M . Suppose we have d(t) = d
(t)
o + d

(t)
i ≤ αs(t) total

unpaired deletions at time t, with 0 ≤ α < 1. If M ≥ 1
2
√

α′−α
7 ln s(t) for some α < α′ < 1, we have:

Var
[

ρ(t)
]

≤ (κ(t))−2|∆(t)|
(

ψ3,M(1−α′),s(t) − 1
)

+ (κ(t))−22

+ (κ(t))−2r(t)
(

ψ2
3,M(1−α′),s(t)ψ

−1
5,M(1−α′),s(t) − 1

)

The following result relies on Chebyshev’s inequality, relying on the above result on the variance.

Theorem 9. Let t ≥ t∗ s.t. |∆(t)| > 0 and s(t) ≥ M . Let d(t) = d
(t)
o + d

(t)
i ≤ αs(t) for some 0 ≤ α < 1. For

any ε, δ ∈ (0, 1), if for some α < α′ < 1

M >max

{

1√
a′ − α

7 ln s(t),

(1 − α′)−1



 3

√

√

√

√

2s(t)(s(t) − 1)(s(t) − 2)

δε2|∆(t)|(κ(t))2 + 2 |∆
(t)|−2
|∆(t)|

+ 2



 ,

(1 − α′)−1

3

(

r(t)s(t)

δε2|∆(t)|2(κ(t))−2 + 2r(t)

)

}

then |ρ(t) − |∆(t)|| < ε|∆(t)| with probability > 1 − δ.

Results analogous to those in Thms. 7, 8, and 9 hold for the local triangle count for any u ∈ V (t),
replacing the global quantities with the corresponding local ones.

9



Graph |V | |E| |Eu| |∆|
Patent (Co-Aut.) 1,162,227 3,660,945 2,724,036 3.53× 106

Patent (Cit.) 2,745,762 13,965,410 13,965,132 6.91× 106

LastFm 681,387 43,518,693 30,311,117 1.13× 109

Yahoo! Answers 2,432,573 1.21× 109 1.08× 109 7.86× 1010

Twitter 41,652,230 1.47× 109 1.20× 109 3.46× 1010

Table 1: Properties of the dynamic graph streams analyzed. |V |, |E|, |Eu|, |∆| refer respectively to the
number of nodes appearing in the graph, the number of edge addition events, the number of distinct edges
additions, and the maximum number of triangles in the graph (for Yahoo! Answers and Twitter estimated
with trièst-impr M = 1000000, otherwise computed exactly with the naïve algorithm).

5 Experimental evaluation

We evaluated trièst on several real-world graphs with up to a billion edges. The algorithms were imple-
mented in C++, and ran on the Brown University CS department cluster.5 Each run employed a single core
and used at most 4 GB of RAM. We will make our code available upon publication.

Datasets We created the streams from the following publicly available graphs (properties in Table 1).

Patent (Co-Aut.) and Patent (Cit.). The Patent (Co-Aut.) and Patent (Cit.) graphs are obtained
from a dataset of ≈ 2 million U.S. patents granted between ’75 and ’99 [15]. In Patent (Co-Aut.), the nodes
represent inventors and there is an edge with timestamp t between two co-inventors of a patent if the patent
was granted in year t. In Patent (Cit.), nodes are patents and there is an edge (a, b) with timestamp t if
patent a cites b and a was granted in year t.

LastFm. The LastFm graph is based on a dataset [7, 35] of ≈ 20 million last.fm song listenings, ≈ 1
million songs and ≈ 1000 users. There is a node for each song and an edge between two songs if ≥ 3 users
listened to both on day t.

Yahoo! Answers. The Yahoo! Answers graph is obtained from a sample of ≈ 160 million answers to ≈ 25
millions questions posted on Yahoo! Answers [39]. An edge connects two users at time max(t1, t2) if they
both answered the same question at times t1, t2 respectively. We removed 6 outliers questions with more
than 5000 answers.

Twitter. This is a snapshot [5, 23] of the Twitter followers/following network with ≈ 41 million nodes and
≈ 1.5 billions edges. We do not have time information for the edges, hence we assign a random timestamp
to the edges (of which we ignore the direction).

Ground truth. To evaluate the accuracy of our algorithms, we computed the ground truth for our smaller
graphs (i.e., the exact number of global and local triangles for each time step), using an exact algorithm.
The entire current graph is stored in memory and when an edge u, v is inserted (or deleted) we update the
current count of local and global triangles by checking how many triangles are completed (or broken). As
exact algorithms are not scalable, computing the exact triangle count is feasible only for small graphs such as
Patent (Co-Aut.), Patent (Cit.) and LastFm. Table 1 reports the exact total number of triangles at the end
of the stream for those graphs (and an estimate for the larger ones using trièst-impr with M = 1000000).

10

last.fm


 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 7x10
6

 0  2x10 6

 4x10 6

 6x10 6

 8x10 6

 1x10 7

 1.2x10 7

 1.4x10

T
ri
a

n
g

le
s

Time

Triangle Estimation vs Time

ground truth
max est.
min est.
avg est.

(a) Patent (Cit.)

 0

 2x10
8

 4x10
8

 6x10
8

 8x10
8

 1x10
9

 1.2x10
9

 0  5x10 6

 1x10 7

 1.5x10 7

 2x10 7

 2.5x10 7

 3x10 7

 3.5x10

T
ri
a

n
g

le
s

Time

Triangle Estimation vs Time

ground truth
max est.
min est.
avg est.

(b) LastFm

 0

 1x10
10

 2x10
10

 3x10
10

 4x10
10

 5x10
10

 6x10
10

 7x10
10

 8x10
10

 0  2x10 8

 4x10 8

 6x10 8

 8x10 8

 1x10 9

 1.2x10

T
ri
a

n
g

le
s

Time

Triangle Estimation vs Time

max est.
min est.
avg est.

(c) Yahoo! Answers

 0

 5x10
9

 1x10
10

 1.5x10
10

 2x10
10

 2.5x10
10

 3x10
10

 3.5x10
10

 4x10
10

 0  2x10 8

 4x10 8

 6x10 8

 8x10 8

 1x10 9

 1.2x10 9

 1.4x10

T
ri
a

n
g

le
s

Time

Triangle Estimation vs Time

max est.
min est.
avg est.

(d) Twitter

Figure 1: Estimation by trièst-impr of the global number of triangles over time. Our estimations have
very small error and variance: the ground truth is indistinguishable from max/min estimation.

5.1 Insertion-only case

We now evaluate trièst on insertion-only streams and compare its performances with those of state-of-the-
art approaches [17, 26, 32], showing that trièst has an average estimation error significantly smaller than
these methods both for the global and local estimation problems, while using the same amount of memory.

Estimation of the global number of triangles. Starting from an empty graph we add one edge at
a time, in timestamp order. Figure 1 illustrates the evolution, over time, of the estimation computed by
trièst-impr with M = 1,000,000. For smaller graphs for which the ground truth can be computed exactly,
the curve of the exact count is practically indistinguishable from our estimation showing the precision of the
method. Our estimators have very small variance even on the very large Yahoo! Answers graph (point-wise
max/min estimation over ten runs is almost coincident with the average estimation). These results show
that our unbiased estimator is very accurate even when storing less than a 0.001 fraction of the total edges
of the graph.

Comparison with the state of the art. We compare quantitatively with three state-of-the-art methods:
Mascot [26], Jha et al. [17] and Pavan et al. [32]. Mascot is a suite of local triangle counting methods
(but provides also a global estimation). The other two are global triangle counting approaches. None of

5https://cs.brown.edu/about/system/services/hpc/grid/

11

https://cs.brown.edu/about/system/services/hpc/grid/


Max. MAPE Avg. MAPE

Graph Impr. p Mascot trièst Mascot trièst Change

Patent
(Cit.)

N 0.01 0.9231 0.2583 0.6517 0.1811 -72.2%
Y 0.01 0.1907 0.0363 0.1149 0.0213 -81.4%
N 0.1 0.0839 0.0124 0.0605 0.0070 -88.5%
Y 0.1 0.0317 0.0037 0.0245 0.0022 -91.1%

Patent
(Co-
A.)

N 0.01 2.3017 0.3029 0.8055 0.1820 -77.4%
Y 0.01 0.1741 0.0261 0.1063 0.0177 -83.4%
N 0.1 0.0648 0.0175 0.0390 0.0079 -79.8%
Y 0.1 0.0225 0.0034 0.0174 0.0022 -87.2%

LastFm

N 0.01 0.1525 0.0185 0.0627 0.0118 -81.2%
Y 0.01 0.0273 0.0046 0.0141 0.0034 -76.2%
N 0.1 0.0075 0.0028 0.0047 0.0015 -68.1%
Y 0.1 0.0048 0.0013 0.0031 0.0009 -72.1%

Table 2: Global triangle estimation MAPE for trièst and Mascot. The rightmost column shows the
reduction in terms of the avg. MAPE obtained by using trièst. Rows with Y in column “Impr.” refer to
improved algorithms (trièst-impr and mascot-i) while those with N to basic algorithms (trièst-base

and mascot-c).

these can handle fully-dynamic streams, in contrast with trièst-fd. We first compare the three methods
to trièst for the global triangle counting estimation. Mascot comes in two memory efficient variants:
the basic Mascot-C variant and an improved Mascot-I variant.6 Both variants sample edges with fixed
probability p, so there is no guarantee on the amount of memory used during the execution. To ensure
fairness of comparison, we devised the following experiment. First, we run both Mascot-C and Mascot-I

for ℓ = 10 times with a fixed p using the same random bits for the two algorithms run-by-run (i.e. the same
coin tosses used to select the edges) measuring each time the number of edges M ′i stored in the sample at
the end of the stream (by construction this the is same for the two variants run-by-run). Then, we run
our algorithm using M = M ′i (for i ∈ [ℓ]). We do the same to fix the size of the edge memory for Jha et

al. [17] and Pavan et al. [32].7 This way, all algorithms use the same amount of memory for storing edges
(run-by-run).

We use the MAPE (Mean Average Percentage Error) to assess the accuracy of the global triangle esti-
mators over time. The MAPE assesses the average percentage of the prediction error with respect to the

ground truth, and is widely used in the prediction literature [16]. For t = 1, . . . , T , let ∆
(t)

be the estimator

of the number of triangles at time t, the MAPE is defined as 1
T

∑T
t=1

∣

∣

∣

∣

|∆(t)|−∆
(t)

|∆(t)|

∣

∣

∣

∣

.8

In Fig. 2(a), we compare the average MAPE of trièst-base and trièst-impr as well as the two
Mascot variants and the other two streaming algorithms for the Patent (Co-Aut.) graph, fixing p = 0.01.
trièst-impr has the smallest error of all the algorithms compared.

We now turn our attention to the efficiency of the methods. Figure 2(b) shows the average update time
per operation in Patent (Co-Aut.) graph, fixing p = 0.01. Both Jha et al. [17] and Pavan et al. [32]
are up to ≈ 3 orders of magnitude slower than the Mascot variants and trièst. This is expected as
both algorithms have an update complexity of Ω(M) (they have to go through the entire reservoir graph at
each step), while both Mascot algorithms and trièst need only to access the neighborhood of the nodes
involved in the edge addition.9 This allows both algorithms to efficiently exploit larger memory sizes. We
can use efficiently M up to 1 million edges in our experiments, which only requires few megabytes of RAM.10

6In the original work [26], this variant had no suffix and was simply called Mascot. We add the -I suffix to avoid confusion.
Another variant Mascot-A can be forced to store the entire graph with probability 1 so we do not consider it here.

7More precisely, we use M ′
i
/2 estimators in Pavan et al. as each estimator stores two edges. For Jha et al. we set the

two reservoirs in the algorithm to have each size M ′
i
/2. This way, all algorithms use M ′

i
cells for storing (w)edges.

8The MAPE is not defined for t s.t. ∆(t) = 0 so we compute it only for t s.t. |∆(t)| > 0. All algorithms we consider are
guaranteed to output the correct answer for t s.t. |∆(t)| = 0.

9We observe that Pavan et al. [32] would be more efficient with batch updates. However, we want to estimate the triangles
continuously at each update. In their experiments they use batch sizes of million of updates for efficiency.

10The experiments in [17] use M in the order of 103, and in [32], large M values require large batches for efficiency.

12



Avg. Pearson Avg. ε Err

Graph Impr. p Mascot trièst Change Mascot trièst Change

LastFm

Y
0.1 0.99 1.00 +1.18% 0.79 0.30 -62.02%

0.05 0.97 1.00 +2.48% 0.99 0.47 -52.79%
0.01 0.85 0.98 +14.28% 1.35 0.89 -34.24%

N
0.1 0.97 0.99 +2.04% 1.08 0.70 -35.65%

0.05 0.92 0.98 +6.61% 1.32 0.97 -26.53%
0.01 0.32 0.70 +117.74% 1.48 1.34 -9.16%

Patent (Cit.)

Y
0.1 0.41 0.82 +99.09% 0.62 0.37 -39.15%

0.05 0.24 0.61 +156.30% 0.65 0.51 -20.78%
0.01 0.05 0.18 +233.05% 0.65 0.64 -1.68%

N
0.1 0.16 0.48 +191.85% 0.66 0.60 -8.22%

0.05 0.06 0.24 +300.46% 0.67 0.65 -3.21%
0.01 0.00 0.003 +922.02% 0.86 0.68 -21.02%

Patent (Co-aut.)

Y
0.1 0.55 0.87 +58.40% 0.86 0.45 -47.91%

0.05 0.34 0.71 +108.80% 0.91 0.63 -31.12%
0.01 0.08 0.26 +222.84% 0.96 0.88 -8.31%

N
0.1 0.25 0.52 +112.40% 0.92 0.83 -10.18%

0.05 0.09 0.28 +204.98% 0.92 0.92 0.10%
0.01 0.01 0.03 +191.46% 0.70 0.84 20.06%

Table 3: Comparison of the quality of the local triangle estimations between our algorithms and the state-
of-the-art approach in [26]. Rows with Y in column “Impr.” refer to improved algorithms (trièst-impr and
Mascot-I) while those with N to basic algorithms (trièst-base and Mascot-c). In virtually all cases we
significantly outperform Mascot using the same amount of memory.

Mascot is one order of magnitude faster than trièst (which runs in ≈ 28 micros/op), because it does not
have to handle edge removal from the sample, as it offers no guarantees on the used memory. As we will
show, trièst has much higher precision and scales well on billion-edges graphs.

Given the slow execution of the other algorithms on the larger datasets we compare in details trièst

only with Mascot.11 Table 2 shows the average MAPE of the two approaches. The results confirm the
pattern observed in Figure 2(a): trièst-base and trièst-impr both have an average error significantly
smaller than that of the basic Mascot-C and improved Mascot variant respectively. We achieve up to a
91% (i.e., 9-fold) reduction in the MAPE while using the same amount of memory. This experiment confirms
the theory: reservoir sampling has overall lower or equal variance in all steps for the same expected total
number of sampled edges. To further validate this observation we run trièst-impr and of the improved
Mascot variant using the same (expected memory) M = 10000. Figure 3 shows the max-min estimation
over 10 runs. trièst-impr shows significantly lower variance over the evolution: the maxmin estimation
lines are closer to the ground truth virtually all time. This confirms our theoretical observations in the
previous sections. Even with very low M (about 2/10000 of the size of the graph) trièst gives a good
estimation.

Local triangle counting. We compare the precision in local triangle count estimation of trièst with
that of Mascot [26] using the same approach of the previous experiment. We can not compare with Jha

et al. and Pavan et al. algorithms as they provide only global estimation. As in [26], we measure
the Pearson coefficient and the average ε error (see [26] for definitions). In Table 3 we report the Pearson
coefficient and average ε error over all timestamps for the smaller graphs.12 trièst (significantly) improves
(higher correlation and lower error) over the state-of-the-art Mascot, using the same amount of memory.

Memory vs accuracy trade-offs. We study the tradeoff between the sample size M vs the running time
and accuracy of the estimators. Figure 4(a) shows the tradeoffs between the accuracy of the estimation
and the size M for the smaller graphs for which the ground truth number of triangles can be computed

11We attempted to run the other two algorithms but they did not complete after 12 hours for the larger datasets in Table 2
with the prescribed p parameter setting.

12For efficiency, in this test we evaluate the local number of triangles every 1000 edge updates.

13



 0.01

 0.1

 1

TR
IEST-BASE

TR
IEST-IM

PR

M
ASC

O
T-C

M
ASC

O
T-I

JH
A ET AL.

PAVAN
 ET AL.

A
v
g

. 
M

A
P

E

Avg. MAPE vs Algorithm

(a) MAPE

 1

 10

 100

 1000

 10000

TR
IEST-BASE

TR
IEST-IM

PR

M
ASC

O
T-C

M
ASC

O
T-I

JH
A ET AL.

PAVAN
 ET AL.

A
v
g

. 
M

ic
ro

s
/O

p
e

ra
ti
o

n

Avg. Update Time vs Algorithm

(b) Update Time

Figure 2: Average MAPE and average update time of the various methods on the Patent (Co-Aut.) graph
with p = 0.01 – insertion only. trièst-impr has the lowest error. Both Pavan et al. and Jha et al.

have very high update times compared to our method and the two Mascot variants.

exactly using the naive algorithm. Even with small M trièst-impr achieves very low MAPE value. As
expected, larger M corresponds to higher accuracy and for the same M trièst-impr outperforms trièst-

base. Figure 4(b) shows the average time per update in microseconds (µs) for trièst-impr as function of
M . Larger M requires longer update times (a larger sample implies larger graph on which to count triangles).
On average a few hundreds of microseconds are sufficient for handling any update even in very large graphs
with billions of edges. Our algorithms can handle hundreds of thousands of edge updates per second with
very small error (Fig. 4(a)), and therefore can be used efficiently and effectively in high-velocity contexts.

Alternative edge orders. In all previous experiments the edges are added in their natural order (i.e., in
order of their appearance).13 While the natural order is the most important use case, we have assessed the
impact of other ordering on the accuracy of the algorithms. We experiment with both the uniform-at-random
(u.a.r.) order of the edges and the random BFS order: until all the graph is explored a BFS is started from
a u.a.r. unvisited node and edges are added in order of their visit (neighbors are explored in u.a.r. order).
The results for the random BFS order (Fig. 5) and for the u.a.r. (omitted for lack of space) confirm that
trièst has the lowest error and is very scalable in every tested ordering.

5.2 Fully-dynamic case

We evaluate trièst-fd on fully-dynamic streams. We cannot compare trièst-fd with the algorithms
previously used [17, 26, 32] as they only handle insertion-only streams.

In the first set of experiments we model deletions using the widely used sliding window model, where a
sliding window of the most recent edges defines the current graph. The sliding window model is of practical
interest as it allow to observe recent trends in the stream. For Patent (Co-Aut.) & (Cit.) we keep in the
sliding window the edges generated in the last 5 years, while for LastFm we keep the edges generated in the
last 30 days. For Yahoo! Answers we keep the last 100 millions edges in the window14.

Figure 6 shows the evolution of the global number of triangles in the sliding window model using trièst-

fd using M = 200,000 (M = 1,000,000 for Yahoo! Answers). The sliding window scenario is significantly
more challenging than the addition-only case (very often the entire sample of edges is flushed away) but

13Excluding twitter for which we used the random order, given the lack of timestamps.
14The sliding window model is not interesting for the Twitter dataset, whose edges have a random timestamp, as it would

create uniform samples of the graph. We do not report the results on this graph, but trièst-fd is fast and has low variance
also in this case.

14



 0

 2x10
8

 4x10
8

 6x10
8

 8x10
8

 1x10
9

 1.2x10
9

 1.4x10
9

 0  5x10 6

 1x10 7

 1.5x10 7

 2x10 7

 2.5x10 7

 3x10 7

 3.5x10

T
ri
a

n
g

le
s

Time

Triangle Estimation vs Time

ground truth
max est. TRIEST-IMPR.
min est. TRIEST-IMPR.

max est. MASCOT-I
min est. MASCOT-I

Figure 3: Variance of trièst-impr with M = 10000 and of mascot with same expected memory, on
LastFM. trièst-impr has a smaller variance: the max/min estimation lines are closer to the ground truth.
(Average estimations are qualitatively similar and not shown).

Avg. Global Avg. Local

Graph M MAPE Pearson ε Err.

LastFM
200000 0.005 0.98 0.02

1000000 0.002 0.999 0.001

Pat. (Co-Aut.)
200000 0.01 0.66 0.30

1000000 0.001 0.99 0.006

Pat. (Cit.)
200000 0.17 0.09 0.16

1000000 0.04 0.60 0.13

Table 4: Estimation errors for trièst-fd.

trièst-fd maintains good variance and scalability even when, as for LastFm and Yahoo! Answers, the
global number of triangles varies quickly.

Continuous monitoring of triangle counts with trièst-fd allows to detect patterns that would otherwise
be difficult to notice. For LastFm (Fig. 6(c)) we observe a sudden spike of several order of magnitudes. The
dataset is anonymized so we cannot establish which songs are responsible for this spike. In Yahoo! Answers
(Fig. 6(d)) a popular topic can create a sudden (and shortly lived) increase in the number of triangles,
while the evolution of the Patent co-authorship and co-citation networks is slower, as the creation of an
edge requires filing a patent (Fig. 6(a) and (b)). The almost constant increase over time15 of the number of
triangles in Patent graphs is consistent with previous observations of densification in collaboration networks
as in the case of nodes’ degrees [25] and the observations on the density of the densest subgraph [12].

Table 4 shows the results for both the local and global triangle counting estimation provided by trièst-

fd. In this case we can not compare with previous works, as they only handle insertions. It is evident
that precision improves with M values, and even relatively small M values result in a low MAPE (global
estimation), high Pearson correlation and low ε error (local estimation). Figure 7 shows the tradeoffs between
memory (i.e., accuracy) and time. In all cases our algorithm is very fast and it presents update times in the
order of hundreds of microseconds for datasets with billions of updates (Yahoo).

Alternative models for deletion. We evaluate trièst-fd using other models for deletions than the
sliding window model. To assess the resilience of the algorithm to massive deletions we run the following
experiments: we added edges in their natural order. Each edge addition is followed with probability q by a

15The decline at the end is due to the removal of the last edges from the sliding window after there are no more edge additions.

15



 0.001

 0.01

 0.1

 1

patent-cit

lastfm

M
A

P
E

MAPE vs M

M=100000 Base
M=1000000 Base

M=100000 Improv.
M=1000000 Improv.

(a) M vs MAPE

 1

 10

 100

 1000

 10000

patent-cit

patent-coaut

lastfm

tw
itter

yahoo

A
v
g

 M
ic

ro
s
/O

p
e

ra
ti
o

n

Avg Micros/Operation vs M

M=100000 Improv.
M=1000000 Improv.

(b) M vs Update Time

Figure 4: Trade-offs between M and MAPE or avg. update time (µs) – edge insertion only. Higher M implies
lower errors but higher update times.

 0.01

 0.1

 1

TR
IEST-BASE

TR
IEST-IM

PR

M
ASC

O
T-C

M
ASC

O
T-I

JH
A ET AL.

PAVAN
 ET AL.

A
v
g

. 
M

A
P

E

Avg. MAPE vs Algorithm

Figure 5: Average MAPE on Patent (Co-Aut.), with p = 0.01 – insertion only in Random BFS order.
trièst-impr has the lowest error.

mass deletion event where each edge currently in the the graph is deleted with probability d independently.
We run experiments with q = 3,000,000−1 (i.e., a mass deletion expected every 3 millions edges) and d = 0.80
(in expectation 80% of edges are deleted). The results are shown in Table 5.

6 Conclusions

We presented trièst, the first suite of algorithms that use reservoir sampling and its variants to continuously
maintain unbiased, low-variance estimates of the local and global number of triangles in fully-dynamic
graphs streams of arbitrary edge/vertex insertions and deletions using a fixed, user-specified amount of
space. Our experimental evaluation shows that trièst outperforms state-of-the-art approaches and achieves
high accuracy on real-world datasets with more than one billion of edges, with update times of hundreds of
microseconds. Interesting directions for future work include the use of color-coding techniques [30], and the
extension to 3-profiles and complex graph motifs [11].

16



-200000

 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 1.4x10
6

 0  1x10 6

 2x10 6

 3x10 6

 4x10 6

 5x10 6

 6x10

T
ri
a

n
g

le
s

Time

Triangle Estimation vs Time

ground truth
avg est.+std dev
avg est.-std sdv

avg est.

(a) Patent (Co-Aut.)

-200000

 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 1.4x10
6

 1.6x10
6

 0  5x10 6

 1x10 7

 1.5x10 7

 2x10 7

 2.5x10 7

 3x10

T
ri
a

n
g

le
s

Time

Triangle Estimation vs Time

ground truth
avg est.+std dev
avg est.-std sdv

avg est.

(b) Patent (Cit.)

 0

 2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

 1.2x10
8

 0  1x10 7

 2x10 7

 3x10 7

 4x10 7

 5x10 7

 6x10 7

 7x10 7

 8x10

T
ri
a

n
g

le
s

Time

Triangle Estimation vs Time

ground truth
avg est.+std dev
avg est.-std sdv

avg est.

(c) LastFm

-5x10
9

 0

 5x10
9

 1x10
10

 1.5x10
10

 2x10
10

 2.5x10
10

 0  5x10 8

 1x10 9

 1.5x10 9

 2x10 9

 2.5x10

T
ri
a

n
g

le
s

Time

Triangle Estimation vs Time

avg est.+std dev
avg est.-std sdv

avg est.

(d) Yahoo! Answers

Figure 6: Evolution of the global number of triangles – fully dynamic case.

References

[1] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella. Graph Sample and Hold: A framework for
big-graph analytics. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1446–1455. ACM, 2014.

[2] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an application
to counting triangles in graphs. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’02, pages 623–632, Philadelphia, PA, USA, 2002. Society for Industrial and
Applied Mathematics. ISBN 0-89871-513-X. URL http://dl.acm.org/citation.cfm?id=545381.

545464.

[3] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient algorithms for large-scale local triangle
counting. ACM Trans. Knowl. Discov. Data, 4(3):13:1–13:28, Oct. 2010. ISSN 1556-4681. doi: 10.1145/
1839490.1839494. URL http://doi.acm.org/10.1145/1839490.1839494.

[4] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A. Phillips. Tolerating the community detection
resolution limit with edge weighting. Physical Review E, 83(5):056119, 2011.

[5] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A multiresolution coordinate-
free ordering for compressing social networks. In WWW. ACM Press, 2011.

17

http://dl.acm.org/citation.cfm?id=545381.545464
http://dl.acm.org/citation.cfm?id=545381.545464
http://doi.acm.org/10.1145/1839490.1839494


 1

 10

 100

 1000

 10000

patent-cit

patent-coaut

lastfm

yahoo

A
v
g

 M
ic

ro
s
/O

p
e

ra
ti
o

n

Avg Micros/Operation vs M

M=200000
M=500000

M=1000000

Figure 7: Trade-offs between the avg. update time (µs) and M for trièst-fd.

Avg. Global Avg. Local

Graph M MAPE Pearson ε Err.

LastFM
200000 0.04 0.62 0.53

1000000 0.006 0.95 0.33

Pat. (Co-Aut.)
200000 0.06 0.278 0.50

1000000 0.006 0.79 0.21

Pat. (Cit.)
200000 0.28 0.068 0.06

1000000 0.026 0.51 0.04

Table 5: Estimation errors for trièst-fd. – mass deletion experiment q = 3,000,000−1 and d = 0.80.

[6] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler. Counting triangles
in data streams. In Proceedings of the Twenty-fifth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS ’06, pages 253–262, New York, NY, USA, 2006. ACM. ISBN
1-59593-318-2. doi: 10.1145/1142351.1142388. URL http://doi.acm.org/10.1145/1142351.1142388.

[7] Ò. Celma Herrada. Music recommendation and discovery in the long tail. Technical report, Universitat
Pompeu Fabra, 2009.

[8] E. Cohen, G. Cormode, and N. Duffield. Don’t let the negatives bring you down: sampling from streams
of signed updates. ACM SIGMETRICS Performance Evaluation Review, 40(1):343–354, 2012.

[9] L. De Stefani, A. Epasto, M. Riondato, and E. Upfal. TRIÈST: Counting local and global triangles in
fully-dynamic streams with fixed memory size. extended version, available from http://www.epasto.

org/papers/triangles.pdf.

[10] J.-P. Eckmann and E. Moses. Curvature of co-links uncovers hidden thematic layers in the world wide
web. Proceedings of the National Academy of Sciences, 99(9):5825–5829, 2002.

[11] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and A. G. Dimakis. Beyond triangles: A distributed
framework for estimating 3-profiles of large graphs. In KDD’15, 2015.

[12] A. Epasto, S. Lattanzi, and M. Sozio. Efficient densest subgraph computation in evolving graph. In
WWW, 2015.

[13] R. Gemulla, W. Lehner, and P. J. Haas. Maintaining bounded-size sample synopses of evolving datasets.
The VLDB Journal, 17(2):173–201, 2008.

[14] A. Hajnal and E. Szemerédi. Proof of a conjecture of P. Erdős. In Combinatorial theory and its
applications, II (Proc. Colloq., Balatonfüred, 1969), pages 601–623, 1970.

18

http://doi.acm.org/10.1145/1142351.1142388
http://www.epasto.org/papers/triangles.pdf
http://www.epasto.org/papers/triangles.pdf


[15] B. H. Hall, A. B. Jaffe, and M. Trajtenberg. The NBER patent citation data file: Lessons, insights and
methodological tools. Technical report, National Bureau of Economic Research, 2001.

[16] R. J. Hyndman and A. B. Koehler. Another look at measures of forecast accuracy. Int. J.
Forecasting, 22(4):679–688, 2006. URL http://www.sciencedirect.com/science/article/pii/

S0169207006000239.

[17] M. Jha, C. Seshadhri, and A. Pinar. A space-efficient streaming algorithm for estimating transitivity
and triangle counts using the birthday paradox. ACM Trans. Knowl. Discov. Data, 9(3):15:1–15:21,
Feb. 2015. ISSN 1556-4681. doi: 10.1145/2700395. URL http://doi.acm.org/10.1145/2700395.

[18] H. Jowhari and M. Ghodsi. New streaming algorithms for counting triangles in graphs. In L. Wang,
editor, Computing and Combinatorics, volume 3595 of Lecture Notes in Computer Science, pages 710–
716. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-28061-3. doi: 10.1007/11533719_72. URL
http://dx.doi.org/10.1007/11533719_72.

[19] D. M. Kane, K. Mehlhorn, T. Sauerwald, and H. Sun. Counting arbitrary subgraphs in data streams. In
A. Czumaj, K. Mehlhorn, A. Pitts, and R. Wattenhofer, editors, Automata, Languages, and Program-
ming, volume 7392 of Lecture Notes in Computer Science, pages 598–609. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-31584-8. doi: 10.1007/978-3-642-31585-5_53. URL http://dx.doi.org/10.

1007/978-3-642-31585-5_53.

[20] M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis. Efficient triangle counting in
large graphs via degree-based vertex partitioning. Internet Mathematics, 8(1–2):161–185, 2012. doi:
10.1080/15427951.2012.625260. URL http://dx.doi.org/10.1080/15427951.2012.625260.

[21] K. Kutzkov and R. Pagh. On the streaming complexity of computing local clustering coefficients. In
Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, WSDM ’13,
pages 677–686, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1869-3. doi: 10.1145/2433396.
2433480. URL http://doi.acm.org/10.1145/2433396.2433480.

[22] K. Kutzkov and R. Pagh. Triangle counting in dynamic graph streams. In Algorithm Theory–SWAT
2014, pages 306–318. Springer, 2014.

[23] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media? In WWW,
pages 591–600. ACM, 2010.

[24] M. Latapy. Main-memory triangle computations for very large (sparse (power-law)) graphs. Theoretical
Computer Science, 407(1):458–473, 2008.

[25] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters.
ACM Trans. KDD, 1(1):2, 2007.

[26] Y. Lim and U. Kang. MASCOT: Memory-efficient and accurate sampling for counting local triangles
in graph streams. In KDD, 2015.

[27] M. Manjunath, K. Mehlhorn, K. Panagiotou, and H. Sun. Approximate counting of cycles in streams.
In Algorithms–ESA 2011, pages 677–688. Springer, 2011.

[28] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple
building blocks of complex networks. Science, 298(5594):824–827, 2002.

[29] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms and probabilistic
analysis. Cambridge University Press, 2005.

[30] R. Pagh and C. E. Tsourakakis. Colorful triangle counting and a MapReduce implementation. Inf.
Process. Lett., 112(7):277–281, Mar. 2012. ISSN 0020-0190. doi: 10.1016/j.ipl.2011.12.007. URL http:

//dx.doi.org/10.1016/j.ipl.2011.12.007.

19

http://www.sciencedirect.com/science/article/pii/S0169207006000239
http://www.sciencedirect.com/science/article/pii/S0169207006000239
http://doi.acm.org/10.1145/2700395
http://dx.doi.org/10.1007/11533719_72
http://dx.doi.org/10.1007/978-3-642-31585-5_53
http://dx.doi.org/10.1007/978-3-642-31585-5_53
http://dx.doi.org/10.1080/15427951.2012.625260
http://doi.acm.org/10.1145/2433396.2433480
http://dx.doi.org/10.1016/j.ipl.2011.12.007
http://dx.doi.org/10.1016/j.ipl.2011.12.007


[31] H.-M. Park and C.-W. Chung. An efficient MapReduce algorithm for counting triangles in a very large
graph. In Proceedings of the 22Nd ACM International Conference on Conference on Information &#38;
Knowledge Management, CIKM ’13, pages 539–548, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-2263-8. doi: 10.1145/2505515.2505563. URL http://doi.acm.org/10.1145/2505515.2505563.

[32] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Counting and sampling triangles from a
graph stream. Proceedings of the VLDB Endowment, 6(14):1870–1881, 2013.

[33] M. Skala. Hypergeometric tail inequalities: ending the insanity. arXiv preprint arXiv:1311.5939, 2013.

[34] S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last reducer. In Proceedings of the
20th International Conference on World Wide Web, WWW ’11, pages 607–614, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0632-4. doi: 10.1145/1963405.1963491. URL http://doi.acm.org/10.

1145/1963405.1963491.

[35] The Koblenz Network Collection (KONECT). Last.fm song network dataset. http://konect.

uni-koblenz.de/networks/lastfm_song.

[36] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion: counting triangles in massive
graphs with a coin. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 837–846. ACM, 2009.

[37] C. E. Tsourakakis, M. N. Kolountzakis, and G. L. Miller. Triangle sparsifiers. J. Graph Algorithms
Appl., 15(6):703–726, 2011.

[38] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57, Mar. 1985.
ISSN 0098-3500. doi: 10.1145/3147.3165. URL http://doi.acm.org/10.1145/3147.3165.

[39] Yahoo! Research Webscope Datasets. Yahoo! Answers browsing behavior version 1.0. http:

//webscope.sandbox.yahoo.com.

A Additional theoretical results

In this section we present the theoretical results (statements and proofs) not included in the main text.

A.1 Theoretical results for trièst-base

Before proving Thm. 1, we need to introduce three technical lemmas. We denote with ∆S the set of triangles
in GS .

Lemma 2. After each call to UpdateCounters, we have τ = |∆S | and τv = |∆Sv | for any v ∈ VS s.t.
|∆Sv | ≥ 1.

Proof. We only show the proof for τ , as the proof for the local counters follows the same steps.
The proof proceeds by induction. The thesis is true after the first call to UpdateCounters at time

t = 1. Since only one edge is in S at this point, we have ∆S = 0, and NSu,v = ∅, so UpdateCounters does
not modify τ , which was initialized to 0. Hence τ = 0 = ∆S .

Assume now that the thesis is true for any subsequent call to UpdateCounters up to some point in
the execution of the algorithm where an edge (u, v) is inserted or removed from S. We now show that the
thesis is still true after the call to UpdateCounters that follows this change in S. Assume that (u, v) was
inserted in S, as the proof for the removal follows the same steps. Let Sb = S \ {(u, v)} and τb be the value
of τ before the call to UpdateCounters and, for any w ∈ VSb , let τb

w be the value of τw before the call to

20

http://doi.acm.org/10.1145/2505515.2505563
http://doi.acm.org/10.1145/1963405.1963491
http://doi.acm.org/10.1145/1963405.1963491
http://konect.uni-koblenz.de/networks/lastfm_song
http://konect.uni-koblenz.de/networks/lastfm_song
http://doi.acm.org/10.1145/3147.3165
http://webscope.sandbox.yahoo.com
http://webscope.sandbox.yahoo.com


UpdateCounters. Let ∆Su,v be the set of triangles in GS that have u and v as corners. We need to show

that, after the call, τ = |∆S |. Clearly we have ∆S = ∆S
b ∪ ∆Su,v and ∆S

b ∩ ∆Su,v = ∅, so

|∆S | = |∆Sb | + |∆Su,v|

We have |∆Su,v| = |NSu,v,| and, by the inductive hypothesis, we have that τb = |∆Sb |. Since UpdateCoun-

ters increments τ by |NSu,v,|, the value of τ after UpdateCounters has completed is exactly |∆S |.

The following lemma states a well known property of the reservoir sampling scheme.

Lemma 3 (Sect. 2 [38]). For any t > M , let A be any subset of E(t) of size |A| = M . Then, at the end of
time step t,

Pr(S = A) =
1

(|E(t)|
M

)
=

1
(

t
M

) ,

i.e., the set of edges in S at the end of time t is a subset of E(t) of size M chosen uniformly at random from
all subsets of E(t) of the same size.

The following lemma deals with the probability that multiple edges of G(t) are simultaneously in S, i.e.,
with the higher-order inclusion probability of the reservoir sampling scheme.

For any pair of positive integers a and b such that a ≤ min{M, b} let

ξa,b = max

{

1,

a−1
∏

i=0

b− i

M − i

}

.

Lemma 4. For any time step t and any positive integer k ≤ t, let B be any subset of E(t) of size |B| = k ≤ t.
Then, at the end of time step t,

Pr(B ⊆ S) =

{

0 if k > M
1

ξk,t
otherwise .

Proof. If k > min{M, t}, we have Pr(B ⊆ S) = 0 because it is impossible for B to be equal to S in these
cases. From now on we then assume k ≤ min{M, t}.

If t ≤ M , then E(t) ⊆ S and Pr(B ⊆ S) = 1 = ξ−1
k,t .

Assume instead that t > M , and let B be the family of subsets of E(t) that 1. have size M , and 2. contain
B:

B = {C ⊂ E(t) : |C| = M,B ⊆ C} .

We have

|B| =

(|E(t)| − k

M − k

)

=

(

t− k

M − k

)

. (3)

From this, (3), and Lemma 3 we then have

Pr(B ⊆ S) = Pr(S ∈ B) =
∑

C∈B
Pr(S = C)

=

(

t−k
M−k

)

(

t
M

) =

(

t−k
M−k

)

(

t−k
M−k

)
∏k−1

i=0
t−i

M−i

=

k−1
∏

i=0

M − i

t− i
= ξ−1

k,t .

We can now prove Thm. 1 on the unbiasedness of the estimation computed by trièst-base (and on
their exactness for t ≤ M).

21



Proof of Thm. 1. We prove the statement for the estimation of global triangle count. The proof for the local
triangle counts follows the same steps.

If t ≤ M , we have GS = G(t) and from Lemma 2 we have τ (t) = |∆S | = |∆(t)|, hence the thesis holds.
Assume now that t > M , and assume that |∆(t)| > 0, otherwise, from Lemma 2, we have τ (t) = |∆S | = 0

and our estimation is deterministically correct. Let λ = (a, b, c) ∈ ∆(t), (where a, b, c are edges in E(t)) and
let δ(t)

λ be a random variable that takes value ξ(t) if λ ∈ ∆S (i.e.,{a, b, c} ⊆ S) at the end of the step instant
t, and 0 otherwise. From Lemma 4, we have that

E

[

δ
(t)
λ

]

= ξ(t) Pr({a, b, c} ⊆ S) = ξ(t) 1

ξ3,t
= ξ(t) 1

ξ(t)
= 1 . (4)

We can write
ξ(t)τ (t) =

∑

λ∈∆(t)

δ
(t)
λ

and from this, (4), and linearity of expectation, we have

E

[

ξ(t)τ (t)
]

=
∑

λ∈∆(t)

E

[

δ
(t)
λ

]

= |∆(t)| .

We now prove Thm. 2 on the variance of the estimation computed by trièst-base for t > M such that
|∆(t)| > 0 (we recall that the variance is 0 for t < M and for all t such that |∆(t)| = 0) because the estimation
is deterministically exact).

Proof of Thm. 2. We prove the statement for the estimation of global triangle count. The proof for the local
triangle counts follows the same steps.

Assume |∆(t)| > 0, otherwise our estimation is deterministically correct and has variance 0 and the thesis
holds. Let λ ∈ ∆(t) and δ

(t)
λ be as in the proof of Thm. 1. We have Var[δ

(t)
λ ] = ξ(t) − 1 and from this and

the definition of variance and covariance we obtain

Var
[

ξ(t)τ (t)
]

= Var





∑

λ∈∆(t)

δ
(t)
λ



 =
∑

λ∈∆(t)

∑

γ∈∆(t)

Cov
[

δ
(t)
λ , δ(t)

γ

]

=
∑

λ∈∆(t)

Var
[

δ
(t)
λ

]

+
∑

λ,γ∈∆(t)

λ6=γ

Cov
[

δ
(t)
λ , δ(t)

γ

]

= |∆(t)|(ξ(t) − 1) +
∑

λ,γ∈∆(t)

λ6=γ

Cov
[

δ
(t)
λ , δ(t)

γ

]

= |∆(t)|(ξ(t) − 1) +
∑

λ,γ∈∆(t)

λ6=γ

(

E

[

δ
(t)
λ δ(t)

γ

]

− E

[

δ
(t)
λ

]

E

[

δ(t)
γ

])

= |∆(t)|(ξ(t) − 1) +
∑

λ,γ∈∆(t)

λ6=γ

(

E

[

δ
(t)
λ δ(t)

γ

]

− 1
)

. (5)

Assume now |∆(t)| ≥ 2, otherwise we have r(t) = w(t) = 0 and the thesis holds as the second term on
the r.h.s. of (5) is 0. Let λ and γ be two distinct triangles in ∆(t). If λ and γ do not share an edge, we have
δ

(t)
λ δ

(t)
γ = ξ(t)ξ(t) = ξ2

3,t if all six edges composing λ and γ are in S at the end of time step t, and δ(t)
λ δ

(t)
γ = 0

22



otherwise. From Lemma 4 we then have that

E

[

δ
(t)
λ δ(t)

γ

]

= ξ2
3,t Pr

(

δ
(t)
λ δ(t)

γ = ξ2
3,t

)

= ξ2
3,t

1

ξ6,t
= ξ3,t

5
∏

j=3

M − j

t− j

= ξ(t) (M − 3)(M − 4)(M − 5)

(t− 3)(t− 4)(t− 5)
. (6)

If instead λ and γ share exactly an edge we have δ(t)
λ δ

(t)
γ = ξ2

3,t if all five edges composing λ and γ are in S
at the end of time step t, and δ

(t)
λ δ

(t)
γ = 0 otherwise. From Lemma 4 we then have that

E

[

δ
(t)
λ δ(t)

γ

]

= ξ2
3,t Pr

(

δ
(t)
λ δ(t)

γ = ξ2
3,t

)

= ξ2
3,t

1

ξ5,t
= ξ3,t

4
∏

j=3

M − j

t− j

= ξ(t) (M − 3)(M − 4)

(t− 3)(t− 4)
. (7)

The thesis follows by combining (5), (6), (7), recalling the definitions of r(t) and w(t), and slightly reorganizing
the terms.

We now prove Lemma 1, about the fact that the variance of the estimations computed by trièst-base

is smaller, for most of the stream, than the variance of the estimations computed by mascot-c [26]. We
first need the following technical facts.

Fact 1. For any x > 2, we have
x2

(x− 1)(x− 2)
≤ 1 +

4

x− 2
.

Fact 2. For any x > 42, we have
x2

(x− 3)(x− 4)
≤ 1 +

8

x
.

Proof of Lemma 1. We focus on t > M > 42 otherwise the theorem is immediate. We show that for such
conditions f(M, t) < f̄(M/T ) and g(M, t) < ḡ(M/T ). Using the fact that t ≤ αT and Fact 1, we have

f(M, t) − f̄(M/T ) =
t(t− 1)(t− 2)

M(M − 1)(M − 2)
− T 3

M3

<
α3T 3

M3

M2

(M − 1)(M − 2)
− T 3

M3

≤ α3T 3

M3

(

1 +
4

M − 2

)

− T 3

M3

≤ T 3

M3

(

α3 +
4α3

M − 2
− 1

)

. (8)

Given that T and M are ≥ 42, the r.h.s. of (8) is non-positive iff

α3 +
4α3

M − 2
− 1 ≤ 0 .

Solving for M we have that the above is verified when M ≥ 4α3

1−α3 + 2. This is always true given our

assumption that M > max( 8α
1−α , 42): for any 0 < α < 0.6, we have 4α3

1−α3 + 2 < 42 ≤ M and for any

0.6 ≤ α < 1 we have 4α3

1−α3 + 2 < 8α
1−α ≤ M . Hence the r.h.s. of (8) is ≤ 0 and f(M, t) < f̄(M/T ).

23



We also have:

g(M, t) − ḡ(M/T ) =
t(t− 1)(t− 2)(M − 3)(M − 4)

(t− 3)(t− 4)M(M − 1)(M − 2)
− T

M

<
t

M

t2

(t− 3)(t− 4)
− T

M

≤ t

M

(

1 +
8

t

)

− T

M
, (9)

where the last inequality follow from Fact 2, since t > M > 42. Now, from (9) since t ≤ αT and t > M , we
can write:

g(M, t) − ḡ(M/T ) <
T

M

(

α+
8α

M
− 1

)

.

The r.h.s. of this equation is non-positive given the assumption M > 8α
1−α , hence g(M, t) < ḡ(M/T ).

The roadmap to proving Thm. 3 is the following:

1. we first define two simpler algorithms, named indep and mix. The algorithms use, respectively, fixed-
probability independent sampling of edges and reservoir sampling;

2. we then prove concentration results on the estimators of indep and mix. Specifically the concentration
result for mix will depend on the concentration result for indep and on a technical result stating that
probabilities of events when using reservoir sampling are close to the probabilities of those events when
using fixed-probability independent sampling;

3. we then show that the estimates returned by trièst-base are close to the estimates returned by mix;

4. finally, we combine the above results and show that, if M is large enough, then the estimation provided
by mix is likely to be close to |∆(t)| and since the estimation computed by trièst-base is close to
that of mix, then it must also be close to |∆(t)|.

Note: for ease of presentation, in the following we use φ(t) to denote the estimation returned by trièst-

base, i.e., φ(t) = ξ(t)τ (t).

The indep algorithm. The indep algorithm works as follows: it creates a sample Sin by sampling edges
in E(t) independently with a fixed probability p. It estimates the global number of triangles in G(t) as

φ
(t)
in =

τ
(t)
in

p3
,

where τ (t)
in is the number of triangles in Sin. This is for example the approach taken by mascot-c [26].

The mix algorithm. The mix algorithm works as follows: it uses reservoir sampling (like trièst-base)
to create a sample Smix of M edges from E(t). mix uses

φ
(t)
mix =

(

t

M

)3

τ (t)

as an estimator for |∆(t)|, where τ (t) is, as in trièst-base, the number of triangles in GS (trièst-base

uses φ(t) = t(t−1)(t−2)
M(M−1)(M−2)τ

(t) as an estimator.)
We call this algorithm mix because it uses reservoir sampling to create the sample, but computes the

estimate as if it used fixed-probability independent sampling, hence in some sense it “mixes” the two ap-
proaches.

24



Concentration results for indep and mix. We now show a concentration result for indep. Then we
show a technical lemma relating the probabilities of events when using reservoir sampling to the probabilities
of those events when using fixed-probability independent sampling. Finally, we use these results to show
that the estimator used by mix is also concentrated (Lemma 7).

Lemma 5. Let t ≥ 0 and assume |∆(t)| > 0.16 For any ε, δ ∈ (0, 1), if

p ≥ 3

√

2ε−2 ln

(

3h(t) + 1

δ

)

3h(t) + 1

|∆(t)| (10)

then
Pr
(

|φ(t)
in − ∆(t)|| < ε|∆(t)|

)

> 1 − δ .

Proof. Let H be a graph built as follows: H has one node for each triangle in G(t) and there is an edge
between two nodes in H if the corresponding triangles in G(t) share an edge. By this construction, the
maximum degree in H is 3h(t). Hence by the Hajanal-Szeméredi’s theorem [14] there is a proper coloring of

H with at most 3h(t) + 1 colors such that for each color there are at least L = |∆(t)|
3h(t)+1

nodes with that color.

Assign an arbitrary numbering to the triangles of G(t) (and, therefore, to the nodes of H) and let Xi be
a Bernoulli random variable, indicating whether the triangle i in G(t) is in the sample at time t. From the
properties of independent sampling of edges we have Pr(Xi = 1) = p3 for any triangle i. For any color c of
the coloring of H, let Xc be the set of r.v.’s Xi such that the node i in H has color c. Since the coloring of H
which we are considering is proper, the r.v.’s in Xc are independent, as they correspond to triangles which do
not share any edge and edges are sampled independent of each other. Let Yc be the sum of the r.v.’s in Xc.
The r.v. Yc has a binomial distribution with parameters |Xc| and p3

t . By the Chernoff bound for binomial
r.v.’s, we have that

Pr
(

|p−3Yc − |Xc|| > ε|Xc|
)

< 2 exp
(

−ε2p3|Xc|/2
)

< 2 exp
(

−ε2p3L/2
)

≤ δ

3h(t) + 1
,

where the last step comes from the requirement in (10).Then by applying the union bound over all the (at
most) 3h(t) + 1 colors we get

Pr(∃ color c s.t. |p−3Yc − |Xc|| > ε|Xc|) < δ .

Since φin(t) = p−3
∑

color c

Yc, from the above equation we have that, with probability at least 1 − δ,

|φ(t)
in − |∆(t)|| ≤

∣

∣

∣

∣

∣

∑

color c

p−3Yc −
∑

color c

|Xc|
∣

∣

∣

∣

∣

≤
∑

color c

|p−3Yc − |Xc|| ≤
∑

color c

ε|Xc| ≤ ε|∆(t)| .

We remark that we can not use the same approach to show a concentration result for trièst-base

because it uses reservoir sampling, hence the event of having a triangle a in S and the event of having
another triangle b in S are not independent.

We can however show the following general result, similar in spirit to the well-know Poisson approximation
of balls-and-bins processes [29].

Fix the parameter M and a time t > M . Let Smix be a sample of M edges from E(t) obtained through
reservoir sampling (as mix would do), and let Sin be a sample of the edges in E(t) obtained by sampling
edges independently with probability M/t (as indep would do). We remark that the size of Sin is in [0, t]
but not necessarily M .

16For |∆(t)| = 0, indep correctly and deterministically returns 0 as the estimation.

25



Lemma 6. Let f : 2E(t) → {0, 1} be an arbitrary binary function from the powerset of E(t) to {0, 1} . We
have

Pr (f(Smix) = 1) ≤ e
√
M Pr (f(Sin) = 1) .

Proof. Using the law of total probability, we have

Pr (f(Sin) = 1) =

t
∑

k=0

Pr (f(Sin) = 1 | |Sin| = k ) Pr(|Sin| = k)

≥ Pr (f(Sin) = 1 | |Sin| = M ) Pr(|Sin| = M)

≥ Pr (f(Smix) = 1) Pr (|Sin| = M) , (11)

where the last inequality comes from Lemma 3: the set of edges included in Smix is a uniformly-at-random
subset of M edges from E(t), and the same holds for Sin when conditioning its size being M .

Using the Stirling approximation
√

2πn( n
e )n ≤ n! ≤ e

√
n( n

e )n for any positive integer n, we have

Pr (|Sin| = M) =

(

t

M

)(

M

t

)M (

t−M

t

)t−M

≥ tt
√
t
√

2πe−t

e2
√
M

√
t−Me−tMM (t−M)t−M

MM (t−M)t−M

tt

≥ 1

e
√
M

.

Plugging this into (11) concludes the proof.

We now use the above two lemmas to show that the estimator φ(t)
mix computed by mix is concentrated.

We will first need the following technical fact.

Fact 3. For any x ≥ 5, we have

ln
(

x(1 + ln2/3 x)
)

≤ ln2 x .

Lemma 7. Let t ≥ 0 and assume |∆(t)| < 0. For any ε, δ ∈ (0, 1), let

Ψ = 2ε−2 3h(t) + 1

|∆(t)| ln

(

e
3h(t) + 1

δ

)

.

If

M ≥ max

{

t
3
√

Ψ

(

1 +
1

2
ln2/3

(

t
3
√

Ψ
)

)

, 25

}

then
Pr
(

|φ(t)
mix − |∆(t)|| < ε|∆(t)|

)

≥ 1 − δ .

Proof. For any S ⊆ E(t) let τ(S) be the number of triangles in S, i.e., the number of triplets of edges in S

that compose a triangle in G(t). Define the function g : 2E(t) → R as

g(S) =

(

t

M

)3

τ(S) .

Assume that we run indep with p = M/t, and let Sin ⊆ E(t) be the sample built by indep (through
independent sampling with fixed probability p). Assume also that we run mix with parameter M , and let

26



Smix be the sample built by mix (through reservoir sampling with a reservoir of size M). We have that
φ

(t)
in = g(Sin) and φ

(t)
mix = g(Smix). Define now the binary function f : 2E(t) → {0, 1} as

f(S) =

{

1 if |g(S) − |∆(t)|| > ε|∆(t)|
0 otherwise

.

We now show that, for M as in the hypothesis, we have

p ≥ 3

√

2ε−2
3h(t) + 1

|∆(t)| ln

(

e
√
M

3h(t) + 1

δ

)

. (12)

Assume for now that the above is true. From this, using Lemma 5 and the above fact about g we get that

Pr
(

|φ(t)
in − |∆(t)|| > ε|∆(t)|

)

= Pr (f(Sin) = 1) <
δ

e
√
M

.

From this and Lemma 6, we get that
Pr (f(Smix) = 1) ≤ δ

which, from the definition of f and the properties of g, is equivalent to

Pr
(

|φ(t)
mix − |∆(t)|| > ε|∆(t)|

)

≤ δ

and the proof is complete. All that is left is to show that (12) holds for M as in the hypothesis.
Since p = M/t, we have that (12) holds for

M3 ≥ t32ε−2 3h(t) + 1

|∆(t)| ln

(√
Me

3h(t) + 1

δ

)

= t32ε−2 3h(t) + 1

|∆(t)|

(

ln

(

e
3h(t) + 1

δ

)

+
1

2
lnM

)

. (13)

We now show that (13) holds.

Let A = t 3
√

Ψ and let B = t 3
√

Ψ ln2/3
(

t 3
√

Ψ
)

. We now show that A3 + B3 is greater or equal to the

r.h.s. of (13), hence M3 = (A+B)3 > A3 +B3 must also be greater or equal to the r.h.s. of (13), i.e., (13)
holds. This really reduces to show that

B3 ≥ t32ε−2 3h(t) + 1

|∆(t)|
1

2
lnM (14)

as the r.h.s.of (13) can be written as

A3 + t32ε−2 3h(t) + 1

|∆(t)|
1

2
lnM .

We actually show that

B3 ≥ t3Ψ
1

2
lnM (15)

which implies (14) which, as discussed, in turn implies (13). Consider the ratio

B3

t3Ψ 1
2 lnM

=
1
2 t

3Ψ ln2(t 3
√

Ψ)

t3Ψ 1
2 lnM

=
ln2(t 3

√
Ψ)

lnM
≥ ln2(t 3

√
Ψ)

ln
(

t 3
√

Ψ
(

1 + ln2/3
(

t 3
√

Ψ
))) . (16)

27



We now show that t 3
√

Ψ ≥ 5. By the assumptions t > M ≥ 25 and by

t
3
√

Ψ ≥ t
3
√

|∆(t)|
≥

√
t

which holds because |∆(t)| ≤ t3/2 (in a graph with t edges there can not be more than t3/2 triangles) we
have that t 3

√
Ψ ≥ 5. Hence Fact 3 holds and we can write, from (16):

ln2(t 3
√

Ψ)

ln
(

t 3
√

Ψ
(

1 + ln2/3
(

t 3
√

Ψ
))) ≥ ln2(t 3

√
Ψ)

ln2
(

t 3
√

Ψ
) ≥ 1,

which proves (15), and in cascade (14), (13), (12), and the thesis.

Relationship between trièst-base and mix. We now discuss the relationship between the φ(t) and
φ

(t)
mix, when both trièst-base and mix use a reservoir of size M .

Lemma 8. For any t > M we have

∣

∣

∣φ(t) − φ
(t)
mix

∣

∣

∣ ≤ φ
(t)
mix

4

M − 2
.

Proof. We start by looking at the ratio between t(t−1)(t−2)
M(M−1)(M−2) and (t/M)3. We have:

1 ≤ t(t− 1)(t− 2)

M(M − 1)(M − 2)

(

M

t

)3

=
M2

(M − 1)(M − 2)

(t− 1)(t− 2)

t2

≤ M2

(M − 1)(M − 2)

≤ 1 +
4

M − 2

where the last step follows from Fact 1. Using this, we obtain

∣

∣

∣φ(t) − φ
(t)
mix

∣

∣

∣ =

∣

∣

∣

∣

∣

τ (t) t(t− 1)(t− 2)

M(M − 1)(M − 2)
− τ (t)

(

t

M

)3
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

τ (t)

(

t

M

)3
(

t(t− 1)(t− 2)

M(M − 1)(M − 2)

(

M

t

)3

− 1

)∣

∣

∣

∣

∣

≤ τ (t)

(

t

M

)3
4

M − 2

= φ
(t)
mix

4

M − 2
.

Tying everything together. Finally we can use the previous lemmas to prove our concentration result
for trièst-base.

Proof of Thm. 3. For M as in the hypothesis we have, from Lemma 7, that

Pr
(

φ
(t)
mix ≤ (1 + ε/2)|∆(t)|

)

≥ 1 − δ .

Suppose the event φ(t)
mix ≤ (1 + ε/2)|∆(t)| (i.e., |φ(t)

mix − |∆(t)|| ≤ ε|∆(t)|/2) is indeed verified. From this and
Lemma 8 we have

|φ(t) − φ
(t)
mix| ≤

(

1 +
ε

2

)

|∆(t)| 4

M − 2
≤ |∆(t)| 6

M − 2
,

28



where the last inequality follows from the fact that ε < 1. Hence, given that M ≥ 12ε−1 + e2 ≥ 12ε−1 + 2,
we have

|φ(t) − φ
(t)
mix| ≤ |∆(t)|ε

2
.

Using the above, we can then write:

|φ(t) − |∆(t)|| = |φ(t) − φ
(t)
mix + φ

(t)
mix − |∆(t)||

≤ |φ(t) − φ
(t)
mix| + |φ(t)

mix − |∆(t)||
≤ ε

2
|∆(t)| +

ε

2
|∆(t)| = ε|∆(t)|

which completes the proof.

A.2 Theoretical results for trièst-impr

Proof of Thm. 4. We prove the statement for the estimation of global triangle count. The proof for the local
triangle counts follows the same steps.

If t ≤ M trièst-impr behaves exactly like trièst-base, and the statement follows from Lemma 1.
Assume now t > M and assume that |∆(t)| > 0, otherwise, we deterministically return 0 as an estimation

and the thesis follows. Let λ ∈ ∆(t) and denote with a, b, and c the edges of λ and assume, w.l.o.g., that
they appear in this order (not necessarily consecutively) on the stream. Let tλ be the time step at which c
is on the stream. Let δλ be a random variable that takes value ξ2,tλ−1 if a and b are in S at the end of time
step tλ − 1, and 0 otherwise. Since it must be tλ − 1 ≥ 2, from Lemma 4 we have that

Pr (δλ = ξ2,tλ−1) =
1

ξ2,tλ−1
. (17)

When c = (u, v) is on the stream, i.e., at time tλ, trièst-impr calls UpdateCounters and increments
the counter τ by |NSu,v|ξ2,tλ−1, where |NSu,v| is the number of triangles with (u, v) as an edge in ∆S∪{c}. All
these triangles have the corresponding random variables taking the same value ξ2,tλ−1. This means that the
random variable τ (t) can be expressed as

τ (t) =
∑

λ∈∆(t)

δλ .

From this, linearity of expectation, and (17), we get

E

[

τ (t)
]

=
∑

λ∈∆(t)

E[δλ] =
∑

λ∈∆(t)

ξ2,tλ−1 Pr (δλ = ξ2,tλ−1) =
∑

λ∈∆(t)

ξ2,tλ−1
1

ξ2,tλ−1
= |∆(t)| .

Before proving Thm. 5, we need the following technical lemma.
For any time step t and any edge e ∈ E(t), we denote with te the time step at which e is on the stream.

For any λ ∈ ∆(t) we denote as tλ the time at which the last edge of λ is on the stream. W.l.o.g., let
λ = (ℓ1, ℓ2, ℓ3), where the edges are numbered in order of appearance on the stream. We define the event
Dλ as the event that ℓ1 and ℓ2 are both in the edge sample S at the end of time step tλ − 1.

Lemma 9. Let λ = (ℓ1, ℓ2, ℓ3) and γ = (g1, g2, g3) be two disjoint triangles, where the edges are numbered
in order of appearance on the stream, and assume, w.l.o.g., that the last edge of λ is on the stream before
the last edge of γ. Then

Pr(Dγ | Dλ) ≤ Pr(Dγ) .

Proof. Consider first the case where all edges of λ appear on the stream before any edge of γ, i.e.,

tℓ1
< tℓ2

< tℓ3
< tg1

< tg2
< tg3

.

29



The presence or absence of either or both ℓ1 and ℓ2 in S at the beginning of time step tℓ3 (i.e., whether
Dλ happens or not) has no effect whatsoever on the probability that g1 and g2 are in the sample S at the
beginning of time step tg3

. Hence in this case,

Pr(Dγ | Dλ) = Pr(Dγ) .

Consider now the case where, for any i ∈ {1, 2}, the edges g1, . . . , gi appear on the stream before ℓ3 does.
Define now the events

Ai: “the edges g1, . . . , gi are in the sample S at the beginning of time step tℓ3
.”

Bi: if i = 1, this is the event “the edge g2 is inserted in the sample S during time step tg2
.” If i = 2, this

event is the whole event space, i.e., the event that happens with probability 1.

C: “neither g1 nor g2 were among the edges removed from S between the beginning of time step tℓ3
and the

beginning of time step tg3
.”

We can rewrite Dγ as
Dγ = Ai ∩Bi ∩ C .

Hence

Pr(Dγ | Dλ) = Pr (Ai ∩Bi ∩ C | Dλ)

= Pr (Ai | Dλ) Pr (Bi ∩ C | Ai ∩Dλ) . (18)

We now show that
Pr (Ai | Dλ) ≤ Pr (Ai) .

If we assume that tℓ3
≤ M + 1, then all the edges that appeared on the stream up until the beginning of tℓ3

are in S. Therefore,
Pr (Ai | Dλ) = Pr(Ai) = 1 .

Assume instead that tℓ3 > M + 1. Among the
(tℓ3−1

M

)

subsets of E(tℓ3−1) of size M , there are
(tℓ3−3

M−2

)

that
contain ℓ1 and ℓ2. From Lemma 3, we have that at the beginning of time tℓ3 , S is a subset of size M of
E(tℓ3−1) chosen uniformly at random. Hence, if we condition on the fact that {ℓ1, ℓ2} ⊂ S, we have that S
is chosen uniformly at random from the

(tℓ3−3
M−2

)

subsets of E(tℓ3−1) of size M that contain ℓ1 and ℓ2. Among

these, there are
(tℓ3−3−i

M−2−i

)

that also contain g1, . . . , gi. Therefore,

Pr(Ai | Dλ) =

(tℓ3−3−i
M−2−i

)

(tℓ3−3
M−2

) =

i−1
∏

j=0

M − 2 − j

tℓ3
− 3 − j

.

From Lemma 4 we have

Pr(Ai) =
1

ξi,tℓ3−1
=

i−1
∏

j=0

M − j

tℓ3 − 1 − j
,

where the last equality comes from the assumption tℓ3
> M + 1. From the same assumption and from the

fact that for any j ≥ 0 and any y ≥ x > j it holds x−j
y−j ≤ x

y , then we have

Pr(Ai | Dλ) ≤ Pr(Ai) .

This implies, from (18), that

Pr(Dγ | Dλ) ≤ Pr(Ai) Pr(Bi ∩ C | Ai ∩Dλ) . (19)

Consider now the events Bi and C. When conditioned on Ai, these event are both independent from Dλ:
if the edges g1, . . . , gi are in S at the beginning of time tℓ3

, the fact that the edges ℓ1 and ℓ2 were also in

30



S at the beginning of time tℓ3 has no influence whatsoever on the actions of the algorithm (i.e., whether an
edge is inserted in or removed from S). Thus,

Pr(Ai) Pr(Bi ∩ C | Ai ∩Dλ) = Pr(Ai) Pr(Bi ∩ C | Ai) .

Putting this together with (19), we obtain

Pr(Dγ | Dλ) ≤ Pr(Ai) Pr(Bi ∩ C | Ai) ≤ Pr(Dγ) .

We can now prove Thm. 5.

Proof of Thm. 5. We prove the statement for the estimation of global triangle count. The proof for the local
triangle counts follows the same steps.

Assume |∆(t)| > 0, otherwise our estimation is deterministically correct and has variance 0 and the thesis
holds. Let λ ∈ ∆(t) and let δλ be as in the proof of Thm. 4. Since

Var [δλ] = ξ2,tλ−1 − 1 ≤ ξ2,t−1,

we have:

Var
[

τ (t)
]

= Var





∑

λ∈∆(t)

δλ



 =
∑

λ∈∆(t)

∑

γ∈∆(t)

Cov [δλ, δγ ]

=
∑

λ∈∆(t)

Var [δλ] +
∑

λ,γ∈∆(t)

λ6=γ

Cov [δλ, δγ ]

≤ |∆(t)|(ξ2,t−1 − 1) +
∑

λ,γ∈∆(t)

λ6=γ

(E[δλδγ ] − E[δλ]E[δγ ])

≤ |∆(t)|(ξ2,t−1 − 1) +
∑

λ,γ∈∆(t)

λ6=γ

(E[δλδγ ] − 1) . (20)

For any λ ∈ ∆(t) define qλ = ξ2,tλ−1. Assume now |∆(t)| ≥ 2, otherwise we have r(t) = w(t) = 0 and the
thesis holds as the second term on the r.h.s. of (20) is 0. Let now λ and γ be two distinct triangles in ∆(t)

(hence t ≥ 5). We have
E [δλδγ ] = qλqγ Pr (δλδγ = qλqγ)

The event “δλδγ = qλqγ” is the intersection of events Dλ ∩ Dγ , where Dλ is the event that the first two
edges of λ are in S at the end of time step tλ − 1, and similarly for Dγ . We now look at Pr(Dλ ∩Dγ) in the
various possible cases.

Assume that λ and γ do not share any edge, and, w.l.o.g., that the third (and last) edge of λ appears on
the stream before the third (and last) edge of γ, i.e., tλ < tγ . From Lemma 9 and Lemma 4 we then have

Pr(Dλ ∩Dγ) = Pr(Dγ |Dλ) Pr(Dλ) ≤ Pr(Dγ) Pr(Dλ) ≤ 1

qλqγ
.

Consider now the case where λ and γ share an edge g. W.l.o.g., let us assume that tλ ≤ tγ (since the
shared edge may be the last on the stream both for λ and for γ, we may have tλ = tγ). There are the
following possible sub-cases :

31



g is the last on the stream among all the edges of λ and γ: In this case we have tλ = tγ . The event
“Dλ ∩ Dγ” happens if and only if the four edges that, together with g, compose λ and γ are all in S
at the end of time step tλ − 1. Then, from Lemma 4 we have

Pr(Dλ ∩Dγ) =
1

ξ4,tλ−1
≤ 1

qλ

(M − 2)(M − 3)

(tλ − 3)(tλ − 4)
≤ 1

qλ

M(M − 1)

(tλ − 1)(tλ − 2)
≤ 1

qλqγ
.

g is the last on the stream among all the edges of λ and the first among all the edges of γ: In this
case, we have that Dλ and Dγ are independent. Indeed the fact that the first two edges of λ (neither
of which is g) are in S when g arrives on the stream has no influence on the probability that g and
the second edge of γ are inserted in S and are not evicted until the third edge of γ is on the stream.
Hence we have

Pr(Dλ ∩Dγ) = Pr(Dγ) Pr(Dλ) =
1

qλqγ
.

g is the last on the stream among all the edges of λ and the second among all the edges of γ:
In this case we can follow an approach similar to the one in the proof for Lemma 9 and have that

Pr(Dλ ∩Dγ) ≤ Pr(Dγ) Pr(Dλ) ≤ 1

qλqγ
.

The intuition behind this is that if the first two edges of λ are in S when g is on the stream, their
presence lowers the probability that the first edge of γ is in S at the same time, and hence that the
first edge of γ and g are in S when the last edge of γ is on the stream.

g is not the last on the stream among all the edges of λ: There are two situations to consider, or
better, one situation and all other possibilities. The situation we consider is that

1. g is the first edge of γ on the stream; and

2. the second edge of γ to be on the stream is on the stream at time t2 > tλ.

Suppose this is the case. Recall that if Dλ is verified, than we know that g is in S at the beginning of
time step tλ. Define the following events:

E1: “the set of edges evicted from S between the beginning of time step tλ and the beginning of time
step t2 does not contain g.”

E2: “the second edge of γ, which is on the stream at time t2, is inserted in S and the edge that is
evicted is not g.”

E3: “the set of edges evicted from S between the beginning of time step t2 + 1 and the beginning of
time step tγ does not contain either g or the second edge of γ.”

We can then write

Pr(Dγ | Dλ) = Pr(E1 | Dλ) Pr(E2 | E1 ∩Dλ) Pr(E3 | E2 ∩ E1 ∩Dλ) .

We now compute the probabilities on the r.h.s., where we denote with 1t2>M (1) the function that has

32



value 1 if t2 > M , and value 0 otherwise:

Pr(E1 | Dλ) =

t2−1
∏

j=max{tλ,M+1}

((

1 − M

j

)

+
M

j

(

M − 1

M

))

=

t2−1
∏

j=max{tλ,M+1}

j − 1

j
=

max{tλ − 1,M}
max{M, t2 − 1} ;

Pr(E2 | E1 ∩Dλ) =
M

max{t2,M}
M − 1t2>M (1)

M
=
M − 1t2>M (1)

max{t2,M} ;

Pr(E3 | E2 ∩ E1 ∩Dλ) =

tγ−1
∏

j=max{t2+1,M+1}

((

1 − M

j

)

+
M

j

(

M − 2

M

))

=

tγ−1
∏

j=max{t2+1,M+1}

j − 2

j
=

max{t2,M} max{t2 − 1,M − 1}
max{tγ − 2,M − 1} max{tγ − 1,M} .

Hence, we have

Pr(Dγ | Dλ) =
max{tλ − 1,M}(M − 1t2>M (1)) max{t2 − 1,M − 1}
max{M, t2 − 1} max{(tγ − 2)(tγ − 1),M(M − 1)} .

With a (somewhat tedious) case analysis we can verify that

Pr(Dγ | Dλ) ≤ 1

qγ

max{M, tλ − 1}
M

.

Consider now the complement of the situation we just analyzed. In this case we have that two edges
of γ, that is, g and another edge h are on the stream before time tλ, in some non-relevant order (i.e.,
g could be the first or the second edge of γ on the stream). Define now the following events:

E1: “h and g are both in S at the beginning of time step tλ.”

E2: “the set of edges evicted from S between the beginning of time step tλ and the beginning of time
step tγ does not contain either g or h.”

We can then write
Pr(Dγ | Dλ) = Pr(E1 | Dλ) Pr(E2 | E1 ∩Dλ) .

If tλ ≤ M + 1, we have that Pr(E1 | Dλ) = 1. Consider instead the case tλ > M + 1. If Dλ is verified,
then both g and the other edge of λ are in S at the beginning of time step tλ. At this time, all subsets
of E(tλ−1) of size M and containing both g and the other edge of λ have an equal probability of being
S, from Lemma 3. There are

(

tλ−3
M−2

)

such sets. Among these, there are
(

tλ−4
M−3

)

sets that also contain h.
Therefore, if tλ > M + 1, we have

Pr(E1 | Dλ) =

(

tλ−4
M−3

)

(

tλ−3
M−2

) =
M − 2

tλ − 3
.

Considering what we said before for the case tλ ≤ M + 1, we then have

Pr(E1 | Dλ) = min

{

1,
M − 2

tλ − 3

}

.

We also have

Pr(E2 | E1 ∩Dλ) =

tγ−1
∏

j=max{tλ,M+1}

j − 2

j
=

max{(tλ − 2)(tλ − 1),M(M − 1)}
max{(tγ − 2)(tγ − 1),M(M − 1)} .

33



Therefore,

Pr(Dγ | Dλ) = min

{

1,
M − 2

tλ − 3

}

max{(tλ − 2)(tλ − 1),M(M − 1)}
max{(tγ − 2)(tγ − 1),M(M − 1)} .

With a case analysis, one can show that

Pr(Dγ | Dλ) ≤ 1

qγ

max{M, tλ − 1}
M

.

To recap we have the following two scenarios when considering two distinct triangles γ and λ:

1. if λ and γ share an edge and, assuming w.l.o.g. that the third edge of λ is on the stream no later than
the third edge of γ, and the shared edge is neither the last among all edges of λ to appear on the
stream nor the last among all edges of γ to appear on the stream, then we have

Cov[δλ, δγ ] ≤ E[δλδγ ] − 1 = qλqγ Pr(δλδγ = qλqγ) − 1

≤ qλqγ
1

qλqγ

max{M, tλ − 1}
M

− 1 ≤ max{M, tλ − 1}
M

− 1 ≤ t− 2 −M

M
;

where the last inequality follows from the fact that tλ ≤ t− 1 and t− 1 ≥ M .

2. in all other cases, including when γ and λ do not share an edge, we have E[δλδγ ] ≤ 1, and since
E[δλ]E[δγ ] = 1, we have

Cov[δλ, δγ ] ≤ 0 .

Hence, we can bound
∑

λ,γ∈∆(t)

λ6=γ

Cov[δλ, δγ ] ≤ z(t) t− 1 −M

M

and the thesis follows by combining this into (20).

We now prove Thm. 6 about trièst-impr.

Proof of Thm. 6. By Chebyshev’s inequality it is sufficient to prove that

Var[τ (t)]

ε2|∆(t)|2 < δ .

We can write
Var[τ (t)]

ε2|∆(t)|2 ≤ 1

ε2|∆(t)|

(

(η(t) − 1) + z(t) t− 2 −M

M |∆(t)|

)

.

Hence it is sufficient to impose the following two conditions:

1.

δ

2
>
η(t) − 1

ε2|∆(t)| (21)

>
1

ε2|∆(t)|
(t− 1)(t− 2) −M(M − 1)

M(M − 1)
,

which is verified for:

M(M − 1) >
2(t− 1)(t− 2)

δε2|∆(t)| + 2
.

As t > M , we have 2(t−1)(t−2)
δε2|∆(t)|+2

> 0. The condition in (21) is thus verified for:

M >
1

2

(
√

4
2(t− 1)(t− 2)

δε2|∆(t)| + 2
+ 1 + 1

)

34



2.

δ

2
> z(t) t− 2 −M

Mε2|∆(t)|2 ,

which is verified for:

M >
2z(t)(t− 2)

δε2|∆(t)|2 + 2z(t)
.

The theorem follows.

A.3 Theoretical results for trièst-fd

Before proving Thm. 7 we need the following technical lemmas.
The following is a corollary of [13, Thm. 1].

Lemma 10. For any t > 0, and any j, 0 ≤ j ≤ s(t), let B(t) be the collection of subsets of E(t) of size j.
For any B ∈ B(t) it holds

Pr
(

S = B | M (t) = j
)

=
1

(|E(t)|
j

)
.

That is, conditioned on its size at the end of time step t, S is equally likely to be, at the end of time step t,
any of the subsets of E(t) of that size.

The next lemma is an immediate corollary of [13, Thm. 2]

Lemma 11. Recall the definition of κ(t) from (2). We have

κ(t) = Pr(M (t) ≥ 3) .

The next lemma follows from Lemma 10 in the same way as Lemma 4 follows from Lemma 3.

Lemma 12. For any time step t and any j, 0 ≤ j ≤ s(t), let B be any subset of E(t) of size |B| = k ≤ s(t).
Then, at the end of time step t,

Pr
(

B ⊆ S | M (t) = j
)

=







0 if k > j
1

ψk,j,s(t)

otherwise .

The next two lemmas discuss properties of trièst-fd for t < t∗, where t∗ is the first time that |E(t)|
had size M + 1 (t∗ ≥ M + 1).

Lemma 13. For all t < t∗, we have:

1. d
(t)
o = 0; and

2. S = E(t); and

3. M (t) = s(t).

Proof. Since the third point in the thesis follows immediately from the second, we focus on the first two
points.

The proof is by induction on t. In the base base for t = 1: the element on the stream must be an
insertion, and we deterministically insert the edge in S. Assume now that it is true for all time steps up to
(but excluding) some t ≤ t∗ − 1. We now show that it is also true for t.

Assume the element on the stream at time t is a deletion. The corresponding edge must be in S, from
the inductive hypothesis. Hence trièst-fd removes it from S and increments the counter di by 1. Thus it
is still true that S = E(t) and d

(t)
o = 0, and the thesis holds.

35



Assume now that the element on the stream at time t is an insertion. From the inductive hypothesis we
have that the current value of the counter do is 0.

If the counter di has currently value 0 as well, then, because of the hypothesis that t < t∗, it must be
that |S| = M (t−1 = s(t−1) < M . Therefore trièst-fd always inserts the edge in S. Thus it is still true that
S = E(t) and d

(t)
o = 0, and the thesis holds.

If otherwise di > 0, then trièst-fd flips a biased coin with probability of heads equal to

di

di + do
=
di

di
= 1,

therefore trièst-fd always inserts the edge in S and decrements di by one. Thus it is still true that S = E(t)

and d
(t)
o = 0, and the thesis holds.

The following result is an immediate consequence of Lemma 11 and Lemma 13.

Lemma 14. For all t < t∗ such that s(t) ≥ 3, we have κ(t) = 1.

We can now prove Thm. 7.

Proof of Thm. 7. We prove the statement for the estimation of global triangle count. The proof for the local
triangle counts follows the same steps.

Assume for now that t < t∗. From Lemma 13, we have that s(t) = M (t). If M (t) < 3, then it must be
s(t) < 3, hence |∆(t)| = 0 and indeed we return ρ(t) = 0 in this case. If instead M (t) = s(t) ≥ 3, then we have

ρ(t) =
τ (t)

κ(t)
.

From Lemma 14 we have that κ(t) = 1 for all t < t∗, hence ρ(t) = τ (t) in these cases. Since (an identical
version of) Lemma 2 also holds for trièst-fd, we have τ (t) = |∆S | = |∆(t)|, where the last equality comes
from the fact that S = E(t) (Lemma 13). Hence ρ(t) = |∆(t)| for any t ≤ t∗, as in the thesis.

Assume now that t ≥ t∗. Using the law of total expectation, we can write

E

[

ρ(t)
]

=

min{s(t),M}
∑

j=0

E

[

ρ(t) | M (t) = j
]

Pr
(

M (t) = j
)

. (22)

Assume that |∆(t)| > 0, otherwise, we deterministically return 0 as an estimation and the thesis follows.
Let λ be a triangle in ∆(t), and let δ(t)

λ be a random variable that takes value

ψ3,M(t),s(t)

κ(t)
=

s(t)(s(t) − 2)(s(t) − 2)

M (t)(M (t) − 1)(M (t) − 2)

1

κ(t)

if all edges of λ are in S at the end of the time instant t, and 0 otherwise. Since (an identical version of)
Lemma 2 also holds for trièst-fd, we can write

ρ(t) =
∑

λ∈∆(t)

δ
(t)
λ .

Then, using Lemma 11 and Lemma 12, we have, for 3 ≤ j ≤ min{M, s(t)},

E

[

ρ(t) | M (t) = j
]

=
∑

λ∈∆(t)

ψ3,j,s(t)

κ(t)
Pr

(

δ
(t)
λ =

ψ3,j,s(t)

κ(t)
| M (t) = j

)

= |∆(t)|ψ3,j,s(t)

κ(t)

1

ψ3,j,s(t)

=
1

κ(t)
|∆(t)|, (23)

36



and
E

[

ρ(t) | M (t) = j
]

= 0, if 0 ≤ j ≤ 2. (24)

Plugging this into (22), and using Lemma 11, we have

E

[

ρ(t)
]

= |∆(t)| 1

κ(t)

min{s(t),M}
∑

j=3

Pr(M (t) = j) = |∆(t)| .

We now move to prove Thm. 8 about the variance of the trièst-fd estimator. We first need some
technical lemmas.

Lemma 15. For any time t ≥ t∗, and any j, 3 ≤ j ≤ min{s(t),M}, we have:

Var
[

ρ(t)|M (t) = j
]

= (κ(t))−2
(

|∆(t)|
(

ψ3,j,s(t) − 1
)

+ r(t)
(

ψ2
3,j,s(t)ψ

−1
5,j,s(t) − 1

)

+ w(t)
(

ψ2
3,j,s(t)ψ

−1
6,j,s(t) − 1

))

(25)
An analogous result holds for any u ∈ V (t), replacing the global quantities with the corresponding local ones.

Proof. The proof is analogous to that of Theorem 2, using j in place of M , s(t) in place of t, ψa,j,s(t) in place
of ξa,t, and using Lemma 12 instead of Lemma 4. The additional (k(t))−2 multiplicative term comes from
the (k(t))−1 term used in the definition of ρ(t).

The term w(t)
(

ψ2
3,j,s(t)ψ

−1
6,j,s(t) − 1

)

is non-positive.

Lemma 16. For any time t ≥ t∗, and any j, 6 < j ≤ min{s(t),M}, if s(t) ≥ M we have:

Var
[

ρ(t)|M (t) = i
]

≤ (κ(t))−2
(

|∆(t)|
(

ψ3,j,s(t) − 1
)

+ r(t)
(

ψ2
3,j,s(t)ψ

−1
5,j,s(t) − 1

))

, for i ≥ j

Var
[

ρ(t)|M (t) = i
]

≤ (κ(t))−2
(

|∆(t)|
(

ψ3,3,s(t) − 1
)

+ r(t)
(

ψ2
3,5,s(t)ψ

−1
5,5,s(t) − 1

))

, for i < j

An analogous result holds for any u ∈ V (t), replacing the global quantities with the corresponding local ones.

Proof. The proof follows by observing that the term w(t)
(

ψ2
3,j,s(t)ψ

−1
6,j,s(t) − 1

)

is non-positive, and that (25)
is a non-increasing function of the sample size.

The following lemma deals with properties of the r.v. M (t).

Lemma 17. Let t > t∗, with s(t) ≥ M . Let d(t) = d
(t)
o + d

(t)
i denote the total number of unpaired deletions

at time t.17 The sample size M (t) follows the hypergeometric distribution:18

Pr
(

M (t) = j
)

=

{

(

s(t)

j

)(

d(t)

M−j

)/(

s(t)+d(t)

M

)

for max{M − d(t), 0} ≤ j ≤ M

0 otherwise
. (26)

We have

E

[

M (t)
]

= M
s(t)

s(t) + d(t)
, (27)

and for any 0 < c < 1

Pr
(

M (t) > E

[

M (t)
]

− cM
)

≥ 1 − 1

e2c2M
. (28)

17While both d
(t)
o and d

(t)
i

are r.v.s, their sum is not.
18We use here the convention that

(

0
0

)

= 1, and
(

k

0

)

= 1.

37



Proof. Since t > t∗, from the definition of t∗ we have that the M (t) has reached size M at least once (at t∗).
From this and the definition of d(t) (number of uncompensated deletion), we have that M (t) can not be less
than M − d(t). The rest of the proof for (26) and for (27) follows from [13, Thm. 2].

The concentration bound in (28) follows from the properties of the hypergeometric distribution discussed
in [33].

The following is an immediate corollary from the above.

Corollary 1. Consider the execution of trièst-fd at time t > t∗. Suppose we have d(t) ≤ αs(t), with
0 ≤ α < 1 and s(t) ≥ M . If M ≥ 1

2
√

α′−α
c′ ln s(t) for α < α′ < 1, we have:

Pr
(

M (t) ≥ M(1 − α′)
)

> 1 − 1
(

s(t)
)c′ .

We can now prove Thm. 8.

Proof of Thm. 8. From the law of total variance we have:

Var
[

ρ(t)
]

=

M
∑

j=0

Var
[

ρ(t)|M (t) = j
]

Pr
(

M (t) = j
)

+

M
∑

j=0

E

[

ρ(t)|M (t) = j
]2

(1 − Pr
(

M (t) = j
)

) Pr
(

M (t) = j
)

− 2

M
∑

j=1

j−1
∑

i=0

E

[

ρ(t)|M (t) = j
]

Pr
(

M (t) = j
)

E

[

ρ(t)|M (t) = i
]

Pr
(

M (t) = i
)

.

As shown in (23) and (24), for any j = 0, 1, . . . ,M we have E
[

ρ(t)|M (t) = j
]

≥ 0. This in turn implies:

Var
[

ρ(t)
]

≤
M
∑

j=0

Var
[

ρ(t)|M (t) = j
]

Pr
(

M (t) = j
)

+

M
∑

j=0

E

[

ρ(t)|M (t) = j
]2

(1 − Pr
(

M (t) = j
)

) Pr
(

M (t) = j
)

. (29)

Let us consider separately the two main components of (29), from Lemma 16 we have:

M
∑

j=0

Var
[

ρ(t)|M (t) = j
]

Pr
(

M (t) = j
)

=

M
∑

j≥M(1−α′)

Var
[

ρ(t)|M (t) = j
]

Pr
(

M (t) = j)
)

+

M(1−α′)
∑

j=0

Var
[

ρ(t)|M (t) = j
]

Pr
(

M (t) = j
)

≤ (κ(t))−2
(

|∆(t)|
(

ψ3,j,s(t) − 1
)

+ r(t)
(

ψ2
3,j,s(t)ψ

−1
5,j,s(t) − 1

))

Pr
(

M (t) > M(1 − α′)
)

+ ≤ (κ(t))−2

(

|∆(t)|
(

s(t)
)3

6
+ r(t) s

(t)

6

)

Pr
(

M (t) ≤ M(1 − α′)
)

(30)

According to our hypothesis M ≥ 1
2
√

α′−α
7 ln s(t), from Corollary 1 we thus have:

Pr
(

M (t) ≤ M(1 − α′))
)

≤ 1

(s(t))7
.

38



As r(t) < |∆(t)|2 and |∆(t)| ≤ (s(t))3 we have:

(κ(t))−2

(

|∆(t)|
(

s(t)
)3

6
+ r(t) s

(t)

6

)

Pr
(

M (t) ≤ M(1 − α′)
)

≤ (κ(t))−2

We can therefore rewrite (30) as:

M
∑

j=0

Var
[

ρ(t)|M (t) = j
]

Pr
(

M (t) = j
)

≤ (κ(t))−2
(

|∆(t)|
(

ψ3,M(1−α′),s(t) − 1
)

)

+ (κ(t))−2
(

r(t)
(

ψ2
3,M(1−α′),s(t)ψ

−1
5,M(1−α′),s(t) − 1

)

+ 1
)

. (31)

Let us now consider the term
∑M

j=0 E
[

ρ(t)|M (t) = j
]2

(1 − Pr
(

M (t) = j
)

) Pr
(

M (t) = j
)

. Recall that,
from (23) and (24), we have E

[

ρ(t)|M (t) = j
]

= |∆(t)|(κ(t))−1 for j = 3, . . . ,M , and E
[

ρ(t)|M (t) = j
]

= 0

for j = 0, 1, 2. From Corollary 1 we have that for j ≤ (1 − α′)M and M ≥ 1
2
√

α′−α
7 ln s(t)

Pr
(

M (t) = j
)

≤ Pr
(

M (t) ≤ (1 − α′)M
)

≤ 1
(

s(t)
)7 ,

and thus:

(1−α′)M
∑

j=0

E

[

ρ(t)|M (t) = j
]2

(1 − Pr
(

M (t) = j
)

) Pr
(

M (t) = j
)

≤ (1 − α′)M |∆(t)|2(κ(t))−2

(

s(t)
)7

≤ (1 − α′)(κ(t))−2, (32)

where the last passage follows since, by hypothesis, M ≤ s(t).
Let us now consider the values j > (1 − α′)M , we have:

M
∑

j>(1−α′)M

E

[

ρ(t)|M (t) = j
]2

(1 − Pr
(

M (t) = j
)

) Pr
(

M (t) = j
)

≤ α′M |∆(t)|2(κ(t))−2



1 −
M
∑

j>(1−α′)M

Pr
(

M (t) = j
)





≤ α′M |∆(t)|2(κ(t))−2
(

1 − Pr
(

M (t) > (1 − α′)M
))

≤ α′M |∆(t)|2(κ(t))−2

(

s(t)
)7

≤ α′(κ(t))−2, (33)

where the last passage follows since, by hypothesis, M ≤ s(t).
The theorem follows from composing the upper bounds obtained in (31), (32) and (33) according to (29).

We now prove Thm. 9 about trièst-fd.

Proof of Thm. 9. By Chebyshev’s inequality it is sufficient to prove that

Var[ρ(t)]

ε2|∆(t)|2 < δ .

39



From Lemma 8, for M ≥ 1√
a′−α

7 ln s(t) we have:

Var
[

ρ(t)
]

≤ (κ(t))−2|∆(t)|
(

ψ3,M(1−α′),s(t) − 1
)

+ (κ(t))−2r(t)
(

ψ2
3,M(1−α′),s(t)ψ

−1
5,M(1−α′),s(t) − 1

)

+ (κ(t))−22

Let M ′ = (1 − α′)M . In order to verify that the lemma holds, it is sufficient to impose the following two
conditions:

1.
δ

2
>

(κ(t))−2
(

|∆(t)|
(

ψ3,M(1−α′),s(t) − 1
)

+ 2
)

ε2|∆(t)|2 .

As by hypothesis |∆(t)| > 0, we can rewrite this condition as:

δ

2
>

(κ(t))−2
(

ψ3,M(1−α′),s(t) − ( |∆
(t)|−2
|∆(t)|

)

ε2|∆(t)|

which is verified for:

M ′(M ′ − 1)(M ′ − 2) >
2s(t)(s(t) − 1)(s(t) − 2)

δε2|∆(t)|(κ(t))2 + 2 |∆
(t)|−2
|∆(t)|

,

M ′ > 3

√

√

√

√

2s(t)(s(t) − 1)(s(t) − 2)

δε2|∆(t)|(κ(t))2 + 2 |∆
(t)|−2
|∆(t)|

+ 2,

M > (1 − α′)−1



 3

√

√

√

√

2s(t)(s(t) − 1)(s(t) − 2)

δε2|∆(t)|(κ(t))2 + 2 |∆
(t)|−2
|∆(t)|

+ 2



 .

2.
δ

2
>

(κ(t))−2

ε2|∆(t)|2 r
(t)
(

ψ2
3,M(1−α′),s(t)ψ

−1
5,M(1−α′),s(t) − 1

)

. (34)

As we have:

(κ(t))−2r(t)
(

ψ2
3,M(1−α′),s(t)ψ

−1
5,M(1−α′),s(t) − 1

)

≤ (κ(t))−2r(t)

(

s(t)

6M(1 − α′)
− 1

)

The condition (34) is verified for:

M >
(1 − α′)−1

3

(

r(t)s(t)

δε2|∆(t)|2(κ(t))−2 + 2r(t)

)

.

The theorem follows.

40


	Introduction
	Preliminaries
	Related work
	Algorithms
	A first algorithm – trièst-base
	Improved insertion algorithm - trièst-impr
	Fully-dynamic algorithm - trièst-fd

	Experimental evaluation
	Insertion-only case
	Fully-dynamic case

	Conclusions
	Additional theoretical results
	Theoretical results for trièst-base
	Theoretical results for trièst-impr
	Theoretical results for trièst-fd


