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Trigonometric formulae?—No one uses them
anymore

G. E. Sneddon W. W. Read S. R. Belward∗

(Received 28 November 2005; revised 8 August 2006)

Abstract

The title paraphrases a comment made during talks with local
mathematics teachers in Townsville. The challenge was laid down.
Where are these formulae used? Why do we think they are impor-
tant? This paper covers some of the answers. In particular, these
formulae were used (almost unnoticed) in a project looking at solving
the Helmholtz equation on various regions in two dimensions. Some
results of this project are presented.
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1 Introduction

The thoughts leading to this paper came from discussions that took place
between members of the School of Mathematical and Physical Sciences at
James Cook University and the committee of the local branch of the Queens-
land Association of Mathematics Teachers. As a part of those discussions we
looked at the current Senior Mathematics syllabus in Queensland.

One surprise was that basic trigonometric formulae, such as that for sin(A+
B) and related formulae, seem to have been relegated to just an option in
the advanced mathematics subject. In the discussions that we had, a story
was related about how an engineer was called in the middle of the night and
asked what this formula was used for and he replied ‘nothing’. This response
might appear to support the decision not to include this topic in the core
syllabus. However, it came as a surprise to those present at the meeting. Un-
fortunately, as often happens in those situations, no one could offer a realistic
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application immediately. It was particularly annoying the next day when we
realised that we had used the formula at an important stage in our research
earlier in the year. This use of the formula had gone almost unnoticed. We
shall comment on this later. In the meantime, we identified several other
areas where the formulae are used.

1.1 The senior syllabus

In Queensland, the Senior Mathematics syllabus extends over the final two
years of high school, years 11 and 12. There are two subjects, Mathematics B
and Mathematics C. (There is a third subject, Mathematics A, which is a
lower level subject, or General Mathematics.) Details of these syllabi can be
found on the Queensland Studies Authority website [1].

Mathematics B covers topics such as elementary functions, elementary
calculus, some integration and statistics. The Mathematics C syllabus cov-
ers group theory, real and complex numbers, matrix algebra, vectors, calculus
(methods and applications) and structures and patterns (basically sequences
and series). Then there is a group of optional topics, from which schools
should choose just two. These optional topics are (in order) linear pro-
gramming, conics, dynamics, number theory, probability models, advanced
periodic and exponential functions, and other.

It is not until the second last topic that we see a reference that might
cover trigonometric formulae. It is almost as if this is a ‘fall back’ option in
case schools cannot think of any other suitable topic.

2 Why are these formulae important

Firstly, the derivation of the formula, for sin(A + B), is an interesting piece
of mathematics. The proof is a neat exercise in geometry, and requires some
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construction and some calculation. It is typical of many types of geometric
construction that are so important in physics and mechanics.

Secondly, the trigonometric formula is just as important for what it is
not : sin(A+B) is not the same as sin A+sin B . It is of lesser importance if
someone cannot quite remember the precise details of the formula. A student
may not always be be sure which one is cos–cos and which is sin–cos, or
remember the details of the signs. However, such a student should be aware
that there is a rule for sin(A + B) and that the answer is not sin A + sin B .
A glance at the geometry makes this clear. University mathematics staff and
school teachers alike will be familiar with many other examples of this type.
For example,

√
x2 + y2 , 1/(a + b), (x + y)2. The important point here is

that these functions are non-linear and that in reality it is a very specialised
set of functions for which f(x + y) = f(x) + f(y).

It is easy for anyone to make this mistake, but it is our perception that
students are increasingly worse at these concepts. Whereas once an offending
student might show some embarrassment, and the staff member might con-
sider it such an amusing event that he or she might make a point of telling
some colleagues, now students show surprise or even disbelief when told, say,
that

√
x2 + y2 is not equal to x+ y . Unfortunately, staff members no longer

regard it as a noteworthy event.

This is a pity. In our opinion, understanding that not all functions are
linear and that some functions will have different rules for f(x + y) is im-
portant for anyone learning mathematics. Even if students cannot remember
the details of the rules, they should at least be aware that there are rules
and know when they should check these rules.
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3 But where are they used

The examples that we found fall into four broad areas. A qualitative discus-
sion of some of these applications and many other applications of trigonom-
etry can be found in Wikipedia, The Free Encyclopedia [2].

3.1 Signal processing

1. Trigonometric formulae are important in understanding how amplitude
modulated signals (used in am radio broadcasts) can be expressed in
terms of the side-band frequencies. For instance

cos ω0t cos ωt =
1

2

[
cos(ω0 + ω)t + cos(ω0 − ω)t

]
.

Here ω0 is the carrier frequency and ω is the frequency of the signal.
In this case a complicated function is written in terms of two much
simpler functions.

2. In a similar fashion, a complicated signal can be represented in terms
of its Fourier transform or the coefficients of its Fourier series. For
instance, a cat scan is one example where this happens.

The trigonometric formulae are used in the development of the Euler
formulae for the coefficients of the Fourier series. Similarly, the identity
ei(x+y) = eix × eiy, which represents the trigonometric formulae in a
different form, is central in the development of the Fourier transform.

Once the Fourier transform and the discrete Fourier transform are ac-
knowledged as examples where the trigonometric functions and their
formulae are used, then the applications are virtually limitless. It is
just that these applications are often a part of software that is taken
for granted.



3 But where are they used C266

3.2 Wave analysis

1. Standing waves can be seen as being composed of travelling waves.
That is,

cos x cos ct =
1

2

[
cos(x + ct) + cos(x− ct)

]
.

2. In a similar fashion, it is sometimes helpful to express a travelling wave
in terms of standing waves. For example

cos(lx+my+nz−ct) = cos(lx+my+nz) cos ct+sin(lx+my+nz) sin ct .

3.3 Vibrations

The analysis of any vibrations will involve trigonometric functions. Some
examples follow.

1. If different components of machinery vibrate with different frequencies,
the resulting beat frequency can often be heard as a low background
hum. The source of this beat frequency can be understood as a direct
application of the sum–product formulae.

A beat frequency also results when two musical notes with different
frequencies are played together. These beats can be used as an aid in
tuning musical instruments. (Though it is likely that the instrument
tuner may be unaware of the mathematics behind these beats.)

2. It is important to be able to decompose any vibration into its normal
modes. For example, the motion of a double pendulum appears rea-
sonably complicated. However, it can readily be decomposed into its
two component modes, each of which is just simple harmonic motion.
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3.4 Trigonometry

The formulae are important in trigonometry. Here are two specific examples.

1. In surveying (particularly in spherical trigonometry) the formulae are
used to determine if the measurements correspond to a closed figure.

2. In analysing planetary motion (or the motion of any heavenly bodies) it
is necessary to go through several coordinate transformations to trans-
form the motion in the ecliptic plane into motion expressed in terms of
a reference frame fixed in the earth’s surface. These transformations
all rely on the trigonometric formulae.

4 The Helmholtz equation

At the time of our meeting with the mathematics teachers we had forgotten
that the formulae had been used to carry out one of the steps in our research.
The Helmholtz equation,

∂2Ψ

∂x2
+

∂2Ψ

∂y2
+ λΨ = 0 ,

had arisen when considering advection–diffusion for hill slope seepage prob-
lems [3, 4, 5]. This equation typically arises when finding the motion of a
vibrating membrane. In that case the eigenvalue λ is related to the frequency
of the vibration. It is easy to find solutions of this equation, but not so easy
to get solutions that satisfy certain boundary conditions. For example, on a
square membrane whose side length is l = 1 , if we require the solution to be
zero on the boundary of the square there will be solutions in the form

Ψ(x, y) = sin mπx sin nπy ,
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Figure 1: Graphs of the modified domain. The upper boundaries have the
equations y = w + 4(1− w)x(1− x) for w = 0, 0.25, 0.5, 0.75, 1.0 .

(m and n are integers) and the value of λ will be π2(m2 + n2).

We wanted solutions on a more general region. We started looking for
solutions on a unit square that was modified so that the upper boundary had
a parabolic shape as shown in Figure 1.

We tried to find solutions of the form

Ψ(x, y) =
N∑

k=1

akvk(x, y) ,

where the ak are constants and the vk are known functions that satisfy the
equation, but not necessarily the boundary conditions. The aim was to
find coefficients ak so that Ψ(x, y) will come close to satisfying the boundary
conditions. The next step is to make an appropriate choice of the functions vk.
We initially chose vk = sin mπx sin nπy , where m or n may not be integers.
For a fixed λ we might choose

vk = sin kπx sin γkπy ,
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with k an integer and γk =
√

λ/π2 − k2 . This is not helpful if k2 > λ/π2 .
In those cases we switched to the sinh function so that

vk = sin kπx sinh γkπy ,

with γk =
√

k2 − λ/π2 . These functions satisfied the boundary conditions
on the side and bottom boundaries. There were a sufficient number of func-
tions to obtain a reasonable fit at the top boundary, but the nature of the
sinh functions created difficulties if too many of them were required. The
problem of determining the coefficients ak became ill-conditioned.

The problem still was to find more functions that satisfied the differential
equation. To overcome this we went back to the original solution and wrote
it as

sin mπx sin nπy = 1
2

[
cos(mπx− nπy)− cos(mπx + nπy)

]
.

Each of these two terms satisfies the differential equation and more impor-
tantly, each one represents a standing wave at a fixed angle to the x-axis. It
became clear that the functions we needed would be a set of such standing
wave functions but chosen so that the directions were all equi-spaced. If
there were N such functions, they could be chosen to be

φk = cos(mπx + nπy),

with

m =

√
λ

π
cos θk , n =

√
λ

π
sin θk ,

where θk = kπ/(2N) , k = 1, . . . , N . This choice of function guaranteed that
π2(m2 + n2) = λ and the choice of the θk ensured that the directions were
equi-spaced. A typical function is illustrated in Figure 2.

In practice we actually used the functions vk = cos mπ(x − 0.5) sin nπy
as basis functions. These functions automatically satisfied the boundary
condition on the bottom boundary and were symmetric about x = 0.5 . Thus
any solutions found this way would also have this symmetry.
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Figure 2: A typical standing wave basis function.

λ = 714.93557419 λ = 1084.33325223

Figure 3: Two of the solutions, and the corresponding values of λ, obtained
for the parabolic shape y = x(1− x).

We were interested in the convergence of these different solutions on dif-
ferent shaped regions and how accurately the eigenvalue could be obtained.
Figure 3 shows some of the solutions on the region bounded above by the
parabola y = x(1− x) .
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Figure 4: The L-shaped region and the well-known Matlab logo.

4.1 The method of particular solutions

As an aside, Fox, Henrici and Moler [6] solved this same problem on the
L-shaped region shown in Figure 4. They used the basis functions

vk(x, y) = Jαk(
√

λ r) sin αkθ ,

where α = π/ϑ and k is a positive integer. In this case, the basis functions
are expressed in terms of the polar coordinates r and θ. The function Jν is
the Bessel function of order ν. Bessel functions often appear in the solution
of problems that have cylindrical symmetry. This choice of basis function
guaranteed that the solution would be zero on the x-axis between x = 0 and
x = 1 and on the y-axis between y = 0 and y = −1 . Fox, Henrici and
Moler referred to their method as the Method of Particular Solutions. The
approximate solution obtained with just the first two basis functions forms
the well-known Matlab logo (Figure 4).



4 The Helmholtz equation C272

x

y

1

1

u = −1/
√

3

u = 1/(2
√

3)v = −1/
√

3

v = 1/(2
√

3)

1

Figure 5: Triangular coordinates (u, v, w).

4.2 The equilateral triangle

Finally, this same problem can be applied to an equilateral triangle. We
could use the same numerical procedure, but the problem has an exact solu-
tion in terms of trigonometric functions. The existence of an exact solution
means that this example can be used to check the accuracy of the numerical
methods. McCartin [7] gives a derivation of the earlier results of Lamé. In
this case it is convenient to work in triangular coordinates

u =
1

2
√

3
− y ,

v =

√
3

2

(
x− 1

2

)
+

1

2

(
y − 1

2
√

3

)
,

w =

√
3

2

(1

2
− x

)
+

1

2

(
y − 1

2
√

3

)
.

These coordinates are not independent since u + v + w = 0 .



4 The Helmholtz equation C273

It can be verified that the functions

φ = sin[pπ(u + 1/
√

3)] cos[qπ(v − w)]

are solutions with λ = π2(p2 + 3q2) . These solutions are symmetric about
x = 0.5 , and φ will be equal to zero along the x-axis provided p = 2l/

√
3

where l is an integer. Fortunately, we do not need an infinite sum to satisfy
the boundary conditions on the other two boundaries. It turns out that three
terms will be enough. Thus

Ψ = sin[p1π(u + 1/
√

3)] cos[q1π(v − w)]

+ sin[p2π(u + 1/
√

3)] cos[q2π(v − w)]

+ sin[p3π(u + 1/
√

3)]) cos[q3π(v − w)].

with p1 = 2l/
√

3 , p2 = 2m/
√

3 and p3 = 2n/
√

3 . There will be additional
relationships between the p’s and q’s needed to ensure that the remaining
boundary conditions will be satisfied. The trigonometric formulae are needed
to find these relationships and to put these solutions into a more appropriate
form. Eventually we get the solutions

Ψ = + sin
[ 4π

3
√

3
(lu + mv + nw +

√
3 l/2)

]
+ sin

[ 4π

3
√

3
(nu + mv + lw +

√
3 n/2)

]
+ sin

[ 4π

3
√

3
(mu + nv + lw +

√
3 m/2)

]
+ sin

[ 4π

3
√

3
(mu + lv + nw +

√
3 m/2)

]
+ sin

[ 4π

3
√

3
(nu + lv + mw +

√
3 n/2)

]
+ sin

[ 4π

3
√

3
(lu + nv + mw +

√
3 l/2)

]
.

where l, m and n are integers such that l + m + n = 0 . The eigenvalue is

λ =
8

9
(l2 + m2 + n2).
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l = 2 , m = 1 , n = −3 l = m = 2 , n = −4

l = 3 , m = 1 , n = −4 l = 3 , m = 2 , n = −5

Figure 6: Various solutions of the Helmholtz equation on the triangular
region.

With a simple closed form solution such as this, it is easy to plot the
various solutions. Some examples are given in Figure 6.

5 Conclusion

There seems to be a difference of opinion between mathematicians and school
educators about what mathematics is important. If we believe these things
are important, we need to make our views known.
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There are three main reasons for studying trigonometric formulae in detail
at secondary school. Firstly, the formulae demonstrate fundamental prop-
erties of mathematics such as the essential non-linearity of most functions.
Secondly, manipulating the formulae develops algebraic dexterity and can as-
sist in the development of a deep understanding of these important functions.
Thirdly, far from not being used anymore, these functions and the relation-
ships between them have a wealth of applications in modern mathematics,
science and finance.
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