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TRIGONOMETRIC SUMS ASSOCIATED

WITH PSEUDO-MEASURES

J. BENEDETTO

The purpose of this paper is to study the structure of pseudo-measures
on closed sets B c r =-- B/2n Z of Lebesgue measure m (.E ) = 0. In parti-
cular, we find various conditions on E so that a given pseudo-measure T

supported by E is actually a measure or, at least, the first derivative of

a bounded function. Such questions are obviously related to the open

problem of determining if, generally, a Helson is a set of spectral synthesis.
A (1°) is the space of absolutely convergent Fourier series g(y) =

einy normed d ; and its dual is the space of pseudo-
measures A’ (r).

A’ (E ) (resp., M (E )) is the space of pseudo-measures (resp., measures) T
-

supported by E such that the Fourier coefficient T (0) = 0. We let Db (E)
be those first order distributions T supported by E such that T is the first

, 

-

derivative of an L°° function and T (0) = 0 ; the bounded pseudo-measures
on E are Ab (E) == Db (E) n A’ (E ).

§ 1 is devoted to notation and the statement of some formulas for

pseudo measures in terms of trigonometric sums; these results are basic

to what follows. Next (§ 2), we characterize a useful subspace of M (.E ) by
a Stone-Weierstrass argument. In § 3, utilizing a summability technique,
we prove that certain natural subspaces always contain non-pseudo-
measures for infinite E. Then, with a metric hypothesis on E, we derive
an estimate which is useful in characterizing those E for which A’ (E ) _
=== A~ (jE7); metric conditions are generally not sufficient to establish the

boundedness of A’ (E )-this is where we need arithmetic conditions. We give
a functional analysis argument in § 4 to show the existence of a class of

functions in A (I’) without any sort of local finite variation; and we use

Pervenuto alla Redazione il 10 Settembre 1970.
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this to examine subspaces of A (r) on which measures with finite support
approximate pseudo-measures. In § 5, after noting that unbounded pseudo-
measures exist on countable sets with a single limit point, we give a tech-
nique which shows how arithmetic conditions on ~’ lead to A’ (E) = Ab(E).
The results here are preliminary. Finally (§ 6), we illustrate that properties
of Helson sets lead to a large class of topologies of summability type.

I would like to thank Mr. Gordon Woodward for his helpful advice.

1. Notation and Formulas for Pseudo-Measure.

We designate the complement of E by CE= U h where, with .EC[0 2a),
0

h = ;; [0, 2n) is an open interval of length since m (E) = 0,
= 2a. For convenience, we set

generally, we drop the «+» in this notation.
Let Db (r) be the space of first order distributions T such that T = f’,

and let Also define D~ (E) to be those

first order distributions T for which and
-

T(0)==0. It is easy to see and, as such, we generally
1 

J

write for an element of Besides the spaces indicated in the

introdution we consider the following subspaces of J9~ (E) :

and f has at most countably many jump discontinuities).

We multiply [2] S co T E (E) by

Now, .E is Helson if ~(jE7)==~f(~), spectral synthesis (S) if A’ (E) =
=- As (E), and strong spectral resolution if ~L~(~)== is a Dirichlet



231

set if

We set A (E) to be the restrictions of A (~) to E ; and A+ (E) to be the

restrictions of absolutely convergent Taylor series to E.
Next, let y be the compact open sets of E so that is a

finitely additive set function on ]:[1; 2] ; we norm such a T by

Also we write lj  Ik if, for [0, 2n), Àj  Î’k; Ij1 ~... ~ h’n is a pa1.tition P.
For detailed proofs of the following, as well as similar results, we

refer to [3, § 2].

PROPOSITION 1.1. For all T E A’ (E ) there 
such that f === ZI. a. e.,  es  oo for some b &#x3E; 0, and

1 
’

PROPOSITION 1.2. For all and

PROOF. We have

Since and since Fourier series can be integrated term by
term, we integrate both sides of (1.2) over h , Thus

n

PROPOSITION 1.3. If and the partial sums -5’ kj are
1

bounded, then 
u 1 -1 

1
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PROOF. By Abel’s formula

Thus we have and since

2. Structure of Measures.

Let us first recall [1,2] some characterization of in

terms of Let if and only if any of the follow-
ing equivalent conditions hold:

There is M such that if then

PROPOSITION 2.1. Let I be bounded by a constant C and assume

Then T:’0 kj E M (E ).

PROOF. Let

X is a subalgebra of C (T) which satisfies the conditions of the Stone-Weier-
strass theorem.

Thus, X = C (F ).
For each g E X, we have, for aj (yj),
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00

Since C T, ~ 5 = ~ T is a continuous linear functional on a dense
1

subspace of 6~ (T) and has support in E.
Consequently, T E M (E). q.e.d.

REMARK 1. Relative to our use of Abel’s sum formula note that if

I is bounded then Z ) kil  oo if and only if converges for

every convergent 

2. PROP. 2.1 generalizes the easy fact that if Z ) then Too 

E Md (.E ). A special case of PROP. 2.1 which is proved directly and simply
by Schwarz’s inequality, is then T lej E M(E).

j=1
It is also clear by Schwarz’s inequality that if then

Finally note that if then lim 7ci exists.

EXAMPLE 2.1 a. We first show that there are such that

z I diverges. Take countable E C [0, 2] such that Â1 = y

l; = i’2j+2 , Î’2j+l = = 0, 1, ..., and

Setting we have
 , 1-’

a function of bounded variation. Thus

where a), 0 ~ 2, a).2j+l = 2/2j + 1) (2j + 3), j 0, and a,~2~ _ - 2/2j (2j - 2),j &#x3E; 1.
b. We must show that there are non-discrete measures T cu k9 E M (.E)

such that Z  oo. Let .E C [0 2n) be perfect and set kj = 1 9 -- 
3

. 
1

we show supp T = E so that since ( , 1)  oo we have 

- Md (E). Since the accessible points are dense in E it is enough to prove
that each 2,. (and ym) is in supp T. If lm £ supp T we find cp E C (1’) such
that g = 0 on (a neighborhood of) supp T and ( ~ 0. To do this,
first note that every subsequence of I converges to 0 and so there is

an open interval T~ (lm) with center such that if and h n V (lm) ~ z
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then .  2-. Next take non-iaegative cp f C’ (F’), supp
i m

symmetric about In, . Thus

c. We now observe that there are continuous measures T 7cj E M(E),
such that ¿ I diverges. For example the continuous Cantor func-
tion on the Cantor set is of the form on and there are

J 0

an infinite number of pairs kj, such that | k -  . More gene-J + | r 2

rally, if E c [0, has more than one limit point and f =--- Z kj is in-

creasing, then there is 8 &#x3E; 0 such that I kj - ] ~ for infinitely many
j ; thus there are no non trivial positive measures T on such sets

with the property -Y 7cj+l I  oo.

3. Trigonometric Sums Associated with Accessible Points.

PROPOSITION 3.1 sup
n

PROOF. Let ~
distributionally, where

By definition

where the last equality follows by the Lebesgue dominated convergence
theorem.

Consequently, for (p (y) = einy,

Obviously the bound of 2 in PROP. 3.1 can be refined depending on
the arithmetic character of and 7,0. Note also that for each n, Z  oo.

i

EXAMPLE 3.1 a. Let jE7 be independent. Then C [0, 2) is indepen-
dent. Thus, by Kronecker’s theorem [7, pp. 176-177], if we take any k
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there is Nk so that for real a satisfying there is n E [0, Nk] for

Therefore

and for any k we can find n such that (3.1) holds; thus

b. Now let .E be a countable Helson set, or, more generally, a set
of strong spectral resolution. Obviously such a set need not be independent;

( 2n
for example, let E = 0, : j =1, ,... Note that if( 2i

then ~(jE7)==.D&#x26;(~); whereas, by the hypothesis on E, Ab (E) _ ~1 (E), a
contradiction (for E infinite). Conseqnently, once again 

n j 
’

The phenomena of EXAMPLE 3.1 is general ; in fact, the following lemma
is straightforward.

LEMMA 3.1. Let .E be infinite. Then, for any infinite sequence of

natural numbers,
00

In the following theorem, part a is, of course, proved independent of

LEMMA 3.1.

THEOREM 3.1 a.

diverges if and only it there is T co kjE D1 (E) - A’ (E) such con-

verges.
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b. There is Tco/~6D~(~)2013A~(~) such that Z kj converges for

every infinite jE7.

PROOF. b is immediate from a and LEMMA 3.1.

a. Assume there is such a T and let (3.3) be Bnite. Then from PROP. 1.3
we have

so that with our hypothesis on (3.3) we get the desired contradiction since
we’ ve proved T E A’ (.E).

, For the converse assume without loss of generality that

We shall choose a sequence of j’ sand n’ s inductively such that for a

gi ven jr we’ll choose and nr .

Beginning with j1 assume we have ..., jr and nt, ..., nr 1. Take

~r &#x3E; such that

by (3.4).
Note that

Now for our nr take &#x3E; jr such that

Combining these three inequalities gives

since 2r - 1 &#x3E; r.
Next we define T co ki.

i
Let 8i == -Y k,,, and let sj = 0 for j jt ; thus define

1



231

For take

noting that 0.

In this manner we define all kj. For example, let

and since we set

Now, from PROP. 1.3,

and so

Notice that for any domain D of summation

Consequently from (3.5)

and hence T ~ A’ ~E). q.e.d.
Independent of THEOREM 3.1, it is trivial to see that if there is

T E Db (E) - Ab (E) then sup E I cj, n I = oo ; and a proof similar to that of
n j

the second part of THEOREM 3.1 a shows that the converse is also true.
Such T exist since every infinite .E has a countably infinite Helson

subset; in this regard, we further refer to [8].

2. della Souota Norm. Sup. Pisa.
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PROPOSITION 3.2.

PROOF. Because and by the Fourier series expan-
I - I

sion of I sin ,x~ I it is sufficient to show

Further, by an elementary calculation with residues,

for n ~ 1 and j ~ 1.

Thus, since we can estimate sin2 in terms of

for ’In h 2, it is sufficient to prove

doting that Bj E (0, 2n) we have by the mean-value theorem that
so that (3.7) reduces to showing

Letting we see that j so that
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decreasing, and, hence, by the integral test we need only prove

We have

As is well known

Euler’s constant, and so by hypothesis and the fact that

we have (3.8).

Note that generally, by PROP. 1.1, if then I

whereas for E satisfying the hypothesis of PROP.

" ,’ 

In [2] it is made clear that closure of the multiplication operation of

(bounded) pseudo-measures is important on Helson sets. For example, when
A’ (E) is a Banach algebra for this multiplication not only does A’(.E) C
C G (E), as we showed in [2], but, by the open mapping theorem, A’(E)#
# G (E) - for if there was equality we’ d have M(E) = A’ (E ) since X(E) =
= G (E), a contradiction since ~ G (E) and is closed in A’ (E).

4. Subspaces of Bounded Variation in A (T).

PROPOSII’ION 4.1. Given any infinite E. There is such that

diverges.
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PROOF. Assume (4.1) is finite for all 9) E A (~’).
Take any and define measures ItJ (on A (r)) by

Since (4.1) is finite we have that given 99 E A (T) there is K, &#x3E; 0 such
that for all J, ~ ~ 99 K q,

By (4.2) we consider 99 E A (E) and so by the uniform boundedness

principle is bounded in Hence, by Alaoglu, the fact that T

on 01 (T), and T is arbitrary in Db (.E), we have Db (E ) = Ab (E).
This contradicts THEOREM 3.1. q.e.d.

REMARK a. PROP. 4.1 tells us something more than the well known

fact that there are functions of infinite variation in A (F) ; it tells us that

locally - that is, on any given infinite set of points - there are elements
of A (r) with infinite variation.

b. PROP. 4.1 has some interest from the point of view of Helson
sets. More precisely, if E were Helson and (4.1) were finite for all 99 E A (F)
then the argument of PROP. 4.1 is used to show Ab (E) _ ~I (E) ; in facf,
for a weak * convergent subnet of converges to an element

of As (E), and hence to a ineasure (for Helson sets). Thus there is some

relation between the structure of Ab(E) and the variation of A on the

accessible points of E. Of cotirse, if an even stronger variation criterion

held on A we could get conditions that A’ (E) = M (E).
Let At (T) be the elements 99 of A (I’) for which there is c C 1 (~’ )

such that || cpn ||A - 0 and

(T) is the subspace of Ai (F) in which the condition (4.3) is replaced by

The vector space is normed by

where
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Because of PROP. 1.1 we define, for each the sequence
of measures with finite support

As might be expected, generally, flJ does not converge to T in the weak *

topology. We do have

PROPOSITION 4.2. For all and for all 99 E Ai (T),

PROOF. Let ~ correspond to cp, and note that

Further, since 99. E 01 (r), and

Letting K be a bound for
J

we have

and so lim ( T - = 0 uniformly in n by PROP. 1.1. Consequently
J 

n

we apply the Moore-Smith theorem and have

since

COROLLARY

PROOF. If A1 (jT)==j4.(jT) then every jE7 (of measure 0) is 8, a contra-

diction. (Note that the triadic Cantor set has non-S subsets). q.e.d.
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REMARK. Note that if, in the definition of At (T), we demanded that

99n some mollifier - that is, gn h 0, =1, gn (0) --~ oo, then

it is trivial to show Ai (r ~ ~ A (.f) by the fundamental theorem of calculus.
There are several other natural subspace of A (F) with bounded varia-

tion properties, with the corresponding questions of topologies, duals, cate
gory, and inter-relation, that seem interesting to investigate. 

5. Bounded Pseudo-Measures.

We begin by showing that even on countable E there is no reason

to expect A’ (E) = A§ (E) unless .E has some additional, generally arithmetic,
properties.

EXAMPLE 5.1. To define E we adopt a construction of G. Salmons [8];

E will be a subset of 0, 1 : n = 1, ... C [0, 2a). We then construct an un-{0 n 
’ 

bounded pseudo-measure on E. Let F,, C [0, 2c) be a finite arithmetic pro-

gression with 2Mn + 1 terms such that if y E then y  a, for each

A E F,,; inductively we choose .M~ ) Mn-i so that

and let .E = UFn. On Fn we define a measure pn which has mass 0 at the
«center» of Fn and mass 1// (- l/j) at the j - th point (of to the right
(to the left) of the center. A standard calculation shows that 

 2 (n + 1). Next, we calculate hn so that hn = fin and note that ==

=== 2013 on the two intervals contiguous to the center of Fn. Hence,

setting

we hwe I (on the two in-

tervals contiguous to the center of Fl,).
Consequently, a subset of lvpl converges to in the

weak * topology, pointwise a. e., f’ = T, and f is unbounded.
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PROPOSITION 5.1.

is a well defined multiplication.

Conversely if , where lim I = oo.
J

Without loss of generality take and define such that

On the other hand

a contradiction. q.e.d.
Obviously, PROP. 5.2 is just a usual duality property between L°° and

-Li , y and has nothing to do with Ab’ (E) per se.

REmA.nK. Note that A’ (E ) = Ab (.E ) if E| I Cj, n = 0 (Ej), j -+ oo, from
n

PROP. 1.2 ; and that the metric condition of PRUP. 3.2 is much weaker

than this.

In [4, THEOREM 19], Hardy and Littlewood prove that if 99 E .H1 [5,
00

pp. 70-71] has the Fourier then
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They show by counter-example that (y) einY then (5.2) is not
|n|N

necessarily true. We shall give another type of counter example as well as
showing

PROPOSITION 5.2. For all TEA’ (T) there is S E Db (I’) such that
I,

S (n) == T (n) for n &#x3E; 1.

PROOF. Given T.

A direct application of (5.2) says that if

Now, if f’ = T we have. and hence there is

a constant Kp such that for all trigonometric polynomials of the form
N 

’ ~ "

9) (r) 

Consequently, by the Hahn-Banach theorem there is g E Loo such that ( f -
N

2013 ~ ~ &#x3E; = 0 for 
1

In = g (n) for all n &#x3E; 0. q.e.d.
Because of PROP. 5.2 we say that E has bounded halveg if for all

T E A’ (E) there is S E Db (E) such that T (n) === S (n) for n &#x3E; 1. The question
is, of course, to determine for given E c I’ the type of subset X such

that for all T E A’ (E) there is S E Db (E) for which T = S on X. Obviously
the problem is meaningful in a much more general context.

Now, assuming E has bounded halves we wish to find conditions so

that A’ (E) = A’ b (E). Arithmetic properties definitely play a role here. In

fact, using a (by now) standard approximation technique [6,10], we have

PROPOSITION 5.3. Let E be a Dirichlet set with bounded halves. Then

~(J57)==~(~).

PROOF. Let T E A’ (E) and ;8 E Db (E), S = T for n h 1.
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Observe that .E Dirichlet is equivalent to

From (5.3) we know that for all E &#x3E; 0 there is a positive integer n, such
that

Next we define the continuous 8 - diminishing - M function l~B in [- ~r, n)
to be 0 at 0 and outside (2013 2~2~ s at +6, and linear otherwise.

Then from (5.4) we have for S = g’,

since there is a neighborhood of E in which sin ne y  E . A main feature
of is that 11 Me IIA --&#x3E; 0 and so, since (S - T) (2ne) 0, (S - T ) (0) = 0.
A similar calculation shows (S - T) (11,) = 0 for all n  0. Thus S = T.

q,c,d.
Note that every Kronecker set is both Helson and Dirichlet, and that

there are Dirichlet sets which aren’t Helson and vice-versa. Further, Diri-
chlet sets are not only sets of uniqueness, but Kahane [6] has shown that

if E is Dirichlet then for all T E A’ (E ) 
.

Observe that Kronecker sets E are S [10] so that, in particular, A’ (E )=
= Ab (E ) in this case.

EXAMPLE 5.2. If the analogue of (5.2) were true for (p (/)=== ~ acn 
|n|N

then the proof of PROP. 5.2 shows that A’ (T) C Db which contradicts

EXAMPLE 5.1.

6. Helson Sets and Summa~bility Topologies.

Using Wik’s theorem that A (E) = A+ (E ) characterizes Helson sets [7]
we have
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PROPOSITION 6.1. Let E be Helson. For all m  0 there is
n

so that for each we have 
’

where is the sequence of measure corresponding to T (as in (4.5)).

PROOF. « y (y) since .E is Helson.
.-v

Thus, using the notation of (4.5) for we have

and hence lim ( exists.

we write

Note that gr E C°° (r), and hence for each r E (o,1), T E A’ (jE7), and g E A+ (E)
we have lim  ftJ- T, = 0.

J

PROPOSITION 6.2 Let E be Helson. Assume T E A’ (E) has the property
that for each g E A+ (E), there exists

uniformly in

Then 

PROOF. (6.2) allows us to use Moore-Smith so that converges
for all g E A (r).

Thus by the uniform boundedness principle and the fact that .E is

Helson we have bounded. Consequently by Alaoglu and PROP. 1.1,
T E M (E). q.e.d.

For example, if r = - 1 then for 99 eanY E A + ( E ) and T E A’ (E),
n

noting that
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Prompted by PROP. 6.2 consider diagonal sums

where 0  F (J )  1 and .F(J)2013~1.
Generally, in a dual system (X, Y) of T2 locally convex spaces we say

that a directed system IT.) c .Y converges in the 00 (X, Y) topology to T E X
if for all r E Y there is (ga) C Y such that a converges to 99 and

Although significantly weaker than the weak * topology, it is not generally
minimal [9, p. 19 I ~ ] and the intermediate topologies between a (.~, Y) and
oo (X, Y) become interesting in light of PROP. 6.2, the lack of weak * con-
vergence in § 4, and the convergence in PROP. 1.1 (in terms of (4.5)).

U. of Maryland, College Park, Md.
and

Scitola Supe,’io,oe, Pi8a, Italia.
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