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1 Introduction  

 It is very common for closely-held business ventures, including limited liability companies 

(LLCs) and partnerships, to contain buy-sell provisions in their operating agreements. These clauses 

provide an exit mechanism for owners who no longer wish to participate in the business venture.  

One popular exit mechanism is the so-called “Texas Shootout,” a provision where one owner names 

a price and the other owner is compelled to either purchase the first owner’s shares or sell his own 

shares at the named price.1  As Circuit Judge Easterbrook recognizes, “The possibility that the 

person naming the price can be forced either to buy or to sell keeps the first mover honest.”2  

Because of their potential for achieving fair and efficient outcomes, these clauses have become 

practically boilerplate in various business areas3 such as real estate joint ventures.   

 Despite their widespread inclusion in business contracts, even the most experienced attorneys 

have rarely (if ever) seen a Texas Shootout clause triggered.4 These clauses typically give the 

owners discretion over whether to use the Texas Shootout as the exiting mechanism. For example, 

the operating agreement of the Omnibus Financial Group reads: 
 
“If for any reason any Member (‘the Electing Member’) is unwilling to continue to be a 
member of [the partnership] if another Member (‘the Notified Member’) is also a member 
of [the partnership], then the Electing Member may give the Notified Member written 
notice stating in such notice the value of a 1% Membership Interest (‘Interest Value’) 
whereupon the Notified Member shall, by written notice given to the Electing Member 
within 30 days from the date of receipt of the Electing Member's notice, elect either to 
purchase the Electing Member's interest in [the LLC] or to sell to the Electing Member the 
Notified Member's interest in [the LLC].” 5 

 

                                                 
1 Practitioners sometimes refer to these clauses as  Russian roulette agreements (Delaney v. Georgia-Pacific 
Corp., 601 P.2d 475; 1979), shotgun provisions (Damerow Ford Co. v. Bradshaw, 876 P.2d 788; 1994), put-
call options (Resolution Trust Corp. v. Residential Developers Fund Partners, WL 193363 (E.D.Pa); 1991) 
and buy-sell mechanisms (Universal Studios Inc. v Viacom Inc., 705 A.2d. 579; 1997), in addition to Texas 
Shootouts (RDO Foods Co. v. U.S. Int’l, Inc., 194 F.Supp.2d 962; 2002). 
2 Valinote v. Ballis; 295, F3d. 666; 2002. 
3 See, for instance, the “Standard Outline for Partnership or Shareholder Agreement,” proposed by Canada 
Business (http://www.canadabusiness.ca). 
4 E-mail correspondence with transactional real-estate lawyer Stevens Carey, a leading expert on buy-sell 
clauses, and Warren Kean, the transactional real-estate lawyer who chaired the American Bar Association 
(ABA) committee that recently published the document “Model Real Estate Development Operating 
Agreement with Commentary;” June 28-30, July 1-2, 2008. 
5 Valinote v. Ballis; F.Supp.2d; 2001 (emphasis added). The model agreement recently published by ABA 
also includes a shootout clause along these lines (http://www.abanet.org). 
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In other words, an owner who no longer wishes to participate in the business venture has the 

freedom and flexibility to negotiate the breakup in other ways, without actually initiating the Texas 

Shootout procedure.  

Our paper explores, both theoretically and experimentally, the private incentives of parties to 

trigger Texas Shootout clauses. We adopt a framework where two partners initially share ownership 

of the business assets. Later, an event occurs that makes joint ownership inefficient: the value of the 

underlying assets is higher if just one partner retains sole control and the other partner departs.  We 

initially assume that the two partners are equally capable of running the firm alone. Bargaining 

takes a very simple form: a random process (a coin flip) determines which partner will make a take-

it-or-leave-offer and which partner will receive that offer.  Bargaining is frustrated by the fact that 

one of the partners has private information about the common underlying value of the business 

assets. In this setting, when triggered, a Texas Shootout constitutes an optimal exit mechanism 

because it removes the inefficient “status quo” of joint ownership from the bargaining table.6  

Although Texas Shootout mechanisms are efficient, we demonstrate that parties are naturally 

reluctant to initiate or trigger them. A partner—whether informed or uninformed—can often capture 

greater equilibrium rents through simple offers to buy or simple offers to sell.7 The threat to remain 

with the “status quo” of joint ownership is used strategically to extract rents in bargaining and, in 

the process, can destroy joint value by generating inefficient breakdowns. When the informed 

partner is the offeror, there is a unique fully-separating equilibrium where buy-sell offers are only 

made when the common value of the asset is in an intermediate range and the gains from trade are 

small. If the common value is outside of this intermediate range (or the gains from trade are large), 

however, the offeror prefers to make a simple offer to buy or a simple offer to sell and bargaining 

failures arise. When the uninformed partner is the offeror, we show that buy-sell offers are never 

voluntarily made.  

The reluctance of parties to trigger Texas Shootouts  – and the potential inefficiencies that may 

arise – is illustrated by the recent takeover of beer giant Scottish & New Castle (S&N) by a 

                                                 
6 In theory, Texas Shootouts would be unnecessary for efficiency under symmetric information. Rational 
partners would negotiate a price for the sale of the asset rather than watching its value dissipate. 
7 Suppose that it is commonly known that the joint asset is $0 if the two partners stay together, but is worth 
$2 with concentrated ownership. In other words, there is $2 of bargaining surplus on the table. Suppose that 
Partner 1 can make a take-it-or-leave-it offer to Partner 2. The best buy-sell offer that Partner 1 could make is 
p = $1, giving each of the two partners half of the bargaining surplus. Partner 1 can clearly capture the entire 
bargaining surplus with a simple offer to buy Partner 2's stake for a penny or, analogously, to sell his stake 
for just under $2. 
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consortium formed by the Danish brewer Carlsberg and the Dutch brewer Heineken. The 

motivation for the takeover was, apparently, Carlsberg’s desire to get a 100% control over Baltic 

Beverages Holding (BBH), a joint venture operation in Russia in which Carlsberg and S&N were 

already partners.8 Instead of triggering the pre-existing Texas Shootout clause – which would have 

effectively forced Carlsberg to offer a fair price9 – Carlsberg formed a consortium with Heineken 

and made a simple offer to buy S&N in its entirety. In the words of John Nicolson, the chairman of 

BBH, “They [Carlsberg] think going for S&N means they can get BBH on the cheap.” 10  In 

response, S&N brought a legal action against Carlsberg claiming that Carlsberg’s attempt to win 

control over BBH without triggering the shootout clause was a breach of their original agreement.11 

Although S&N accepted the consortium’s takeover offer in April 2008, the agreement was reached 

only after many months of costly negotiations. 

While our theoretical predictions are aligned with anecdotes and empirical regularities reported 

by practitioners, actual field data on exit processes and outcomes are not generally available. One 

rare exception is the recent survey on exit clauses conducted by the National Association of Real 

Estate Investment Trusts (NAREIT) among its members. All 33 respondents to the survey reported 

including shootout clauses in their operating agreements, although 82% of them indicated that these 

clauses were rarely or never used.12 It is not clear, however, whether the contingencies that could 

trigger the shootout clause rarely occurred, or whether the parties adopted instead simple offers to 

buy or to sell as exit mechanisms.  

                                                 
8 “Baltic Beverages operates 19 breweries, holding the top position in the Russian, Baltic and Kazakh beer 
markets, and ranks third in Ukraine. Its brands include Baltika, Arsenalnoe, Slavutich and Alma-Ata […] 
‘We now [will] have full control of our destiny in Russia and other BBH territories and I am truly excited 
about the new opportunities this will present to us,’ said Jorgen Buhl Rasmussen, president and CEO of 
Carlsberg.  Emphasis added.  (http://www.ustoday.com; posted on January 25, 2008.) 
9 Practitioners are well aware and inform to their clients that shootouts might elicit litigation in case the price 
proposed by the offeror appears to be unfair. “In any buy-sell or buyout procedure, unless the process is fair 
[or appears so], the initiator can expect a challenge with the resulting delay and need to negotiate to 
conclude a termination” (Welborn, C., 1992; emphasis added).  
10 John Nicolson is also S&N's Eastern Europe managing director. He went on to say “They [Carlsberg] 
knows exactly the value of [BBH]. I know the value of it. And Heineken doesn't." (Simon Bowers, The 
Guardian, November 16, 2007; p. 29, Financial Section).  
11 S&N requested an arbitration tribunal in the Stockholm Chamber of Commerce to confirm that Carlsberg 
had breached the agreement over its joint venture (William Lyons, Scotland on Sunday, November 4, 2007). 
The decision of the tribunal was due on July 3, 2008 (Gelu Sulugiuc, Reuters UK, January 3, 2008; 
http://uk.reuters.com).  
12 Public letter from George Yungmann, Senior Vice-President, Financial Standards, NAREIT, to Russell 
Golden, Chairman of Emerging Issues Task Force, Financial Accounting Standards Board, October 22, 2007;  
http://www.reit.com/portals/0/files/nareit/htdocs/members/policy/ 
accounting/Letter%20to%20FASB%20re%20EITF0706.pdf. 
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We conducted a series of experiments with human subjects in order to assess the theoretical 

prediction that economic agents will eschew Texas shootout mechanisms in favor of simple offers 

to buy or simple offers to sell their ownership stakes.13 Computational demands on the subjects 

were reduced by using a simple binary setting with two asset types. We considered three different 

information treatments: symmetric information, asymmetric information with the uninformed party 

making a final offer, and asymmetric information with the informed party making a final offer.14  In 

equilibrium, (1) simple offers to buy or to sell would be always chosen and (2) breakdowns would 

occur in the information treatment where the uninformed party makes the final offer. The 

experimental results generally supported these theoretical predictions. The subjects largely avoided 

making buy-sell offers and inefficiencies due to bargaining failure were observed. Moreover, 

although symmetric information reduced the incidence of inefficient breakdowns, it did not 

eliminate breakdowns entirely. To the best of our knowledge, ours is the first experimental study of 

partnership dissolution mechanisms where Texas shootouts are not mandatory. Our paper also 

contributes to the experimental economics literature by providing the first empirical evidence on 

ultimatum exchange environments with endogenous offer types.15  

Our paper is part of a large literature on mechanisms for dividing valuable assets among 

multiple parties, a literature that includes the classic cake-cutting problem.16 Seminal work by 

Crawford (1977) assesses the properties of the equilibrium of the game induced by a mandatory 

“divide-and-choose” method. He shows that the allocations generated by these mechanisms are 

“envy-free,” in the sense that neither party prefers the allocation received by the other, but they do 

not necessarily satisfy Pareto efficiency or equity. Crawford (1979, 1980) proposes two procedures 

for overcoming these deficiencies: setting the offeree’s payoff in case of rejection equal to a fair 

division (to achieve efficiency),17 and auctioning the role of the offeror (to achieve equity).18   

                                                 
13 See Kittsteiner and Ockenfels (2006) for a discussion of the use of experimental economics methods to 
study market design mechanisms.  
14 Note that, under simple-buy or simple-sell offers, our experimental setting resembles an ultimatum 
exchange environment with endogenous offer types and positive outside options. 
15 Blount and Larrick (2000) study ultimatum environments with endogenous frame types (division-of-the-
pie and claim-from-a-common-pool frames) under complete information. We thank Rachel Croson for 
pointing out this paper. 
16 One famous (and practical) solution to this problem is provided by the divide-and-choose method: one 
person divides the cake into two pieces, and the other person chooses a piece.  
17 Crawford called this technique “EDDC,” referring to the equal-division divide-and-choose method. 
18 Bassi (2006) experimentally studies the properties of these two mechanisms. Her findings support the 
theoretical predictions. Note that the environment used in this study involves mandatory buy-sell 
mechanisms. 
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Using a mechanism-design approach, McAfee (1992) studies partnership dissolution 

mechanisms in an independent private values environment. He shows that the person receiving the 

buy-sell offer is in a relatively advantageous position, and that these mechanisms may result in 

inefficient outcomes. McAfee (1992) and Cramton, Gibbons and Klemperer (1987) explore 

alternative partnership dissolution mechanisms, such as a simultaneous sealed-bid auction where the 

partner with the high bid gets the partnership asset at a price equal to a pre-determined combination 

of the two bids.  Kittsteiner et al. (2008) experimentally study the efficiency property of the buy-sell 

and the sealed-bid auction procedures in mandatory environments. Contrary to the theoretical 

predictions, they find that both procedures are efficient. In a recent theoretical work, de Frutos and 

Kittsteiner (2008) argue that the inefficiency of buy-sell mechanisms (McAfee, 1992) is mitigated if 

the parties bid to determine the offeror. Jehiel and Pauzner (2006) and Fieseler et al. (2003) analyze 

the partnership dissolution problem in settings characterized by interdependent values and 

asymmetric information. They show that efficiency is even harder to achieve in these settings (see 

also Moldovanu, 2002, and Kittsteiner, 2003).19  None of the papers in this literature consider the 

strategic use of exit clauses in decentralized bargaining environments. As a result, the idea that 

making buy-sell offers may not be unilaterally profitable for the partners has been overlooked. 

As the literature moved to the assumption of common values, some of the focus has shifted 

away from bargaining efficiency towards fairness considerations (Brams and Taylor, 1996; Morgan, 

2003).20 The focus on fairness is justified, at least implicitly, by the observation that if an asset has a 

value that is common to all individual parties then no allocative efficiency implications are raised 

by an ex-post assignment of ownership to one partner or the other. In our model, however, Texas 

Shootouts raise salient efficiency implications even in the context of common values. In this context 

shootouts restrict strategic behaviors that interfere with the allocation of the asset to one party or 

another when joint ownership is no longer desirable. 

The rest of the paper is organized as follows. Section 2 sets out the theoretical framework and 

presents our main theoretical result that parties tend to eschew buy-sell offers in favor of simple 

offers to buy or sell. Section 3 presents experimental evidence on the behavior of economic agents 

in non-mandatory shootouts environments. Section 4 extends the theoretical analysis by allowing 

for heterogeneous abilities of partners. In this scenario, Texas shootouts are triggered by the 
                                                 
19 See also Minehart and Neeman (1999) and Levin and Tadelis (2005).  
20 Morgan (2003) studies a common-value framework under a more general information structure. He does 
not consider decentralized bargaining, simple-buy and simple-sell offers, and heterogeneous abilities.  
Morgan's work and our own were pursued independently. 
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stronger and better informed partner to extract greater value from the weaker partner. Section 5 

offers concluding remarks.  

 

2 Theoretical Framework 
Suppose that two risk-neutral partners, i = 1, 2, jointly own the business assets, whose (future) 

value is x.21 The initial ownership stakes of the two partners are 1θ  and 2θ , where the shares are 

strictly positive and 121 =+θθ . Partner 1 is better informed than Partner 2: he privately observes 

the value of the business assets, ,x  which is non-contractible, drawn from a commonly known 

distribution f(x), and is positive on its support [0, 1]. In real-world settings, non-managing investors 

(limited partners) might be the less informed partners. Given that they have weaker control rights 

over the business assets and are less likely to participate in the business activities, non-managing 

investors might be less familiar with the value of the business assets than the managing investors 

(general partners). 

Under joint ownership, the partners receive their respective shares of the assets’ value, x1θ  

and x2θ . Although presumably joint ownership of the business assets was originally desirable, an 

event has occurred that makes joint ownership inefficient. We assume that the value created by the 

assets is higher under the sole control of just one of the two partners, x + a, where a is strictly 

positive and is common knowledge. The assumption that the asset creates more value with 

concentrated ownership may be justified in a number of different ways. First, it may reflect an 

underlying moral-hazard-in-teams problem (Holmstrom, 1982) in which joint ownership leads to 

underinvestment relative to the socially efficient level. Second, the partnership may, by its very 

nature, require investments from each partner that are duplicative at this stage in the firm's life 

cycle. Finally, but certainly not least likely, the partnership may be in deadlock, wherein 

irreconcilable differences between partners prevents the business from moving forward.22  

We assume that negotiations take the following simple form: a random process (a coin flip) 

determines the offeror, i.e., the partner who makes a single take-it-or-leave-it offer to the offeree 

                                                 
21 According to Hauswald and Hege (2006), 80% of all joint ventures incorporated in the US between 1985 
and 2000 are two-partner joint ventures. 
22 It may also reflect private benefits of control that are outside the model. A sole partner, for example, may 
gain disproportionate non-pecuniary benefits such as respect and prestige in the business community or 
disproportionate pecuniary benefits from invitations to serve on corporate boards. 
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(the partner who receives the offer).23 The offer is denoted by ikp , where indicator {1,2}i∈  refers to 

the partner making the offer, and indicator }T,S,B{k ∈  tells whether it is a simple offer to buy at 

the given price (B), a simple offer to sell at that price (S), or a buy-sell offer which gives the 

receiver the option to either buy or sell at the named price (T).24 The prices here are normalized to 

represent 100% of the company’s stock.25  

Two environments are studied: a mandatory Texas Shootout environment and a non-mandatory 

Texas shootout environment. In the mandatory shootout environment, the offeror is compelled to 

make a buy-sell offer, and the offeree then decides whether to buy or sell at the named price. In the 

non-mandatory shootout environment, the offeror may choose a buy-sell offer but is not required to 

do so. Instead, he may choose to make a simple offer to buy the other partner’s shares, a simple 

offer to sell his own shares, or make no offer at all. If the offeree rejects a simple offer (or if the 

offeror decides to make no offer), the parties remain in the inefficient status quo of joint ownership. 

Note that the receiver of a buy-sell offer iTp , whether he is informed or uninformed about the 

value of the asset, prefers to exercise the option to buy or sell rather than remain with the status quo 

of joint ownership in our model. It is straightforward to establish this fact. Suppose that the offeree 

believes that the asset is worth x~ on average, so if he rejects the buy-sell offer he receives an 

expected status quo payoff of x~iθ . When iTp x> % , he clearly prefers selling at price iTp to joint 

ownership, since he receives xp i
iT

i
~θθ > . When iTp x< % , then he prefers to buy at price iTp than to 

remain in joint ownership. His expected payoff from buying at price iTp , iT
jx a pθ+ −% , is larger 

than ax~x~ax~ ij +=−+ θθ  and is therefore larger than his expected status quo payoff x~iθ . 

Therefore a risk-neutral receiver of a buy-sell offer would certainly be willing to exercise the option 

to either buy or sell. We will show, however, that in non-mandatory environments, the offeror, 

whether he is informed or uninformed about the value of the asset, will be generally hesitant to 

make a buy-sell offer. 

We use the following notation: )(xik
jπ is the equilibrium probability that Partner j ends up 

owning the asset given the offer of type k made by Partner i, and )x(S ik
j  is Partner j's equilibrium 

                                                 
23 In his work on divide-and-choose methods in mandatory environments, Crawford (1977, 1979, and 1980) 
also assumes that the role of offeror is randomly determined (by the toss of an unbiased coin).     
24 “T” refers to the Texas Shootout. 
25 If Partner 1 offers Bp1  and Partner 2 accepts, then Partner 1 would pay B1

2 pθ  to acquire Partner 2’s stake. 



 9

surplus, or his payoff above the status quo payoff xjθ . Our equilibrium concept is the perfect 

Bayesian equilibrium. We focus on the fully-separating equilibria in which Partner 1's offer reveals 

his privately-observed type.26 While some proofs are included in the text, most are relegated to 

Appendix A. 

 
2.1 Mandatory Texas Shootouts  
 
Informed Offeror 
Suppose that Partner 1, the informed partner, wins the coin-flip and makes a buy-sell offer p. 

Partner 2 can buy Partner 1’s stake at that price, giving the two partners payoffs },,{ 11 paxp θθ −+  

or can sell his own shares to Partner 1 at that price giving payoffs }p,pax{ 22 θθ−+ . The fully-

separating perfect Bayesian equilibrium has a particularly simple form: Partner 1 offers a fair 

market value to the uninformed partner, ,)(1 axxp T +=  making Partner 2 indifferent between 

buying and selling at that price. Partner 2 subsequently randomizes between buying and selling.27   

 

Proposition 1:  Suppose that the Texas Shootout is mandatory and that Partner 1, the informed 

partner, makes the buy-sell offer. There exists a unique fully-separating equilibrium of the 

continuation game where ax)x(p T1 += , 1
T1

1 )x( θπ = , and 2
T1

2 )x( θπ = .28 

 

It is not hard to show that it is incentive-compatible for Partner 1 to offer .)(1 axxp T +=  Indeed, 

suppose Partner 1 offers an arbitrary buy-sell price, p. Since Partner 2 buys with probability 2θ  and 

sells with probability 1θ  regardless of the price being offered, Partner 1’s expected profit 

is ],[][][ 12112 axpaxp +=−++ θθθθθ which is independent of the price offered. Partner 1 is 

therefore willing to make the fully revealing offer ax)x(p T1 += .  

                                                 
26 There are multiple signaling equilibria when Partner 1, the informed partner, makes the offer. 
27 Morgan (2003) has a “purified” version of this result in a model that abstracts entirely from efficiency 
considerations.  
28 Note that there are also pooling equilibria. Suppose, for example that all types offer the same buy-sell 
price ( )p E x a= + . It is rational for Partner 2 to randomize between buying and selling with probabilities 

2θ and 1θ , respectively. Given that Partner 2 is mixing in this way, it is rational for Partner 1 to offer 
( )p E x a= +  regardless of his type. As demonstrated in the text, Partner 1 is indifferent among the different 

price offers. 
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In equilibrium, the partners share the surplus, a, in proportion to their initial ownership stakes. 

Interestingly, the probability that a partner “wins” the shootout and is the ultimate owner of the 

assets is equal to his initial equity stake. To put it somewhat differently, the pattern of ownership is 

“sticky” – a partner who owns a greater share of the partnership before the breakup is more likely to 

be the owner after the breakup.  To see the intuition behind this result, consider the extreme case 

where Partner 2 has a 99% stake in the asset, but chooses to buy out Partner 1 with only .5 

probability (based on a flip of an evenly weighted coin). Hence, when Partner 1 names a low-ball 

price, he acquires an additional 99% of the asset for a discount with even odds, and risks being 

underpaid for just 1% of the asset with the same odds. Given that Partner 2 chooses to buy the asset 

with such low probability relative to his ownership interest, Partner 1 is encouraged to downwardly 

distort the announced asset price.  Indeed, unless Partner 2 chooses to buy the asset in direct 

proportion to his ownership interest, Partner 1 will have incentive to misrepresent the asset’s value. 

 

Uninformed Offeror 

Now suppose instead that Partner 2, the uninformed partner, makes the buy-sell offer .2Tp  Knowing 

the true value of the asset, x, Partner 1 will “buy” instead of “sell” if .2
1

2
2

TT ppax θθ >−+  In other 

words, he buys when the asset’s value is sufficiently high. This implies a 

cutoff, ,22 apx TT −= where Partner 1 sells his stake to Partner 2 when x is below the cutoff and 

buys Partner 2’s stake when x is above the cutoff.  Partner 2's problem is to find the best 

cutoff, ,2Tx and corresponding offer, axp T2T2 += , to maximize his expected payoff:  

 ∫∫ +++−+=
1

2
0

1
2 )()()()]([maxarg

z

z

z

T xdFazxdFazaxx θθ .          (1) 

 

Proposition 2:  Suppose that the Texas Shootout is mandatory and that Partner 2, the uninformed 

partner, makes the buy-sell offer. In equilibrium, ,22 axp TT += where 2
T2 )x(F θ= . If ,2Txx <  

then Partner 1 sells his stake to Partner 2;  if ,2Txx >   then Partner 1 buys Partner 2’s stake. 

 

This result makes intuitive sense. When Partner 2 raises the buy-sell price slightly (and the 

associated cutoff, T2x ), he pays a higher price for Partner 1’s stake if Partner 1 decides to sell, but 

also receives a higher price should Partner 1 decide to buy. The marginal cost for Partner 2 of 
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raising the price slightly is )( 2
1

TxFθ , since types below T2x  would have sold their stakes for the 

lower price. The benefit for Partner 2 of raising the price slightly is that he receives a better price 

for selling his own stake when Partner 1 decides to buy. The marginal benefit is )]x(F1[ T2
2 −θ , 

since he receives the higher price from those types above T2x . This marginal benefit is relatively 

large (and the marginal cost relatively small) when Partner 2’s initial stake, 2θ , is large.  When 2θ  is 

higher, Partner 2 will name a higher price and will be a net buyer with a higher probability.   

 

2.2 Non-Mandatory Texas Shootouts  
In this section, we assume that the business agreement includes a Texas Shootout clause, in which 

the parties have the option to use shootouts as an exit mechanism, but other mechanisms are also 

allowed. Hence, the offeror is not compelled to make, but may make, a Texas Shootout offer. This 

environment reflects real-world settings in which shootouts are generally non-mandatory. We will 

show that parties are hesitant to make buy-sell offers, i.e., they are “gun shy.” The reason for this is 

that the Texas Shootout mechanism gives a large part of the bargaining surplus to the offeree, 

surplus that may be retained by the offeror with a simple offer to buy or a simple offer to sell. This 

effect is exacerbated when the offeror is uninformed, since the offeree can take full advantage of her 

superior informational position when deciding whether to buy or sell. As a result, inefficient 

breakdowns will occur.29 Indeed, we will show that the parties' reluctance to make buy-sell offers 

reduces social welfare in the presence of asymmetric information.  

The reluctance of the parties to make buy-sell offers is easily illustrated for the special case 

where x is known by both parties (i.e., a symmetric information setting). Partner 1's best buy-sell 

offer, T1p , may be found by using backwards induction. Recall that given a price, p, Partner 2 will 

sell to Partner 1 if axp +>  and will buy when axp +< . Working backwards, it is not hard to see 

that the best offer (from Partner 1's perspective) makes Partner 2 exactly indifferent between buying 

                                                 
29 The Coase conjecture, that bargaining will resolve itself in the “twinkling of an eye,” does not extend to 
common value bargaining games, even when it is common knowledge that gains from trade exits. Vincent 
(1989) shows that inefficient breakdowns may persist in infinite-horizon bargaining games, and despite the 
common knowledge that there are gains from trade. A more familiar manifestation is Akerlof’s (1970) 
lemons problem. Empirical evidence supports these theoretical claims (Kennan and Wilson, 1989, 1993; 
Cramton and Tracy, 1992, 1994). See Ausubel et al. (2002) for a survey on bargaining with incomplete 
information. 
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and selling: ax)x(p T1 += .30 In equilibrium, the two partners would share the bargaining surplus 

in proportion to their initial ownership stakes: a)x(S i
T1

i θ= . It should now be clear why Partner 1 is 

unwilling to make a buy-sell offer. He can extract all of the bargaining surplus, a, through a simple 

offer to buy Partner 2 out for x)x(p B1 =  (plus a penny) or through a simple offer to sell his stake 

to Partner 2 for 1
S1 /ax)x(p θ+=  (minus a penny). 31 Now let’s reintroduce asymmetric 

information.  

 

Informed Offeror 
Suppose that Partner 1, the informed partner, can make a take-it-or-leave-it offer to Partner 2. We 

will show that Partner 1 will avoid making a buy-sell offer when the value of the asset is either 

sufficiently high or sufficiently low, and inefficient breakdowns will occur. In an intermediate 

range, however, Partner 1 may voluntarily choose to make a buy-sell offer. 

 

Proposition 3: Suppose that buy-sell offers are non-mandatory. There exists a unique fully-

separating equilibrium of the continuation game when the informed partner, Partner 1, makes the 

offer.  Let )}ln()/a(,min{x̂ 112 θθθ −= and )}ln()/a(1,max{x̂̂ 122 θθθ += . 

i. If  xx ˆ≤  Partner 1 offers to sell his shares to Partner 2 for 1
S1 /ax)x(p θ+= .  

 0)x(S1
1 =π , a/xS1

2
1e)x( θπ −= , a/xS1

1
1ae)x(S θ−= , and 0)x(S S1

2 = . 

ii. If  ]x̂̂,x̂(x∈  then Partner 1 makes a buy-sell offer ax)x(p T1 += . 

 1
T1

1 )x( θπ = , 2
T1

2 )x( θπ = , a)x(S 1
T1

1 θ= , and .)( 2
1
2 axS T θ=  

iii. If x̂̂x >  Partner 1 offers to buy Partner 2's shares for x)x(p B1 = . 

                                                 
30  If ,1 axp T +> Partner 2 strictly prefers to sell, and Partner 1 could profitably lower the price.  
If axp T1 +< , Partner 2 strictly prefers to buy and so Partner 1 could profitably raise the price. Any 
probability of mixing buying and selling constitutes an equilibrium of the subgame. The payoffs of the two 
parties are the same whether Partner 2 buys or sells.  
31 The reluctance to make buy-sell offers would also appear in an infinitely-repeated version of this model. 
To see why, suppose the partners believe that the Texas Shootout will be invoked at period t + 1, where they 
will split the surplus in proportion to their initial ownership stakes as described above. Partner 2's outside 
option, when viewed from period t, is )ax(2 +δθ , where δ is the common discount factor. Partner 1 surely 
prefers a simple offer to buy for )ax(p B1 += δ  to a buy-sell offer where he splits the surplus 50-50. We 
conjecture that this dynamic game will feature delay when the partners are privately informed about the 
common value of the asset. See Vincent (1989). 
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 a/)x1(B1
1

2e)x( −−= θπ , 0)x(B1
2 =π , a/)x1(B1

1
2ae)x(S −−= θ , and 0)x(S B1

2 =  . 

 

According to this proposition, Partner 1 is “gun shy,” avoiding buy-sell offers at the extremes of 

the distribution. The intuition is pretty straightforward. Suppose that x = 0, so the asset is worthless 

when owned jointly. Following the first part of the proposition, Partner 1 offers to sell the asset for 
1

1(0) /Sp a θ=  and Partner 2 accepts this offer for sure, 1)0(1
2 =Sπ . Partner 1 is able to extract the 

entire bargaining surplus, a, in this extreme case. When x rises the separating equilibrium has the 

feature that 1 ( )Sp x  rises and Partner 2 randomizes between accepting and rejecting.32 Partner 2's 

probability of acceptance, a/xS1
2

1e)x( θπ −= , is falling in the common value of the asset, x.  

 

 
Figure 1: Partner 1's Surplus in the Signaling Equilibrium 

( 2/121 == θθ ) 

 

When Partner 1's offer rises – signaling that the value x is higher – then a lower probability of 

acceptance by Partner 2 is necessary in order to maintain incentive compatibility for Partner 1 (it 

                                                 
32 If he rejects the offer, he gets the status quo payoff of x2θ . If he accepts, he gets x)x(pax 2

S1
1 θθ =−+  

as well. 

Texas Shootout 

Simple Offer 
to Sell 

Simple Offer 
to Buy 

x 

Surplus 

½ a 

a 

 

1 x̂ x̂̂
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mitigates his temptation to raise the selling price).  Partner 1's equilibrium surplus in the low range 

is proportional to Partner 2’s equilibrium probability of acceptance and is depicted in the left-hand 

side of Figure 1. When x is in the low range, then Partner 1’s surplus falls as x rises.  (Partner 2, on 

the other hand, receives no rents here – he is indifferent between purchasing the shares and the 

status quo of joint ownership.) 

 When x is in the highest range, on the other hand, Partner 1 will choose to make a simple offer 

to buy Partner 2’s stake. When 1x = , its highest level, Partner 1 offers to buy Partner 2’s stake for 

1)1(p B1 =  and Partner 2 always accepts, 1)1(1
1 =Bπ . There is no reason for Partner 2 to be dubious 

here: a price of 1 is an excellent price! Notice that Partner 1 extracts all of the bargaining surplus, a , 

when 1x = . More generally, when x falls below 1 then Partner 1 offers x)x(p B1 =  and the 

probability of acceptance, ,)( /)1(1
1

1 axB ex −−= θπ  is lower when x is farther from 1. Again, this is 

necessary to maintain incentive compatibility for Partner 1 since Partner 1 is tempted to pretend to 

have a lower type in this range.  As shown in the right hand side of Figure 1, Partner 1's surplus, 

)(1
1 xa Bπ , is rising in x, the common value of the asset, and equal to a when x = 1. 

In the middle range, however, incentive compatibility would require that a simple offer to buy 

or a simple offer to sell be accepted with probability less than 1θ , leaving Partner 1 with a surplus 

of less than a1θ .33  It is therefore in Partner 1's interest to use the Texas Shootout, guaranteeing 

himself his proportional share of a in this middle range. Indeed, the cutoffs x̂  and x̂̂  in the 

proposition are where Partner 1's surplus from the simple offers is equal to a1θ . The next result 

follows immediately from Proposition 1. 

 

Corollary 1: If ),ln(/ 121 θθθ−<a  then ]x̂̂,x̂(  is a non-empty set and Partner 1 makes a buy-sell 

offer with positive probability in equilibrium. When ),ln(/ 121 θθθ−≥a  then ]x̂̂,x̂(  is an empty set 

and Partner 1 does not make a buy-sell offer in equilibrium. 

 

Uninformed Offeror 
We will now show that Partner 2, the uninformed partner, would never find it in his private interest 

to make a buy-sell offer – he is “gun shy.” To see why, suppose that the two partners initially have 

                                                 
33 When 1

2 1 1( ) ( / ) ln( )S x aπ θ θ= − , then 1
2 1( )S xπ θ= . 
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equal ownership stakes, 2/121 == θθ . We know from Proposition 2 that the best buy-sell offer that 

Partner 2 can make is axp 0
T2 += , where 0x  is the median of the distribution of types. The Texas 

Shootout is a very unattractive mechanism from Partner 2's perspective. If the asset is worth more 

than average — i.e., it is a “plum,” 0xx >  — then Partner 1 will buy out Partner 2 at the median 

price.  If the asset is worth less than average — i.e., it is a “lemon,” 0xx <  — then Partner 1 sells out 

at the median price and Partner 2 is stuck with a less valuable asset. In both cases, Partner 2 is 

getting the “short end of the stick.”  When the bargaining surplus, a, is very small (so the status quo 

of joint ownership is almost as efficient as concentrated ownership), then Partner 2, the uninformed 

partner, clearly has no incentive to make a buy-sell offer. He would rather remain with the status 

quo. As the bargaining surplus grows the figurative “stick” is getting longer, increasing Partner 2’s 

incentive to make a buy-sell offer. Although Partner 2 is still getting the short end of the stick, there 

comes a point where he prefers the short end of the stick to having no stick at all.  

 

Lemma 1: Let 0)x(dF)xx()x(dF)xx()(â
1

x

T2
x

0

T2
21

T2

T2

>∫ −+∫ −= θθ . When âa < , Partner 2, the 

uninformed partner, prefers the status quo of joint ownership to making a buy-sell offer. When 

âa > , Partner 2 prefers making a buy-sell offer to the status quo of joint ownership. 
 

Proposition 4 states that the uninformed partner will eschew the Texas Shootout and make 

simple offers instead. This is true regardless of the value of a. Intuitively, simple offers create a 

threat of breakdown (and continued joint ownership), strengthening Partner 1's private incentive to 

accept an offer. Although simple offers lead to inefficient breakdowns in equilibrium, they increase 

Partner 2's share of the bargaining surplus.   

 

Proposition 4:  Partner 2, the uninformed partner, would never make a buy-sell offer voluntarily.  

He necessarily prefers a simple offer to buy Partner 1’s stake (or a simple offer to sell his own 

stake) to making a buy-sell offer or remaining with the status quo of joint ownership. 

 

Taken together, the results of this section suggest that buy-sell offers are only rarely made in 

non-mandatory environments. Since the bargaining tactics of offerors involve simple offers to buy 

or simple offers to sell, breakdowns occur in equilibrium. According to the experience of 
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practitioners, departing members of joint business ventures tend to negotiate outside of the shootout 

mechanism. Hence, inefficiencies may arise. 

  

3 Experimental Evidence 
This section reports the results from a series of experiments with human subjects. We investigate 

whether the behavior of the subjects follows the theoretical prediction that non-mandatory Texas 

Shootouts will be eschewed in favor of simple offers to buy or simple offers to sell. To reduce the 

cognitive demands on the subjects, we adopt a simple numerical example of the binary version of 

the model.34 Despite its simplicity, this binary setting captures the strategic environment of the more 

general case presented earlier. Importantly, this setting allows us to explore the private incentives of 

the parties to trigger a non-mandatory Texas Shootout clause. Three information environments are 

considered: symmetric information (S), asymmetric-information/uninformed offeror (A/UO), and 

asymmetric-information/informed offeror (A/IO). Note that, in case of simple-buy or simple-sell 

offers, our setting resembles an ultimatum strategic environment with positive outside options and 

endogenous offer types.35 

 

3.1 Binary Example 
Suppose that two partners have equal ownership stakes in the company.36 If the partners stay 

together, the value of the business assets is either low (xL = 150) or high (xH = 400). Suppose further 

that the probabilities of encountering low and high values are 3/4 and 1/4, respectively. If sole 

ownership is achieved, then the total value of the business assets is x a+ , where the surplus a = 100. 

                                                 
34 See Appendix B for a general analysis of the binary version of the model.  
35 Few labels are used to motivate the bargaining game: “value of the business assets,” “business partners,” 
“offer to sell,” “offer to buy,” “partnership dissolution,” and “sole ownership.” The choice of labels is 
aligned to the real-world settings in which these mechanisms are used.  
    Our experimental environment is an extension of Hoffman et al.’s (1994) “buyer-seller exchange 
environment with random entitlement,” under positive outside options, endogenous offer types, and multiple 
rounds. Experimental work on ultimatum strategic environments under symmetric information and exchange 
settings conducted by Fouraker and Siegel (1963) and by Hoffman et al. (1994, 1996) find support to the 
subgame perfect equilibrium concept. As suggested by Hoffman et al. (1996), the behavior of subjects 
conform the subgame perfect equilibrium predictions because the exchange environment “legitimatize[s] the 
property rights implied by player 1’s assignment to the advantageous position of first mover” (p. 291). In 
fact, this exchange context elicits “common expectations on a more self-regarding offer by the first mover” 
(Hoffman et al., 1994; p. 351; see also David and Holt, 1993).  
36 According to Hauswald and Hege (2006), more than 70% of the two-partner joint ventures incorporated in 
the US between 1985 and 2000 have 50-50 equity allocations.   
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To make the environment more natural for our subjects, we normalized the price offers to reflect 

just the 50% stake in the firm that would change hands (rather than maintaining the more general 

representation from the last section).     

Consider the three information environments (symmetric information, asymmetric-

information/uninformed offeror, and asymmetric-information/informed offeror). Game theory 

predicts that we would only observe simple offers from the following set: {75, 175, 200, 300}. 

Suppose first that the two partners are symmetrically informed about x. The offeror would either 

offer to buy his partner’s stake for 2x  (plus a penny perhaps) or to sell his own stake for ax +2  

(minus a penny), and his partner would accept. Note that the offeror is taking the entire pie for 

himself, leaving no surplus for the receiver. Since x can either take on the values of 150 or 400, a 

total of four offers are generated: 75 and 200 are the offers to buy (under low and high asset values), 

and 175 and 300 are the offers to sell (under low and high assets values).  

Suppose now that the parties are asymmetrically informed. When the offeror is the uninformed 

party, his optimal strategy is to make a simple offer to buy his partner’s stake for 752 =Lx  (an 

offer that will be accepted if and only if the asset value is low).37 When the offeror is privately 

informed, he can extract the entire bargaining surplus by offering to sell his 50% stake for 

1752 =+ axL  when the asset value is low, and offering to buy his partner’s 50% stake for 

2002 =Hx  when the asset value is high.38 Buy-sell offers are not made in equilibrium.39 

                                                 
37 An offer to buy for 75 gives the offeror an expected payoff of .25.181)200)(25(.)75250)(75(. =+− This 
is the best he can possibly do. If he offered to buy for 200 instead, both types would accept and he would 
receive 112.5 on average.  If he offered to sell his stake for 175 it would always be accepted, but this would 
also yield a lower payoff. It is easily verified that the offer to buy for 75 dominates all other simple offers.  
The offer to buy for 75 also dominates all buy-sell offers. If 125=Tp , the uninformed offeror will receive 
exactly 125 whether the asset value is low or high (if the asset value is high the offeree will certainly buy). If 
he offers 250=Tp , the offeror receives a payoff of zero when the asset value is low (since the offeree sells) 
and a payoff of 250 if the asset value is high, an expect payoff of 62.5. 
38 Note that the uninformed partner is willing to accept these offers regardless of his beliefs about the 
offeror’s type. This fully-separating equilibrium is supported by the following beliefs. When faced with an 
offer to buy (sell) the offeree believes that the asset value is high (low). He will therefore accept any offer to 
buy (sell) above 200 (below 175) and reject otherwise. When faced with a buy-sell offer of ]250,125[∈Tp , 
the uninformed offeree believes that asset value is low with probability 1252 Tp−  and high with 
probability 1125 −Tp , and randomizes 50/50 between buying and selling. This gives the offeror exactly 
50% of the bargaining surplus. When faced with a buy-sell offer below 125, the offeree believes the asset 
value is low and buys. This gives the offeror even less than 50% of the surplus. An analogous statement 
could be made for a buy-sell offer above 250. 
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Note that, although game theory gives crisp equilibrium predictions, these equilibrium offer 

prices are unlikely to be chosen in practice. The large experimental literature on ultimatum games 

has shown that proposals involving very skewed division of the surplus are rarely made by actual 

subjects. Although there is considerable variation in the observed proposals in the laboratory, the 

observed behavior rarely involves offers lower than 30% of the surplus (Hoffman et al., 1994; see 

also Davis and Holt, 1993).40 Indeed, it is not uncommon for subjects to exhibit a preference for an 

equal division of the surplus, corresponding to proposals in the 50-50 range. By analogy to the 

ultimatum game literature, we would expect subjects in our environment to propose divisions of the 

surplus that are consistent with these ranges. 

To reduce the computational burden on our subjects, we limited the offeror’s choice to a set of 

six offer prices (identical across conditions). In particular, we modified the equilibrium offer prices 

described above to include behaviorally-relevant divisions of the surplus. We added ε  to the 

equilibrium simple offers to buy, and subtracted ε from the equilibrium simple offers to sell. In 

theory, any positive value 0>ε  would break indifference on the part of the offeree, but we chose 

the value 30=ε , to create the 30-70 split of the surplus.41 Adding 30 to the equilibrium offers to 

buy (75 and 200) yields modified offers of 105 and 230. Subtracting 30 from the equilibrium offers 

to sell (175 and 300) gives us modified offers of 145 and 270. We also included two additional offer 

prices: 125 and 250. Including these two offer prices serves two purposes. First, these offer prices 

allow for an equal division of the bargaining surplus when the offeror makes a simple offer to buy 

(or sell). As mentioned above, such equal divisions are not uncommon in experimental studies of 

ultimatum games. Second, these values correspond to the equilibrium prices in a Texas Shootout, 

for the low and high asset values. To summarize, we restricted the offer prices to the following set: 

{105, 125, 145, 230, 250, 270}.   

 
[INSERT TABLE 1 HERE] 
 

                                                                                                                                                                  
39 This is because the distribution is binary. With intermediate types, buy-sell offers may be chosen by 
informed offerors as we saw earlier for continuous distributions. 
40 The mode offers made by the subjects in Hoffman et al.’s (1994) buyer-seller exchange environment with 
random entitlement represented a 30-70 and 40-60 splits of the surplus. 
41 Note that the choice of ε  and the choice of the few labels used in our experiments also follow some of the 
features used by Fouraker and Siegel (1963). In contrast to other experimental studies on ultimatum games in 
which subjects are supposed to split a $10 pie, in Fouraker and Siegel’s (1963) environment, all bargaining is 
described as a buyer-seller transaction, in which the seller makes an ultimatum (take-it-or-leave-it) price 
offer to the buyer, the buyer decides a quantity (that can be zero), and, the equilibrium payoffs imply a 27-73 
split.  
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Table 1 summarizes the point predictions under non-mandatory Texas shootouts. Consider the 

top half of the table. When the parties are symmetrically informed, the offerors make simple offers 

to buy or simple offers to sell in the subgame-perfect Nash equilibrium. When x = 150, for example, 

the offeror will either offer to buy for 105 or offer to sell for 145 and the offeree will accept. The 

offeror’s payoff is 145 and the offeree’s payoff is 105.  Now consider the bottom half of the table.  

With asymmetric information, inefficiencies arise when the uninformed partner is the offeror.  

There is a unique perfect Bayesian equilibrium where the uninformed offeror makes a simple offer 

to buy for 105. When x = 400, the informed offeree rejects this offer and the parties remain in the 

inefficient status quo of joint ownership.42 When the informed partner is the offeror, on the other 

hand, there is a separating equilibrium where the offeror makes a simple offer to sell for 145 or a 

simple offer to buy for 230, for low and high asset values, respectively.43 In sum, buy-sell offers are 

never made in equilibrium; and, efficiency is always achieved in symmetric information settings, 

and inefficiency occurs in asymmetric information environments in which the uninformed party is 

the offeror and the value of the asset is high. 

 

3.2 Games and Sessions 
Subjects played 8 practice rounds44 and 16 actual rounds45 using network computer terminals. 

Before the beginning of the first actual round, the computer randomly assigned a role to the 

subjects: Player 1 or Player 2 (Player 1 was the offeror in the S and A/IO and S conditions, and 

offeree in the A/UO condition). Before the beginning of each actual round, the computer randomly 

                                                 
42 The offer to buy for 105 is accepted if and only if the assets have low value, giving the offeror a payoff of 
(.75)(250-105) + (.25)(200) = 158.75. One can easily verify that this is better for the offeror than any other 
offer to buy within the offer set. Within this set, the best offer to sell is a price of 145. This offer would 
always be accepted, but gives the offeror a strictly lower payoff. As above, the best buy-sell offer is a price 
of 125, but this gives the offeror a payoff of just 125.   
43 As above, these offers would be accepted by the uniformed offeree regardless of his beliefs about the value 
of the assets. This equilibrium gives the offeror 70% of the bargaining surplus, more than the 50% that would 
be obtained through buy-sell offers. 
44 The purpose of these practice rounds was to allow subjects to become familiar with the structure of the 
game, with the consequences of their choices and the choices of the other players, and with the likelihood of 
confronting low and high types of business assets. During the practice rounds, subjects experienced each role 
four times. 
45 Interaction between players was done through a computer terminal, and therefore, players were completely 
anonymous to one another. Hence, this experimental environment did not permit the formation of 
reputations. Given the randomization process used to form pairs, and the diversity of offer types and prices 
that subjects confronted (due to the heterogeneity of offer types and prices), the sixteen actual rounds do not 
represent stationary repetitions of the game. Consequently, we can treat each round as a one-shot experience.  
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formed pairs.46 Then, the computer randomly chose the value of the business assets (low with 

probability .75 and high with probability .25). This value was revealed to both players in the 

symmetric information condition (S) and was revealed only to Player 1 in the asymmetric 

information conditions.47  

The subjects played a two-stage game. In the first stage, the offeror made a take-it-or-leave-it 

offer to the other subject, the offeree.48 The offeror chose the type of offer (a simple-buy offer, a 

simple-sell offer, or a buy-sell offer)49 and the offer price. The offer price was restricted to be 

chosen from the set {105, 125, 145, 230, 250, 270}.50  The terms of the offer (type of offer and 

price) were then revealed to the offeree. In the second stage, the offeree was required to respond to 

the offer. In case of a simple-buy or a simple-sell offer, she chose between accepting and or 

rejecting the offer; in the case of a buy-sell offer, she chose between buying and selling at the 

named price. 51  We ran twelve 120-minute sessions of 6 to 12 subjects each (4 sessions per 

condition; 116 subjects in total)52 at the University of Alberta School of Business labs. The subject 

pool (undergraduate and graduate students from the University of Alberta) received their monetary 

payoffs in cash ($5 participation fee and $17 game earnings, on average) at the end of the session.53 

 

3.3 Results 

Table 2 provides the descriptive statistics per experimental condition.54 The inefficiency rate in the 

last column is defined as the percentage of total pairs in which rejection occurred, i.e., percentage of 

total pairs that remained in an inefficient joint ownership. The rejection rate of a simple-buy (or a 

                                                 
46 Subjects were not paired with the same partner in two immediately consecutive rounds.  
47 It was common knowledge that Player 1 received this information. 
48 In the A/UO condition, Player 2 (the uninformed player) was the offeror; and, in the S and A/IO condition, 
Player 1 (the informed player) was the offeror. 
49 In order to reduce the computational costs on subjects, and given that making no offer is a strictly 
dominated strategy for the offeror, we omitted this option.  
50 This set was the same for all conditions. 
51 See Appendix C for a sample of the instructions for the A/IO environment. A complete set of instructions 
and software screens are available upon request. 
52 The number of subjects and observations (number of subjects, number of pairs for the 16 rounds) per 
condition is as follows: (38, 304), (36, 288) and (42, 336), for the S, A/UO, and A/IO conditions, 
respectively.  In addition to these sessions, we ran several pilot sessions.  
53 We used a laboratory currency called the “token” (the conversion rate token/dollars was informed to the 
subjects). 
54 Given the consistency of the aggregate data across rounds since early stages, we decided to include the 16 
rounds in our analysis. Note that the qualitative results still hold when only the last 8 rounds of play are 
considered.  
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simple-sell) offer is defined as the percentage of total pairs in which the offeree received a simple-

buy (or simple-sell) offer and rejected it. The buy rate of a buy-sell offer is defined as the 

percentage of total pairs in which the offeree received a buy-sell offer and decided to buy.55 

Information about the mode and mean offers is also provided. 

 
[INSERT TABLE 2 HERE] 
 

Our results indicate that simple-buy and simple-sell offers are generally chosen in non-

mandatory shootouts environments. When both partners were symmetrically informed about the 

value of the business assets, 94 and 91% of all offers made were simple-buy or simple-sell offers 

(for low and high asset values, respectively). 56  When information was asymmetric, 84% of 

uninformed offerors chose simple-buy or simple-sell offers, and 62 and 72% of informed offerors 

chose simple-buy or simple-sell offers (for low and high asset values, respectively).57  

Our findings also suggest that inefficient breakdowns occur in non-mandatory shootouts 

environments, even in case of symmetric information.58 As predicted by the theory, the lowest rate 

of breakdown was observed when the players were symmetrically informed. The inefficiency rate 

                                                 
55 The frequency, rejection, and buy rates per offer type refer to all prices proposed by the offerors under the 
specific offer type. 
56 It is interesting to note that when the offeror chose to make an off-equilibrium buy-sell offer instead, he 
made the expected buy-sell offer of 125 in 92% of the instances when the asset value was low, and the 
expected buy-sell offer of 250 in 100% of the instances when the asset value was high. So although making a 
buy-sell offer is an off-the-equilibrium-path strategy, the subjects apparently had a basic understanding of its 
properties. 
57 Mitzkewitz and Nagel (1993) study ultimatum games under incomplete information and divide-the-pie 
environments. They suggest that the offeror’s proposal might be based on her expectation about the 
acceptance level, and on her aspirations (minimum acceptable payoff). In case of ultimatum games under 
complete information, Hoffman et al. (1994) states that the offeror’s subjective probability about the 
acceptance of offer captures her expectations. Extending these claims to our environment, we can 
hypothesize that the choice of off-equilibrium buy-sell offers might obey to the offeror’s expectation about 
the acceptance of a simple offer to buy or to sell, and her aspirations (to obtain a payoff at least equal to 125). 
Pessimistic expectations could be reinforced by the observation of rejection of simple offers to buy or to sell 
(see discussion of inefficiency below).    
   Note that under symmetric information and off-equilibrium beliefs about acceptance of a simple-buy or sell 
offer, only buy-sell offers involve certainty about both parties’ payoffs. Then, the choice of off-equilibrium 
buy-sell offers in those environments might also reflect risk-averse attitudes on offerors. Finally note that the 
choice of off-equilibrium buy-sell offers might obey to cognitive limitations that preclude offerors from 
predicting the effects of the more complex simple offers to buy or to sell (see Blount and Lerrick, 2000).  
58 Inefficiency rates are equal to .14, .24, and .26 were observed in case of the symmetric, uninformed-
offeror, and informed-offeror conditions, respectively (under a low asset value). Similarly, in case of a high 
asset value, the inefficiencies rates are equal to .16, .51, and .39, for the symmetric, uninformed-offeror, and 
informed-offeror conditions, respectively.  
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under symmetric information was 15% (pooled data on asset values).59 The fact that the rejection 

rates of simple-buy and simple-sell offers in symmetric information settings are positive rather than 

zero (as the theory predicts) suggests fairness considerations on offerees.60Also as predicted by the 

theory, the highest inefficiency rate was observed when the uninformed player made the offers and 

the value of the business assets was high (51%). The most common proposal in this environment 

was a simple offer to buy for 105. Not surprisingly, this offer was rejected 100% the time by the 

informed offeree when the asset value was high.61 Note that the high rejection rates of simple-buy 

and simple-sell offers in the asymmetric-information environments might be due, in part, to offers 

that are off the equilibrium path.62 When offerors made the equilibrium offers in the experimental 

sessions, these offers were generally accepted (i.e., the offerees’ responses followed the equilibrium 

point predictions stated in Table 1).63    

                                                 
59 This inefficiency rate is 76% higher than the one observed in Hoffman et al. (1994) under a random 
entitlement and exchange environment (8.5%). Three possible features of our design might explain this 
difference. First, our setting involves endogenous offer types. The presence of buy-sell offers, and their 
intrinsic equitable-split quality, might elicit fairness considerations on offerees. Second, our environment 
involves positive outside options (not present in Hoffman et al., 1994). In Knetz and Camerer’s (1994) 
experiments on ultimatum games with positive outside options (divide-the-pie environment), nearly half of 
the offers were rejected (a rejection rate 50% higher than in previous ultimatum game experiments). They 
suggest that outside options induce subjects to “‘egocentrically’ apply different interpretations of the amount 
being divided, which create persistent disagreement” (p.65). Third, our environment involves not only 
proposals made by “sellers” (simple-sell offers) but also proposals made by “buyers” (simple-buy offers). 
“[I]t is the seller who is thought to be justified in naming a price” (Hoffman et al., 1994; p. 369). Then, 
weaker “legitimization” of the role of offeror might be observed in an exchange environment in which the 
buyer is the first mover, and hence, higher rejection rates might occur. Our results confirm these claims: the 
rejection rates of simple offers to sell and to buy are equal to 9% and 21%, respectively (pooled data on asset 
values) in symmetric information environments. 
60 For the case of simple-buy offers, the rejection rates are 19 and 25%, for low and high values of the 
business assets, respectively; for the case of simple-sell offers, on the other hand, the rejection rates are 11 
and 4%, for low and high values of the business assets, respectively.  
61 The rejection rate of all simple-buy offers (pooled data on offer prices) is 97%. See Table 2.  
62 These off-equilibrium simple-buy or simple-sell offers might suggest computational limitations in dealing 
with complex asymmetric-information environments. Importantly, in case of the informed-offeror condition, 
some of the off-equilibrium offers (especially in case of high-asset values) suggest greediness. This behavior 
is not generally observed under symmetric information. Previous work on ultimatum games under 
asymmetric information suggests that proposers might act with greater impunity in environments in which 
the responders do not know the size of the pie. Indeed, Croson’s (1996) study on ultimatum games with 
uninformed offerees finds that proposers offer significantly less when they know that responders have no 
knowledge of the pie size. Boles et al.’s (2000) assessment of deception in repeated ultimatum bargaining 
suggest that “[P]roposers [are] more deceptive when the pie size [is] not known” (p. 248). Similar to our 
study, this behavior “[surfaces] more frequently when the stakes were higher.” (p. 257).   
63 In fact, (i) under the A/UO condition, simple-buy equilibrium offers equal to 105 were accepted 83% of 
the time in case of low asset value (and, as predicted by the theory, always rejected in case of high asset 
value); and, (ii) under the A/IO condition and low asset value, the offerees accepted simple-sell equilibrium 
offers equal to 145 in 80% of the cases; and, under a high asset value, they accepted simple-buy equilibrium 
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[INSERT TABLE 3 HERE] 
 

Next, we will use regression analysis to more thoroughly test the effects of symmetric 

information on efficiency. We take pairs of conditions and estimate probit models.64 Each probit 

model includes a treatment dummy variable as its regressor.65 Table 3 indicates that symmetric-

information significantly reduces the likelihood of inefficiency in 6 and 4 percentage points, with 

respect to the uninformed offeror and informed offeror environments, respectively (p = .089 and p = 

.001).66   

Finally note that, although our setting involves an ultimatum strategic environment with positive 

outside options and endogenous offer types, our findings are aligned with seminal papers on 

ultimatum environments under exchange settings (Fouraker and Siegel, 1963; Hoffman et al., 1996, 

1994). Indeed, our findings under symmetric information also provide support to the subgame 

perfect Nash equilibrium concept. As predicted by the theory, 83% of subjects made simple-buy 

equilibrium offers equal to 105 or simple-sell equilibrium offers equal to 145, and 84% of these 

offers were accepted (under a low asset value).67 Notably, this behavior emerged since early rounds 

and was consistent across rounds. These results suggest that our experimental environment 

legitimatized the assignment of the advantageous role of offeror under symmetric information (and 

                                                                                                                                                                  
offers equal 230 in 100% of the cases. Note that the positive rejection rates under the A/UO condition and 
low asset value might suggest fairness considerations on offerees.  
64 Note that, within a session, each person plays in 16 rounds and interacts with other players during the 
session. Our regression analysis involves robust standard errors which account for the possible dependence  
of observations within session. 
65 The treatment dummy variable is constructed as follows. For example, for the case of the probit model that 
evaluates the effect of symmetric-information on efficiency by considering the symmetric and  uninformed-
offerors environments, the dummy variable will take a value equal to 1 if the observation pertains to the S 
condition, and a value equal to 0 if the observation pertains to the A/UO condition. The data for the A/UO 
and S conditions are pooled to estimate this probit model. Marginal effects of treatments are reported here.  
66 We also conducted regression analyses to evaluate the effects of symmetric information on the likelihood 
of rejection of simple-buy and simple-sell offers and on the likelihood of buy-sell offers. Our findings 
suggest that (i) symmetric information significantly reduces the likelihood of rejection in 7 percentage points, 
with respect to the uninformed offeror and informed offeror environments (p = .043 and p < .001, 
respectively); and, (ii) symmetric information significantly reduces the likelihood of buy-sell offers in 3 and 
7 percentage points, with respect to the uniformed offeror and informed offeror conditions, respectively (p = 
.050 and p < .001). Note that regression analysis also suggests that the uninformed offeror environment 
significantly reduces the likelihood of buy-sell offers in 20 percentage points, with respect to an informed 
offeror environment (p = .001). Finally note that most qualitative results still hold when only the last 8 
rounds of play are considered (except for the effect of symmetric information on the likelihood of buy-sell 
offers with respect to the uninformed offeror condition, which is not significant).  
67 Similarly, under a high asset value, 74% of subjects made simple-buy offers equal to 230 or simple-sell 
offers equal to 270, and 89% of these offers were accepted.  
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hence, reduced the presence of fairness considerations on offerors and offerees).68 However, the 

strictly positive rejection rates of equilibrium simple-buy and simple-sell offers indicate that 

fairness considerations might emerge even in environments where the right to be the offeror is 

legitimized. 

 

4 Heterogeneous Abilities: An Extension 
In this section, we consider the possibility that Partner 1, the better informed partner, is also in a 

better position to run the firm alone.69 Formally, we assume that Partner 1 will generate value x + a 

if he owns the asset, while Partner 2 can do no better as a sole owner than the status quo of joint 

ownership, x. In real-world settings, as mentioned before, managing investors (general partners) 

have stronger control rights over the business assets than non-managing investors (limited partners) 

and are more likely to participate in the business activities. Then, they might be not only more 

familiar about the value of the business assets but also more capable to run the business.70  

 

Lemma 2:  Suppose that the Texas Shootout is mandatory and the partners have heterogeneous 

abilities to run the firm alone.   

i. If Partner 1, the informed and more able partner, makes the buy-sell offer, then there is a 

fully separating equilibrium where ,)(1 xxp T = ,)( /)1(
21

1
1

axT ex −−+= θθπ and 
a/)x1(

22
T1

2 e)x( −−−= θθπ .   

ii. If Partner 2, the uninformed and less able partner, makes the buy-sell offer, then 

,22 axp TT +=  where 2
T2T2 )x(af)x(F θ=+ . 

 

Partner 2 is in a particularly vulnerable position when making a buy-sell offer in this new 

setting. It is useful to recall our earlier metaphor where Partner 2 breaks a stick into two pieces and 

                                                 
68 Note that, the 50-50 split (an offer price equal to 125 or 250, for low and high asset values, respectively; 
symmetric information) was chosen only 11% of the time (pooled data on asset values) in our study, while 
approximately 18% of the time in Hoffman et al. (1994). In contrast to these findings, the 50-50 split was 
chosen, on average, 40% of the time in previous experiments on ultimatum games under a divide-the-pie 
environment. 
69 There are additional normative implications when the partners’ competences are asymmetric. The question 
becomes not only whether the partnership is dissolved (avoidance of the status quo) but who gets sole control 
(allocative efficiency).   
70 Differences in individual capacity with respect to the asset may also result from the refusal from key 
suppliers and customers to deal with the other partner for non-productive reasons. 
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then Partner 1 can choose which piece to take. As before, Partner 1 (the better informed partner) 

will keep the longer piece for himself. But Partner 2 is even worse off than before because in 

addition to getting the short piece of the stick, he derives no benefit from sole ownership relative to 

the status quo. Partner 1, on the other hand, is in a particularly strong position to make a buy-sell 

offer. In the fully separating equilibrium, Partner 2 is rendered indifferent between buying Partner 

1’s stake and selling his own stake and receives none of the surplus.  Partner 1, on the other hand, is 

able to extract much more of the surplus through the Texas Shootout. 

 

Proposition 5:  Suppose that the Texas Shootout is non-mandatory. Partner 2, the uninformed and 

less able partner, would strictly prefer to make a simple offer to sell his stake to Partner 1 rather 

than make a buy-sell offer.  In contrast, Partner 1, the informed and more able partner, prefers to 

make a buy-sell offer. 

 

The second part of Proposition 5 may be surprising. Formally, suppose that Partner 1 is trying to 

decide between a buy-sell offer and a simple offer to buy the asset.71 The fully-revealing price 

offered in these two scenarios would be exactly the same: .x)x(p)x(p B1T1 ==   The scenarios 

differ, however, in Partner 2’s response to the offers. Suppose that Partner 1 offers to buy for 
1Bp x= %  (which may not reflect his true type x). If Partner 1’s simple offer to buy the asset is 

rejected, then Partner 1 receives his status quo payoff x1θ . The probability that Partner 2 rejects this 

simple offer must be high enough to maintain incentive compatibility for Partner 1 (so he doesn’t 

exaggerate his type). Now consider the buy-sell offer 1Tp x= % . If Partner 2 decides to buy Partner 1’s 

stake instead of sell his own, Partner 1 receives a payoff equal to 1xθ % . This implies an additional cost 

if Partner 1 tries to “low-ball” Partner 2 by pretending to have a low type and offering a lower price 

(since Partner 1 will receive a lower price if he turns out to be a net seller). Incentive compatibility 

is easier to achieve with buy-sell offers than with simple offers to buy.  In other words, Partner 1 

succeeds in acquiring the asset more often when he makes a buy-sell offer than when he makes a 

simple offer to buy.72 

 
                                                 
71 The simple offer to buy the asset necessarily dominates a simple offer to sell the asset to Partner 2.  This is 
because Partner 2 creates no surplus from ownership, so there would be no surplus for Partner 1 to extract by 
selling to Partner 2. 
72 See Appendix A for a complete proof of the proposition.  
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Proposition 6: Suppose that the partners have heterogeneous abilities to run the firm alone.  Social 

welfare is (weakly) higher when buy-sell offers are mandatory rather than non-mandatory. 

 

Unlike the analysis in the main section of the paper, the Texas Shootout does not lead to the 

first-best outcome when partners have heterogeneous abilities. It is socially efficient for Partner 1 to 

own the asset, but in equilibrium either partner may end up with ownership and control of the firm.  

Never-the-less, the Texas Shootout leads to a weakly higher level of social welfare. When buy-sell 

offers remain non-mandatory, Partner 2 will forego the buy-sell offer in favor of a simple offer to 

sell his shares to Partner 1. Although this private decision creates more profits for Partner 2, the 

gain is more than offset by the losses to Partner 1. Intuitively, if Partner 2 were forced to make a 

buy-sell offer instead then he would be more “generous” in his offer to avoid the downside of 

buying Partner 1’s shares at an inflated price and Partner 1 would buy with a higher probability. 

 

5 Conclusions 

Proponents of the use of Texas Shootout clauses as exit mechanisms advocate their potential for 

achieving fair and efficient outcomes. Although non-mandatory shootout clauses (under which, the 

partners may, but are not required to, make buy-sell offers) are commonly included in the operating 

agreements of closely-held business ventures, these clauses are rarely triggered. To the best of our 

knowledge, our paper is the first to explore, theoretically and experimentally, the private incentives 

of the parties to trigger a non-mandatory Texas Shootout clause in a decentralized bargaining 

environment. Ours paper is also the first experimental study on ultimatum exchange environments 

with endogenous offer types. 

In our theoretical framework, we assume that both partners are equally capable of running the 

business alone. The dissolution of the partnership is assumed to be jointly efficient. Negotiations are 

frustrated, however, by the presence of asymmetric information – one partner had better information 

about the asset value than the other. Buy-sell offers are jointly desirable in this setting because they 

lead to immediate dissolution of the partnership with one partner owning the asset and the other 

partner walking away with cash in her pocket. Yet this jointly efficient outcome is elusive because 

the partners are reluctant to make buy-sell offers. We show that, in an attempt to grab bargaining 

surplus, the partners will choose to forgo the Texas Shootout in favor of simple offers to buy or 

simple offers to sell. The downside of these bargaining tactics is that the rejection of these simple 
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offers – and rejection does arise in equilibrium – leads the partners to remain in an ongoing 

partnership that would be more valuable dissolved.  

In addition to the anecdotal support discussed in the introduction, our theoretical insights are 

largely confirmed in the laboratory. When given the option to negotiate outside of the Texas 

Shootout mechanism, the experimental subjects tend to avoid making buy-sell offers in favor of 

simple offers to buy the other partner’s stake or simple offers to sell their own stakes. This leads to 

bargaining failures, since these simple offers to buy or sell are rejected a significant fraction of the 

time. Although these inefficiencies are more pronounced in the presence of asymmetric 

information, we observe bargaining failures in symmetric information settings as well. The 

theoretical and experimental findings presented here provide an efficiency rationale for adopting 

mandatory Texas Shootout clauses in business ventures where the owners have similar abilities to 

run the firm and similar financial resources.   

Texas shootout clauses should be adopted with caution when owners do not have equal financial 

capabilities. Indeed, liquidity constraints faced by one partner can create an advantage for the other 

partner to acquire the assets at a predatory price.73 When one partner’s superior financial capacity 

creates a bargaining disadvantage for the other partner, it is not uncommon for the disadvantaged 

partner to claim improper exclusion or foreclosure. Courts are attentive to these complaints, treating 

buy-sell offers as only presumptively fair and allowing background fiduciary obligations to limit, 

though imperfectly, predatory buyouts. Shareholder agreements that give sufficient time to respond 

to a buy-sell offer and arrange finance and administrative matters might be recommended. 74 

Extensions to our work might consider in greater detail the predatory potential of Texas shootouts. 

Future work might also explore other reasons for which Texas shootouts are included in 

business agreements. For instance, Texas shootout clauses may serve as a mechanism for bringing 
                                                 
73 Financial advisors warn shareholders about the advantage of the party with the “deeper pockets” under 
shootout clauses (http://www.kpmg.ca/en/services/enterprise/issuesWealthShareholder.html). Suppose the 
“deep pockets” partner, Partner 1, knows about Partner 2’s liquidity constraint. Then, Partner 1 might trigger 
the shootouts by proposing a price lower than the value of Partner 2’s assets under joint ownership – a 
predatory offer. Although Partner 2 would prefer to remain with the status quo of joint ownership, the rules 
of the standard Texas shootout clause (together with her liquidity constraint) would effectively force her to 
sell her own stake to Partner 1.  
74 Practitioners consider that between 30 to 60 days is a reasonable period of time to finance and respond to a 
“shotgun” (http://www.kpmg.ca/en/services/enterprise/issuesWealthShareholder.html).  
    Shareholder agreements that stipulate that the buyout can be funded over time or with profits from the 
ongoing business might reduce these predatory effects (Stephanie Clifford, Inc. Magazine, November 2006; 
hpttp://www.inc.com/magazine). Companies that help entrepreneurs react quickly to an executed shootouts 
clause (i.e., venture capital firms that provide funds to the partners) could also attenuate these effects. See, 
for instance, the case of the firm called Shotgun Fund in Canada (http://www.shotgunfund.com/index.htm). 
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reluctant parties to the bargaining table (Carey, 2005). By bringing partners together face-to-face, 

certain deadlock situations might be resolved without an actual dissolution of the partnership (i.e., 

without triggering the shootout clause). These, and other extensions, remain fruitful areas for future 

research.  
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Table 1: Point Predictions under Non-Mandatory Texas Shootouts
Informed-Offeror Uninformed-Offeror

x = 150 x = 400 x = 150 x = 400
Symmetric-Information(a)

Offer Type Simple-Buy/ Simple-Buy/
Simple-Sell Simple-Sell

Price Offered 105/145 230/270
Response Accept/ Accept/

Accept Accept
Offeror’s Payoff 145/145 270/270
Offeree’s Payoff 105/105 230/230
Inefficiency Rate .00/.00 .00/.00

Asymmetric-Information
Offer Type Simple-Sell Simple-Buy Simple-Buy
Price Offered 145 230 105
Response Accept Accept Accept Reject
Offeror’s Payoff 145 270 145 200
Offeree’s Payoff 105 230 105 200
Inefficiency Rate .00 .00 .00 1.00

Note: (a) Offeror and offeree are informed players in the symmetric-information condition.
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Table 2: Descriptive Statistics
Condition Simple-Buy Offer(a) Simple-Sell Offer(a) Buy-Sell Offer(a) Mean Ineff.

Freq. Price Rej. Freq. Price Rej. Freq. Price Buy Payoffs(b) Rate
Rate Rate Rate Rate Rate Rate

x = 150
S .45 105.0 .19 .49 145.0 .11 .06 125.0 .46 131.7/104.3 .14
[228] 106.6 143.3 126.5 (24.4/14.4)

(5.4) (14.4) (5.6)

A/UO(c) .51 105.0 .14 .33 270.0 .54 .16 125.0 .50 115.4/110.5 .24
[216] 112.1 199.7 144.7 (35.9/34.3)

(19.2) (63.4) (51.0)

A/IO .13 125.0 .47 .49 145.0 .40 .38 125.0 .85 116.2/108.2 .26
[242] 117.5 171.5 130.4 (31.4/27.9)

(12.2) (48.0) (20.9)

x = 400
S .58 230.0 .25 .33 270.0 .04 .09 250.0 .71 255.3/229.0 .16
[76] 219.8 268.4 250.0 (25.3/14.8)

(33.8) (5.5) (.0)

A/UO(c) .51 105.0 .97 .33 270.0 .11 .16 125.0 1.00 190.8/257.8 .51
[72] 112.6 200.7 146.0 (46.6/75.2)

(22.0) (65.5) (57.0)

A/IO .69 125.0 .55 .03 n.a.(d) .33 .28 250.0 .23 251.1/209.6 .39
[94] 142.8 166.7 236.5 (69.0/55.8)

(41.7) (90.1) (31.7)

Note: (a) For each condition and offer type, mode and mean prices are presented in the first and
second rows of the price column, respectively; standard deviations are presented in parentheses,
and sample sizes (number of pairs for the 16 rounds) are in brackets; for each condition and offer
type, the frequency, rejection, and buy rates refer to all prices offered; (b) mean payoffs correspond

to the offeror’s and offeree’s payoffs, respectively; (c) for the A/UO condition, the information
related to the offer type and price are the same under both initial values; (d) for the A/IO

condition and simple-sell offer type, prices 105, 125 and 270 were the only prices chosen and each
price was chosen once.
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Table 3: Effects of Symmetric-Information on the Likelihood of Inefficiency
(Tests of Differences across Conditions)

Conditions Marginal Effects
A/UO vs. −.055∗

S (.036)
Observations 592

A/IO vs. −.038∗∗∗

S (.010)
Observations 640

Note: The columns report the change in the likelihood of inefficiency due to
symmetric-information (probit analysis using sessions as clusters; marginal effects reported);
robust standard errors are in parentheses; ∗∗∗ and ∗ denote significance at the 1% and 10%,

respectively; observations correspond to number of pairs.
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Appendix A: Proofs 
This appendix presents the proofs to propositions and lemmas presented in the main text. 

 
Proof of Proposition 1: In any separating equilibrium it must be the case that 1)(1

1 =xTπ  for at most 
one value of x.  Suppose not: there are two types, x and 'x , and two corresponding prices, p and 'p , 
for which Partner 2 sells his stake with probability 1. Full separation implies 'pp ≠ . This outcome 
violates incentive compatibility because Partner 1 would offer the lower of the two prices, 

}'p,pmin{ , whether he is of type x or type 'x .  Similarly, it must be the case that 0)(1
1 =xTπ  for at 

most one value of x.  If this were not true, then Partner 1 would offer the higher of the two prices, 
}'p,pmax{ , violating incentive compatibility.  Therefore )1,0()(1

1 ∈xTπ  for (almost) all types x, so 
Partner 2 is randomizing between buying and selling. Partner 2’s indifference 
implies ax)x(p T1 += . 

Suppose that Partner 1 is of type x but makes an offer, 1 ( )Tp x x a= +% % .  Partner 1’s payoff from 
this offer is: 

)]~()][~(1[)~()~( 2
1
21

1
2 axaxxaxx TT +−+−++ θπθπ  

= 1
2 2( )[ ] ( )T x x x x a x aπ θ− + + − +% % %  

It must be weakly better for Partner 1 to “tell the truth” and offer axxp T +=)(1 , so 
1 1
2 2 2 2( )[ ] ( ) ( )[ ] ( )T Tx x x x a x a x x x x a x aπ θ π θ− + + − + ≤ − + + − +% % %  
1
2 2( )[ ] [ ]T x x x x xπ θ− ≤ −% % % . 

This must be true for all deviations, x% . If x x>%  this implies that 1
2 2( )T xπ θ≤% . If x x<%  this implies 

that 1
2 2( )T xπ θ≥% .  Therefore 1

2 2( )T xπ θ=%  and we are done. Q.E.D. 
 

Proof of Proposition 2:   

Rearranging expression (1),  

)](1)[()()()(][maxarg 21
0

2 zFazzFazdxxfaxx
z

z

T −+++−+= ∫ θθ , or 

)]z(F)[az(dx)x(f]ax[maxargx 2

z

0z

T2 −++∫ += θ  . 

Differentiating and setting the derivative equal to zero at 2Tx  gives  
 0)()()()(][ 222

2
22 =+−−++ TTTTT xfaxxFxfax θ .  

Further rearranging gives 0)x(F T2
2 =−θ .  The second derivative is negative so we have a global 

maximum. Q.E.D. 
 

Proof of Proposition 3: We will begin by proving that the offers and acceptance probabilities 
described in the proposition are, indeed, a fully-separating equilibrium. Then we will prove 
uniqueness. 
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Proof of Existence of the Fully-Separating Equilibrium 
 
This equilibrium is supported by the following beliefs.  If Partner 1 makes a buy-sell offer of p, 

then Partner 2 believes that Partner 1 is of type ( )T p p aμ = − .  (Given this belief, Partner 2 would 
be indifferent between buying and receiving 1 2( )T p a p pμ θ θ+ − =  and selling and receiving 2 pθ .)  
If Partner 1 makes an offer to sell his stake to Partner 2 for price p then Partner 2 believes that 
Partner 1 is of type 1( ) /S p p aμ θ= − .  (Partner 2 would be indifferent between buying from Partner 
1 and receiving 1 2 2 1( ) ( / )s p a p p aμ θ θ θ θ+ − = −  or rejecting Partner 1’s offer and remaining with 
the status quo where Partner 2 receives 2 2 2 1( ) ( / )S p p aθ μ θ θ θ= − .) Finally, if Partner 1 makes an 
offer to buy Partner 2’s stake for price p then Partner 2 believes that Partner 1 is of type ( )S p pμ = .  
(Again, Partner 2 would be indifferent between selling his stake to Partner 1 and remaining with the 
status quo.)   

Partner 2’s equilibrium strategies (defined in Proposition 3) are a best response to Partner 1’s 
offers.  Since Partner 1’s offer is perfectly revealing of his type and the offers make Partner 2 
indifferent, Partner 2 is willing to randomize between accepting and rejecting (in the case of simple 
offers to buy or sell) and between buying and selling (in the case of the buy-sell offer).   

The fully revealing offer schedule is incentive compatible for Partner 1.  First, suppose that 
Partner 1 makes a buy-sell offer, ax)x(p T1 += .  As described in the proof and text associated 
with Proposition 1, this is incentive compatible for type x since Partner 2 is mixing according to 

1
T1

1 )x( θπ =  and 2
T1

2 )x( θπ = .   
Next, suppose Partner 1 is of type x.  Partner 1’s payoff from making an offer to buy Partner 2’s 

stake for  1 ( )Bp x x=% %  is 1 1 1
1 2 1 1( )( ( )] [1 ( )][ ]B B Bx x a p x x xπ θ π θ+ − + −% % % . 

The first term reflects Partner 1’s payoff if the offer is accepted and Partner 1 purchases Partner 2’s 
stake for 1

2 ( )Bp xθ % .  The second term reflects Partner 1’s payoff when Partner 2 rejects the offer, 
since they stay with the status quo of joint ownership.  Substituting 1 ( )Bp x x=% %  gives 

= 1 1
1 2 1 1( )( ] [1 ( )][ ]B Bx x a x x xπ θ π θ+ − + −% % %  

= 1
1 2 1 1( )[ ]B x x a x x xπ θ θ θ+ − − +% %  

= 1
1 2 1( )[ ( ) ]B x x x a xπ θ θ− + +% % , 

and substituting the expression for 1
1 ( )B xπ %  from the proposition gives 

2 (1 ) /
2 1[ ][ ( ) ]x ae x x a xθ θ θ− − − + +% % . 

Differentiating this expression with respect to x%  gives 
2 2(1 ) / (1 ) /

2 2 2[ ][ ] [ ( ) ]( / ) 0x a x ae x x a a eθ θθ θ θ− − − −− + − + =% %%  

2 2 2[ ( ) ]( / ) 0x x a aθ θ θ− + − + =%  
2

2( ) ( ) / 0x x aθ − =%  
This is satisfied when x x=% , so it is incentive compatible for Partner 1 to fully reveal his type 
through the simple offer to buy.  (The second-order condition is satisfied as well).   

Next consider simple offers to sell.  Suppose Partner 1 is of type x.  Partner 1’s payoff from 
making an offer 1

1( ) /Sp x x a θ= +% %  is:                                    
1 1 1
2 1 2 1( )( ( )] [1 ( )][ ]S S Sx p x x xπ θ π θ+ −% % %  
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= 1 1
2 1 2 1( )[ ] [1 ( )][ ]S Sx x a x xπ θ π θ+ + −% % %  

= 1
2 1 1( )[ ( ) ]S x x x a xπ θ θ− + +% % . 

Substituting for 1 /1
2 ( ) x aS x e θπ −= %%   from the proposition gives us 

1 /
1 1( )[ ( ) ]x ae x x a xθ θ θ− − + +% % . 

Differentiating this expression with respect to x%  gives 
1 1/ /

1 1 1[ ] [ ( ) ]( / ) 0x a x ae x x a a eθ θθ θ θ− −+ − + − =% %%  

1 1 1[ ( ) ]( / ) 0x x a aθ θ θ− − + =%  
2

1( ) ( ) / 0x x aθ − =% . 
This is satisfied when x x=% , so it is incentive compatible for Partner 1 to fully reveal his type 
through the offer.  (The second-order condition is satisfied as well). 
 Suppose Partner 1 is of type x.  Partner 1’s simple offer to sell his stake for 1

1( ) /Sp x x a θ= +  
and Partner 2’s associated probability of accepting that offer, a/xS1

2
1e)x( θπ −=    gives Partner 1 a 

higher payoff than making the buy-sell offer when a/xS1
1

1ae)x(S θ−=  is greater than a)x(S 1
T1

1 θ=  
or when 1 1( / ) ln( )x a θ θ< − .  Partner 1’s payoff from the simple offer to sell is higher than his 
payoff from the simple offer to buy when a/xS1

1
1ae)x(S θ−=  > a/)x1(B1

1
2ae)x(S −−= θ , or when 

2x θ< .  Partner 1’s simple offer to buy, and Partner 2’s associated probability of 
acceptance a/)x1(B1

1
2e)x( −−= θπ , gives Partner 1 a higher payoff than making the buy-sell offer when 

a/)x1(B1
1

2ae)x(S −−= θ  is greater than a)x(S 1
T1

1 θ= , or when  2 11 ( / ) ln( )x a θ θ> + .  We conclude 
that the strategies in Proposition 3 form a fully-separating equilibrium.   
 

Proof of Uniqueness of the Fully Separating Equilibrium 
 
First, in any equilibrium P1’s surplus is bounded below by 1aθ . P1 can guarantee himself a surplus 
of 1aθ  by making a buy sell offer 1 ( )Tp x x a= +  since P1 receives a surplus of 1aθ  whether P2 
buys or sells at this price.  Second, incentive compatibility requires that P1’s surplus be continuous 
over the interval [0, 1].  If P1’s surplus jumped discontinuously upward (for example) then types 
“close” to the point of discontinuity could increase their payoffs by misrepresenting their types 
slightly, violating incentive compatibility.  

We will consider equilibria where the type space can be partitioned into intervals in the 
following sense.  There are cutoffs, 0x  through Nx , where 0 1 20 .... 1Nx x x x= < < < < = .  We will let 

nI   refer to the interval 1[ , )n nx x− for n=1, …, N and NI   refer to the interval 1[ ,1]Nx − .  Each interval 
is associated with a particular mode of offer (be it an offer to sell, an offer to buy, or a buy-sell 
offer) and by construction no two adjacent intervals feature the same mode of offer. 
 
Claim:  Consider an interval, In.  Any fully separating equilibrium must have the following 
characteristics on this interval.  If the interval features 
1. buy-sell offers, then ax)x(p T1 += , 1

T1
1 )x( θπ = , 2

T1
2 )x( θπ = , and P1’s surplus is 1aθ . 

2. buy offers, then x)x(p B1 = , 2 /1
1 ( ) (0,1)x aB Bx c eθπ = ∈ , and P1’s surplus is 2 /x aBac eθ  where Bc  is 

a constant. 
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3. sell offers, then 1
S1 /ax)x(p θ+=  , 1 /1

2 ( ) (0,1)x aS Sx c e θπ −= ∈ , and P1’s surplus is 1 /x aSac e θ−  
where Sc  is a constant. 

 

Proof of Claim: See addendum at the end of Appendix A. 

Suppose that, in equilibrium, interval In where 0 < n < N is associated with buy-sell offers.  P1’s 
surplus is 1aθ  on this region and, by continuity, his surplus is arbitrarily close to 1aθ  for “close 
types” in the neighboring regions as well.  Interval In+1 necessarily features offers to buy.  If it 
featured offers to sell, then (according to the previous claim) P1’s surplus would be falling in x over 
In+1.  This is impossible, since P1’s surplus must be everywhere above 1aθ .  Similarly, interval In-1 
necessarily features offers to sell. 

There is at most one interval that features buy-sell offers.  Suppose not: intervals nI  and mI  are 
both buy-sell regions where (without loss of generality) m > n.  An earlier argument implies that P1 
necessarily makes offers to buy in intervals 1nI +  and 1mI + .  Furthermore, his equilibrium surplus at 
the smallest types in these two intervals must satisfy 1 1

1 1 1( ) ( )B B
n mS x S x aθ= = .  This implies that 

when nx x=  (which is on the boundary of interval 1nI +  and nI ) P1 offers to buy for 1 ( )B
n np x x=   

and P2 accepts with probability 1
1 1( )B

nxπ θ , giving P1 a surplus of  1aθ .  Similarly, when mx x=  

then P1 offers to buy for 1 ( )B
m mp x x=   and P2 accepts with probability 1

1 1( )B
mxπ θ .  The implication 

that these two acceptance probabilities are the same violates incentive compatibility.  Since n mx x<  
the partner P1 with true type mx  would misrepresent himself and offer to buy P2’s stake 

for 1 ( )B
n np x x= .  This is a contradiction. 

The first interval 1I  = 1[0, )x  necessarily features offers to sell, and the constant in this 
interval 1sc =  . If 1sc ≠  then 1)0(S1

2 <π  and Partner 1’s payoff is strictly smaller than 
]/a0[)0(p 11

S1
1 θθθ +=  so his payoff is strictly smaller than a.  If Partner 1 is of type x = 0, he 

can guarantee himself a payoff arbitrarily close to a by offering εθ −= 1
S1 /ap .  If Partner 2 

believes that Partner 1 is of type x~  then Partner 2 will accept that offer because his payoff would be 
x~pax~ 2

S1
1 θθ >−+  for all x~ .  Suppose instead that Partner 1 made a buy-sell offer in this range.  

Partner 1’s surplus is a1θ  for all types in this range.  If x = 0 then Partner 1 can assure himself a 
surplus of a by offering εθ −= 1

S1 /ap  as before.  Suppose instead that Partner 1 makes an offer to 
buy in this range.  Since )1,0()x(B1

1 ∈π  Partner 1’s surplus is strictly smaller than a when x = 0.  
He can assure himself a payoff of a when x = 0 by offering εθ −= 1

S1 /ap  as before.  Similarly, 
the last interval NI = 1[ ,1]Nx −   necessarily features offers to buy and 2 / aBc e θ−=  the highest offer is 
accepted with certainty, 1 (1) 1Bp = . 

Suppose intervals 1mI −  and 1mI +  both feature offers to buy.  It cannot be the case that mI  features 
a buy-sell offer.  If it did not then (as shown earlier) 1mI −  would feature an offer to sell.  The 
interval mI  also cannot feature offers to sell.  Suppose it did.  The claim stated earlier implies that 
P1’s surplus would be increasing in the “buy” interval 1mI − , decreasing in the “sell” interval mI , and 
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then increasing again in the “buy” interval 1mI + . Continuity implies that the surplus for type mx  (the 
top type of the lowest interval) is higher than the surplus for type 1mx +  (the bottom type of the 
highest interval).  Equivalently, the probability that the offer to buy for 1

1 1( )B
m mp x x+ +=  is accepted 

is lower than the probability that the offer to buy for price mx  (minus epsilon) is accepted.  This 
violates incentive compatibility, since type 1mx +  would deviate and offer mx  (minus epsilon) rather 
than mx .  Similarly, if intervals 1mI −  and 1mI +  both feature offers to sell then the interval in between 
cannot feature either buy-sell offers or offers to buy. 

Taken together, these results prove that the equilibrium has either two intervals where the first 
features offers to sell and the second offers to buy, or three regions where the middle region features 
buy-sell offers. Q.E.D. 
 

Proof of Lemma 1:  Suppose that Partner 2 makes a buy-sell offer.  From Proposition 2, if T2xx <  
then Partner 1 sells his stake to Partner 2.  Partner 2’s ex post surplus is:  

xpax)x(S 2
T2

1
T2

2 θθ −−+=  
= x)ax(ax 2

T2
1 θθ −+−+  

)xx(a T2
12 −−= θθ  

If T2xx > , then Partner 1 buys Partner 2’s stake and 
xp)x(S 2

T2
2

T2
2 θθ −=  

= x)ax( 2
T2

2 θθ −+  
)xx(a T2

22 −−= θθ  
Partner 2’s expected surplus from the buy-sell offer is therefore: 

∫ −−∫ −−=∫
1

x

T2
2

x

0

T2
12

1

0

T2
2

T2

T2

)x(dF)xx()x(dF)xx(adFx)x(S θθθ . 

This is clearly negative when ˆa a<  as defined in the proposition, and is positive otherwise. Q.E.D. 
 

Proof of Proposition 4:  We will first prove that Partner 2 would prefer to make a simple offer to 
buy the asset rather than remain with the status quo.  Suppose that Partner 2 makes a simple offer to 
buy the asset from Partner 1 for B2xp = .  Partner 1 would accept the offer if x is below B2x  and 
reject the offer if x is above B2x .  Partner 2 chooses the cutoff to maximize his surplus,  

 [ ] [ ]∫ −∫ +−−+
1

x
22

x

0
2

B2
1

B2

B2

)x(dFxx)x(dFxxax θθθθ , or )x(aF)x(dF)xx( B2
x

0

B2
1

B2

+∫ −−θ . 

Differentiating this expression gives the slope of this function: 
)x(af)x(F B2B2

1 +−θ . 
Since f(x) > 0 for all x by assumption, this expression is positive when 2 0Bx = .  Therefore, 2 0Bx > , 
and the associated price 2 0Bp > .  Similarly, Partner 2 prefers to make a simple offer to sell the asset 
rather than remain with the status quo.  Suppose Partner 2 makes a simple offer to sell for 

2
S2 /axp θ+= .  Partner 1 accepts the offer if x is above S2x  and rejects the offer if x is below S2x .  

Partner 2 chooses the cutoff to maximize his surplus,  

 [ ] [ ]∫ −∫ +−
1

x
2

S2
2

x

0
22

S2

S2

)x(dFxp)x(dFxx θθθθ , or )]x(F1[a)x(dF)xx( S2
1

x

S2
2

S2
−+∫ −−θ . 
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Differentiating this expression gives the slope of the surplus function: 
)x(af)]x(F1[ S2S2

2 −−θ . 
This expression is negative when 1x S2 = .  Therefore Partner 2 will certainly choose a cutoff 1x S2 <  
and a corresponding 2

S2 /a1p θ+< . 
Finally, we will show that Partner 2 prefers the simple offer to buy to the Texas Shootout.  (By 

analogy, he would also prefer the simple offer to sell to the Texas Shootout.)  Suppose that Partner 
2 makes a simple offer to buy the asset from Partner 1 for T2xp = , his optimal cutoff from the 
Texas Shootout where 2

2( )TF x θ= .  Partner 1 accepts the offer if x is below T2x  and rejects the 
offer if x is above T2x , the same cutoff as before.  Partner 2's expected surplus from this simple 
offer to sell is: 

 [ ]
2

2

1
2

1 2 2 2
0

( ) ( )
T

T

x
T

x

x a x x dF x x x dF xθ θ θ θ⎡ ⎤+ − − + −⎣ ⎦∫ ∫  = 
2

2 2
1

0

( ) ( ) ( )
Tx

T TaF x x x dF xθ− −∫   

= ∫ −−
T2x

0

T2
12 )x(dF)xx(a θθ . 

The surplus from this (non-optimal) simple sell offer is certainly higher than the surplus from the 
buy-sell offer when: 

∫ −−
T2x

0

T2
12 )x(dF)xx(a θθ > ∫ −−∫ −−

1

x

T2
2

x

0

T2
12

T2

T2

)x(dF)xx()x(dF)xx(a θθθ , 

where the right-hand side of this expression is from the proof of Lemma 1.  Canceling terms,  

2

1
2

2 ( ) ( ) 0
T

T

x

x x dF xθ − >∫ . 

This is true for all )1,0(2 ∈θ  so Partner 2 prefers this (non-optimal) offer to buy to making a buy-
sell offer.  Analogously, one can show that Partner 2 would prefer to make a simple offer to sell his 
stake to Partner 1 than make a buy-sell offer. Q.E.D. 
 

Proof of Lemma 2: First, suppose that Partner 1 makes the buy-sell offer.  As before, 
)1,0()x(T1

1 ∈π  for (almost) all x so Partner 2 is randomizing between buying and selling. This 
implies that Partner 2 is indifferent between buying and selling at this price, so x)x(p T1 = .  Now 
suppose that Partner 1 has type x but makes an offer, 1 ( )Tp x x=% % . Partner 1’s payoff from this offer 
is: 

1 1
2 1 2 2( ) [1 ( )][ ]T Tx x x x a xπ θ π θ+ − + −% % % %  

= 1
2 2( )[ ]T x x x a x a xπ θ− − + + −% % %  

In the fully separating equilibrium, Partner 1 finds it optimal to “tell the truth” and offer 
x)x(p T1 =  when his type is x.  Differentiating with respect to x%  gives: 
1

12
2 2

( ) [ ] ( )
T

Tx x x a x
x

π π θ∂
− − + −

∂
%

% %
%

. 

Partner 1’s payoff must be maximized when x x=% .  Setting this expression equal to zero when 
x x=%  gives us the first-order differential equation: 

0)x(
x

)x(a 2
T1

2

T1
2 =−+
∂

∂
− θπ

π . 
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The general solution to this equation is 
a/x

2
T1

2 ce)x( += θπ  
where c is an arbitrary constant.  Not all of these solutions satisfy the second order condition for 
Partner 1.  Differentiating Partner 1’s payoff function one more time gives: 

2 1 1
2 2

2

( ) ( )[ ] 2
T Tx xx x a

x x
π π∂ ∂

− − +
∂ ∂

% %
%

% %
. 

A necessary local second order condition is that this is negative when x x=% , or  

0
x

)x(2
x

)x(a
T1

2
2

T1
2

2

≤
∂

∂
+

∂
∂

−
ππ .   

Plugging in the general solution gives 

a
ce2

a
ce a/xa/x

+− = 0
a

ce a/x

≤ . 

Therefore 0c ≤  and a/x
2

T1
2 ce)x( += θπ  is decreasing in x and a/x

1
T1

1 ce)x( −= θπ  is 
correspondingly increasing in x.  This is intuitive.  If Partner 1 makes a lower offer (indicating that 
his type is low) then Partner 2 must “discipline” Partner 1 by buying (rather than selling) at that low 
price.  When the price is high, on the other hand, Partner 2 has less reason to be distrustful and can 
sell to Partner 1 with a higher probability.   

In equilibrium it must be the case that 0)1(T1
2 =π  and 1)1(T1

1 =π .  That is, Partner 1 succeeds 
in buying out Partner 2 if Partner 1 makes the highest possible offer.  Suppose not:  0)1(T1

2 >π  and 
1)1(T1

1 <π .  In this case, Partner 1’s surplus if his type is x = 1 is certainly less than a.  He can 
achieve a surplus arbitrarily close to a by making a buy-sell offer .1p ε+=   Partner 2, although he 
is uninformed, would rationally sell at this prices regardless of his beliefs about Partner 1’s type.  
This gives us the boundary condition for the differential equation: 0ce)1( a/1

2
T1

2 =+= θπ  or 
a/1

2ec −−= θ , and so we have a/)x1(
22

T1
2 e)x( −−−= θθπ  . 

Now suppose that Partner 2, the uninformed and less able partner makes the offer.  Suppose 
Partner 2 has named a price Tp2 .  Knowing x, Partner 1 will "buy" instead of "sell" if 

T2
1

T2
2 ppax θθ >−+ or axp T2 +< .  This implies a cutoff, apx T2T2 −= , where Partner 1 sells 

when x is below the cutoff and buys when x is above the cutoff.  Partner 2's problem is to find the 
best cutoff, Tx2 , and corresponding offer, axp T2T2 += , to maximize his expected payoff:  

 ∫ ++∫ +−=
1

z
2

z

0
1z

T2 dx)x(f)az(dx)x(f)]az(x[maxargx θθ . 

Rearranging terms, 

)]z(F)[az(dx)x(xfmaxargx 2

z

0z

T2 −++∫= θ  

Differentiating this expression with respect to z and setting the derivative equal to zero shows that 
the cutoff satisfies 

0)x(f)ax()x(F)x(fx T2T2T2
2

T2T2 =+−−+θ  
0)x(fx)x(F T2T2T2

2 =−−θ . 

2
T2T2 )x(af)x(F θ=+ . Q.E.D. 
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Proof of Proposition 5:  First, Partner 2’s expected payoff from making a simple offer to sell the 
asset to Partner 1 is exactly the same as it was in the previous section. (Partner 2 could never own 
the asset by himself in this scenario.)  Partner 2’s payoff from making a buy-sell offer, on the other 
hand, is lower than it was before. To see this clearly, consider an arbitrary buy-sell offer 

axp +′=′ .  If xx ′<  then Partner 1 sells his stake to Partner 2. Partner 2’s surplus is smaller than 
it was for the case where Partner 2 was equally capable at managing the assets by himself. Indeed, 
Partner 2’s surplus in this scenario is negative: xpx 21 θθ −′−  = x)ax(x 21 θθ −+′−  

)xx(a 11 −′−−= θθ  < 0.  If xx ′>  then Partner 1 buys Partner 2’s stake and Partner 2’s surplus is 
exactly the same as it was before: xp 22 θθ −′  = x)ax( 22 θθ −+′  )xx(a 22 ′−−= θθ . This implies 
that Partner 2’s expected payoff from making a buy-sell offer is lower now than it would be making 
the very same offer when Partner 2 is an equally capable manager as Partner 1. So Partner 2 would 
never make a buy-sell offer. 

In the case of a buy-sell offer, Partner 2 sells the asset to Partner 1 with probability 
)x(T1

1π
a/)x1(

21 e −−+= θθ , in which case Partner 1 receives the surplus a. (If Partner 2 buys the 
asset for price x)x(p T1 =  then Partner 1 receives no surplus at all.)  In the case of the simple offer 
to buy, then (as established in the last section) Partner 2 accepts this offer with probability 

a/)x1(B1
1

2e)x( −−= θπ .  Partner 1 receives surplus a in this case as well.  Partner 1’s preference hinges 
on the relative probability of getting the surplus, a. Both of these probabilities equal 1 when x = 1, 
giving Partner 1 exactly the same surplus a. But for values of x below 1, the buy-sell offer yields a 
higher probability that Partner 1 will ultimately own the assets and a higher corresponding surplus 
for Partner 1.1 Q.E.D. 

 
Proof of Proposition 6: First, when Partner 1 makes the offer he will choose to make the buy-sell 
offer.  Making buy-sell offers mandatory when Partner 1 is making the offer has no affect on the 
outcome.   

Making the buy-sell offer mandatory does make a difference when Partner 2 makes the offer.  
To show that social welfare is higher under the shootout, we need to calculate Partner 2’s favorite 
offer to sell and the associated social surplus.   

If Partner 1 has type x and he rejects the offer then Partner 1 receives x1θ ; if he accepts the offer 
he receives S2

22
S2

2
S2

2 xx)/ax(axpax θθθθ −=+−+=−+ . He will therefore accept the offer 
if and only if S2xx > , where 2

S2S2 /axp θ+= .  Partner 2 will choose the price and cutoff to 
maximize his surplus: 

[ ] [ ] [ ]∫ +−=∫ −∫ +−
1

x

S2
2

1

x
2

S2
2

x

0
22

S2S2

S2

)x(dFa)xx()x(dFxp)x(dFxx θθθθθ  

Differentiating this payoff function with respect to the cutoff gives: 
0)]x(F1[)x(f]a)xx([ S2

2
S2S2S2

2 =−++−− θθ  
0)]x(F1[)x(af S2

2
S2 =−+− θ  

2
S2S2

2 )x(af)x(F θθ =+ . 
Comparing this expression to the first order condition for T2x , the cutoff for the buy-sell offer, 
establishes that T2S2 xx > . 
                                                 
1 Differentiating )x(B1

1π  establishes that this function has a higher slope than )x(T1
1π .  Since they 

are equal when x = 1, )x(B1
1π  must lie everywhere below )x(T1

1π . 
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Let’s calculate social welfare.  With the buy-sell offer, Partner 1 buys Partner 2’s stake when 
T2xx > , and the social surplus a is captured by Partner 1.  (If T2xx <  then Partner 1 sells his stake 

to Partner 2 and there is no social value created.)  The equilibrium social surplus is therefore: 
)]x(F1[a T2−  

Now suppose that Partner 2 makes his favorite simple offer to sell the asset.  Again, the social 
value is created only when Partner 1 accepts this offer, and this happens for S2xx > .  The 
equilibrium social surplus is therefore: 

)]x(F1[a S2−  
Since T2S2 xx > , we have that social welfare is higher with the buy-sell offer than it is with the 
simple offer to sell: )]x(F1[a T2− > )]x(F1[a S2− . Q.E.D. 
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Addendum to the Proof of Proposition 3 
 
Proof of Claim: The first part of the claim (characteristics of intervals with buy-sell offers) was 
demonstrated in the proof of Proposition 1 and will not be repeated here. 

Suppose there is an interval I where P1 makes a simple offer to buy.  In any separating 
equilibrium it must be the case that 1)x(B1

1 =π  for at most one value of x.  Suppose not: there are 
two types, x and 'x , and two corresponding prices, p and 'p , where Partner 1 accepts the offer and 
buys Partner 2’s stake with probability 1.  In any separating equilibrium the price reveals Partner 1’s 
type, so 'pp ≠ .  This outcome violates incentive compatibility because Partner 1 would offer the 
lower of the two prices, }'p,pmin{ , whether he is of type x or type 'x .  Therefore 1)x(B1

1 <π  for 
(almost) all x.  It also must be the case that 0)x(B1

1 >π  on this range.  If 0)x(B1
1 =π  (so Partner 2 

rejected the offer for sure) then Partner 1 of type x is receiving a surplus of zero.  This is strictly 
dominated for Partner 1: he can assure himself a surplus of 0a1 >θ  by offering ax)x(p T1 += , 
regardless of the reaction of Partner 2.  Suppose Partner buys Partner 1’s stake with probability ρ .  
Partner 1’s payoff is: 

)]ax(ax][1[)ax( 21 +−+−++ θρρθ  
= )]1)(1()[ax( 21 θρρθ −−++  
= )ax(1 +θ . 

Therefore )1,0()x(B1
1 ∈π  and Partner 2 is between buying and selling on this range.  Partner 2’s 

indifference between accepting the offer and rejecting it and staying with the status quo implies that 
x)x(p B1 = . 

Suppose Partner 1 is of type x.  Partner 1’s payoff from making an offer x̂)x̂(p B1 =  is: 
]x)][x̂(1[)]x̂(pax)(x̂( 1

B1
1

B1
2

B1
1 θπθπ −+−+  

The first term reflects Partner 1’s payoff if the offer is accepted and Partner 1 purchases Partner 2’s 
stake for )x̂(p B1

2θ .  The second term reflects Partner 1’s payoff when Partner 2 rejects the offer, 
since they stay with the status quo of joint ownership.  Substituting x̂)x̂(p B1 =  gives 

= ]x)][x̂(1[]x̂ax)(x̂( 1
B1

12
B1

1 θπθπ −+−+  
= x]xx̂ax)[x̂( 112

B1
1 θθθπ +−−+  

= x]a)x̂x()[x̂( 12
B1

1 θθπ ++− . 
Incentive compatibility implies that Partner 1 weakly prefers to offer x)x(p B1 =  to any other price, 
so 

x]a)x̂x()[x̂( 12
B1

1 θθπ ++− x]a)xx()[x( 12
B1

1 θθπ ++−≤  
]a)x̂x()[x̂( 2

B1
1 +−θπ a)x(B1

1π≤  
0)]x̂()x([a)x̂x()x̂( B1

1
B1

12
B1

1 ≤−−− ππθπ  
Suppose that x̂x > .  Dividing this expression by x̂x −  and taking the limit as x̂  approaches x  

gives us 0
x

)x(a)x(
B1

1
2

B1
1 ≤

∂
∂

−
π

θπ . Similarly, if x̂x <  then we find that 

0
x

)x(a)x(
B1

1
2

B1
1 ≥

∂
∂

−
π

θπ .  Therefore )x(B1
1π  is the solution to the first-order linear differential 
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equation 0
x

)x(a)x(
B1

1B1
12 =

∂
∂

−
π

πθ . The general solution is a/xB1
1

2ce)x( θπ =  where c is an 

arbitrary constant. 
Now suppose instead that there is an interval where P1 makes a simple offer to sell.   As in the 

previous claim, it must be the case that )1,0()x(S1
1 ∈π  on this range.  Partner 2 must be indifferent 

between accepting and rejecting the offer.  Partner 2’s payoff if he buys Partner 1’s stake is 
)x(pax S1

1θ−+  and his payoff if he rejects the offer and remains with the status quo of joint 
ownership is x2θ .  Partner 2 is indifferent when 1

S1 /ax)x(p θ+= . 
Suppose Partner 1 is of type x.  Partner 1’s payoff from making an offer 1

S1 /ax̂)x̂(p θ+=  is: 
]x)][x̂(1[)]x̂(p)(x̂( 1

S1
2

S1
1

S1
2 θπθπ −+  

= ]x)][x̂(1[]ax̂)[x̂( 1
S1

21
S1

2 θπθπ −++  
= x]a)xx̂()[x̂( 11

S1
2 θθπ ++−  

Incentive compatibility for Partner 1 implies: 
x]a)xx̂()[x̂( 11

S1
2 θθπ ++− x]a)xx()[x( 11

S1
2 θθπ ++−≤  

]a)xx̂()[x̂( 1
S1

2 +−θπ a)x(S1
2π≤  

0)]x()x̂([a)xx̂()x̂( S1
1

S1
11

S1
2 ≤−+− ππθπ . 

As in the proof of the last claim, this gives us the differential equation 0
x

)x(a)x(
S1

1S1
11 =

∂
∂

+
π

πθ . 

The general solution is axS cex /1
1

1)( θπ −= . Q.E.D. 
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Additional Appendices 
 
This document encompasses Appendix B (binary version of the model) and Appendix C 
(instructions for the A/IO condition). 
 
Appendix B: Binary Version of the Model 
 
This appendix presents a two-type version of the model (low and high asset values). The notation 
used in this section is as follows. If the partners stay together, the total value is x; if they break up, 
the total value is ax + ; two values for x, },{ HL xxx∈ , with probabilities },{ HL ββ where 1=+ HL ββ  
and HHLL xxx ββ += . 
 

Mandatory Texas Shootouts 
 
In this section, we will assume that one partner is designated the “offeror” and the other partner is 
the designated “offeree.” 
 

Claim:  Suppose A2 (the uninformed partner) makes the buy-sell offer.  
i. If 21>Lβ , then A2 offers axp L += .  A1 gets 2))(2( axx HHHLL ++− βββ   and A2 gets 

))(21( axL + . A2 prefers the buy-sell offer to remaining with the status quo when 
)( LHH xxa −> β . 

ii. If 21<Lβ , then A2 offers axp H += .  A1 gets ))(21( axH +  and A2 gets a payoff of 
2))(2( axx LLLHH ++− βββ .  A2 prefers the buy-sell offer to remaining with the status 

quo when )( LHL xxa −> β . 
iii. If 1 2Lθ = , then A2 is indifferent about the precise value of his offer and any 

[ , ]L Hp x a x a∈ + +  is an equilibrium.  A1 receives )( axHH +β  and A2 receives )( axLL +β . 
A2 prefers a buy-sell offer to remaining with the status quo when ))(21( LH xxa −> . 

 

Proof:  Suppose that A2 makes a buy-sell offer.  First, it must be the case that ],[ axaxp HL ++∈ .  
If axp L +<  then both types will buy and A2’s profits would be 2p .  He should clearly raise the 
offer.  Similarly, if axp H +>  then both types would prefer to sell and A2 should lower the offer.   

Suppose that ),( axaxp HL ++∈ . A1, knowing x, will buy when axp +<  and sell when 
axp +> . So A2’s expected profits are  )2()2( ppax HLL ββ +−+   =  

)2()()( pax LHLL βββ −++ .  Notice that if 21== LH ββ  then A2 is indifferent as to the value of 
p. If LH ββ >> 21 , then A2 wants to make p as high as possible, axp H +=  (minus 0>ε ).  If 

LH ββ << 21  then A2 wants to make p as low as possible, axp L +=  (plus 0>ε ). 
A2 prefers to make a buy-sell offer ),( axaxp HL ++∈  when: 

)2()()( pax LHLL βββ −++  > )2()2( HHLL xx ββ +  
)2()( pa LHL βββ −+  > )2(  )2( L LHH xx ββ −  

))((2 pa LHL βββ −+ > LHH xx L  ββ −  
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apxpx LLLHH βββ 2)()( <−−− . 
Suppose that 21== LH ββ . This expression becomes axx LH <− )21()21( .  When LH ββ >> 21  

then axp H += . The expression becomes aaxxa LHLLH βββ 2)()( <−−−− , or axx LHL <− )(β .  
Similary for LH ββ << 21 .   Q.E.D. 
 

Claim:  Suppose A1 (the informed partner) makes the buy-sell offer.  There exists a fully-separating 
equilibrium where:  

i. If Hxx =  then A1 offers axp H +=  and A2 sells.  A1 and A2 both receive payoffs of  
))(21( axH + .  A1 prefers this outcome to the status quo of 2x .   

ii. If Lxx =  then A1 offers axp L +=  and A2 buys.  A1 and A2 both receive payoffs of 
))(21( axL + . A1 prefers this outcome to the status quo of 2x .   

 
When A2 sees an off the equilibrium path offer ),( axaxp HL ++∈  he believes that A1 is of type 

Lxx =  with probability )()()(~
LHHL xxpaxp −−+=β  and type Hxx =  with probability 

)()]([)(~
LHLH xxaxpp −+−=β , and mixes with probability 50/50 between buying and selling.  

 

Proof:  First, it is incentive compatible for A2.  When axp H +=  then A2 believes that Hxx =  so he 
is indifferent between buying and selling.  Therefore it is (weakly) optimal for him to sell.  When 

axp L +=  then A2 believes that Lxx =  so he is indifferent between buying and selling.  Therefore it 
is (weakly) optimal for him to buy.   

These offers are also incentive compatible for A1.  When Hxx =  then A1 gets  ))(21( axH +  
when he offers axp H += .  If he offered axp L +=  then A2 would buy at the low price and A1 
would only get ))(21( axL + . So A2 will stick to the high offer.  Similarly, it is incentive compatible 
for A1 to offer axp L +=  instead of axp H +=  when Lxx = . If he offers axp L +=  he gets 

))(21( axL +  (since A2 buys out A1 when axp L += ).  If he offered axp H +=  instead then A2 
would sell his stake to A1 and A1 would get )2()2())(21( axxaxax HLHL +−=+−+  

))(21( axL +< . 
It remains to check that A1 cannot do better by deviating to another offer. Given the beliefs of 

A2 and the mixing with probability 50/50, one can see that Partner A1 is indifferent between all of 
the offers in ),( axaxp HL ++∈ , regardless of his type. Q.E. D. 
 

Non-Mandatory Texas Shootouts 
 
Claim:  Suppose A2 (the uninformed partner) makes an offer to buy A1’s (the informed partner’s) 
share.  

i. If ))((2 LHHL xxa −< ββ  then A2 offers to buy for Lxp =  and only type Lx  accepts.  A1 gets 
2x  and A2 gets ax Lβ+2 . Note that A2 receives a higher payoff than in the status quo 

of 2x . 
ii. If ))((2 LHHL xxa −> ββ  then A2 offers to buy for Hxp =  and both types accept. A1 gets 

2Hx  and A2 gets ))(2(2 LHL xxax −++ β . Note that A2 receives a higher payoff than in 
the status quo. 
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Proof: In equilibrium, A2 will choose to offer either Lxp =  and purchase from just type Lx  or 

Hxp =  and purchase from both types.  If A2 offered less than Lxp =   then both types would reject 
the offer.  A2 does strictly better raising his offer to (just above) Lxp = .  A1 accepts if Lx x=  and 
A2 gets the surplus a . Similarly, if Hp x>  then A2 should lower the offer.  Etc.  If A2 offers 

Lp x=  then A2 gets )2(])2[( HHLL xax ββ ++ = ax Lβ+2 .  If he offers Hxp =  then A2 gets  
])2[()]2([ axxax HHHLL ++−+ ββ = ))(2(2 LHL xxax −++ β .  Comparing these two expressions 

gives the result. Q.E.D. 
 

Claim: Suppose A2 (the uninformed partner) makes an offer to sell his own shares to A1 (the 
informed partner). 

i. If ))((2 LHHL xxa −< ββ  then A2 offers to sell for axp H 2+=  and only type Hx  accepts.  
A1 gets 2x  and A2 gets ax Hβ+2 .  A2’s payoff is higher than the status quo of 2x . 

ii. If ))((2 LHHL xxa −> ββ  then A2 offers to sell for axp L 2+=  and both types accept. A1 
gets ))(2(2 LHH xxx −+ β  and A2 gets axL +2 . A2’s payoff is higher than the status quo 
of 2x . 

 

Proof:  If A2 offers to sell for axp H 2+=  then only type Hx  accepts.  A2 gets 
axaxx HHHLL βββ +=++ 2])2[()2( .  If he offers axp L 2+=  then both types accept and A2 gets 

axL +2 .  Comparing these two expressions gives the result. Q.E. D. 
 

Proposition:  Suppose that A2 (the uninformed partner) can make a single offer to A1 (the informed 
partner).   
 

1.  Suppose )(2 LH xxa −< . 
i. If HL ββ < , then A2 offers to sell for axp H 2+= .  Only type 2x Hx  accepts.  A1 gets 2x  

and A2 gets ax Hβ+)2( . 
ii. HL ββ > , then A2 offers to buy for Lxp = .  Only type Lx  accepts.   A1 gets 2x  and A2 gets 

ax Lβ+)2( . 
 

2.  Suppose )(2 LH xxa −> . 
i. If HL ββ < , then  A2 offers to buy for Hxp = .  Both types accept.  A1 gets )2( Hx  and A2 

gets ))(2(2 LHL xxax −−+ β . 
ii. HL ββ > , then A2 offers to sell for axp L 2+= . Both types accept.   A1 gets 

))(2(2 LHH xxx −+ β   and A2 gets axL +2 . 
 

Proof:  Suppose that HL ββ > . Then, )())(( LHLHLH xxxx −<−ββ ))(( LHHL xx −< ββ . 



 4

i. If ))((2 LHLH xxa −< ββ , then from the previous claims, A2 chooses between an offer to 
buy for Lxp =  where he receives ax Lβ+)2(  and an offer to sell for axp H 2+=  where he 
receives ax Hβ+)2( .  He clearly prefers the offer to buy for Lxp = .   

ii. If axx LHLH 2))(( <−ββ ))(( LHHL xx −< ββ , from the previous claims, A2 chooses between 
an offer to buy for Lxp =  where he receives ax Lβ+)2(  and an offer to sell for axp L 2+=  
where he receives axL +2 .  He prefers the offer to buy for Lxp =  when )(2 LH xxa −<  and 
the offer to sell when )(2 LH xxa −> . 

iii. If axx LHHL 2))(( <−ββ ,  from the previous claims, A2 chooses between an offer to buy for 
Hxp =  where A2 gets ))(2(2 LHL xxax −−+ β  and an offer to sell for offer to sell for 

axp L 2+=  where he receives axL +2 .   axL +2  > ))(2(2 LHL xxax −−+ β  if and only if 
)( LHLL xxxx −−> β  which is true if and only if )( LHLHHLLL xxxxx −−+> βββ  or 

LHLHHL xx )()( ββββ −>−  which is always true under the assumption that HL ββ > . 
 

In each of these cases, A2’s payoff is higher from the simple offers than from the buy-sell offer 
(where he gets )2()2( ax + ).  An analogous proof exists for the case where HL ββ < . Q.E.D. 
 

Proposition: Suppose that A1 (the informed partner) can make a single offer to A2 (the uninformed 
partner).  Partner A1 can extract the whole surplus in the following way: 

i. When Hxx = , then A1 makes a simple offer to buy for Hxp = .  A2 accepts.  A1 gets a payoff 
of  axH +2  and A2 gets 2Hx . 

ii. When Lx x= , then A1 makes a simple offer to sell for axp L 2+= .  A2 accepts and buys A1’s 
stake.  A1 gets a payoff of  axL +2  and A2 gets 2Lx . 
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Appendix C: Instructions for the A/IO Condition 

 

PLEASE GIVE THIS MATERIAL TO THE EXPERIMENTER 

AT THE END OF THE SESSION 

 

 

INSTRUCTIONS 
This is an experiment in the economics of decision-making. The University of Alberta, Harvard 

University and Yale University have provided the funds for this research.   

In this experiment you will be asked to play an economic decision-making computer game. The 

experiment currency is the “token.” The instructions are simple. If you follow them closely and make 

appropriate decisions, you may make an appreciable amount of money.  At the end of the experiment you 

will be paid your total game earnings in CASH along with your participation fee. If you have any questions 

at any time, please raise your hand and the experimenter will go to your desk.  

 

SESSION AND PLAYERS 
The session is made up of 24 rounds. The first 8 rounds are practice rounds and will not be counted in 

the determination of your final earnings.  

 

1)  Before the beginning of each practice round, the computer will randomly form pairs of two people: one 

Player 1 and one Player 2. The roles will be randomly assigned. During the practice rounds, each 

person will play 4 times the roles of Player 1 and Player 2.  

 

2) After the last practice round, 16 rounds will be played. Every participant will be randomly assigned a 

role. This role will remain until the end of the session. At the beginning of each round, new pairs, one 

Player 1 and one Player 2, will be randomly formed.  

 

You will not know the identity of your partner in any round.  
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ROUND STAGES 
 

STAGE 1 
 
 

1) Player 1 and Player 2 jointly own a business. Each business partner owns 50% of the initial value of  

the business assets.  

 

2) The computer randomly decides the initial value of the business assets and reveals this information 

only to Player 1. Player 2 will NOT know the initial value of the business assets until the end of the 

round.  

 

There are two possible initial values of the business assets: 150 tokens and 400 tokens. The Players  

have no choice over whether the initial value of the business assets is 150 tokens or 400 tokens. There 

is a 75% chance that the initial value of the business assets will be 150 tokens and a 25% chance it 

will be 400 tokens. In other words, on average, 3 out of 4 times the players will confront a value of the 

business assets equal to 150 tokens, and on average, 1 out of 4 times the players will confront a value 

of the business assets equal to 400 tokens.  

 

 

STAGE 2 
 

 

1) Player 1 and Player 2 play a partnership-dissolution game. 

 

1.1) If the business partnership is dissolved, the value of the business assets increases by 100 tokens. 

 

- In case the initial value of the business assets is 150 tokens, it increases to 250 tokens.  

- In case the initial value of the business assets is 400 tokens, it increases to 500 tokens. 

 

1.2) If the business partnership is not dissolved, the value of business assets remains at its initial value.  
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STAGE 2 (cont.) 
 

PLAYER 1’S OFFER 
 

2) Player 1 makes an offer to Player 2. The possible offers are as follows. 

 

2.1)   Player 1 makes an offer to buy Player 2’s share of the business assets, at a price equal to 105 

tokens, 125 tokens, 145 tokens, 230 tokens, 250 tokens, or 270 tokens. 

 

2.2) Player 1 makes an offer to sell his/her share of the business assets to Player 2, at a price equal to  

105 tokens, 125 tokens, 145 tokens, 230 tokens, 250 tokens, or 270 tokens. 

.  

2.3) Player 1 makes a buy/sell offer that Player 2 can use to buy Player 1’s share of the business assets  

or to sell his/her share of the business assets to Player 1, at a price equal to 105 tokens, 125 tokens, 

145 tokens, 230 tokens, 250 tokens, or 270 tokens. 

 

PLAYER 2’S RESPONSE 
 3)  After observing the offer, Player 2 makes a decision. The possible choices are as follows. 

 

3.1)  In case Player 1 OFFERS TO BUY Player 2’s share of his/her business assets, Player 2 should  

decide whether to accept or reject the offer. 

  

- If the offer is ACCEPTED, Player 1 transfers to Player 2 an amount of tokens equal to the price 

proposed. The business partnership is dissolved. Player 1 is now the sole owner of the business. The 

GAME ENDS.  

Player 1’s payoff = initial value of the business assets + 100 tokens –   price proposed by Player 1 

Player 2’s payoff = price proposed by Player 1 

 

- If the offer is REJECTED, the business partnership is not dissolved. Both players remain with 

their share of the initial business partnership assets. The GAME ENDS. 

Player 1’s payoff = ½ (initial value of the business assets) 

Player 2’s payoff = ½ (initial value of the business assets)  
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PLAYER 2’S RESPONSE (cont.) 
 

3.2)    In case Player 1 OFFERS TO SELL his/her share of the business assets, Player 2 should decide  

whether to accept or reject the offer. 

 

- If the offer is ACCEPTED, Player 2 transfers to Player 1 an amount of tokens equal to the price 

proposed. The business partnership is dissolved. Player 2 is now the sole owner of the business. The 

GAME ENDS.  

Player 1’s payoff = price proposed by Player 1 

Player 2’s payoff = initial value of the business assets + 100 tokens –  price proposed by Player 1 

 

- If the offer is REJECTED, the business partnership is not dissolved. Both players remain with their 

shares of the initial value of the business assets. The GAME ENDS. 

Player 1’s payoff = ½ (initial value of the business assets)  

Player 2’s payoff = ½ (initial value of the business assets) 

 

3.3) In case Player 1 makes a BUY/SELL OFFER, Player 2 should decide whether to buy Player 1’s 

share of the business assets at the proposed price, or to sell his/her share of the business assets to 

Player 1 at the proposed price. 

 

- If Player 2 decides to BUY Player 1’s share of the business assets, Player 2 transfers to Player 1 an 

amount of tokens equal to the price proposed. The business partnership is dissolved. Player 2 is now 

the sole owner of the business. The GAME ENDS.  

Player 1’s payoff = price proposed by Player 1 

Player 2’s payoff = initial value of the business assets + 100 tokens –  price proposed by Player 1 

 

- If Player 2 decides to SELL his/her share of the business assets to Player 1, Player 1 transfers to 

Player 2 an amount of tokens equal to the price proposed. The business partnership is dissolved. 

Player 1 is now the sole owner of the business. The GAME ENDS.  

Player 1’s payoff = initial value of the business assets + 100 tokens – price proposed by Player 1 

Player 2’s payoff = price proposed by Player 1 
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ROUND PAYOFF 
The Payoff Tables show the round payoffs for Player 1 and Player 2, under the possible outcomes of 

the partnership-dissolution game. 

 

Payoff Table 1: PLAYER 1 MAKES AN OFFER TO BUY HIS/HER PARTNER’S 

SHARE OF THE BUSINESS ASSETS 

 PAYOFFS IF PLAYER 2 ACCEPTS 

THE OFFER TO BUY 

PAYOFFS IF PLAYER 2 REJECTS THE 

OFFER TO BUY 

PLAYER 1 initial value of the business assets + 100 

tokens – price proposed by Player 1 

½(initial value of the business assets)  

PLAYER 2 price proposed by Player 1 ½(initial value of the business assets)  

 

Payoff Table 2: PLAYER 1 MAKES AN OFFER TO SELL HIS/HER SHARE OF THE 

BUSINESS ASSETS TO HIS/HER PARTNER 

 PAYOFFS IF PLAYER 2 ACCEPTS 

THE OFFER TO SELL 

PAYOFFS IF PLAYER 2 REJECTS THE 

OFFER TO SELL 

PLAYER 1 price proposed by Player 1 ½(initial value of the business assets)  

PLAYER 2 initial value of the business assets + 100 

tokens – price proposed by Player 1  

½(initial value of the business assets)  

 

Payoff Table 3: PLAYER 1 MAKES A BUY/SELL OFFER 
 PAYOFFS IF PLAYER 2 DECIDES TO BUY HIS/HER PARTNER’S SHARE OF THE 

BUSINESS ASSETS  

PLAYER 1 price proposed by Player 1 

PLAYER 2 initial value of the business assets + 100 tokens –  price proposed by Player 1 

 PAYOFFS IF PLAYER 2 DECIDES TO SELL HIS/HER SHARE OF THE BUSINESS 

ASSETS TO HIS/HER PARTNER 

PLAYER 1 initial value of the business assets + 100 tokens –  price proposed by Player 1 

PLAYER 2 price proposed by Player 1 
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EXERCISES 
Eleven exercises related to the Payoff Tables are presented below. Please fill the blanks. 

 

 

Exercise 1. Payoff Table 2 

Suppose that the initial value of the business assets is 400 tokens, Player 1 proposes to sell  his/her 

share of the business assets to his/her partner at a price equal to M tokens, and Player 2 rejects the offer.  

Then, Player 1’s payoff is equal to ________________________ tokens, and the Player 2’s payoff is equal 

to _____________________________ tokens. 

 

Exercise 2. Payoff Table 3 

Suppose that the initial value of the business assets is 150 tokens, the Player 1 proposes a buy/sell 

offer equal to U tokens, and Player 2 decides to sell his/her share of the business assets.  Then, Player 1’s 

payoff is equal to ________________________ tokens, and Player 2’s payoff is equal to 

_____________________________ tokens. 

 

Exercise 3.  Payoff Table 1 

Suppose that the initial value of the business assets is 150 tokens, Player 1 proposes to buy his/her 

partner’s share of the business assets at a price equal to X tokens, and Player 2 accepts the offer.  Then, 

Player 1’s payoff is equal to ________________________ tokens, and Player 2’s payoff is equal to 

_____________________________ tokens. 
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EXERCISES (cont.) 
 

Exercise 4. Payoff Table 2 

Suppose that the initial value of the business assets is 400 tokens, Player 1 proposes to sell  his/her 

share of the business assets to his/her partner at a price equal to Z tokens, and Player 2 accepts the offer.  

Then, Player 1’s payoff is equal to ________________________ tokens, and Player 2’s payoff is equal to 

_____________________________ tokens. 

 

Exercise 5.  Payoff Table 1 

Suppose that the initial value of the business assets is 150 tokens, Player 1 proposes to buy his/her 

partner’s share of the business assets at a price equal to T tokens, and Player 2 rejects the offer.  Then, 

Player 1’s payoff is equal to ________________________ tokens, and Player 2’s payoff is equal to 

_____________________________ tokens. 

 

Exercise 6. Payoff Table 3 

Suppose that the initial value of the business assets is 400 tokens, Player 1 proposes a buy/sell 

offer equal to Y tokens, and Player 2 decides to sell his/her share of the business assets to his/her partner. 

Then, Player 1’s payoff is equal to ________________________________ tokens, and Player 2’s payoff is 

equal to _____________________________ tokens. 

 

Exercise 7. Payoff Table 2 

Suppose that the initial value of the business assets is 150 tokens, Player 1 proposes to sell  his/her 

share of the business assets to his/her partner at a price equal to V tokens, and Player 2 accepts the offer.  

Then, Player 1’s payoff is equal to ________________________ tokens, and Player 2’s payoff is equal to 

_____________________________ tokens. 
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EXERCISES (cont.) 
 

Exercise 8.  Payoff Table 1 

Suppose that the initial value of the business assets is 150 tokens, Player 1 proposes to buy his/her 

partner’s share of the business assets at a price equal to J tokens, and Player 2 rejects the offer.  Then, 

Player 1’s payoff is equal to ________________________ tokens, and Player 2’s payoff is equal to 

_____________________________ tokens. 

 

Exercise 9. Payoff Table 3 

Suppose that the initial value of the business assets is 150 tokens, Player 1 proposes a buy/sell 

offer equal to Q tokens, and Player 2 decides to buy his/her partner’s share of the business assets. Then, 

Player 1’s payoff is equal to ________________________ tokens, and Player 2’s payoff is equal to 

_____________________________ tokens. 

 

Exercise 10. Payoff Table 2 

Suppose that the initial value of the business assets is 150 tokens, Player 1 proposes to sell  his/her 

share of the business assets to his/her partner at a price equal to H tokens, and Player 2 rejects the offer.  

Then, Player 1’s payoff is equal to ________________________ tokens, and Player 2’s payoff is equal to 

_____________________________ tokens. 

 

Exercise 11. Payoff Table 1 

Suppose that the initial value of the business assets is 400 tokens, Player 1 proposes to buy  his/her 

partner’s share of the business assets at a price equal to R tokens, and Player 2 accepts the offer.  Then, 

Player 1’s payoff is equal to ________________________ tokens, and Player 2’s payoff is equal to 

_____________________________ tokens. 
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SESSION PAYOFF 
The session earnings in tokens will be equal to the sum of payoffs for the 16 rounds. The session 

earnings in dollars will be equal to (session earnings in tokens)/147 (147 tokens = 1 dollar). The total 

earnings in dollars will be equal to the participation fee plus the session earning in dollars.  

 

GAME SOFTWARE 
The game will be played using a computer terminal. You will need to enter your decisions by using 

the mouse. In some instances, you will need to wait until the other players make their decisions before 

moving to the next screen. Please be patient. There will be two boxes, displayed in the upper right-hand side 

of your screen, that indicate the “Round Number” and “Your Role.”    

Press the NEXT >> button to move to the next screen. Please, do not try to go back to the previous 

screen and do not close the browser: the software will stop working and you will lose all the accumulated 

tokens.  

 

Next, the 8 PRACTICE ROUNDS will begin. After that, 16 rounds will be played. You can consult 

these instructions at any time during the session. 

 

THANKS FOR YOUR 

PARTICIPATION IN THIS 

STUDY!! 

PLEASE GIVE THIS MATERIAL TO THE EXPERIMENTER 

AT THE END OF THE SESSION` 
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