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Triggers of tree mortality under drought
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Severe droughts have caused widespread tree mortality across many forest biomes with profound effects on the function 
of ecosystems and carbon balance. Climate change is expected to intensify regional-scale droughts, focusing attention 
on the physiological basis of drought-induced tree mortality. Recent work has shown that catastrophic failure of the 
plant hydraulic system is a principal mechanism involved in extensive crown death and tree mortality during drought, 
but the multi-dimensional response of trees to desiccation is complex. Here we focus on the current understanding of 
tree hydraulic performance under drought, the identification of physiological thresholds that precipitate mortality and 
the mechanisms of recovery after drought. Building on this, we discuss the potential application of hydraulic thresholds 
to process-based models that predict mortality.

F
orests account for approximately 45% of global terrestrial carbon 
stocks and have a key role in hydrological and nutrient cycles1,2. 
They also provide a wide array of ecosystem services and are vital 

for maintenance of biodiversity. While forests continue to face pressure 
from expanding human populations, which drive changes in land use and 
deforestation, the threat posed by climate change is less easily quantified. 
Evidence from a range of sources suggests that rising atmospheric CO2 
concentrations have benefited forests, with CO2 fertilization enabling an 
increased leaf area index3, enhanced water-use efficiency4 and greater 
uptake of carbon globally5. However, extreme climate events, such as 
heat waves, droughts, fires and storms, have the potential to offset these 
benefits, causing widespread tree mortality and a net loss of CO2 into the 
atmosphere. Although forests are vulnerable to a wide range of extreme 
climate events, drought and associated disturbances have the greatest 
effect globally6. Recent projections7 indicate that land surface warming 
may lead to longer and more intense droughts, which has focused con-
cern on this area of research and the need for accurate predictions of 
the effects of drought on forest ecosystems. In this Review, we examine 
the physiological response of trees to drought, focusing on new insights 
provided by rapid advances in our understanding of the hydraulic  
function of plants.

Land plants require an efficient long-distance transport pathway to 
lift water from the soil to the leaves at a rate that satisfies transpira-
tion8. In trees, the xylem tissue (wood) supplies water for all aspects of 
plant function, including photosynthesis, growth and reproduction. 
Damage to this hydraulic supply network as a consequence of severe 
water stress has been identified as a key mechanism that is involved 
in tree mortality during drought9–11. Recent experimental work has 
quantitatively linked hydraulic failure thresholds to plant mortality12,13, 
and field studies have demonstrated that hydraulic failure is a primary 
pathway for extensive canopy death or plant mortality during natural 
drought events14–17.

A number of other co-contributing factors may also have a role in the 
death of trees during natural droughts18. In the absence of catastrophic 
hydraulic failure, partial disruption of water transport and the regula-
tion of water loss from plants during drought may lead to an increased 
likelihood of mortality through the depletion of carbohydrate reserves 
used in respiration and increased vulnerability to pests and pathogens11. 
Therefore, even in cases of co-morbidity, plant hydraulic traits occupy 
a central role in determining survival during drought and the effects of 
drought on carbon dynamics.

Here, we cover recent progress in our understanding of plant hydraulic  
response to drought and the physiological mechanisms that govern recovery  
of hydraulic function after drought. Although recent advances have 
crystallized our understanding of plant hydraulic function and the  
consequences of vascular impairment caused by drought stress, many 
challenges remain. We evaluate recent attempts to integrate the hydraulic  
traits of plants into process-based models of tree mortality with an 
emphasis on major knowledge gaps.

Drought and forest mortality
The effect of future droughts will almost certainly be worsened by 
increases in air temperature associated with global warming; when 
natural droughts occur they will set in more quickly and be of greater 
intensity7. Higher temperatures will usually result in greater evapo-
transpiration (the sum of evaporation and plant transpiration), thus 
drying soil and plants more quickly than would be the case at lower 
temperatures19. Droughts of this nature, termed ‘global change-type 
droughts’, have had severe effects on exposed ecosystems including 
mass tree mortality20,21.

Globally, drought is the most widespread stress factor that affects 
forest carbon balance6 with the potential to cause pronounced 
depressions in gross primary productivity at regional and conti-
nental scales22,23. The most notable effects of drought are manifested 
in regional-scale forest mortality events, which can kill millions of 
trees within short timescales. Recent high-profile examples include 
extreme droughts in Texas and California, which are estimated to 
have killed 300 million and 102 million trees, respectively24–26. Mass 
tree mortality due to drought is not restricted to arid regions, having 
been documented across many forest biomes including cool tem-
perate and tropical forests14–16,27,28. In tropical northern Australia, 
the sudden die-off of more than 7,000 ha of mangrove forest in 2015 
was attributed to drought and extreme temperatures28. Although 
such concentrated mortality events are yet to be observed in many 
of the world’s most productive tropical ecosystems, drought events 
in tropical rainforests (for example, the 2005 Amazon drought) 
have resulted in marked increases in stem mortality and loss of 
aboveground biomass29. Mortality is often skewed towards young 
trees but recent evidence suggests that large, old trees are also  
vulnerable30,31. Loss of large trees is particularly concerning because 
they have a critical ecological role and have the largest biomass and 
storage of carbon.
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Against this backdrop, it is essential to improve the accuracy with 
which we can predict the response of trees to drought to understand 
the resilience of forests under future climate regimes. At present, mor-
tality is not well-represented in vegetation models, owing mostly to 
gaps in our understanding of physiological mechanisms and a lack of 
appropriate thresholds with which to parameterize these models. We 
therefore turn our attention to how these problems may be resolved.

Drought and hydraulic failure in trees
As with all vascular plants, trees prevent desiccation injury by using an 
intricate plumbing system of hollow dead cells (vessels or tracheids) 
to transport water from the soil to the leaves. Xylem transport relies 
on an elegant mechanism whereby liquid water is held under tension, 
enabling trees to lift vast volumes of water to the canopy at little ener-
getic cost32. However, liquid water under tension exists in a metastable 
state, similar to that of a superheated liquid33. In this state, water is 
prone to cavitation, a sudden phase change from liquid water to gas 
that creates a bubble (embolism). These gas emboli block water flow 
through xylem conduits and reduce the delivery of water to the can-
opy and regenerative tissues (that is, apical and cambial meristems)8. 
Drought leads to higher xylem tensions and an increased probability 
that emboli will spread throughout the xylem network causing systemic 
vascular dysfunction12,34.

Phases of drought stress and the response of plants
During drought, reduced precipitation leads to declines in soil mois-
ture, which are often accompanied by higher temperatures and 
increased evaporative demand from the atmosphere. These factors 
combine to induce water stress in plants, which is manifested as 
increased tension in the xylem sap. Water stress is measurable in plants 
as xylem water potential (Ψx), a variable that is primarily determined by 
pressure in the xylem fluid and becomes increasingly negative during 
drought32,35. As plants desiccate, the loss of cell turgor causes stomatal 
pores on the leaf surface to close, markedly slowing plant dehydration 
and the rate of decrease in Ψx. Most recent studies indicate that sto-
mata in trees close before reaching the threshold Ψx at which significant 
cavitation is initiated, despite the negative consequences of stomatal 
closure36–38 (Fig. 1). On short time scales, these consequences include 
a rapid cessation of photosynthetic CO2 assimilation, loss of canopy 
evaporative cooling through transpiration and greater probability of 
photodamage39,40. Over longer time scales, low photosynthetic rates 
associated with drought-induced stomatal closure can lead to depletion 
of non-structural carbohydrate pools, which interferes with transloca-
tion of sugars through the phloem11,41,42 and the production of chem-
ical defence compounds needed to prevent herbivory and disease18,43. 
The fact that stomatal closure generally occurs before the initiation of 
cavitation despite these costs suggests that avoidance of xylem cavita-
tion is of paramount importance for the long-term survival of trees.

After stomatal closure, Ψx continues to slowly decrease, becoming 
more negative as water is lost through cuticular conductance, stomatal 
leakiness44 and other tissues such as bark45. At the same time, hydrau-
lic conductance may decrease throughout the hydraulic pathway of 
the plant through a number of biophysical and physiological mecha-
nisms, including reversible collapse of leaf veins46, regulation of aqua-
porins in cell membranes47,48 and the formation of cortical lacuna in 
fine roots49. Rates of water loss during this phase are typically in the 
order of 100–1,000-fold less than when the stomata are fully open44 
and decreases in Ψx are further buffered by the release of internally 
stored water50. If drought persists, Ψx will ultimately reach a critical 
threshold at which emboli begin to propagate through the xylem8,51. 
This process occurs throughout the hydraulic pathway including roots, 
stems and leaves34,48,49,52,53 (Fig. 2). Because emboli greatly reduce water 
delivery to the canopy, this hydraulic dysfunction can cause patchy 
branch death and pronounced reductions in canopy leaf area54. During 
intense droughts, emboli spread throughout the water transport net-
work, causing systemic failure of the vascular system55. In the face of 
continuing drought and high evaporative demand, systemic vascular 

dysfunction may cause rapid mortality of the whole plant through  
desiccation12,15,16and death of the meristematic tissue in the cambium 
and apical meristems.

Hydraulic traits of trees and adaptations to drought
The risk of hydraulic failure is an unavoidable consequence of trans-
porting water under tension, and thus forms a fundamental axis of 
selection in the evolution of trees56,57. Strategies to preserve the integrity 
of the plant vascular system in trees are diverse, but all revolve around 
a simple framework defined by two constraints: (1) the physical limits 
of the vascular system; and (2) the capacity to maintain plant water 
potential within these functional limits. These two attributes dictate 
how rapidly plant tissues will dehydrate during a drought and the spe-
cific thresholds at which water stress will translate into hydraulic failure 
and mortality37,58.

Although it is possible to characterize a general sequence of events 
that describe the response of vascular plants to drought, the traits 
that define this response vary across species and environments59–61. 
Recent studies have illustrated the enormous variation in vulnerability  
to xylem cavitation across tree species, with changes in xylem  
vulnerability correlated to mean annual precipitation and aridity of 
their growth environment60. Species are typically compared by the 
Ψx value at which a 50% loss of hydraulic conductance occurs (Ψ50), 
although other reference points may have more physiological impor-
tance, for example, Ψ88 (Fig. 1). Differences in vulnerability are driven 
by the anatomical features of the xylem, including conduit dimensions, 
network organization and the porosity of primary cell walls (pit mem-
branes) that limit the spread of gas between conduits62,63. These features  
control the critical Ψx at which gas will penetrate pit membranes, causing  
cavitation in adjacent conduits and the spread of embolism through 
the xylem8. However, vulnerability to cavitation does not determine 
drought tolerance in itself. The probability of reaching the critical 
threshold and the length of time it takes for this to occur are deter-
mined by the interaction of a number of associated physiological and 
morphological traits (Fig. 3).

The multi-dimensional nature of such trait interactions has enabled 
vascular plants to inhabit nearly every terrestrial habitat on Earth and 
enabled a huge number of possible morphological and physiological 
solutions to tolerating drought. For instance, variation in the vulnera-
bility of plants is often high within communities, particularly in drier 
habitats, indicating that vulnerability and aridity are decoupled in some 
cases64. This decoupling results from water-stress avoidance strategies 
that are used by some species, such as deep root systems or drought 
deciduousness, that allow them to maintain a higher Ψx during drier 
periods. Although this complexity makes the development of models 
challenging, a suite of well-studied traits that are mechanistically linked 
to drought tolerance have now emerged (Supplementary Table 1) and 
represents a promising direction for future research. Recent analyses 
have suggested that these traits often vary in a coordinated fashion 
that allows the benefits of photosynthetic carbon gain to be balanced 
against the risks of a decrease in Ψx and the occurrence of hydraulic 
failure59,65. Thus, much of the complexity of trait interactions may col-
lapse onto a single axis that defines a spectrum of drought tolerance  
strategies66.

Ultimately, we are interested in predicting when a plant will die as 
a result of drought stress. Vulnerability to cavitation has emerged as a 
key physiological trait that is associated with mortality, and hydraulic  
failure represents a critical point in the drought response pathway. 
Species-specific tree hydraulic limitations provide a powerful mecha-
nistic explanation for the observation that drought mortality is occur-
ring across forest biomes, independent of the mean rainfall at any site. 
A recent data synthesis demonstrated that the majority of plant species 
converge to narrow hydraulic safety margins, that is, the buffer between 
minimum water potential experienced by the plant (Ψmin) and the 
threshold Ψx for rapid loss of vascular function caused by cavitation60.  
Because Ψmin integrates many important aspects of plant structure 
(for example, rooting depth) and physiology (for example, stomatal 
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behaviour) in relation to the environment, the narrow safety margins 
that are found across forest types offer an important insight into plant 
ecology, one that suggests that the hydraulic strategies of plants are 
finely tuned to their environment, allowing for maximum carbon gain 
but exposing plants to the risk of hydraulic failure during drought. It 
also suggests a generally ‘risky’ strategy in which plants have limited 
physiological potential to respond to rapid changes in the environment. 
This exacerbates the threat posed by increased occurrences of extreme 
drought under climate change. Indeed, drought mortality events across 
forests from a broad geographical and climatic range have been linked 
quantitatively to hydraulic traits and xylem cavitation67. Examples 
come from tropical rainforest68, temperate forests14,16, chaparral15,17 
and desert woodlands11. Many of these studies show differential species 
mortality within each forest type, allowing us insights into the potential 
winners and losers under future drought regimes.

Plasticity and genetic variation in hydraulic traits
Although much is known about the variability in hydraulic traits among 
plant species, far fewer data are available to quantify within-species 
variation. The capacity of trees to alter phenotype (that is, phenotypic 
plasticity) and the amount of genetic diversity within a population are 
key variables for the ability of species to cope with rapid climate change. 

It is unlikely that trees will be capable of adapting to sudden increases 
in the aridity of their environment through evolutionary mechanisms, 
because of their long generation cycle and inability to migrate away 
from stress. On the other hand, adaptive plasticity of hydraulic traits 
may enable the acclimatization of entire populations within the neces-
sary timescales. Quantifying the extent of plasticity in hydraulic traits 
is therefore an essential component for the prediction of the tolerance 
ranges and resilience to drought of different species. However, com-
prehensive datasets that examine the genetic variation and phenotypic 
plasticity of vulnerability to cavitation have only recently become avail-
able and are limited to a few species. A study of 513 genotypes of the 
widespread pine species Pinus pinaster showed low genetic variation 
of Ψ50 between climatically contrasting populations and very limited  
phenotypic plasticity69. These results suggest that Ψ50 may be a canalized  
trait in pines, with little capacity to enable short-term acclimatization 
and adaptive plasticity. Angiosperm species have a higher potential for 
phenotypic plasticity and adaptive variation between populations70, 
although the observed shifts in vulnerability are often small in magni-
tude relative to changes in Ψx that are expected to occur during severe 
drought.

Long-term manipulative experiments suggest that structural 
acclimatization, that is, changes in the allocation pattern between 
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Fig. 1 | Phases of drought response in plants. a, Time series of transverse 
slices through the xylem tissue obtained by X-ray microtomograpy show 
the spread of gas emboli through the xylem with increasing drought stress 
(left to right). In each slice, water-filled vessels are seen as bright circles 
whereas vessels that contain gas emboli are black. During severe drought, 
almost all vessels become gas-filled, which leads to whole-plant mortality 
(right). b, During the first phase, stomata close to limit water loss and 
delay the decrease in xylem water potential (blue line). After stomata close, 
water continues to be lost at a much lower rate via cuticular conductance. 

At a critical threshold, cavitation increases rapidly and gas emboli spread 
throughout the xylem (red line). Increasing levels of embolism are shown 
as the proportional loss of xylem hydraulic conductance. ‘Vulnerability 
curve’ analysis translates the physics of cavitation to a quantification of 
species susceptibility to cavitation during exposure to water stress. These 
mortality thresholds have been found to correspond to between 50% (Ψ50) 
and 88% (Ψ88) loss of hydraulic function in conifers and angiosperms, 
respectively. c, A general scheme for the magnitude and timing of response 
processes with increasing drought stress.
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water-absorbing, -conducting and -transpiring tissues, is almost cer-
tainly the dominant process by which plants adjust their hydraulic sys-
tems in response to drought71. Reductions in the leaf to sapwood area 
ratio and shoot to root ratio result in a greater capacity to supply water 
to the leaves and limit the drop in Ψmin, consistent with homeostasis of 
water transport, however these changes come at the cost of reductions 
in productivity72. Reductions in the leaf to sapwood area ratio result in 
the maintenance of a higher Ψx and a greater capacity to supply water 
to the leaves73. These results are consistent with studies of intraspecific 
variation in hydraulic architecture across aridity gradients, which show 
changes in morphology and allocation patterns; however, little evidence 
of adaptive variation in vulnerability to cavitation has been found in 
these studies, even in species with a wide climate envelope74,75. Further 
studies are clearly required to determine whether these patterns can be 
generalized, particularly in angiosperms, and what role the plasticity of 

hydraulic traits may have in the capacity of plants to survive increased 
aridity.

Predicting mortality from hydraulic thresholds
Predictions of drought-induced forest mortality require a detailed 
understanding of the physiological underpinnings of tree death. 
Accordingly, this topic has received much attention in recent years and 
substantial progress has been made in our understanding of the mech-
anisms of tree mortality11,12. It is clear that drought-associated forest 
mortality is complex and a number of interdependent mechanisms 
have important roles in this process. These mechanisms include failure 
of water transport in the xylem, depletion of carbohydrate reserves 
over prolonged drought41,42 and increased vulnerability to pests and 
pathogens18,76. All mechanisms of drought-associated mortality revolve 
around the effects of stomatal closure and increasing xylem tension 
during water shortage. Hydraulic failure is the most fully elaborated 
mechanism and currently holds the most promise for predictive 
models. It is a relatively well-understood biophysical process that is 
amenable to modelling77, with failure thresholds that can be readily 
established for a given species or population69,70. Accuracy and con-
fidence in the vulnerability thresholds that are chosen to represent 
different species in predictive models are absolutely critical. Recent 
technical and theoretical advances in the science of plant hydraulics 
have provided new certainty in the quantitative nature of hydraulic 
failure34,55,78. We thus focus on hydraulic traits as a means to under-
stand and predict patterns of tree mortality in response to drought 
while emphasizing that other thresholds can be incorporated as our 
understanding of them improves. Indeed, incorporation of hydrau-
lics thresholds, such as turgor loss and stomatal closure, should assist 
greatly in predicting carbon dynamics under drought.

Measuring hydraulic thresholds to mortality
As noted above, tree species exhibit a large range in xylem vulnerabil-
ity60,61. Clear links between xylem cavitation and tree death have been 
established in pot studies10,12,13 and natural systems15,79,80, suggesting 
that xylem vulnerability should undergo strong selection in species 
exposed to episodic water stress. Evidence of selection, or ecological 
sorting, can be seen in the distribution of species with regard to strong 
correlations between aridity and xylem vulnerability10,56,64. The excit-
ing implication of this work is that the vulnerability of xylem tissue to 
cavitation provides a measurable index of the capacity of a species to 
tolerate water stress during drought77.

Our ability to predict the level of water stress at which a plant will die 
based on functional traits has advanced considerably in recent years. 
The concept of a ‘lethal water potential’ for a given plant species or 
population has existed for some time, but only recently has hydraulic 
vulnerability been quantitatively linked to mortality12. In conifers, the 
Ψ50 of the stem xylem is strongly related to their ‘minimum recoverable 
water potential’, essentially a physiological point of no return12,81. By 
contrast, the lethal water potential of angiosperm species is correlated 
with more complete hydraulic dysfunction, representing 80–100% loss 
of xylem hydraulic conductance (Ψ88)10,13. The disparity in mortality 
thresholds between conifers and angiosperms may be related to the 
fundamental difference in xylem structure between these two groups 
and goes some way to explaining the generally larger hydraulic safety 
margins and more conservative stomatal behaviour exhibited by conifer 
species60,82. Other hydraulic thresholds for mortality have been pro-
posed, including a sustained loss of hydraulic conductance greater than 
60%80,83. We note that these studies were based on modelled thresholds 
of whole-plant conductance in two conifer species and compare well 
to the Ψ50 threshold that has been established for conifers experimen-
tally. A recent data synthesis found that all studies reported a 60% or 
greater loss in hydraulic conductance at death with a mean loss of 83%9. 
Therefore, although there are some discrepancies between proposed 
thresholds, it is clear that high levels of xylem embolism are linked with 
mortality. Modern techniques for the measurement of water potential  
and non-invasive visualization of embolism are providing more  

a

b

c

Fig. 2 | Non-invasive imaging techniques have provided new insights 
into embolism formation and spread in the xylem. a, Mapping the spread 
of embolism in leaf vein networks during dehydration with transmitted 
light. Left, transmitted light images highlighting the vein network. Middle, 
image subtraction reveals embolism propagating from the midrib into 
the secondary and tertiary venation. Right, a colour map of all cavitation 
events recorded during desiccation. b, Three-dimensional rendering from 
a X-ray micro-computed tomograph of a pine stem. Embolized tracheids 
can be seen clearly as a black void space surrounded by water-filled (grey) 
tracheids. c, Part of a root system rendered from a micro-computed 
tomograph showing embolized xylem vessels (red) in the main root axis 
and lateral roots during dehydration. Right, the root tissue has been made 
transparent to illustrate the pathway of embolized vessels. Images in a were 
reproduced with permission from Brodribb et al.52.
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accurate measures of hydraulic failure thresholds34,55, which can then 
be used to parameterize models of tree mortality.

Trait-based models of tree mortality
Although the vulnerability of xylem to cavitation defines a threshold 
in water stress beyond which tree mortality will occur, the key issue 
for predicting mortality is the ability to translate meteorological data 
(for example, precipitation or evaporative demand) into plant water 
content or xylem tension58. This calculation presents a number of chal-
lenges: it requires knowledge of the volume of water that is available to a 
plant in the soil and internal reservoirs, as well as the rate of water loss 
through transpiration. Calculating the amount of water in the soil that 
is available to the plant is made difficult by a paucity of data relating 
to rooting depth of trees and the architecture of the roots. Simulating 
the rate of water loss is complicated by the active regulation of transpi-
ration by stomata, differences in cuticular transpiration after stomatal 
closure and the degree of leaf shedding during drought. To date, most 
attempts to model or predict mortality use empirical relationships 
between observed mortality and climate extremes84,85. Such empirical 
relationships, although they provide insights into the current drivers 
of mortality, may not function well in the future if plant sensitivities 
change over time or if novel climate conditions occur. For example, 
rising CO2 concentrations may alleviate drought stress, whereas rising 
temperatures may exacerbate it86. Empirical relationships may also fail 
in regions where long-term shifts towards a novel, drier climate are 
occurring. Process-based models are thus highly desirable87.

Recent progress in the understanding of the hydraulic mechanisms 
that lead to mortality, and quantification of the key plant traits that are 
involved, has led to the incorporation of plant hydraulics in a range of 
process-based vegetation models83,88–90. The key elements of such mod-
els are a description of the soil-to-leaf hydraulic pathway, incorporating 
soil, root, xylem and stomatal conductances, whole-plant capacitance 
and the vulnerability of the xylem to cavitation. Important plant traits 
that are required for parameterization include the response of stomata 
to decreasing water potential, the point at which leaf turgor is lost, 

saturated xylem hydraulic conductance and water potential thresholds 
of vulnerability to cavitation. Recent compilation efforts have made 
data for these traits available for a wide range of species60,91 and enabled 
hydraulic traits to be related to other aspects of the plant economic 
spectrum88,89. Incorporating trait variation in drought sensitivity 
among species or genotypes, and relating this variation to plant water-
use strategies and other plant properties, promises to be an effective 
way forwards.

Nonetheless, critical gaps remain in our ability to describe the 
hydraulic pathway and its eventual failure. Here we draw attention to 
several gaps that hinder model development and parameterization and 
that have received comparatively little attention: (1) the dynamics of 
canopy leaf area during drought; (2) the dependence of plant water 
status on soil water potential; and (3) the process of plant desiccation 
in very dry soil, when root water uptake is no longer possible.

First, leaf shedding occurs in many ecosystems during drought92, 
and can mitigate water stress to the remaining foliage93, slowing the 
rate of desiccation (the ‘hydraulic fuse’ hypothesis53). However, drought 
deciduousness is, as yet, poorly captured in models94. Recently, it has 
been demonstrated that representing vegetation as a set of compet-
ing plant types with varying degrees of drought deciduousness leads 
to a marked improvement in modelled leaf area dynamics in Central 
America; this hydraulics-based approach holds considerable promise 
for model improvement89.

Second, a key component of the hydraulic pathway is the relationship 
between plant water status (represented by pre-dawn plant water poten-
tial, Ψpd) and soil water availability (represented by soil water potential, 
Ψsoil). Simple models that treat soil water as a single bucket generally 
fail to capture this relationship; it appears that models need to incor-
porate vertical gradients in soil moisture potential, the distribution of 
roots and changing soil–root resistance with soil drying88,95. However, 
it is also commonly observed that co-occurring species can have dif-
ferent Ψpd when Ψsoil is the same96, and this difference cannot always 
be explained by rooting distributions. The Ψpd can be lower than Ψsoil 
if overnight equilibration is insufficient89, or considerable amounts of 
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Fig. 3 | Tree hydraulic traits associated with drought-induced mortality. 
Trees use a variety of interdependent and coordinated morphological, 
anatomical and physiological traits to mitigate water loss and the 
development of increasingly negative xylem sap pressures during 
drought. This includes tissue-specific traits that function in the unique 
microenvironment of roots, stems and leaves, as well as traits that are 
common among most tissue types in trees. Many structure–function 

relationships exist between traits, for example, variation in xylem 
anatomical traits (pit membrane porosity, conduit size and connectivity) 
determine species and population-level vulnerability to cavitation. 
Note that this figure does not represent an exhaustive list of hydraulic 
traits relevant to the response of trees to drought and drought-induced 
mortality.
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night-time transpiration occur97. On the other hand, root shrinkage or 
cortical deformation in dry soil can create an air gap around roots49,98, 
preventing equilibration and leading to a Ψpd that is less negative than 
the Ψsoil. Foliar water uptake can also lead to shoot rehydration dise-
quilibria with Ψsoil and these effects can be important for arid environ-
ments99. There has been little focus to date on the ability of models to 
replicate measurements of Ψpd.

Third, it is clear that processes that occur after stomatal closure are 
important, however these processes have been given less consideration 
in models58,100. Stomata generally close well before the thresholds for 
pronounced cavitation are reached37,59,101. Further increases in cavi-
tation will occur only if models also represent plant water loss when 
stomata are closed. In very dry soil, the uptake of water by roots is no 
longer possible and plants have to rely on their internal water storage 
for survival16,58. Plant water storage (an absolute amount of water) is 
distinct from the capacitance (the slope of water content versus poten-
tial). Whereas capacitance is often incorporated into models because 
it determines the dynamics of the water potential in leaves102, plant 
water storage is not. The depletion rate of the plant water store when 
stomata are (nearly) closed is governed by the plant leaf area (discussed 
above), cuticular conductance44 and, probably less importantly, water 
loss through the bark45. Comparatively few measurements are available 
on cuticular conductance and plant water storage58, hindering model 
parameterization for this final phase towards drought mortality. At 
this point, very few process-based models that have aimed to simulate 
drought mortality incorporate both plant water storage and cuticular 
conductance. A notable exception is provided by the recently developed 
SurEau model37.

In summary, trait-based models that incorporate our best under-
standing of hydraulic processes hold promise for predicting plant mor-
tality in response to drought. We have highlighted three processes that 
deserve further attention, both in terms of model development and 
compilation of necessary data for parameterization. There are likely 
to be other problems as well, perhaps even larger ones—it is worth 
noting that no purely process-based model has yet been successful in 
predicting tree mortality90. Model testing must thus continue before 
we can defensibly use these models for forecasting. We recommend a 
close coordination between experimentalists and modellers to improve 
models and their evidence base.

Recovery of hydraulic capacity
Although much attention has been devoted to determining the physi-
ological basis of tree mortality during drought, it is equally important 
to understand the processes of recovery in trees that survive drought. 
What are the effects of drought on the hydraulic function of plants 
and how quickly can plants recover to the pre-drought levels of phys-
iological performance? Predicting the resilience and recovery of for-
ests is complicated by the predisposition of trees that enter a drought 
event, which includes the cumulative effects of previous water deficit, 
pest outbreaks and forest demographics, as well as potential delays 
between stress events that influence survival, mortality and recovery 
processes16,58,103,104. Recovery of trees after drought is therefore com-
plex, dynamic and determined by at least (1) the degree of damage to 
the apical and cambial meristematic tissues; (2) the functional status of 
the remaining hydraulic pathway; (3) the overall health of trees (that is, 
the remaining foliage and roots); and (4) the water, non-structural car-
bohydrates and nutrients that are available during the recovery phase.

Mild drought stress does not typically result in high levels of cavi-
tation, although it may result in the transient and easily reversible loss 
of hydraulic capacity that is associated with mechanisms such as con-
duit collapse in leaf veins and aquaporin regulation of cell membrane 
permeability46–48. In cases in which drought stress has caused consid-
erable hydraulic dysfunction without mortality, hydraulic recovery 
could occur by two mechanisms: new wood formation or by refilling 
embolized conduits. Regrowth of the xylem appears to be the primary 
means by which trees recover hydraulic capacity after drought12,81. 
This straightforward process involves the addition of new conduits  

(vessels or tracheids) to outer regions of the xylem through the activity 
of the vascular cambium. This replaces the hydraulic conductance that 
is lost by embolized conduits, which may then become permanently 
occluded by gums or tyloses105. In cases in which drought has caused 
considerable death of aboveground biomass, recovery may be facili-
tated by resprouting of stems from epicormic buds or lignotubers106. 
The prevalence of resprouting is highly variable among tropical and 
temperate forest species and is ultimately dependent on the protection 
and survival of the meristematic tissue to produce new shoots106,107.

An alternative mechanism for recovery of hydraulic capacity, which 
would be far more rapid than regrowth, is refilling of embolized xylem 
conduits. Much research has focused on the potential active mech-
anisms by which plants could refill embolized xylem conduits after 
drought108–110. Springtime refilling following freeze–thaw cycles that 
produce embolism over winter is well-documented and apparently 
dependent on the positive pressure that is generated in the roots or 
stems of deciduous angiosperms111–113. A number of studies have 
shown rapid refilling of embolized vessels after mild drought in her-
baceous species114,115 and previous studies have suggested that daily 
cycles of cavitation and refilling are common in some tree species116,117. 
However, recent work has cast doubt on this phenomenon and convinc-
ing evidence for short-term refilling after drought in large trees is gen-
erally lacking108. It appears unlikely that trees can establish the positive 
pressure that is required to remove emboli in transpiring tissues many 
metres above the soil surface, making refilling under sustained tension 
within the current theoretical framework thermodynamically unten-
able109. Although it is thought that some woody species can remove 
drought-induced emboli within hours or days after a soil-saturating 
event in combination with non-transpiring conditions, this has only 
been documented unambiguously in grapevines, which are well-known 
for their capacity to produce considerable root pressure118,119. Other 
studies using non-invasive imaging have failed to provide evidence of 
refilling in woody species after drought51,120,121. Thus, we believe it is 
unlikely that refilling in trees is a common mechanism for rapid recov-
ery of hydraulic capacity after drought, although further experimental 
studies are required to confirm this.

The rate of hydraulic recovery after exposure to drought is largely 
is dictated by the extreme of negative water potential that is reached, 
and the amount of time that is spent at this extreme. Drought recovery 
after rainfall occurs on very short time scales if high levels of cavi-
tation have not taken place122 with the rapid opening of stomata to 
fix new carbon from the atmosphere as plants re-hydrate. However, 
in cases in which cavitation thresholds are breached, the recovery of 
photosynthesis is much slower122 and proceeds in coordination with 
the onset of the restoration of hydraulic condutance from the soil to the  
canopy12,81. Growth of new xylem to replace compromised tissues 
requires long-distance signalling from the roots and leaves123, and 
xylogenesis is affected by the post-drought environment because of 
sensitivity to temperature, plant growth regulators, carbohydrate pools 
and water availability124,125. Following drought, trees invest substantial 
carbon resources into rebalancing the root to shoot ratio126, increasing 
fine root biomass, and exploring deeper regions of the soil profile to 
recover plant water status127. Because meristematic tissue is dependent 
on adequate water availability and phloem transport to establish the 
turgor that is necessary for xylem cell expansion128, xylem development 
during drought conditions is often markedly reduced. Thus, functional 
water transport and signalling pathways must be in place to coordinate 
these events and initiate recovery.

The way forwards
Hydraulic physiology is central to our understanding of how trees 
respond to drought, and the pathways leading to drought-induced mor-
tality. Because the hydraulic system is fundamentally linked to carbon 
balance through stomatal regulation, a mechanistic understanding of 
plant hydraulic function should greatly improve modelling of vegeta-
tion dynamics under water-limiting conditions. With recent progress 
in methodology, we now stand at an exciting threshold in the field. 
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There is potential for great leaps in our understanding of plant hydrau-
lic function and our ability to quantitatively link these physiological 
mechanisms to forest ecology. Despite this, many important challenges 
remain. Below, we outline research priorities and key knowledge gaps 
that constrain our ability to predict drought-induced mortality and 
recovery after drought.

In terms of manipulative drought experiments, it is clear that stud-
ies incorporating long-term droughts on large trees are essential. 
Thresholds for hydraulic failure have typically been determined on 
small plants with intense drought treatments and important differences 
may exist in large trees exposed to droughts of greater duration. This is 
particularly applicable to determining the time a tree must spend at or 
below a particular threshold in order for mortality to occur. Long-term 
experiments will also provide an improved understanding of how tree 
water relations and carbon balance interact to cause mortality during 
prolonged droughts.

Better monitoring of plant water potential in communities under 
drought is also essential in this context. The importance of Ψmin as a 
parameter cannot be understated, since the Ψx reached by plants is 
what largely determines the probability that hydraulic failure occurs. 
It integrates many aspects of plant structure and physiology, and their 
interaction with climatic and edaphic variables78. Other thresholds, 
such as the point at which leaf turgor is lost and stomatal closure occurs, 
can be predicted for a species based on continuous Ψx data, although 
seasonal acclimatization in these parameters needs to be taken into 
account. Unfortunately, datasets of Ψmin are typically patchy because 
of the laborious onsite measurement techniques that are involved. 
Continuous remote monitoring of Ψx is now becoming possible because 
of the development of a new generation of wireless sensors that can be 
deployed at remote sites129,130. This will enable a much higher resolution  
of Ψmin, the true maximum level of stress that trees are exposed to  
during natural droughts, and how long they spend at a given Ψx.

Improved methodology for the measurement of vulnerability to 
cavitation is also being developed to enable in situ measurement of 
hydraulic thresholds52,55 and more rapid phenotyping of thresholds 
across species and populations69. Non-invasive imaging techniques, 
such as X-ray micro-computed tomography and magnetic resonance 
imaging, are providing new insights into plant hydraulic function and 
response to drought. Although these techniques are often costly or 
difficult to access, they provide unparalleled spatial and temporal res-
olution for observations in living, intact plants. Further work in this 
area will be vital to unravel some persistent mysteries of plant vascular 
transport including the phenomenon of embolism repair after drought 
and the degree to which it is active in woody plants. Improvements in 
techniques are also essential for the quantification of plasticity within 
species and their capacity to acclimatize or adapt to drier conditions. 
A recently developed optical technique shows great promise to facili-
tate cost-effective high-throughput measurements of vulnerability to 
cavitation in leaves, stems and roots34. Methods that use centrifugal 
force to generate vulnerability curves also enable rapid phenotyping69 
provided the appropriate methodological precautions are observed131.

The use of whole-tree techniques, for example, sap flow, is neces-
sary to provide datasets that interface with databases of tissue-level 
traits. Measuring sap flow and consolidating existing sap flow datasets 
worldwide (for example, the Sapfluxnet project)132 represent important 
steps in linking tissue-level hydraulic traits to water fluxes and testing 
large-scale model predictions of the effect of water stress on plants 
and ecosystems. At a broader scale, remote-sensing tools will be essen-
tial to monitor tree mortality and the dynamics of drought recovery. 
Although there are issues to be solved with detection of mortality using 
satellite-based sensors133, aircraft-based sensors are delivering better 
resolution of water stress and tree death at stand and regional scales24. 
Although the goal of attaining accurate model predictions of tree  
mortality due to drought remains elusive, resolution of the challenges 
outlined above represents a clear path forward. Success in this area will 
require direct collaboration between experimentalists and modellers, as 
the effective parameterization of process-based models depends on the 

acquisition and sharing of often hard-won data (for example, rooting  
depth, cuticular conductance and cavitation resistance). Finally, we 
emphasize that hydraulic failure is not the only pathway to mortality 
associated with drought but rather the most tractable to address with 
process-based models at this time. The future integration of other phys-
iological thresholds, as well as interactions with pests and pathogens, 
is the natural course along which we should proceed.
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