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a b s t r a c t

The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors,

for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe

the trigger hierarchy, from the identification of candidate showers at the level of a single detector,

amongst a large background (mainly random single cosmic ray muons), up to the selection of real

events and the rejection of random coincidences. Such trigger makes the surface detector array fully

efficient for the detection of EAS with energy above 3� 1018 eV, for all zenith angles between 03 and 603 ,

independently of the position of the impact point and of the mass of the primary particle. In these range

of energies and angles, the exposure of the surface array can be determined purely on the basis of the

geometrical acceptance.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The main objective of the Pierre Auger Collaboration is to
measure the flux, arrival direction distribution and mass compo-
sition of cosmic rays from � 1018 eV up to the highest energies.
Due to the very low fluxes at these energies, cosmic rays have to
be measured through the extensive air showers (EAS) they produce
in the atmosphere.

The Pierre Auger Observatory, located near Malargüe, Argen-
tina, at 1400 m asl, detects EAS in two independent and
complementary ways. It includes a surface detector array (SD),
consisting of 1600 water-Cherenkov detectors [1] on a triangular
grid of 1.5 km spacing covering an area of approximately
3000 km2, which detects the secondary particles at ground level
and thus samples their lateral density distribution. The surface
detector array is overlooked by a fluorescence detector (FD)
consisting of 24 telescopes at four sites, which measure the
fluorescence light emitted along the path of the air-showers and
thus traces their longitudinal development [2]. Showers detected
by both detectors are called hybrid events and they are
characterised more accurately with respect to direction and
energy than using either technique alone. However, the livetime
of the FD is limited to � 13%, as it only operates on clear,
moonless nights [2]. The bulk of data is provided by the SD with
its nearly 100% livetime. The study of the trigger and the
determination of the aperture of the SD is thus essential for the
physics aims of the Pierre Auger Observatory.

The SD data acquisition (DAQ) trigger must fulfill both physical
and technical requirements. The main limitation to the rate of
recordable events comes from the wireless communication
system which connects the surface detectors to the central
campus. The latter must serve continuously 1600 stations spread
over 3000 km2, each using an emitter consuming o1 W power to
transmit to collectors as far as 40 km away. The maximum
sustainable rate of events per detector is o1 per hour, to be
compared to the 3 kHz counting rate per station, due to the
atmospheric muon flux. The trigger thus must reduce the single
station rate, without inducing loss of physics events. It must also
allow data acquisition down to the lowest possible energy. To deal
with all these requirements, the design of the DAQ SD trigger
(described in Section 3) has been realised in a hierarchical form,
where at each level the single station rate becomes less and less,
by means of discrimination against background stricter and
stricter. At the same time, the DAQ trigger is designed to allow
the storage of the largest possible number of EAS candidates.

The ultimate discrimination of EAS from chance events due to
combinatorial coincidences among the surface detectors is
performed off-line through a selection of physics events, and of
detectors participating in each of them. The event selection
procedure is hierarchical too, it is described in Section 4.
In Section 5.1, we show that the trigger and event selection
hierarchy makes the array fully efficient for the detection of
showers above 3� 1018 eV. We restrict ourselves to this energy
range for the calculation of the exposure (described in Section
5.2), which is simply proportional to the observation time and to
the geometrical size of the SD array. Under these conditions the
calculation of the exposure is very robust and almost devoid of
systematic uncertainties. Therefore, it is straightforward to
calculate the cosmic ray flux as the ratio of the number of
collected events to the effective area and observation time, as it
was done in the measurement of the cosmic ray spectrum by the
surface detector of Auger [3].
2. The surface detector of the Pierre Auger Observatory

Each water Cherenkov detector of the surface array has a 10 m2

water surface area and 1.2 m water depth, with three 9 in.
photomultiplier tubes (PMTs) looking through optical coupling
material into the water volume, which is contained in a Tyveks

reflective liner [1,4]. Each detector operates autonomously, with
its own electronics and communications systems powered by
solar energy. Each PMT provides two signals, which are digitised
by 40 MHz 10-bit Flash Analog to Digital Converters (FADCs). One
signal is directly taken from the anode of the PMT, and the other
signal is provided by the last dynode, amplified and inverted
within the PMT base electronics to a total signal nominally 32
times the anode signal. The two signals are used to provide
sufficient dynamic range to cover with good precision both the
signals produced in the detectors near the shower core
ð � 1000 particles=msÞ and those produced far from the shower
core ð � 1 particle=msÞ. Each FADC bin corresponds to 25 ns [4].

The signals from the three PMTs are sent to a central data
acquisition system (CDAS) once a candidate shower event triggers
the surface detector array (see Section 3.2). The total bandwidth
available for data transmission from the detectors to the CDAS is
1200 bits per second, which precludes the possibility of any
remote calibration. For this reason, the calibration of each
detector is performed locally and automatically. It relies on the
measurement of the average charge collected by a PMT from the
Cherenkov light produced by a vertical and central through-going
muon, QVEM [5]. The water-Cherenkov detector in its normal
configuration has no way to select only vertical muons. However,
the distribution of the light of atmospheric muons produces a
peak in the charge distribution, Qpeak

VEM (or VEM in short), as well as
a peak in that of the pulse height, Ipeak

VEM , both of them being
proportional to those produced by a vertical through-going muon.
The calibration parameters are determined with 2% accuracy
every 60 s and returned to the CDAS with each event. Due to the
limited bandwidth, the first level triggers are also performed



ARTICLE IN PRESS

> 0.2

2 Hz

T2 (Single Station Level) T1 (Single Station Level) T3 (CDAS level)

100 Hz 20 Hz

ToT−T1 ToT−T2>0.2

2 Hz

TH−T2

0.02 Hz

0.01 Hz

ToT2C1 &3C2

T3

CDAS

2C1 &3C2 &4C4>3.2TH−T1

1 bin 
> 1.75 I peak

VEM

1 bin 

I
peak
VEM

Ipeak
VEM

13 bins

VEM
peak

13 bins

I

Fig. 1. Schematics of the hierarchy of the trigger system of the Auger surface detector.
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locally. These triggers (Section 3.1) are set in electronic units
(channels): the reference unit is Ipeak

VEM .
With respect to shower reconstruction, the signals recorded by

the detectors—evaluated by integrating the FADC bins of the
traces—are converted to units of QVEM . These are fitted with a
measured Lateral Distribution Function (LDF) [6], that describes
SðrÞ, the signals as a function of distance r from the shower core, to
find the signal at 1000 m, S ð1 0 0 0Þ [7]. The variation of S ð1 0 0 0Þ
with zenith angle y arising from the evolution of the shower, is
quantified by applying the constant integral intensity cut method
[8], justified by the approximately isotropic flux of primary
cosmic rays. An energy estimator for each event, independent of y,
is S38, the S ð1 0 0 0Þ that EAS would have produced had they
arrived at the median zenith angle, 383. The energy corresponding
to each S38 is then obtained through a calibration with the
fluorescence detector based on a subset of high-quality hybrid
events [3].
3. The DAQ trigger system of the surface detector array

The trigger for the surface detector array is hierarchical. Two
levels of trigger (called T1 and T2) are formed at each detector. T2
triggers are combined with those from other detectors and
examined for spatial and temporal correlations, leading to an
array trigger (T3). The T3 trigger initiates data acquisition and
storage. The logic of this trigger system is summarised in Fig. 1.

3.1. Single detector triggers

The T1 triggers data acquisition in each water Cherenkov
detector: data are stored on the local disk for 10 s waiting for a
possible T3. Two independent trigger modes are implemented as
T1, having been conceived to detect, in a complementary way, the
electromagnetic and muonic components of an air-shower. The
first T1 mode is a simple threshold trigger (TH) which requires the
coincidence of the three PMTs each above 1.75 Ipeak

VEM .5 This trigger
is used to select large signals that are not necessarily spread in
time. It is particularly effective for the detection of very inclined
showers that have crossed a large amount of atmosphere and are
consequently dominantly muonic. The TH-T1 trigger is used to
5 For detectors with only two (one) operating PMTs the threshold is 2 (2.8)

Ipeak
VEM .
reduce the rate due to atmospheric muons from � 3 kHz to
� 100 Hz. The second T1 mode makes use of the fact that, for
other than very inclined showers or signals from more vertical
showers very close to the shower axis, the arrival of particles and
photons at the detector is dispersed in time [9,10]. For example, at
1000 m from the axis of a vertical shower, the time for the signal
from a water-Cherenkov detector to rise from 10 to 50% is about
300 ns. The second mode is designated the ‘‘Time-over-Threshold’’
trigger (ToT) and at least 13 bins (i.e. 4325 ns) in 120 FADC bins
of a sliding window of 3ms are required to be above a threshold of
0.2 Ipeak

VEM in coincidence in 2 out of 3 PMTs.6 This trigger is intended
to select sequences of small signals spread in time. The ToT trigger
is thus optimised for the detection of near-by, low energy
showers, dominated by the electromagnetic component, or for
high-energy showers where the core is distant. The time spread
arises from a combination of scattering (electromagnetic compo-
nent) and geometrical effects (muons) as discussed in [9,10]
where details are given of how the time spread depends on
distance and zenith angle. Since the average signal duration of a
single muon is only about 150 ns, the time spread of the ToT
(325 ns) is very efficient at eliminating the random muonback-
ground. The ToT rate at each detector is o2 Hz and is mainly due
to the occurrence of two muons arriving within 3ms, the duration
of the sliding window.

The T2 is applied in the station controller to reduce to about
20 Hz the rate of events per detector. This reduction is done to
cope with the bandwidth of the communication system between
the detectors and the central campus. The T2 triggers, namely
their time stamp and the kind of T2, are sent to the CDAS for the
formation of the trigger of the array. All ToT-T1 triggers are
promoted to the T2 level, whereas TH-T1 triggers are requested to
pass a further higher threshold of 3.2 Ipeak

VEM in coincidence among
the three PMTs.7 The rates of the TH-T2 triggers are rather
uniform in the detectors over the whole array within a few
percent, while those due to the ToT-T2 are less uniform. This is
due to the fact that the ToT is very sensitive to the shape of the
signal, this in turn depending on the characteristics of the water,
the reflective liner in the detector and the electronic pulse shaper.
However, the lack of uniformity of the trigger response over the
6 For detectors with only two (one) operating PMTs, the algorithm is applied

to two (one) PMTs.
7 For detectors with only two (one) operating PMTs the threshold is set to 3.8

(4.5) Ipeak
VEM .
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array does not affect the event selection or reconstruction above
the energy corresponding to saturated acceptance.

3.2. Trigger of the surface array

The third level trigger, T3, initiates the central data acquisition
from the array. It is formed at the CDAS, and it is based on the
spatial and temporal combination of T2. Once a T3 is formed, all
FADC signals from detectors passing the T2 are sent to the CDAS,
as well as those from detectors passing the T1 but not the T2,
provided that they are within 30ms of the T3.

The trigger of the array is realised in two modes. The first T3
mode requires the coincidence of at least three detectors that
have passed the ToT condition and that meet the requirement of a
minimum of compactness, namely, one of the detectors must
have one of its closest neighbours and one of its second closest
neighbours triggered. It is called ‘‘ToT2C1&3C2’’ , where Cn

indicates the nth set of neighbours (see Fig. 2). Once the spatial
coincidence is verified, timing criteria are imposed: each T2 must
be within ð6þ5CnÞms of the first one. An example of such T3
configuration is shown in Fig. 2, left. Since the ToT as a local
trigger has very low background, this trigger selects
predominantly physics events. The rate of this T3 with the full
array in operation is around 1600 events per day, meaning that
each detector participates in an event about 3 times per day. This
trigger is extremely pure since 90% of the selected events are real
showers and it is mostly efficient for showers below 603. The 10%
remaining are caused by chance coincidences due to the
permissive timing criteria. The second T3 mode is more
permissive. It requires a four-fold coincidence of any T2 with a
moderate compactness. Namely, among the four fired detectors,
within appropriate time windows, at least one must be in the first
set of neighbours from a selected station ðC1Þ, another one must
be in the second set ðC2Þ and the last one can be as far as in the
fourth set ðC4Þ. This trigger is called ‘‘2C1&3C2&4C4’’ . Concerning
timing criteria, we apply the same logic as for the ‘‘ToT2C1&3C2’’ .
An example of such T3 configuration, is shown in Fig. 2, right.
Such a trigger is efficient for the detection of horizontal showers
that, being rich in muons, generate in the detectors signals that
have a narrow time spread, with triggered detectors having wide-
spread patterns on the ground. With the full array configuration,
this trigger selects about 1200 events per day, out of which about
10% are real showers.

3.3. Efficiency of the single detector trigger

The single detector trigger probability as a function of the
signal, PðSÞ, besides being important for the determination of the
efficiency of the trigger of the array, is also of use in the event
reconstruction where non-triggered detectors are included up to
10 km from a triggered one [11].

The T1 efficiency versus signal in the detector, PðSÞ, is
determined by using the very large statistics of EAS ð � 106

Þ

recorded by the surface detector array. For each detected EAS, and
each participating detector, we measure the trigger probability
PðSÞ as the ratio NT ðSÞ=NONðSÞ, in different bins of y and Sð1000Þ, of
the number of triggered stations, NT , to the total number of active
stations, NON . S is the expected signal at a detector, based upon the
LDF fitted from the measured values from each detector, and
Sð1000Þ is the signal strength at 1 km, as derived from this fit.
Since PðSÞ is obtained from events that actually produced a T3, the
method is biased by events with a positive fluctuation in the
signal. This bias can be corrected by Monte Carlo simulations and
is found to be negligible at energies above around 3� 1018 eV.
Limiting the analysis to showers with S38416 VEM (correspond-
ing to about 3� 1018 eV), the trigger probability versus signal is
derived averaging over all the bins in y and Sð1000Þ. This is shown
in Fig. 3 (circles): the probability becomes 40:95 for S� 10 VEM.
This result is confirmed by an independent analysis that makes
use of showers triggering certain detectors that have been
specially located very close to one another. The surface array
has seven positions in which three detectors (so-called triplets)
have been deployed at 11 m from each other. In each triplet, only
one detector (master) sends T2 to CDAS, while the other two
(slaves) are independently read out each time a T3 is generated
and if they pass the T1. For each slave, the trigger probability
versus recorded signal S is derived from the ratio between the
number of events where both slaves have triggered and the
number of events where only the other one has triggered.
Depending if one or two slaves have triggered, S is either the
signal of the only triggered detector or the average of the two.
From the analysis of about 10 000 events, and combining the
probabilities for the two slaves, PðSÞ is obtained and it is shown in
Fig. 3 (triangles), in good agreement with the one obtained by
showers data.
4. Event selection of the surface detector array for showers
with zenith angle below 603

A selection of physics events and of detectors belonging to
each event is made after data acquisition. Indeed, a large number
of chance coincidence events is expected due to the large number
of possible combinations among the single detectors. We focus
here on the selection of events between 03 and 603 since more
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inclined showers have different properties and require specific
selection criteria described elsewhere [12].

Two successive levels of selection are implemented. The first
one (physics trigger) is based on space and time configurations of
the detectors, besides taking into account the kind of trigger in
each of them. The second one (fiducial trigger) requires that the
shower selected by the physics trigger is contained within the
array boundaries, to guarantee the accuracy of the event
reconstruction both in terms of arrival direction and energy
determination. The logic of this off-line trigger system and its
connection to the DAQ triggers is summarised in Fig. 4.
4.1. Physics trigger

The physics trigger, T4, is needed to select real showers from
the set of stored T3 data. Two criteria are defined, with different
aims. The first T4 criterion, so-called 3ToT, requires three nearby
stations, passing the T2-ToT, in a triangular pattern. It requires
additionally that the times of the signals in the three stations fit to
a plane shower front moving at the speed of the light. The number
of chance coincidences passing the 3 ToT condition over the full
array is o1 per day, thanks to the very low rate of the T2-ToT.
Due to their compactness, events with zenith angles below 603are
selected with high efficiency, i.e. more than 98%.

The second T4 criterion, so-called 4C1, requires four nearby
stations, with no condition on the kind of T2. In this case also,
it is required that the times of the signals in the four stations
fit to a plane shower front moving at the speed of the light.
This 4C1 trigger brings to � 100% the efficiency for showers
below 603.

The zenith angle distribution of events selected by the T4
criteria is shown in Fig. 5, left, in the unfilled histogram for 3ToT,
and in the filled one for the 4C1 that are not 3ToT: the two criteria
are clearly complementary, the latter favouring the selection of
events with larger zenith angles. In Fig. 5, right, the energy
distributions of events selected by the two different criteria are
shown: those selected by 3ToT have a median energy around
6� 1017 eV, while for those selected by 4C1 it is around
3� 1018 eV.

Besides disentangling accidental events, there is also the need
to identify, and reject, accidental detectors in real events, i.e.
detectors whose signals are by chance in time with the others, but
that in fact are not part of the event. To this aim, we define a
‘‘seed’’ made by three neighbouring detectors in a non-aligned
configuration. If there is more than one triangle of stations, the
seed with the highest total signal is chosen. If the T4 is a 3 ToT,
only ToT detectors can be considered to define the seed; if it is a
4C1, also TH detectors can be included. Once the triangle has been
determined, the arrival direction is estimated by fitting the arrival
times of the signals to a plane shower front moving with the
speed of light. Subsequently, all other detectors are examined, and
are defined as accidental if their time delay with respect to the
front plane is outside a time window of ½-2ms: þ1ms�. Detectors
that have no triggered neighbours within 3 km are always
removed.

After the selection chain (both event selection and accidental
detectors removal), 99.9% of the selected events pass the full
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reconstruction procedure, that is arrival direction, core position
and Sð1 0 0 0Þ are determined.

4.2. Fiducial trigger

The need for a fiducial trigger, T5, mainly arises from events
falling close to the border of the array, where a part of the shower
may be missing. In Fig. 6 a hybrid event is shown, that triggered the
SD and one of the FD telescopes, where a part of the SD information
is missing due to its position on the border of the array.

Such events could have wrong core positions, and conse-
quently, incorrect energies, as in this example where the energy
derived by SD is more than 4 times larger than the one estimated
by FD (1:4� 1019 eV instead of 3� 1018 eV). The main task of the
fiducial trigger is thus to select only events well contained in the
array, ensuring that the shower core is properly reconstructed.

The fiducial trigger should be applied a priori on the events, to
be independent of the reconstruction procedure. The T5 adopted
requires that the detector with the highest signal has all its 6
closest neighbours working at the time of the event (i.e., it must
be surrounded by a working hexagon). This ensures adequate
containment of the event inside the array. Even in the case of a
high energy event that falls inside, but close to the border of the
array, where part of the data may be missing, information from
the seven detectors closest to the shower core ensures a proper
reconstruction. Applying this condition, the maximum statistical
uncertainty in the reconstructed S(1000) due to event sampling
by the array is � 3% [11]. It has to be noted that this criterion also
discards events that, though contained, fall close to a non-working
detector: this is an important issue because, due to the large
number of detectors distributed over 3000 km2, about 1% of the
detectors are expected to be not functioning at any moment, even
with constant detector maintenance. For the fully completed
array, and taking this into account, the application of the T5
condition reduces the effective area by 10% with respect to the
nominal one.

Finally, the use of the fiducial trigger allows the effective area
of the array to saturate to the geometrical one above a certain
primary energy. Indeed, with no conditions on event containment,
the acceptance would increase with increasing energy, since
showers falling outside the borders of the array might still trigger
sufficient detectors to be recorded; the higher their energy, the
farther the distance.
5. Aperture and exposure of the surface detector array for
showers with zenith angle below 603

The aperture of the surface detector array is given by the
effective area integrated over solid angle. When the trigger and
event selection have full efficiency, i.e. when the acceptance does
not depend on the nature of the primary particle, its energy or
arrival direction, the effective area coincides with the geometrical
one. In Section 5.1, the energy above which the acceptance
saturates is derived. In Section 5.2, the calculation of the exposure
above this energy is detailed.

5.1. Determination of the acceptance saturation energy

I. From SD data: The acceptance saturation energy, ESAT , is
determined using two different methods that use events recorded
by the surface detector array. In the first one, starting from
detected showers, mock events are generated by fluctuating the
amplitude of the signals recorded in each detector and their
arrival time. Such fluctuations are measured [13,14] by using twin
detectors located at 11 m from each other. To each simulated
event, the full trigger and event selection chain are applied. From
the ratio of the number of triggered events to the simulated, the
trigger efficiency is obtained as a function of energy, as shown in
Fig. 7 (triangles). As can be seen, the trigger probability becomes
almost unity ð497%Þ at energy E� 3� 1018 eV for all angles
between 03 and 603. The fact that the method is based on the use
of showers that actually triggered the array may bias the
estimation of the trigger probability at low energy. However, it
does not bias the result on the trigger probability close to full
efficiency, and hence on ESAT .

II. From hybrid data: The hybrid data sample is composed of
events observed by the FD and that triggered at least one SD
detector: consequently, it has an intrinsically lower energy
threshold than the SD. For each bin in energy (of width 0.2 in
log10ðEÞ), the number of events that pass the SD trigger out of the
total number of events are counted. To avoid biases from primary
composition, the same data selection criteria as in Ref. [15] are
used. Additionally, in analogy with the T5, to avoid the effects of
the borders of the array, it is required that the detector used in the
hybrid geometry reconstruction is surrounded by 6 active
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detectors. The trigger efficiency of the surface detector array is
found to be saturated ð497%Þ for energies above 3� 1018 eV, as
shown in Fig. 7 (circles), in agreement with what is obtained by
the analysis of SD data alone.

III. Cross-check with simulations: ESAT is finally cross-checked
using full shower and detector simulations. The simulation
sample consists of about 5000 proton, 5000 photon and 3000
iron showers simulated using CORSIKA [16] with zenith angle
distributed as sinycosy ðyo603

Þ and energies ranging between
1017 and 1019:5 eV in steps of 0.25 (0.5 for photons) in log10ðEÞ. The
showers are generated using QGSJET-II [17] and FLUKA [18] for
high and low energy hadronic interactions, respectively. Core
positions are uniformly distributed at ground and each shower is
used five times, each time with a different core position, to
increase the statistics with a negligible degree of correlation. The
surface detector array response is simulated using Geant4 [19]
within the framework provided by the Off line software [20]. The
resulting trigger probability as a function of the Monte Carlo
energy for proton, iron and photon primaries is shown in Fig. 8 for
03oyo603. Due to their larger muon content, at low energies
iron primaries are slightly more efficient at triggering the array
than protons. However, the trigger becomes fully efficient at
3� 1018 eV, both for proton and iron primaries, in different
intervals of zenith angles. It is important to notice that the trigger
efficiency for photons is much lower. This is because photons tend
to produce deeper showers that are poor in muons.
8 This dead time can be due either to problems in the communication between

the stations and the CDAS or to problems of data storage in the stations.
5.2. Calculation of the integrated exposure

The studies described above have shown that the full efficiency
of the SD trigger and event selection is reached at 3� 1018 eV.
Above this energy, the calculation of the exposure is based solely
on the determination of the geometrical aperture and of the
observation time.

With respect to the aperture, the choice of a fiducial trigger
based on hexagons, as explained in Section 4.2, allows us to
exploit the regularity of the array very simply. The aperture of the
array is obtained as a multiple of the aperture of an elemental
hexagon cell, acell, defined as any active detector with six active
neighbours, as shown in Fig. 9.

At full efficiency, the detection area per cell is 1:95 km2. The
corresponding aperture for showers with yo603 is then
acellC4:59 km2 sr. The number of cells, NcellðtÞ, is not constant
over time due to possible temporary problems at the detectors
(e.g. failures of electronics, power supply, communication system,
etcy). NcellðtÞ is monitored second by second: we show in Fig. 10
the evolution of NcellðtÞ between the start of the data taking,
January 2004, and December 2008. Such precise monitoring of the
array configurations allows us to exploit data during all
deployment phases, clearly visible in the figure, as well as
during unstable periods as during, for example, January 2008
when huge storms affected the communication system.

The second-by-second monitoring provides at the same time
the aperture of the array per second, acell � NcellðtÞ, as well as the
observation time with high precision. To calculate the integrated
exposure over a given period of time, the aperture of the array,
NcellðtÞ � acell, is integrated over the number of live seconds. This
calculation is expected to be very precise, since it is based on a
purely geometrical aperture and a very good time precision.
However, both the determination of NcellðtÞ and of the observation
time are affected by uncertainties.

Concerning the determination of NcellðtÞ, to evaluate the
uncertainty in the number of active detectors, a check of the
consistency of the event rate of each detector with its running
time, determined from the monitoring system, is performed. The
uncertainty derived from this study is added to that due to errors
of communication between the station and the DAQ, which are
also monitored. Overall, the uncertainty on the determination of
NcellðtÞ amounts to about 1.5%.

For the determination of the observation time, and related
uncertainty, the dead time that is unaccounted for in the second
by second monitoring of the array, is taken into account.8 To
determine these, an empirical technique is exploited, based on the
study of the distribution of the arrival times of events, under the
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reasonable hypothesis that they follow a Poisson distribution.
Given the constant rate l for the T5 event rate per hexagon,
l� 1:4� 10-5 event per second per hexagon, the probability P

that the time interval T between two consecutive T5 events be
larger than T is given by: PðTÞ ¼ e-lT . We define intervals as dead
time if the Poisson probability of their occurrence is o10-5. As an
example, we show in Fig. 11 the distribution of time differences
for events acquired in 2008. The distribution is exponential with a
time constant of 72.4 s, as expected for the above value of l and
the observed average number of live hexagons during that year. In
the figure, the points outside the filled area show those time
intervals that have occurred with a Poisson probability o10-5.
The identified dead times generally correspond to periods of
software modifications at the level either of the single detectors
or of the CDAS. These were rather frequent during the deployment
phase of the surface detector array, which lasted until June 2008.
The uncertainty in the determination of the livetime is estimated
to be around 1%. Between January 2004 and December 2008, the
livetime of the surface detector array data acquisition is 96%.
Hidden dead times reduce the effective livetime to 87%, the
reduction being mostly due to the two first years of operation.
However, due to the growth of the surface detector array, their
impact on the total integrated exposure is a reduction of only 3%.
6. Conclusions

The DAQ trigger of the surface detector array of the Pierre
Auger Observatory is organised in a hierarchical way, starting at
the level of the single detector (T1, T2) up to the data acquisition
(T3). The selection of events below 603 takes place off-line, and it
is also hierarchical (T4, T5). The whole chain, from the single
detector trigger, up to event selection, is able to reduce the
counting rate of the single detector from about 3 kHz, due mainly
to single, uncorrelated, cosmic muons, down to about 3� 10-5 Hz.
This final rate is due to extensive air showers, more than 99% of
which pass the reconstruction chain.

In spite of the large number of detectors and the possible
number of chance events due to combinatorial coincidences
among the detectors, the high-purity Time Over Threshold trigger
enables the main trigger of the array to be kept at the level of a 3-
fold coincidence, thus extending the range of physics that can be
studied. Such a trigger, together with the event selection strategy,
allows the acquisition and reconstruction of about one cosmic ray
shower per minute, with median energy around 6� 1017 eV.
Moreover, it makes the surface detector array fully efficient for
showers due to primary cosmic rays above 3� 1018 eV, indepen-
dent of their mass and arrival directions. The trigger provides at
the same time a larger overlapping energy region with the FD,
which is naturally efficient at lower energies, allowing the
measurement of the cosmic ray spectrum down to 1018 eV [21].

Above 3� 1018 eV, the calculation of the exposure is purely
geometrical, being the integration of the geometrical aperture
over the observation time. Both of them are known with high
precision, so that the overall uncertainty on the integrated
exposure is o3%. The integrated SD exposure as a function of
time is shown in Fig. 12, from January 2004 to December 2008: at
the end of the period it amounts to 127907380 km2 sr yr. Even
though the SD was under continuous deployment until June 2008,
the effective livetime of the surface detector array averaged over
all the five years is high, being 87%. The effective livetime of the
SD is 96% for 2008 alone: with this livetime and the full surface
detector array deployed, the exposure is expected to increase by
about 500 km2 sr yr per month.
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