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Trigonometric Interpolation and Curve-Fitting

By A. C. R. Newbery

Abstract. Some algorithms are introduced, whereby a function defined on an arbitrarily

spaced set of abscissas may be interpolated or approximated by trigonometric or hyperbolic

polynomials. The interpolation may be ordinary or osculatory. Least squares approximation

is included; the approximant may be a pure sine series or a cosine series or a balanced

trigonometric or hyperbolic polynomial. An application to a periodicity-search is
described.

An extensive set of algorithms is available for functional approximation and

interpolation in terms of polynomials. The present article develops some corresponding

algorithms for nonpolynomial approximants. The classes of approximant (interpolant)

considered are sine polynomial, cosine polynomial, balanced trigonometric poly-

nomial and their analogs in terms of hyperbolic functions. The classes of approxi-

mation considered are interpolation on ordinates, osculatory and hyperosculatory

interpolation, weighted least-squares approximation, weighted least-squares ap-

proximation subject to some ordinate and derivative constraints.

Trigonometric Analogs of Lagrange and Hermite Interpolation. Lagrangian and

Hermitian interpolation in terms of sine polynomials were dealt with in [1], and the

adaptation to cosine polynomials is straightforward. For Lagrangian interpolation

in terms of balanced trigonometric polynomials there is a classical algorithm [2, p. 38],

but we wish to develop an alternative which has some advantages with respect to

economy and ease of generalization.

Let there be N points (x¡, f¡), i = 1, • • • N; let all the abscissas xt be distinct

and strictly within an interval /. It is required to construct a function

y(x) — 2^ i, sin rax + ^ c, cos rux
r-l r-0

such thatX*.) = li,P + q+ 1 = Wand \p — q\ á 1. (The latter condition defines
a "balanced" trigonometric polynomial.) The parameter w determines the frequency

of the interpolant; there may be some restriction on values assigned to it. Let 0

denote ux, let 0,- = o)x¿, and let Ljk(d) denote a function of degree (j, k), i.e., a function

of the form 2^1í~i s'r sm rQ + XXoc',cos rd, such that Lik(dx) = /< for i ;£ j -f- k + 1.
Let /' be the range of 0 induced by the requirement x£/ and let n,,(0) be a function

of degree (j, j) such that n,,(0,) = 0 for / g 2j; moreover, these 2j zeros are the

only zeros of IT,,- in /'. For consecutive j we can now construct the functions IT,-,-,

which are unique to within a normalization factor. Starting with noo(0) = 1, we

may define for y = 0,1 • ■ • ní+1,,+i = gX©)!!,-,, where g,(0) = a¡ sin 0 + /3, cos 0 — y¡.
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870 A. C. R. NEWBERY

The coefficients of g, are chosen so that g,(0) shall be zero at 02i+i, 02i+2 and nowhere

else in /'. It may be verified that g,(0) has the required zeros if

(1)
or, = cos 02,+2 ~~ cos 02J+1,        ß, — sin 02i+i — sin 02,+2,

7,- = sin (02i+i — 02Í+2)-

We can also guarantee that g,(0) has no other zeros in V provided the width of /' is

less than 2ie. This can be seen by noting that alternate zeros of g,(0) (which are real

by construction) occur at intervals of 27r. An interval of less than 2w can, therefore,

not contain more than two zeros of g,-(0). Having shown that the functions n,,(0)

are constructible, we now construct for j = 0, 1, • • • the functions Lu(6) such that

Ljj(di) = /, for i ^ 2j + I. These functions may be constructed by the recursion

(2) Loo = U.       Li+Ui+1 = L„ + g1(0)ni,(0),

where g*(6) = af sin 0 + ßf cos 0 — yf.

From the definitions of L,f, n,, it follows that L/+lti+l as defined in (2) must pass

through the points (0¡, /,) for i í¡ 2j + 3. The coefficients a*¡, B*¡, y*¡ must, therefore,

be chosen so that Li+li/+1 will interpolate correctly at subscripts i = 2j + 1, 2j + 2,

2j + 3. This is equivalent to

-1

-1

LtU

o

LÍ2) + 2 L.;i(02í + 2)]/Llíi(02)+2)

^[/2í + 3   ~   ¿íí(02í + 3)]/níí(02/ + 8X

that the determinant of the system is

sin 02/+1    cos 02i+i

(3) sin 02Í+2    cos 02i+2

_sin 02i+3    cos 02i+3    —1

It can be shown [3, p. 85]

.      •       (021+2 92j + \)     .       (02J + 3~~    02i + l)      .       (02i + X~~    S2Í + 2)
4 sin-sm-sin-

The system, therefore, has to be solvable under our assumptions that the abscissas 0,-

are distinct and within an interval of length <2tt. In these circumstances the re-

cursion (2) enables us to produce the required trigonometric interpolant, provided

the number of points N is odd. If 7Y is even, let N' = (N — 2)/2, let LN-,N- be the

interpolant at 27Y' + 1 = N — 1 points and construct ELy,W' which has zeros at

all abscissas subscripted 1 through 2N' = N — 2. We now attempt to define LN-+X-N- =

LN\N- + g*'(0)n.v'.w(0)- The linear equations defining the coefficients of g%, resemble

(3) in the first two rows with N' replacing j; however, the third constraint is the one

which implies that g^.n.v.AT' should have no term involving cos (N' + 1)0. Let IV,^ =

Sa' sin N'd + ev cos 7v"0 + terms of lower frequency. The third constraint is then

seen to be — a%.sN' + j3J,c,v- = 0. When we examine the matrix which defines a%,,

ß*', 7*'! we know already that the first two rows are independent under our hy-

potheses. Singularity could, therefore, occur if and only if the third row is a linear

combination of the first two, or equivalently

—.v/(sin 0/V — sin 0JV-!) = cv/(cos 0.v — cos 0^_i).

In this event, Z,W'+lt>' will generally not be constructible. The same applies to LN'wN-+l

in the event that cv/(sin 6N — sin 0v-O = sNf(cos 6N — cos 0,v-i). In any case, it

can be seen that at least one of the interpolants L¡y+1,W', Zw,y+i is constructible.
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TRIGONOMETRIC INTERPOLATION AND CURVE-FITTING 871

Osculatory interpolation on N points is a confluent case of ordinate interpolation

on 2/V points. By defining 6N+r = 0r for r = 1, • • • , N, we can construct IT,,- by the

same recursion as before for j = 1, • • •, N — 1. For the earlier y-values (j g [N/2%

n,-, will satisfy homogeneous ordinate constraints as before; for later y'-values IT,-,-

will satisfy at least one repeated homogeneous ordinate constraint, i.e., it will satisfy

a homogeneous derivative constraint. Thus, the algorithmic construction of n/y is

essentially unchanged from the previous paragraph, but the properties of the resulting

function are modified. The Eqs. (3) will still hold if we add the proviso that any

subscript in the range [N + 1, 2/V] shall have TV subtracted from it. Moreover, when

this occurs on the right side of (3) the quantity is replaced by its derivative. For

example, if 2/ + 2 > 7Y, then the second equation of (3) would read :

af sin 02i+2-iv + ßf cos 02,+2-at — yf = [/2i+2-Ar - Z.<,(02i+2_2V)]/n;,(02/+2_JV).

The extension to hyperosculatory interpolation follows the same principle, although

the details become harder to specify. We still generate a sequence of functions {LT,,(0)|

satisfying 2/ homogeneous conditions; for low values of j the conditions imply

zeros of the function n;i at specified nodes; when these conditions are all met, the

subsequent conditions imply zero derivatives at a subset of these nodes; thereafter,

they imply zero second derivatives at a subsubset of the nodes, etc. It is essential

that the successive higher derivative constraints be built on in increasing order.

For instance, one can construct nu(0) to vanish at any two assigned points 0U 02 in /'

or to vanish with its derivative at 0,, but it is generally impossible to construct a nn

of proper degree such that 11^(6) vanishes at 0,, 02.

Least-Squares Approximation by Sine and Cosine Polynomials. The problem

of determining a cosine polynomial which, in a weighted least-squares sense, best

approximates a discrete function defined on arbitrarily spaced abscissas has been

discussed by Oliveira-Pinto [4]. He showed that the problem could be reduced to

the analogous problem for algebraic polynomials and solved by Forsythe's method [5].

We would like to observe that this problem and the corresponding sine series problem

can also be treated by a direct method without any need for conversion into and

out of algebraic form.

Let N points (*,, /,) and positive weights Wt be specified. Let 0 = ux

as before, and let {<pr(0)} be a set of orthogonal sine polynomials such that

(<pr, <f>.) = XXi <Pr(Oi)<Ps(di)W¡ = 0 for r ^ s. These polynomials can be generated

by the following recursion:

4>i = sin 0,       <p2 = (2 cos 8 — ai)<pi,

... <t>k+i = (2 cos 0 — akypk — bk<pk-j,    where
(4)

bk = 2(cos d<pk, <i>k-i)/(4>k-i, <t>k-i),    and

ak = 2(cos 0(pt, 4>k)/i<Pk, <Pk).

The only event which could cause a stoppage is that for some k i<bk, <bk) = 0. This in

turn would imply that, for all /, #t(0,) = 0, so that <bk must be orthogonal to all func-

tions with respect to our inner product. Although the function <p*(0) is nontrivial by

construction, it may generate a trivial TV-vector on evaluation at the N arguments 0,.
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872 A. C. R. NEWBERY

In this case, we will call the function "degenerate". It follows from the method of

construction that, if <bk is degenerate, then all subsequent functions are also degenerate.

It may be noted that cW, is necessarily degenerate, because the contrary assumption

would imply that there existed N + 1 nontrivial vectors of dimension N all mutually

orthogonal with respect to our inner product. We now examine the question of

whether and when "premature degeneration" can occur, i.e., in what circumstances

can it happen that, for some k < N + 1, <j>k is degenerate? We note that <pk(6) can

be written in the form (1 — z2)I/2Pt_,(z), where z = cos 0 and Pk^ is an algebraic

polynomial of degree k — 1. There are at most k + 1 z-values z,- of magnitude ^ 1

for which (1 — z2)1/2P/t_1(z) vanishes. Corresponding to each z,- there may be several

0< such that cos 6{ = z,; however, the following observations may be made:

I. If I' is a range over which cos 0 is monotonie, then <f>k(d) vanishes at most k

times in /'. Consequently, degeneration cannot occur earlier than at <pN. If we exclude

values of 0¿ for which sin 0¿ = 0 (which is a reasonable policy), then there cannot

be a premature degeneration. This follows from the fact that for each z,-, of which

there are at most k — 1, there exists at most one 0< such that cos 0< = z,. Since we

excluded the possibility that sin 0< = 0 it follows that <t>k(0) cannot vanish more

than k — 1 times in /'.

II. In many applications it will not be a reasonable policy to select to in such a

way that the length of V exceeds 2ie, and we now assume that the length is strictly

less than 2ir. In this situation we can guarantee that, for k < N/2, (¡>k is not degenerate.

Furthermore, if for all distinct i, j, cos 0¡ 9i cos 0, we can guarantee that <bN-2 is

not degenerate. If we impose the additional (reasonable) restriction that sin 6¡ 9a 0

then <p.v will not be degenerate. This may be argued as follows: There are at most

k — 1 values z,- ; to each of these there will generally correspond two values of 0

such that cos 0 = z¡, but in view of our restrictions at most one of these can be a

data point. Since we excluded the possibility that sin 0¿ = 0, it follows that<pt vanishes

at most k — 1 times in /', and <pM is, therefore, not degenerate.

Once the orthogonal functions \<br} have been constructed, the nth degree least-

squares approximation is given in the usual way by f(0) ~ XXo br<f>r, where bT =

(/(0), <t>r)/(<pr, <br). The occurrence of a premature degeneration does not imply that

the algorithm will fail to produce the least-squares solution; it implies that the least-

squares error has reached a lower bound (which may or may not be zero) beyond

which it cannot be further reduced regardless how many additional functions are

adjoined to the space of the approximants. In short, it is a signal to stop augmenting

the degree of the approximant.

If we wish to generate orthogonal cosine polynomials, we can use the same

recursion (4) except that we initialize with <p0 = 1, <pi = cos 0 — (cos 0, 1)/(1, 1).

Having generated the orthogonal trigonometric polynomials, we find the nth degree

trigonometric approximant to be f(x) ~ XXo.i tT<f>T(ux), where the lower summation

limit is 0 for cosine and 1 for sine approximation, and

N

tr   =    Z    ÍVif(Xi)4>r(c0Xi)/(<pr,(br).
• -1

Constrained Least-Squares Curve-Fitting. In the case of sine and cosine ap-

proximation we are able to incorporate exact constraints on ordinates and derivatives
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TRIGONOMETRIC INTERPOLATION AND CURVE-FITTING 873

just as Klopfenstein did in the algebraic case [6] ; by this we mean that certain con-

straints are to be met exactly, while others are to be satisfied in a least-squares sense.

Let L(8) be the sine (or cosine) polynomial of minimal degree satisfying all the exact

constraints on ordinates and possibly on derivatives. Conditions under which L is

constructible and an algorithm for constructing it are given in [1]. Let LT(0) be a

cosine polynomial of minimal degree satisfying corresponding homogeneous con-

ditions, e.g., if L(8j), L'(6j) are specified to be /,• and /{ then 11(0,), 11/(0,) have to

be zero by construction. If we approximate f(0) by L(B) + U(8)G(6), where L and G

are trigonometric polynomials of the same kind (both sine or both cosine), then by

construction we are meeting all the exact constraints; it only remains to determine

G(0) in such a manner as to match the remaining constraints optimally in a weighted

least-squares sense. We have, therefore, to minimize the squared residual E given by

N

E =  £ WilL(di) + LT(0,)G(0,) - f(x,)f
(5)

= ¿ w/n. (0,)[G(0.) - (f(Xi) - z.(0,))/n(0,)],

where ¿1 denotes summation over subscripts which are not exactly constrained.

Assuming there is no vanishing denominator in the last expression (5) we now have

reduced the constrained problem to a standard unconstrained problem of the kind

considered above, with modified approximand and weight function. Two observations

can be made concerning the case where a denominator in (5) vanishes. Firstly, if

the problem is normalized in such a way that / ?¿ j implies cos 0,- 9* cos 0, then

there can be no vanishing denominator; the function n(0) would not vanish at

data points other than those which are exactly constrained, and these are explicitly

excluded from the summation. Secondly, in the event of a denominator vanishing,

if we look at the limiting form, i.e., the second expression in (5), we find that at one

abscissa 0,-, £7(0.) is multiplied by zero. Whatever choice of coefficients we may

make for G(0), our decision can therefore have no effect at that abscissa. If we delete

that abscissa entirely, the deletion can have no effect on the optimal choice of co-

efficients. It will affect the value of £ in a determinable manner, but it will not affect

the variation of E. It is the variation of E and not the value which de^' nines the

optimal coefficients of G(0).

Least-Squares Approximation by a Balanced Trigonometric Series. Let #„„(0)

denote a trigonometric polynomial of the form

/. sr sin r0 + ¿j Cr cos r"-
r-0 r-0

We shall need to construct an orthogonal sequence B00, B10, 2?n, B21, B22, • • •, Bkk,

Bk+1,k • • • . The inner product defining the orthogonality is

N

iBv„ Bra) m Y, WiBpai0<)Br,idi).
i-l

Let it be assumed that we have constructed the orthogonal sequence as far as Bkk,

and the normalization convention is that
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Bkk = Ji sin kd + cos kO + J4_i sin (/c — 1)0 + ¿Vi cos (k — 1)0 + • • • ,

Bk,k-\ = sin &0 + lic-i sin (& — 1)0 + ct_i cos (k — 1)0 + • • • .

In order to construct Bk+1_k, Bk+i,k+l we shall apply a variant of the Gram-Schmidt

procedure as follows:

(i) For k > 0 define the polynomials Ci+li/t+i = 2 cos 0 2?** and 54+lit+1 =

2 sin 0 .5«. Note that both these polynomials are orthogonal to 5t_2it_2 and all

earlier members of the sequence. For instance, (Ck+1,k+u Bk-2,k^2) = (2 cos 0 Bkk,

Bk~2,k-2) = (Bkk, 2 cos 0 Bk-2k-2), and this is the inner product of Bkk with a linear

combination of polynomials Bk-i,t-u J?4_lil_2, • • -, Z?00. This inner product vanishes

by hypothesis. For k = 0 the initialization procedure is described later.

(ii) Orthogonalize Ct+1,fc+1 and Sk+Uk+1 with respect to each of the polynomials

5*_i.*_2, 5*_i,*_i, #i,jfc_i, 5tt. Call the resulting polynomials C'+1,t+1, 5i+1-è+I.

Specifically,

,,.. C^+i.t+i = Cjfc+Li+i       /_, Är,(Ct+I,t+1, Br,)/(BT,, Bra),
(o)

5t+i,*+i = St+i.t+i       2Li Br,(Sk+itk+i, Br,)/(Br,, Brt),

where r, s take the four value-pairs mentioned.

(iii) Define Bk+itk to be that combination of C'+,i4+„ S'k+ltt+1 for which the

coefficients of sin (k + 1)0 and cos (k + 1)0 are one and zero respectively.

(iv) Define Bk+1<k+l to be that combination of C'k+1¡k+1, S'k+1¡k+l which is or-

thogonal to Bk+lk and which is normalized to make the coefficient of cos (k + 1)0 one.

If the above algorithm is executable, then clearly it must give rise to polynomials

with the desired orthogonality and normalization properties. It remains to examine

situations in which the algorithm might not be executable. Stage (ii) could fail if

(B„, Br.) = 0. This could only occur if Br,(6,) = 0 at every data point 0,-, i.e., Br, is

"degenerate" in the sense mentioned earlier. We may note that under the restriction

(which can often be reasonably assumed) that the length of I' is less than 27r, Bkk

cannot have more than 2/c zeros in /'. It cannot, therefore, be degenerate unless

2k ^ N, and this would mean that the problem is under-determined, since Bkk has

2/c + 1 coefficients. Ordinarily therefore, the nonexecutability of stage (ii) will imply

an impror < problem formulation. Be that as it may, the algorithm should be ter-

minated oecause the degeneracy of Bkk implies the degeneracy of all subsequent

functioPxS, so that no further error reduction can be achieved, regardless of how

far the space of the approximants may be extended. In order to verify that stage (iii)

is executable, we need to find the leading terms, i.e., coefficients of sin (k + 1)0 and

cos (k + 1)0 in C'k+ltk+1, S'k+lik+1. Since the leading terms of Bkk are sk, 1, then those

of Ck+1,k+l are sk, 1 and those of SM,M are 1, — sk. Since stage (ii) has no effect

on the leading terms, the above value-pairs also hold for C'+lii+1 and S'k+¡¡k+¡. The

required linear combination (iii) is, therefore, Bk+lfk = (S'k+1:k+1-\-skC'k+iik+1)/(l-\-sl).

In stage (iv) both Q+ltt+1 and S'k+1_k+1 are, in principle, subjected to one more

orthogonalization process, which will affect the high-order sine coefficients but not

the high-order cosine coefficients. Since the high-order cosine coefficient of C'k+lk+1

already has the desired value of unity, there is no need to perform the additional

orthogonalization on S'k+lik+1 and stage (iv) can, therefore, be replaced by:

(iv)       Bi+i,jfc+i = Ci+n+i       Bk+i,k(Ck+i,k+i, Bk+1¡k)/(Bk+j.k, Bk+X.k).
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The algorithm is initialized by setting B00 = 1, and treating all negative-subscripted

functions as identically zero. Furthermore, when k = 0, step (i) is replaced by Cn =

cos 0, S1X = sin 0. Thereafter, one obtains Bl0, B1X by applying steps (ii), (iii), (iv)'

with sn = 0.

Now that the orthogonal functions have been generated, the rest of the curve-

fitting process will follow the conventional pattern.

In studying the computational cost of the algorithm, it will generally be fair

to assume that this is concentrated in the inner products. This is equivalent to as-

suming that the number of points greatly exceeds the number of free coefficients

in the approximant. A formal count of inner products shows twelve in stage (ii) and

two in stage (iv)'. However, by taking account of duplications and other relationships,

the count can be reduced to seven. All self-inner-products of the form (Brr, B„)

and (.8,+i.r, -ßr+i.r) are needed, and these make up two of the seven. Some relations

which may be used to economize in stage (ii) are for k >  1,

(Ct+i.t+i, Bk-i,k-2) = (2 cos 6Bkk, Bi-j.i-s) = (Bkk, 2 cos 8Bk..uk-2) = 0,

(Ci+n+i, Bk-i,k-i) = iBkk, 2 cos 0-B*-i,*-2) = iBkk, Bkk),

iSk+i,k+i, Bk-i,k-2) = iBkk, 2 sm 0¿?i_i>t_2) = —(Bu, Bkk),

(Sk+i,k+i, 5*-i,*-i) = iBkk, 2 sin dBk-itk_{) = —sk-iiBkk, Bkk).

This leaves five more inner products to be explicitly computed, four for stage (ii)

and the last for stage (iv)'. These are:

iCkk, 5*.*-i) = 2(cos 6Bkk, flt.fc-0, iCkk, Bkk) = 2(cos 6Bkk, Bkk),

(Skk, ft.»-!) = 2(sin 6Bkk, Bk,k-L), iSkk, Bkk) = 2(sin BBkk, Bkk),

(C'k+1,k+i, Bk+1,k) = 2(cos BBkk, Bk+l,k).

If the computational cost of constructing the orthogonal functions is truly reflected

by the number of inner products, then our average cost is 3^ inner products for

each single augmentation of the set of orthogonal functions. The comparative cost

for generating orthogonal algebraic polynomials is 3 inner products per augmentation.

Since, in each case, it can ordinarily be assumed that at least one Fourier coefficient

will be required corresponding to each orthogonal function, the cost ratio will ordi-

narily be no worse than 4\ : 4. In principle, one can also build on ordinate and

derivative constraints to this algorithm as was done in the case of the pure sine

and cosine polynomials, but the details of this will not be discussed here.

Experimental Results. In order to test the capabilities of the above algorithm

for least-squares approximation by balanced trigonometric polynomials, the following

experiment was run:

(A) Define j(x) = 1 + |sin x\ + |cos 2x\.

(B) Define 60 equal spaced abscissas in the interval (0, 3x/2) and delete 10 of

them randomly. Call this set of abscissas X.

(C) Let a number p take consecutively the five values .2, .4, • • • , 1. For each

p value generate 10 sets of 50 random numbers uniformly distributed in (—p, p).

Add the 50 random numbers to the 50 evaluations of f(x) on X. Thus, for each p

we have ten "noised-up" data sets generated by f(x).
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(D) Since the period of j(x) is x, we infer that the "best" value of w in the equal-

weighted least-squares sense should be around 2. We wish to determine how far

this fact may be verified by the algorithm in the presence of increasing noise. For

each "noised-up" data set we try five values of w, namely, 2 ± 5% and 2 ± 10%,

and we observe how often it happens that the value œ = 2 is best of the five in the

least-squares sense. The approximant went as far as terms involving 20. The results

are given in the table below, which indicates the ranking of the value o> = 2 for

the various p-values. For example, when p = .6 the value o = 2 was the best of the

five co-values on seven of the ten "noised-up" data sets.

1st 2nd 3rd 4th 5th

p =    .2 10 0                0 0 0
.4 8 2                0 0 0
.6 7 12 0 0
.8 5 3                2 0 0

1. 4 3                3 0 0

From these figures it is seen that the x-periodicity is still detectable, though not

very strongly, even at the highest noise level of p = 1. It should be noted that in

two respects the test may be considered as fairly stringent; firstly, the undifferentiable

function f(x) is not readily approximated by a low-order Fourier series, and secondly,

the data were spread over only one-and-a-half periods. Thus, there was only one-half

of a period during which any evidence of periodicity could be gathered. In view of

these inherent difficulties and of the noise level imposed, it would seem that this

algorithm has quite a high potential for detecting harmonic periodicities against a

background of noise.

In conclusion, it should be observed that in all the algorithms discussed above

it is possible, with minor changes, to read 'sinh, cosh' for 'sine, cos' and thus to

produce corresponding algorithms for interpolation and approximation in terms

of hyperbolic functions.
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