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TRIGONOMETRIC APPROXIMATION AND A GENERAL FORM
OF THE ERDOS TURAN INEQUALITY

LEONARDO COLZANI, GIACOMO GIGANTE, AND GIANCARLO TRAVAGLINI

ABSTRACT. There exists a positive function ¥(t) on ¢ > 0, with fast decay
at infinity, such that for every measurable set 2 in the Euclidean space and
R > 0, there exist entire functions A (z) and B (z) of exponential type R,
satisfying A(z) < xq(z) < B(z) and |B(z) — A(x)| < ¢ (Rdist (x,0)). This
leads to Erd6és Turdn estimates for discrepancy of point set distributions in
the multi-dimensional torus. Analogous results hold for approximations by
eigenfunctions of differential operators and discrepancy on compact manifolds.
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A quantitative measure of the irregularity of distribution of the points {z; };n:1
is given by the discrepancy
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Upper bounds for the discrepancy are useful because they lead to upper bounds
for the approximation of integrals by Riemann sums. A well-known criterion due
to H. Weyl states that a sequence is uniformly distributed if and only if for every
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An upper bound for discrepancy is given by the classical inequality of P. Erdds
and P. Turan:
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1102 L. COLZANI, G. GIGANTE, AND G. TRAVAGLINI

A proof of the above inequality relies on approximations from above and be-
low of the characteristic functions x[4 (z) by trigonometric polynomials P(z) =

I P(k)exp (2mikz), so that

k=—n
(b—a) =m "> Xpap) (x;) = (b—a) —=m ™"y P (z;)
j=1

Jj=1

=(b—a) — P(0) — Z m_lz exp (2mikz;) | P(k).

1<|k|<n j=1

See [2, [7, [16]. A deep study of the approximation of the characteristic function
of an interval by trigonometric polynomials has been done by A. Beurling and
A. Selberg, who proved that for every 0 <a <b<1and n=0,1,2,..., there exist
trigonometric polynomials Py (z) of degree n with

P (2) < Xjap) (2) < Py (2),

/0 ’Pi (%) = Xa,] (m)‘ de=1/(n+1).

See e.g. [I8]. Similar extremal problems have been considered in [I4], with
precise estimates on the approximation, in —oo < < +o0o with measure |J;\2V+1 dx,
of the function sgn () by functions of finite exponential type. A radialization of
these functions then yields an analog of Selberg polynomials for approximation
of characteristic functions of multi-dimensional balls, and this has been applied to
Erdds Turén estimates of discrepancy. See [9][13][14] and also [5] for a generalization
to boxes.

Here we look for a geometric analog of Erdos and Turan results in a very general
framework, where the intervals in the torus are replaced by arbitrary measurable
sets on a manifold, and trigonometric polynomials are replaced by finite linear
combinations of eigenfunctions of the Laplace Beltrami operator. In spite of this
generality, the techniques are rather simple, and they may be of some interest even
in the classical Euclidean setting. Moreover, the results are optimal, up to the
constants involved. In fact we shall try to pay special attention to these constants,
which are quite explicit although not optimal. In this sense we acknowledge that
we do not match the beauty of Beurling and Selberg results, which stems precisely
from their extremal properties.

The plan of the paper is as follows. The first section is devoted to approximations
from above and below of characteristic functions by entire functions of exponential
type or, in the periodic setting, approximations by trigonometric polynomials. The
main result of this section is the following:

Theorem 0.1. There exists a positive function ¥(t) on t > 0 with fast decay at
infinity, ¥(t) < c(a) (1 +1)"% for every «, such that for every measurable set ) in
the Buclidean space R? and R > 0, there exist entire functions A(z) and B(z) of
exponential type R, satisfying

A(x) < xalw) < B(z), |B(x) — Alx)] < v (Rdist (x,09)).

Roughly speaking, the approximation |B(x)— A(x)| is essentially 1 at points
with distances 1/R from the boundary of Q, while |B(x) — A(x)] is essentially 0 at
larger distances. We would like to emphasize that the function ¢ (¢) in the theorem
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TRIGONOMETRIC APPROXIMATION 1103

is independent of the set 2 and that there are no regularity assumptions on this set.
If the set is regular, then there are few points at small distance from the boundary
and the approximation is bad only on a small set. If the set is fractal, then there
are many points at small distance from the boundary and the approximation is
bad on a large set. In particular, this approximation is related to the Minkowski
content of the boundary. See [§].

In the second section these approximations are applied to Erdos Turan estimates
of irregularities of point distribution on a torus. In particular, following [I6] and
[19], we obtain explicit estimates for the discrepancy of sequences in lattices and in
arithmetic progression, which improve and extend some results already in the liter-
ature. Here are some examples of the results in the second section (see, respectively,
Corollaries 2.6l 277 and 2Z11] below, where these results are proved).

Theorem 0.2. If0 < a <1, u is the Lebesque measure, and 2 is a measurable
set in the torus T¢ = RY/Z2, let

M (o, Q) = igg t~p ({dist (z,00) < t})

(this quantity is related to the Minkowski content of ). Also, if m'/? is a
positive integer, let L(m) = m~Y9Z% be the lattice points m=/% (g1, ..., gq) with
g; = 0,1, .,m® — 1. Then there exists a constant ¢ such that for every such
m>1,

sup () —m™" Y xo (@) < cym” /4
M (e, )<~y w€L(m)

Theorem 0.3. Given ¢ > 0, for almost every x in T¢ there exists a constant c
such that for every m > 1,

sup  {u(2) —m ™D xa(jz)| < cym =/ g™ T ().
M(a,Q2)<7vy

j=1

Theorem 0.4. Let X be a finite collection of hyperspaces of R? and let P(X) be
the collection of all convex polyhedra in the torus T¢ with diameter smaller than
1 and facets parallel to elements of X. Then there exists a constant ¢ such that,
given a prime number m, there exists a lattice point g = (gi,...,9q) in Z¢ with
1<g; <m—1, such that

m

sup |u(Q) — m_lzxg (jm_lg) <em™t logd(m).
QeP(X) =
In particular, up to a logarithmic transgression, the discrepancy of a random
arithmetic progression { jx};.nzl is comparable to the one of the lattice L(m) with
the same number of points. On the other hand, while the first two theorems applied
to polyhedra with o = 1 give the bound m /¢, the third theorem gives the better
bound m~!. This improves and extends a two dimensional result in [I, Theorem
4D], where it is proved that the discrepancy of m points with respect to polygons

is dominated by m~"log**® (m).
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1104 L. COLZANI, G. GIGANTE, AND G. TRAVAGLINI

In the third section the results obtained on the Euclidean settings are extended to
compact Riemannian manifolds. We first consider approximations by linear combi-
nations of eigenfunctions of the Laplace Beltrami operator on a compact Riemann-
ian manifold. Then we state an analog of Erdés Turan estimates for discrepancy
of point distributions on manifolds and, inspired by [I7], when the manifold is a
compact Lie group or homogeneous space, we consider point distributions gener-
ated by the action of a free group. In particular, using the Ramanujan bounds for
eigenvalues of Hecke operators obtained in the above quoted paper, we prove the
following result (see Corollary B4 below).

Theorem 0.5. If M = SO(3)/S0(2) is the two dimensional sphere and if H is the
free group generated by rotations of angles arccos(—3/5) around orthogonal axes,
then there exists a constant ¢ such that, if k is an integer and {c; };":1 is an ordering
of the elements in H with length at most k, then for every x,

m
Q) = m"> Xaloy2)| < eM (5,9) m™ @) 16g2/ 2+ ().
j=1

This result has been proved in [I7] in the case of spherical caps, with a proof
that relies on explicit estimates of Fourier coefficients. On the contrary, our result
applies to more general domains.

The authors wish to thank Luca Brandolini for several useful discussions on the
subject of the paper.

1. APPROXIMATION BY ENTIRE FUNCTIONS
The main result in this section is the following.

Theorem 1.1. There exists a positive function 1(t) on t > 0 with fast decay at
infinity, ¥(t) < c(a) (L +t)"% for every «, such that for every measurable set ) in
the Buclidean space R? and R > 0, there ezist entire functions A(z) and B(z) of
exponential type R, satisfying

A(2) < xalw) < B(z), |B(x) — A(x)] < v (Rdist (x,09)).

Proof. By a scaling argument, the statement for the set 2 at the point = with
functions of exponential type R is equivalent to the statement for the set R{) at
the point Rx with functions of exponential type 1. Hence, it suffices to prove the
theorem when R = 1. Let m(£) be a smooth radial function on R? with m(¢) = 0 if
€] > 1/2 and [, m (€)* d€ = 1. Then the convolution m * m (£) is a smooth radial
function with m xm (0) = 1 and m(§) = 0 if |£] > 1. Define

o\ —(d+1)/2 .
K(m)z/ (1+|§| ) mxm (§)exp (2mi€ - x) d€.
R4
This cumbersome definition will be clarified in a series of steps.

Claim. The kernel K(x) is an entire function of finite exponential type, it is
positive with mean 1 on R? and all its derivatives have fast decay at infinity,
0P K (2)/02°| < ¢(1+ |z|)”" for every a and §.

All of this follows from the corresponding properties of the Fourier transform

7 2) ~(d+D/2 . : . : ,
K(¢) = (1 + [¢] ) m xm (§). Since this Fourier transform is smooth with
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TRIGONOMETRIC APPROXIMATION 1105

compact support and it is 1 at the origin, the kernel has mean 1 and all its deriva-

tives have fast decay at mﬁmty Since the kernel is the convolution of the Fourier
+1)/2
transform of (1 + ¢ ) , which is up to a constant exp (—2m |z|), and the

square of the Fourier transform of m (£), the kernel is positive. Finally, since

K(¢) = 0if |¢| > 1, by the Paley-Wicner theorem the kernel is an entire function
of finite exponential type,

K(z+1y) = /Rd (1 + |§|2)7(d+1)/2m *m (&) exp (2mi€ - (z + iy)) d&,

‘ o\ —(d+1)/2
K< ([ (L+1e?) " mem ) dg) e 2y
R
Claim. Let
I(t) :/ K(x)dx.
{lz>t}
Then, for every t >0, I(t + 1) > exp (—27) I(t).

Since K (x) is the convolution of ¢ exp (=27 |#|) and the positive function |7 (z)|?,
one has

Ka+y)= [ coxp(-2nfoy—2) @) ds
]Rd

> exp (~2r|y]) / cexp(=2r|z — 2] [(2)] dz = exp (27 ly]) K ()

Hence

t—l—l—/ / K (p9)p?~tdpdy
{19]=1}

+o0
:/ K ((r+1)9) (r + 1) drdo
{191=1}
+o0
> exp (—27r)/ K (19) 7% Ydrdd = exp (—2n) I(t).
{191=1}

Claim. Define
G (z) = I (dist (z,09)) .
Then, for every =z,
Xe (z) — K x xq (2)] < G (2).

Since K (y) is positive with mean 1,

) (xe () = xo (v =) dy
= K(y)dy =G ().
- /{IyZdist(m,aQ)} (y)dy ()

F () =1 (dist (z,00) /2).

Ixo (z) — K xxqo (z)] =

Claim. Define

Then, for every =,
K xG(z) <2F(x).
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1106 L. COLZANI, G. GIGANTE, AND G. TRAVAGLINI

Since dist (z — y, 0) > dist (z, 9) — |y|, it follows that
{|z| > dist (x — y,00)} C {|z| > dist (z,09) — |y|} -

Hence
K*G(az)z/ / K (y) K (z) dzdy
Re J{|z]>dist(z—y,00)}
= / / K (y) K (2) dzdy
{|y|<dist(z,00Q)/2} J{|z|>dist(x,09Q)/2}
T / K (y) K (2) dzdy
{|y|>dist(z,00Q)/2} JRd
=2 / K (y) dy.
{ly|>dist(z,00)/2}

Claim. Let

vl = exp(—%)/ K (y) dy.
{lyl<1}
Then for every z,
K+ G (z) >~y 'G(2).
Since dist (z — y, 0) < dist (z, 9Q) + |y|, it follows that
{lz| = dist (z — y,09)} 2 {|2| = dist (z,00) + |y[} .

Hence

K*G(az)z/ / K (y) K (2) dzdy
R4 J{|z|>dist(z—y,00Q)}

> / / K (y) K (2) dzdy
{lyl<1} J{|z[>dist(2,0Q)+1}
>y (dist (z,09)) .
To conclude the proof of the theorem, define H(z) = vG () and
A(z) = K x xq (x) — K« H (x),
B(x)=Kxxq(z)+ K+ H ().
Since the kernel K(z) is an entire function of finite exponential type, then also
the convolutions with this kernel are entire functions of finite exponential type. In

particular, both A(z) and B(x) are entire functions of exponential type not larger
than the one of K (x). Moreover, by the above claims,

xa () — A(x) = K+ H (z) — (K * xa (z) — xa (z)) 20,
B(z) = xa (z) = K+ H () — (xa (z) — K * xa (z)) > 0.
Finally,
B(z) — A(z) = 2K = H (z) < 4vF (z) = 4+I (dist (z,09) /2) .
Hence, the theorem follows with () = 4vI(t/2). O

It follows from the proof of the theorem that for periodic sets with respect to
the integer lattice Z¢, the above approximating entire functions are periodic too,
hence they are trigonometric polynomials.
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TRIGONOMETRIC APPROXIMATION 1107

Corollary 1.2. There exists a positive function (t) with fast decay at infinity,
such that for every measurable set Q in the torus T = R?/Z% and R = 0,1, 2, ...,
there exist trigonometric polynomials A(zx) and B(zx) of degree R with

A(2) < xa(@) < B(), |B(z) - A(2)| < ¢ (Rdist (2, 00)).

Proof. The corollary follows immediately from the theorem. However, in order to
clarify what follows, we write explicitly the Fourier expansions of the trigonometric
approximations. Let Q = Q+ Z% be a Z%periodic set in R¢. As in the proof of the
theorem, for every R > 0, let

Kp(x)= Y R'K(R(z+k) =Y K(k/R)exp(2mik-z),
kezd kezd

-1
Hi () = exp (2m) ( | Kw dy> / K (3) dy.
{lyl<1} {ly|>R dist(z,0Q+24)}

Then,
A@).B@) = | Kn(y) (o) FHrl—y)dy
= 3" B (k/R) (Ro () F Hr (k) exp (2mik - 2).
kezZd

O

Remark 1.3. As we have said, in the above theorem the approximation | B(z)— A(x)|
is controlled by 1 at points with distances 1/R from the boundary of €, while
|B(z) — A(x)| is essentially 0 at larger distances. It follows from the inequality
of S. Bernstein between the maxima of an entire function and its derivatives that
this approximation is essentially optimal. Indeed, if C'(z) is an entire function of
exponential type 1, then

[C(z) = C(y)| < sup [VCO(z)| & —y| < 2m sup [C(z)] [z —y].
z€R? z€R4
Hence, if A(z) < xq(z) < B(z) are entire functions of exponential type 1, if x
is in Q and y is outside  with |z —y| < (dwsup,cpa {|A(2)], IB(2)|})”", then
B(z) — A(y) > 1 and

B(z) — A(z) = (B(x) — A(y)) — (A(z) — A(y)) = 1-1/2,
B(y) — A(y) = (B(z) — A(y)) — (B(z) = B(y)) = 1 - 1/2.

2. DISCREPANCY ON THE TORUS

As stated in the Introduction, the approximation results in the previous section
have simple and straightforward applications to multi-dimensional versions of the
classical Erdés Turdn inequality for discrepancy of point distribution. In the sequel,
for simplicity, the sets 2 in the torus T¢ = R?/Z? will be periodic sets in R? of the
form Q = Q* + 7%, with Q* in R? with the property that dist (Q2*,Q* + k) > & >0
for every k € Z? — {0}. With this identification, the distance of a point = from 9
in T is the distance of = from 9Q* + Z% in R%.
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1108 L. COLZANI, G. GIGANTE, AND G. TRAVAGLINI

Theorem 2.1. If{a:]} _, 15 a sequence of points in the torus, if (2 is a measurable

set with measure (), and if Hg(x) = 4~ % (2R dist (z,09Q)) with R > 0 and 1 (t)
with fast decay at infinity, as in the proof of Corollary [L2], then

—m™ Y xalz))
j=1

< |He@)]+ 32 (IReth)] + | Hrk)) m—liexpmik-wj).

0<|k|<R

Proof. If A(x) < xa(x) < B(x) are defined as in the proof of Corollary [[2, then
A(w), B(x) = _ K (k/R) (%o (k) F Hr (k) exp (2nik - 2)

kezd

<1, K(0) =1, K(&) =0if |¢| > 1, and since X (0) = 1 (), then

~ ‘ ~

m

—1ZXQ l‘] < /1/ —1ZA l‘]

=) = Y K /) (Ra (k) = Hr (k) | m™*Y" exp (2rik - @)

kezd j=1

< |Ha)]+ Y (IRak)|+ |fak)) m1S e (2rik - x)|
0<|k|<R 7j=1

Similarly

—u () +m” 12)(9 (xj) < — +m_1ZB (x5)

j=1

< ‘ﬁR(O)‘ + Z (|>?Q(k)\ + ‘ﬁR(k)’) miliexp@mk-x]‘) )

0<|k|<R j=1
(]

In order to apply the above theorem one has to estimate the exponential sums
of point distributions and the Fourier transforms of domains. Motivated by the
above result and by the definition of Fourier dimension of a measurable set (see
e.g. Chapter 4.4 of []), it is possible to introduce the classes of sets whose Fourier
transform have a prescribed decay at infinity. Given a measurable set € in the
torus T9, assume that for some 0 < a < (d + 1)/2 there exists a constant ¢ such
that for every k € Z¢ — {0},

<clk™®

xa (z) exp (—27ik - x) dx
Td

Also, assume that for some 0 < 8 < 1 and for every R > 0,

{ clk|™" if 0 < |k| <R,

Y (Rdist (z,0Q)) exp (=2mik - w)dx| < 3 plg 0 o

Td
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TRIGONOMETRIC APPROXIMATION 1109

Denote by F («, 3,2) the smallest constant ¢ for which the above two inequalities
hold. It turns out that the Fourier transform of ¢ (R dist (x,0€2)) is in some sense
dominated by the one of xq(x). In particular, in a number of cases the second
inequality is a consequence of the first. Anyhow, in many cases it is possible to give
quite precise estimates for the constants F (a, 3, ).

Remark 2.2. If the first of the above inequalities holds for some a > (d +1)/2, or
if the second inequality holds for some 3 > 1, then either Q or T¢ — ) has measure
zero. It suffices to show this when (d +1)/2 < o < d/2 + 1. For every y,

/ Ixa(z+y) = xo(@)[*de = |(exp(2mik - y) — 1) Ra(k)[*
T kezd

S F(a,8,9) [4n?yl® Y KP4 Yo KT

0<|k|<|y| ™" [k|>y| ="

< cF (o, 8,9) [y * 7.

Hence for every y and every n > |y|,

t/ (@ + 1) - xa(2)] de
Td

< Z/Td xe (z+in""y) —xa (@+ (G — Dn~ly)|do
j=1

= Z/Td [Xo (@ +jn7"y) = xa (@ + (G — Dn~'y)[* da
=1

— 2 e Con
:Tl/d }XQ ($—|—n 1y)—XQ(I)| deSCF(Oz,ﬂ,Q) |y|2 dnd+1 20
T

This converges to zero when n diverges. Hence, for every translation 2 —y = Q up
to sets with measure zero. Similarly, if 3 > 1, then either Q or T —  has measure
zero. To see this, it suffices to estimate the modulus of continuity of the function

Gy) = /Td IXa(z +y) — xa(r)| dz.
Indeed,
G(y) — G(2)]

< /d Ixa(z +y) — xa(z + 2)|de < p ({dist (,00Q) <[y — z2[})
T
-1
. N Y
< (yint, w©}) [ o (1= =17 it (0,00) do < e (0, )y - 21
Finally, if 8 > 1, then G(y) is identically zero.

Remark 2.3. The Fourier coefficients of ¢ (R dist (x,09)) on the torus T can be
evaluated by an integration over any set that tiles R? via Z?. In particular, one can
integrate on the set of points @ in R? for which the distance from 0947 is realized
precisely by the distance from 9. Since |V dist (z,9Q)| = 1 when dist (x, 9Q) # 0,
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1110 L. COLZANI, G. GIGANTE, AND G. TRAVAGLINI

if 09 has measure zero, then the coarea formula gives

/ P (Rdist (z,0Q)) exp (—27i€ - x) dx
QN{dist(xz,002)<e}

eR

< Rfl/ [ (¢)| / exp (—2mi€ - x) dx| dt.

0 {dist(z,0Q2)=R~1t}

Moreover, since (@ has measure 1,
/ P (Rdist (z,00)) exp (—27i€ - ) dx| < sup |[¢ (t)].
QN{dist(z,0Q)>e} t>eR

In fact, one can eliminate the term sup,..p|¥ (t)| by integrating over all Q
rather than @ N {dist (z,99) < e}. However, in order to keep control of the level
sets {dist (x,00Q) = t} it may be convenient to restrict to ¢ small.

Remark 2.4. Tt follows from classical estimates on oscillatory integrals with nonde-

generate critical points that if a convex body has smooth boundary with positive
Gauss curvature, then

<clg|mh2]

/ exp (—2mi€ - x) dx
o0

<c |£|—(d+1)/2 )

/ exp (—2mi& - x) dx
Q

The constant ¢ can be bounded in terms of the smoothness and the minimum of
the curvature of the boundary. See e.g. [10} [I1] 12} 20]. From these estimates, with
{dist (x,09) = t} instead of 012, it easily follows that F' ((d 4+ 1)/2,1,) is finite. If
the curvature vanishes of some order at some point, then the Fourier transform in
directions normal to these points has a worse decay at infinity. If some part of the
boundary is completely flat, then one can guarantee only a decay of order one.

Remark 2.5. If 0 < a < 1, define

M (o, Q) = it;%) t % ({dist (z,00) < t}).

This is related to the upper Minkowski content of 92, defined by

lim sup ¢~ % ({dist (z,00Q) < t}).
t—0+

However, these two quantities can be quite different. In particular, if 9 contains
a point p, then M («a, Q) > p ({dist (z,p) < 1}). If M (, ) is finite, then OQ has
Minkowski dimension at most d — «. The domain is regular if o = 1, and it is
fractal if 0 < « < 1. The definition makes sense also when « > 1, but in this case
either Q or T? — Q has measure zero. The proof is as in Remark It is well
known that the decay of the Fourier transform of a domain can be controlled in
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TRIGONOMETRIC APPROXIMATION 1111

terms of these quantities. Indeed,
/ xa(z) exp(—2wik - x)dx
Td
= —/ xa(x) exp(—2mik - (:E — 27 k|2 k:) )dx
’]I‘d

= 2_1/1rd (xg(x) —xalz+ 27 k2 k)) exp(—2mik - x)dx.

Then,

/ xa(z) exp(—2mik - x)dx
Td

< 2_1/ ‘xg(x 427! \k|_2 k) — xg(x)‘ dx
Td
<27y {dist (z,00) < 271 |k|’1} < 270710 (o, Q) |K|7°.

Moreover, since 1 (t) is positive and has fast decay at infinity,

P (Rdist (z,0Q)) exp (—2wik - z) dx
Td

< [ ¢ (Rdist (z,00))dx < cM (o, Q) R,
Td
In particular, since R™® < |k|”” in the range 0 < |k| < R, it follows that
F(a,0,0) <cM (o, Q).

In the following, the above theorem and remarks will be applied to the study of
discrepancies of lattices m~1/4Z% and arithmetic progressions { jx};ﬁ:l in the torus
R?/74, with multiples modulo Z?. In particular, we will prove Theorems [I.2]
and [0.4] stated in the Introduction.

Corollary 2.6. There ezists a constant ¢ with the following property. Let m*/® be
a positive integer and let L(m) = m~Y 7% be the lattice of points m~? (g1, ..., ga)
with 0 < g; < mt/ed —1. Then

n() — m™! Z xa (@) < cF(a, B, Q)m—ﬁ/(d-‘rﬁ—a)'
zeL(m)

Theorem follows from the above corollary by setting 8 = «, replacing
F(a,a,Q) with M(«,Q) and observing that the constant ¢ does not depend on
the set Q.

Proof. The sum of a geometric progression gives

m~! Z exp (2mik - x)
xz€eL(m)
d mt/d_1
_ 474 if k ¢ m'/474
:H 1/dz (2 l/dk> _{01 ;
m exp (2mim™ % jky, . 1/dryd
oot = lif k € m™/Z°.
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1112 L. COLZANI, G. GIGANTE, AND G. TRAVAGLINI

Hence, by Theorem 2] and the definition of F(«, 3, ),

—Q

p)-m Y xa@)| S F@p |RP+2 3w

xeL(m) 0<|m1/d/€‘<R
< F(, 8,9) (R +em™ RT)
Then the choice R = m!/(4+8~2) gives the desired estimate. O

Corollary 2.7. Given € > 0, for almost every x in T? there exists a constant ¢
such that for every m > 1 and every €,

/J(Q) _ m—lZXQ(jx) < CF((I,,B, Q)m—ﬁ/(d+l3—a) logﬁ(d+1+5)/(d+5*a) (m) )
j=1

As before, Theorem [0.3] follows from the above corollary by setting 8 = a,
replacing F(o, a, Q) with M(«,Q) and observing that the constant ¢ does not
depend on the set .

Proof. Denoting by ||¢|| the distance of ¢ to the nearest integer,

m—IZexp(Qm'jx.k) _ sin (mmk - x)

Jj=1

Hence, by Theorem 2] and the definition of F(«, 3, ),

<min{l,1/2m|k-z|)}.

msin (7k - x)

w(Q) —m=> xaljz)
=1

<F(a,8,) [RP+2 Y |k|*amm{1,2—1m—1||k-x|r1}
0<|k|<R

< F(,8,Q) [RP+m 'R S [kl 2l
0<|k|<R
Finally, in [19] it is proved that for almost every x there exists a ¢ which depends
on x, such that for every R > 0,
STk al Tt < clog™ = (14 ).

0<|k|<R
The desired result follows by choosing

R = m!/(d+8—a) log*(d+1+€)/(d+57a) (m).

O

In particular, the discrepancy of a random sequence { jx};”zl with respect to any
domain 2 is dominated by cF ((d + 1)/2,1,Q) m~2/(¢+D 10g?*¢(m) and, by Remark
24 when Q is convex with smooth boundary and positive Gauss curvature, then
F((d+1)/2,1,Q) is finite. Similarly, by Remark 28] the discrepancy is dominated
by cF (1,1,Q)m~1/4 log(d+1+e)/d (m), and when the boundary of the domain is
d — 1 dimensional, then F (1,1,Q) is finite. These results should be compared
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TRIGONOMETRIC APPROXIMATION 1113

with well-known upper and lower estimates of the discrepancy with respect to
convex regions due to W. M. Schmidt and J. Beck. See e.g. [2, Theorem 15
and Corollaries 17B, 18C and 19F]. In particular, for any given compact convex
set there exists an infinite sequence such that the discrepancy is bounded above
by em~(@+1D)/(2d) 1og1/ 2m. The definition of Fourier dimension does not capture
polyhedra, except in the trivial case @ < 1. Indeed, the decay of Fourier transforms
of polyhedra is not isotropic or homogeneous. Anyhow, these Fourier transforms can
be computed explicitly and estimated quite precisely, and, using these estimates,
one can give bounds for the discrepancy which are better than the ones obtained
above.

Lemma 2.8. IfQ is a polyhedron in R with diameter \, then,

d
/Qexp (—2mi§ - x) dz| < 2 Z Hmin {)x, (2w \ij)é!)_l} -

Q(d)>...20(1) j=1

The sum 1is taken over all possible decreasing chains of j dimensional faces Q(j) of
Q, and Pq;) is the orthogonal projection on the j dimensional subspace parallel to

Q).

Proof. The Fourier transform of a polyhedron can be computed explicitly, but here
we are only interested in precise estimates of its size with control on all constants
involved. If € (j) is a j dimensional face of Q with Po(;¢ # 0 and if n () is the
outgoing normal to the boundary 0 (j) at the point z, the divergence theorem
gives

i . Poys
/ exp (—2mi€ - ) dx = / M exp (—2mi€ - x) dx.
Q(7) ) 2w |PQ(])£|

Moreover, if A is the diameter and p ((j)) is the j dimensional measure of Q(j),
one always has the trivial estimate

< (9Q3) < N,

/ exp (—2mi& - x) dx
Q@)

Hence, if 2 (j — 1) are the j — 1 dimensional faces of €2 (j),

/ exp (—2mi& - x) dx
Q(4)
N if 21 | Pog€| < 1/,

1
= / exp (—2mi€ - x) dx
Q(j-1)

if 2 | Po(j)¢| > 1/A.

21 | Pag€| ai-Dean)
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1114 L. COLZANI, G. GIGANTE, AND G. TRAVAGLINI

Iterating, one can decompose the integral over @ = (d) into a sum of integrals
over chains of faces 2 (d) D Q(d — 1) D ..., and this gives

’/Q exp (—2mi€ - x) dx

d

< > H (27 | PagHé|)

Q(d)DN(d—1)D...DQ(s)  Jj=s+

d
+2 > H (27 |Pag€]) ™

Q(d)DQ(d—1)D...0Q(1) j=1

The first sum is over all chains of faces with (27r |PQ(]')£|)71 < Aforl <s <
7 < d and (27r ’sz(s)ﬂ)_l > A, while the second sum is over all chains with
(271' ’Pg(j)f‘)_l < Aforall 1 <j <d. Finally, in the first sum,

A T @r|Pagél)” Hmm{ (2 |Paé) '}

j=s+1

Indeed, since ‘Pg(j)i‘ Is increasing in j, the terms min{/\, (27 ’PQ(j)fl)_l} are

equal to A when 1 < j < s and equal to (271' ’PQ(]‘)E’)_l when s < j < d. Similarly,
in the second sum,

d
[T CrlPage) ™ Hmm{ (27 | Paé]) ' } -
j=1

Observe that when & = 0 the formula gives A%, while the exact value of the integral
is the volume of €. O

Lemma 2.9. Let Q be a convex polyhedron in R? with diameter . For any
i=12...,d—1, let {A(j)} be the collection of all j dimensional subspaces which
are intersections of a number of subspaces parallel to the faces of Q. Finally, let
P(t) be a function on 0 <t < +oo with fast decay at infinity. Then there exists a
positive constant ¢, which depends on d and ¥(t), but not on Q, such that for every
R >0,

P (Rdist (z,09Q)) exp (—2mi€ - x) dx

Rd

d—1
SCZ Z R~ dem{ 27T|PA(k)§|) }

7=0 A(j)D..DA(1)

When j = 0 the inner sum of products is intended to be the number of vertices of
the polyhedron, and when 1 < j < d — 1 the inner sum is taken over all possible
decreasing chains of j dimensional subspaces {A(j)} and Py;y is the orthogonal
projection on A (j).
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Proof. Since |V dist (z,0Q)| = 1, the coarea formula gives

P (Rdist (z,00)) exp (—27i€ - x) dz
Rd

+oo
= / (/ exp (—2mi€ - x) das) ¥ (Rt) dt.
0 {dist(z,0Q)=t}

We consider separately the level sets inside and outside 2. The level sets
{dist (z,09Q) =t} N Q are polyhedra with diameter at most A and faces parallel
to some {A (j)}. We emphasize that some of the {A (j)} may not be parallel to
any {Q(j)}. Anyhow, as in the previous lemma,

+oo
/ (/ exp (—2mi€ - x) das) W (Rt)dt
0 {dist(z,00)=t}NQ

< > (2‘1/0+ ¥ Rtldt)Hmm{ (27 | Pag€])~ }

A(d—1)D...DA(1)

As in the Steiner formula, the outer level sets {dist (x, Q) =t} — Q are a union
of sums of j dimensional faces {2 ()} and portions of d—j—1 dimensional spherical
surfaces of radius ¢. Hence, if w(d — j — 1) denotes the measure of the d — j — 1
dimensional spherical surface of unit radius,

+oo
/ (/ exp (—2mi& - x) da:) ¥ (Rt)dt
0 {dist(z,002)=t}—Q

<Z( —j-1 / - w<Rt>td-j-1dt>
x2 ) Hmm{ (27 |Pagg]) '}

Q(7)3-.2(1)k=1

Observe that when £ = 0 the formula gives ¢ (R_d + )\d_lR_l), with a constant ¢
independent of the polyhedron. ([

Theorem 2.10. Given a finite collection of d—1 dimensional hyperspaces X in R9,
let P(X) be the collection of all convex polyhedra with diameter smaller than 1 — €
and facets parallel to elements of X. If {A(d) D ... D A(1)} is the collection of all
possible decreasing chains of j dimensional subspaces obtained by the intersection
of R and a number of hyperplanes in X, define

2= Y Hmm{ (27| Pagé)) '}

A(d)D..DA(1) j=1

Finally, iof {xj} _, 18 a sequence of points in the torus, define

U (&) = m_lzexp (2mig - zj)| .

j=1
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Then there exists a positive constant c, which depends only on the space dimension
d and the upper bound 1 — € of diameters of polyhedra, such that for every R > 0,

sup |u(Q) — mflzxg(xj) <c|R T+ Z O (k)T (k)
Qep(X) j=1 0<|k|<R

Proof. This follows from Theorem 2] and the previous lemmas. It suffices to
replace A < 1 — ¢ with 1 and R7~¢ with |[k?~% in the range 0 < |k| < R. O

For example, if X is the collection of hyperplanes {z; = 0}, then P(X) is the
collection of all boxes {aj <z; < bj} with diameter smaller than 1 — ¢ and the
above is an estimate of discrepancy with respect to boxes.

Corollary 2.11. Given a finite collection of hyperspaces X and a prime number
m, there exists a lattice point g = (g1, ..., ga) in Z% with 1 < g9; <m—1, such that

sup |u(Q) — mflzxg (jmflg) <em™t logd(m).

QeP(X) =

The constant ¢ depends only on the dimension and on the cardinality of the set of
chains of subspaces A(d) D ... D A(1) generated by X .

Theorem follows from the above corollary, along with the observation that a
polyhedron in the torus with facets parallel to elements of X and diameter smaller
than 1 can be seen as the union of a finite number (which depends only on X)
of polyhedra with facets parallel to elements of X and diameter smaller than, say,
1/2.

Proof. A preliminary result is needed.

Claim. There is a constant ¢, depending only on the dimension d, such that, for
any decreasing chain of subspaces A (d) D ... D> A(1) and for any R > 0,

d
Z H min{l, (2 |PA(j)k|)71} <clog’ (2 + R).

1<|k|<R j=1

Indeed, let {ai,...,aq} be an orthonormal basis of R? such that {ai,...,a;}
generates A (j) for j =1,...,d. Since ‘PA(j)k| > |k - a,|, it suffices to estimate

d
Z Hmin{1,|k-aj\_1}.

1<|k|<R j=1
Of course the idea is to replace the sum over a discrete variable with an integral
over a continuous variable. Let Q(k) be the cube centered at the integer point k
with edges of length 1 parallel to the orthogonal axes {a,} and let P(k) be the cube
centered at k with edges of length 3. Since |z - a;| is the distance of = from the
hyperplane of equation z-a; = 0, if this hyperplane crosses P(k), then |z - a;| < 2V/d

for any z in Q(k), and therefore

min{1,|k~aj|71} <1l= min{1,2\/3|x~aj\71}.
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If this hyperplane does not cross P(k), then for any z in Q(k),

: - : |z - aj|
mln{1,|k~a-\ 1}—mm{l,—
’ |k~ aj] |2 - ag

< min{l M} < min{l, (1—|—\/8/2) |x-aj|_1}.

ka2 ayl

Overall, for any k and any = € Q(k),

d d
Hmin (1,|k-aj|71) < Hmin (1,2\/E|x-aj|71>.
j=1

j=1
Hence,

d

I_Imin{l7 |k~aj|_l}

1<|k|<R j=1

d
< Z /Q(k)jl:[lmin{l,2\/ax~aj|_l}d:r

1<|k|<R
d

/ Hmin{1,2ﬂ|x'aj|fl}dx
{la-a;|<R+1/2} 5254

R+1/2 d
= (2/ min{l,Q\/Etl}dt> <clog?(2+R).
0

<

Now comes the proof of the corollary. The sum of a geometric progression gives

m
mflz exp (27Tijm71g . k) =

j=1

sin (7g - k)

' m™'g k).
s (rmTg - F) exp (mi(m +1)m~'g - k)

This exponential sum is 0 or 1 according to g-k # 0 (modm) or g-k =0 (modm).
Hence, by Theorem with R = m,

sup | u(Q) —m ™D xa (jm )| <c|mT+ > ® (k)
QEP(X) j=1 0<|k|<m, g-k=0 (mod m)

The heuristic behind the existence of good lattice points with the desired prop-
erties is that the ratio of k’s which satisfy the congruence g-k = 0 (modm) is m ™!
and the sum over the k’s with g -k = 0 (modm) is m~! times the sum over all k.
This heuristic principle can be made rigorous by an averaging procedure, as in The-
orem 5.7 of [I6]. In order to satisfy the congruence g1k1 + ... + ggkq = 0 (mod m),
if k; # 0 (modm), then one can take g; arbitrary for j # 4, the remaining g; being
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1118 L. COLZANI, G. GIGANTE, AND G. TRAVAGLINI

uniquely determined in the residue class. Hence, by the above claim,

(m-1)~" > @ (k)

1<g;<m—1 \0<|k|<m, g-k=0 (mod m)

= Y ek [(m-1) > 1

0<|k|<m 1<g;<m—1, g-k=0 (mod m)

<(m—-1)"" Z ® (k) < em™logh(m).
0<|kl<m

Observe that the constant ¢ is the product of the constant in the above claim
and the cardinality of the set of chains of subspaces generated by X. In particular,
there exists g such that

Z ® (k) < em™tlog(m).

0<|k|<m, g-k=0 (mod m)
(]

Corollary 2.12. Given a finite collection of hyperspaces X, then for every ¢ > 0
and almost every x in T? there erists a positive constant ¢ such that for every
m>1,

m

sup |1(©) —m > xa (ja)| < em ™ log® < (m)

QeP(X) =

Proof. As in Corollary 2.7 this follows from Theorem 210l and an adaptation of
[19]. O

The above corollaries improve and extend a two dimensional result in [I}, Theorem
4D], where it is proved that the discrepancy of m points with respect to polygons is
dominated by m~!log*** (m). They should also be compared with the discrepancy
of lattice points in [4].

3. APPROXIMATION AND DISCREPANCY ON MANIFOLDS

Let M be a smooth d dimensional compact manifold without boundary, with
Riemannian distance dist(z,y) and measure p normalized so that pu (M) = 1. The
Laplace Beltrami operator A on M has eigenvalues {)\2 }, counted with appropriate
multiplicity, and a complete orthonormal system of eigenfunctions {¢x(x)}. To
every function in L?(M,dp) one can associate a Fourier transform and a Fourier
series,

fm5&M%@MWf@=Z%mw-
A

Fourier series on compact Lie groups and symmetric spaces are examples. In
particular, the eigenfunctions of the Laplace operator on the torus are trigonomet-
ric functions, and eigenfunction expansions are classical Fourier series. Similarly,
eigenfunctions of the Laplace operator on the surface of a sphere are homogeneous
harmonic polynomials, and eigenfunction expansions are spherical harmonic ex-
pansions. In the setting of manifolds, an analog of trigonometric polynomials is
given by finite linear combinations of eigenfunctions ), cxpx(x). Indeed it can be
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shown that there is a close relation between approximation by functions of expo-
nential type and by eigenfunctions. See for example [6]. The following generalizes
Theorem [[LT] and Corollary

Theorem 3.1. Given a > 0, there exists f > 0 such that, for every domain )
in M and R > 0, there exist linear combinations A(x) and B(x) of eigenfunctions
with eigenvalues at most R?, satisfying

A(z) < xa(z) < B(z), |B(z)— A(z)] < B(1+ Rdist (z,00)) .

It is likely that a slightly more precise result holds, with a rapid decay instead
of a polynomial decay (1+ Rdist (x,9Q)) “. However, the exponent o can be
arbitrarily large, and this suffices for our applications.

Proof. The proof of this theorem is similar to the proof of Theorem [T} and it is
based on suitable approximations of the identity adapted to the manifold, analogous
to the convolution kernels in the Euclidean spaces:

Kr(z,y) = Y expa(@)ea(y),
A<R

|Kr(z,y)| < c(a) R (1 + Rdist (z,y))"*,

/mMMW@:L
M

Moreover, these kernels are positive up to a negligible error. The construction
of such kernels on Lie groups and symmetric spaces is well known, and in these
cases it is possible to obtain positivity. Indeed, if a kernel has good decay and finite
spectrum, then also its square has good decay and finite spectrum and a suitable
normalization has mean one. We do not know whether positivity can be achieved
in our general setting; however, in the sequel almost positivity will suffice. Given
m (§) as in the proof of Theorem [Tl and

—(d+1)/
nleh=(141eP) " mamie).

define
Kg(z,y) =Y _h(R'A) ea(@)ea(y).
A

It is possible to prove that this kernel has an asymptotic expansion with Eu-
clidean main term RYK(Rdist(x,y)) and suitable control on the remainder. Al-
though the details are not completely trivial, the techniques can be found in Chapter
XII of [21], or in [3]. Finally, define

Hg(z) = B (1 + Rdist (z,09Q)) "%,
Ama&mwwm@—%@mwx

Bmzﬁmmmmwﬂmmww

Then, as in the proof of Theorem [I.1] it is possible to show that for some 8 > 0
independent of 2 and R, these functions satisfy the required properties. O
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Theorem 3.2. For every sequence of points {xj};.nzl and domain Q in M and
R >0, if Hg(x) is defined as in the proof of Theorem B.Il, then

p(2) = m 'Y xala))

0<A<LR

< 0]+ 3 (RaI+ |ArOV]) S )

Proof. This proof is completely analogous to the one of Theorem 2.1 O

Of course, the interest of the above result arises when one is able to exhibit point
distributions with m =" 37" | ¢ (2;) suitably small. Inspired by [I7] on the problem
of distributing points on a sphere, we now consider point distributions generated
by the action of a free group on a homogeneous space. Let G be a compact Lie
group, K a closed subgroup, and M = G/K a homogeneous space of dimension d
with normalized invariant measure p. Let H be a finitely generated free subgroup
in G, and assume that the action of H on M is free. Given a positive integer k,
let {o; };n:l be an ordering of the elements in H with length at most k. For every
function f(z) on M, define

Tf(z)=m™'Y f(ojz).
j=1

This operator is self-adjoint with norm 1, hence all its eigenvalues have modulus
at most 1. Indeed, 1 is an eigenvalue, and the constants are eigenfunctions. In the
following, we shall be interested in cases where all other nonconstant eigenfunctions
have eigenvalues much smaller than 1. For this reason, define p(m) as the supremum
of the eigenvalues with nonconstant eigenfunctions,

p(m) = sup .
To(z)=ve(z), p(x)#1

Moreover, as before, define M (8, Q) = sup, ot~ °u ({dist (x,0Q) < t}).

Theorem 3.3. There exists a positive constant ¢ such that for every point x in
M and R >0,

sup (@) —m ™Y xalox)| < ey (3_5 +R<d-‘”/2p<m>).
M(6,Q)<vy j=1

Proof. Since the operators T and A commute, they have a common orthonormal
system of eigenfunctions, Ay (z) = A2y (z) and Ty (z) = T(N)ea(x). The as-
sumption in the theorem is precisely that |T'(A\)|] < p(m) if A # 0. Hence, by

Theorem [3.2]
() — mlzm:XQ(Uﬂ)
< |Br©)] +pm) 3> (IR + |[Br(N)]) lox ()]

0<A<R
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Since Hg (z) = B (1 + Rdist (z,00Q))”“, then
Hg(0) < / (1+ Rdist (z,09))"* du(z)
" +oo

< B | p({dist (z,00) < R7'}) + > 27 p ({dist (x,00) < 27 R7'})
=0

+oo
<B1+2° ) 207 | M(6,Q) R

Jj=0

Similarly, by Cauchy and Bessel inequalities,

) 1/2 1/2
5[] s < {5 [ b {52 s}
A<R

A<R A<R
12 1/2
SB{ / <1+Rdist(x,aﬂ>>‘2adu<x>} {Zwmﬁ}
M A<R
oo 1/2 1/2
<BL14+20 Y 2072 {Zm (x)F} VM (6, QR
j=0 A<R
One also gets
> 1RaW)l lea ()]
0<A<R
1/2 1/2
S{ Z |>?Q(>\)|2} { Z |<PA(33)|2}
0<A<1 0<A<1
llog (R)] ) Yz ) Yz
+ >0 Y RV > e (@)l
k=0 | a2k A<2h+1

If Ase(x) < xa(z) < Bak(z) are the approximating functions in Theorem [31]
corresponding to R = 2%, then,

Z R < /M () — Agi ()2 dp(z)
2a

< 62/M (1 + 2k dist (z, 89))7 du(x)

+o00
< B | 142 20729 ) M (5,9) 2%,
=0

By classical bounds on the spectral function of an elliptic operator (see e.g.
Theorem 17.5.3 in [15]),

S foa (@) < cRY,

A<R
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Hence, if « is large enough,
w(Q) —m=> xalojz)
j=1

< eM (6,Q) R + e/M (6,Q)R4=9/2p(m).

Finally, observe that /M (4,) < ¢M (6,), since M (4, ) is bounded below,
as one sees by putting ¢ = 1 in the definition of this constant. ([l

The following corollary is Theorem in the Introduction, and it has been
proved in [I7] in the case of spherical caps.

Corollary 3.4. If M = SO(3)/S0(2) is the two dimensional sphere and if H
is the free group generated by rotations of angles arccos(—3/5) around orthogonal
axes, then there exists a constant ¢ such that, if k is an integer and {o; };n:l is an
ordering of the elements in H with length at most k, then for every x,

m
() = m ™S xalose)| < eM (5,9) m=*/C+) 162/ CH0) (1),

j=1
Proof. The eigenvalues of the operator T satisfy the Ramanujan bounds

p(m) = sup lv| < em™Y?1log(m).
To(z)=ve(z), p(z)#1

Hence, choosing R = m1/(4+9) 1og=2/(@+9) (1) in the above theorem,

inf {Rf‘; + R(d=9)/2yp=1/2 1og(m)} < em~0/(d+9) 16g20/(d+0) (1
R>0 o
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