ANNALI DELLA

Scuola Normale Superiore di Pisa

Classe di Scienze

J. Benedetto
 Trigonometric sums associated with pseudo-measures

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^{e} série, tome 25, no 2 (1971), p. 229-248
http://www.numdam.org/item?id=ASNSP_1971_3_25_2_229_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

TRIGONOMETRIC SUMS ASSOOIATED WITH PSEUDO-MEASURES

J. Benedetto

The purpose of this paper is to study the structure of pseudo-measures on closed sets $E \subseteq \Gamma \equiv R / 2 \pi Z$ of Lebesgue measure $m(E)=0$. In particular, we find various conditions on E so that a given pseudo-measure T supported by E is actually a measure or, at least, the first derivative of a bounded function. Such questions are obviously related to the open problem of determining if, generally, a Helson is a set of spectral synthesis.
$A(\Gamma)$ is the space of absolutely convergent Fourier series $\varphi(\gamma)=$ $=\Sigma a_{n} e^{i n \gamma}$ normed by $\|\varphi\|_{A}=\Sigma\left|a_{n}\right|$; and its dual is the space of pseudomeasures $A^{\prime}(\Gamma)$.
$A^{\prime}(E)$ (resp., $\left.M(E)\right)$ is the space of pseudo measures (resp., measures) T supported by E such that the Fourier coefficient $\widehat{T}(0)=0$. We let $D_{b}(E)$ be those first order distributions T supported by E such that T is the first derivative of an L^{∞} function and $\widehat{T}(0)=0$; the bounded pseudo-measures on E are $A_{b}^{\prime}(E) \equiv D_{b}(E) \cap A^{\prime}(E)$.
§ 1 is devoted to notation and the statement of some formulas for pseudo measures in terms of trigonometric sums; these results are basic to what follows. Next (§ 2), we characterize a useful subspace of $M(E)$ by a Stone-Weierstrass argument. In § 3 , utilizing a summability technique, we prove that certain natural subspaces of $D_{b}(E)$ always contain non-pseudomeasures for infinite E. Then, with a metric hypothesis on E, we derive an estimate which is useful in characterizing those E for which $A^{\prime}(E)=$ $=A_{b}^{\prime}(E)$; metric conditions are generally not sufficient to establish the boundedness of $A^{\prime}(E)$-this is where we need arithmetic conditions. We give a functional analysis argument in $\S 4$ to show the existence of a class of functions in $A(\Gamma)$ without any sort of local finite variation; and we use
this to examine subspaces of $A(\Gamma)$ on which measures with finite support approximate pseudo-measures. In § 5 , after noting that unbounded pseudomeasures exist on countable sets with a single limit point, we give a technique which shows how arithmetic conditions on E lead to $A^{\prime}(E)=A_{b}^{\prime}(E)$. The results here are preliminary. Finally (§ 6), we illustrate that properties of Helson sets lead to a large class of topologies of summability type.

I would like to thank Mr. Gordon Woodward for his helpful advice.

1. Notation and Formulas for Pseudo-Measure.

We designate the complement of E by $O E \equiv \bigcup_{0} I_{j}$ where, with $E \subseteq[0,2 \pi)$, $I_{j} \equiv\left(\lambda_{j}, \gamma_{j}\right) \subseteq[0,2 \pi)$ is an open interval of length $\varepsilon_{j} ;$ since $m(E)=0$, $\sum_{0} \varepsilon_{j}=2 \pi$. For convenience, we set

$$
\begin{aligned}
& c_{j, n}^{ \pm} \equiv e^{ \pm i i_{j} n}-e^{ \pm i \gamma_{j} n} \\
& d_{j, n}^{ \pm} \equiv c_{j+1, n}^{ \pm}-c_{j, n}^{ \pm}
\end{aligned}
$$

generally, we drop the «+» in this notation.
Let $D_{b}(\Gamma)$ be the space of first order distributions T such that $T=f^{\prime}$, $f \in L^{\infty}(\Gamma)$, and let $A_{b}^{\prime}(\Gamma)=D_{b}(\Gamma) \cap A(\Gamma)$. Also define $D_{1}(E)$ to be those first order distributions T for which $T=f^{\prime}, f \in L^{1}(\Gamma), \operatorname{supp} T \subseteq E$, and $\widehat{\boldsymbol{T}}(0)=0$. It is easy to see that $f=\sum_{1} k_{j} \chi_{I_{j}}$ and, as such, we generally write $T \sim k_{j}$ for an element of $D_{1}(E)$. Besides the spaces indicated in the introdution we consider the following subspaces of $D_{1}(E)$:

$$
\begin{aligned}
D_{\omega}(E) \equiv & \left\{T \sim k_{j}: f \in L^{p}(\Gamma) \text { for all } p<\infty\right\}, \\
A_{S}^{\prime}(E) \equiv & \left.\equiv T \in A^{\prime}(E): \varphi=0 \text { on } E, \varphi \in A(\Gamma) \text {, implies }\langle T, \varphi\rangle=0\right\}, \\
M_{d}(E) \equiv & \{T \in M(E): T \text { is discrete }\}, \\
G(E) \equiv & \left\{T \sim k_{j} \in D_{b}(E): f(\gamma \pm) \text { exists for all } \gamma \in \Gamma\right. \\
& \text { and } f \text { has at most countably many jump discontinuities }\} .
\end{aligned}
$$

We multiply [2] $S \sim k_{j}, T \sim h_{j} \in D_{\omega}(E)$ by

$$
S T=\left(\Sigma_{1} k_{j} h_{j} \chi_{I_{j}}\right)^{\prime}
$$

Now, E is Helson if $A_{S}^{\prime}(E)=M(E)$, spectral synthesis (S) if $A^{\prime}(E)=$ $=A_{S}^{\prime}(E)$, and strong spectral resolution if $A^{\prime}(E)=M(E) . E$ is a Dirichlet
set if

$$
\lim _{n \rightarrow \infty} \sup _{\gamma \in E}\left|1-e^{i n \gamma}\right|=0
$$

We set $A(E)$ to be the restrictions of $A(\Gamma)$ to E; and $A_{+}(E)$ to be the restrictions of absolutely convergent Taylor series to E.

Next, let \mathcal{F} be the compact open sets of E so that $T \in D_{1}(E)$ is a finitely additive set function on $\mathcal{F}[1 ; 2]$; we norm such a T by

$$
\|T\|_{v} \equiv \sup _{F \varepsilon \mathscr{F}}|T(F)|
$$

Also we write $I_{j} \leq I_{k}$ if, for $E \subseteq[0,2 \pi), \lambda_{j}<\gamma_{k} ; I_{j_{1}} \leq \ldots \leq I_{j_{m}}$ is a partition P.
For detailed proofs of the following, as well as similar results, we refer to [3, § 2].

Proposition 1.1. For all $T \in A^{\prime}(E)$ there is $f \in L^{p}(\Gamma)$, for each $p<\infty$, such that $f=\sum_{1} k_{j} \chi_{I_{j}}$ a. e., $\sum e^{\delta\left|k_{j}\right|} \varepsilon_{j}<\infty$ for some $\delta>0$, and

$$
\begin{equation*}
c_{n} \equiv \widehat{T}(n)=\frac{1}{2 \pi} \sum_{j=1} k_{j} c_{j, n}^{-} \tag{1.1}
\end{equation*}
$$

Proposíition 1.2. For all $T \in A^{\prime}(E), T \sim k_{j}$ and $c_{n} \equiv \widehat{T}(n)$,

$$
k_{j}=\frac{1}{\varepsilon_{j}} \Sigma_{n}^{\prime} \frac{c_{n}}{n^{2}} c_{j, n}
$$

Proof. We have

$$
\begin{equation*}
f(\gamma) \equiv \sum_{1} k_{m} \chi_{I_{m}}\left(\gamma^{\prime}\right)=\sum_{n}^{\prime} \frac{c_{n}}{i n} e^{i n \gamma} . \quad \text { a. e. } \tag{1.2}
\end{equation*}
$$

Since $f \in L^{1}(\Gamma)$ and since Fourier series can be integrated term by term, we integrate both sides of (1.2) over I_{j}. Thus

$$
k_{j} \varepsilon_{j}=\Sigma_{n}^{\prime} \frac{c_{n}}{i n} \int_{\lambda_{j}}^{\gamma_{j}} e^{i n \gamma} d \gamma=\sum_{n} \frac{c_{n}}{n^{2}} c_{j, n}
$$

Proposition 1.3. If $T \sim k_{j} \in A^{\prime}(E)$ and the partial sums $\sum_{1}^{n} k_{j}$ are bounded, then

$$
\begin{equation*}
2 \pi \widehat{T}(n)=-\sum_{j=1}^{\infty}\left(\sum_{p=1}^{j} k_{p}\right) d_{j, n}^{-} \tag{1.3}
\end{equation*}
$$

Proof. By Abel's formula

$$
\sum_{j=1}^{J} k_{j} c_{j, n}=\binom{\sum_{1}^{J}}{k_{j}} \overline{c_{J+1, n}}-\sum_{j=1}^{J}\left(\sum_{p=1}^{j} k_{p}\right) \overline{d_{j, n}}
$$

Thus we have (1.3) by (1.1) and since $\lim _{J} c \bar{J}^{+1, n}=0$.
q.e.d.

2. Structure of Measures.

Let us first recall $[1,2]$ some characterization of $T \sim k_{j} \in M(E)$ in terms of k_{j}. Let $T \backsim k_{j} \in D_{1}(E) ; T \in M(E)$ if and only if any of the following equivalent conditions hold:
i. $\quad\|T\|_{v}<\infty$.
ii. $\quad \sup _{p} \sum_{1}^{m-1}\left|k_{n_{j+1}}-k_{n_{j}}\right|<\infty$.
iii. There is M such that if $I_{n_{1}} \leq \ldots \leq I_{n_{2 m}}$ then

$$
\left|\sum_{j=1}^{m}\left(k_{n_{2 j-1}}-k_{n_{2 j}}\right)\right|<M
$$

Proposition 2.1. Let $\left\{k_{j}\right\}$ be bounded by a constant C and assume

$$
\underset{1}{\sum}\left|k_{j+1}-k_{j}\right| \equiv K<\infty
$$

Then $T \sim k_{j} \in M(E)$.
Proof. Let

$$
X \equiv\left\{\varphi \in O^{1}(\Gamma): \Sigma\left|\varphi\left(\lambda_{j}\right)\right|, \Sigma\left|\varphi\left(\gamma_{j}\right)\right|<\|\varphi\|_{\infty}\right\}
$$

X is a subalgebra of $O(\Gamma)$ which satisfies the conditions of the Stone-Weierstrass theorem.

Thus, $\overline{\boldsymbol{X}}=C(\Gamma)$.
For each $\varphi \in X$, we have, for $a_{j} \equiv \varphi\left(\lambda_{j}\right)-\varphi\left(\gamma_{j}\right)$,

$$
\begin{aligned}
& \left|\sum_{j=1}^{J} k_{j} a_{j}\right|=\left|\left(\sum_{1}^{J} a_{j}\right) k_{J+1}-\sum_{j=1}^{J}\left(\sum_{p=1}^{j} a_{p}\right)\left(k_{j+1}-k_{j}\right)\right| \leq \\
& \quad C \sum_{j=1}^{J}\left|a_{j}\right|+\sum_{j=1}^{J}\left(\sum_{p=1}^{j}\left|a_{p}\right|\right)\left|k_{j+1}-k_{j}\right| \leq 2(O+K)\|\varphi\|_{\infty}
\end{aligned}
$$

Since $\langle T, \varphi\rangle=\sum_{1}^{\infty} k_{j} a_{j}, T$ is a continuous linear functional on a dense subspace of $C(\Gamma)$ and has support in E.

Consequently, $T \in M(E)$.
q.e.d.

Remark 1. Relative to our use of Abel's sum formula note that if $\left\{k_{j}\right\}$ is bounded then $\Sigma\left|k_{j+1}-k_{j}\right|<\infty$ if and only if $\Sigma k_{j} \cdot a_{j}$ converges for every convergent series Σa_{j}.
2. Prop. 2.1 generalizes the easy fact that if $\Sigma\left|k_{j}\right|<\infty$ then $T \sim k_{j} \varepsilon$ $\varepsilon M_{d}(E)$. A special case of Prop. 2.1 which is proved directly and simply by Schwarz's inequality, is that if $\sum_{j=1} j\left|k_{j+1}-k_{j}\right|<\infty$ then $T \sim k_{j} \in M(E)$. It is also clear by Schwarz's inequality that if $T \sim l_{j} \varepsilon M(E)$ then

$$
\|T\|_{1} \leq \frac{1}{J} \sum_{1}^{J}\left|k_{j+1}-k_{j}\right| .
$$

Finally note that if $\Sigma\left|k_{j+1}-k_{j}\right|<\infty$ then lim k_{j} exists.
Example $2.1 a$. We first show that there are $T \sim k_{j} \in M_{d}(E)$ such that $\Sigma\left|k_{j+1}-k_{j}\right|$ diverges. Take countable $E \subseteq[0,2 \pi]$ such that $\lambda_{1}=\gamma_{0}$, $\lambda_{2 j}=\gamma_{2 j+2}, \gamma_{2 j+1}=\lambda_{2 j+3}, j=0,1, \ldots$, and

$$
\ldots \leq I_{2 j+2} \leq I_{2 j} \leq \ldots I_{2} \leq I_{0} \leq I_{1} \leq \ldots \leq I_{2 j+1} \leq \ldots
$$

Setting $k_{j} \equiv(-1)^{j} \frac{1}{j}$ we have $\Sigma\left|k_{j+1}-k_{j}\right|=\Sigma \frac{2 j+1}{j(j+1)}=\infty \quad$ (as well as $\left.\Sigma\left|k_{j}\right|=\infty\right)$ and $f \equiv \Sigma k_{j} \chi_{r_{j}}$ a function of bounded variation. Thus $T \sim k_{j} \varepsilon$ $\varepsilon M_{d}(\boldsymbol{E})$ and

$$
T=\sum_{0}^{\infty} a_{\lambda_{j}} \delta_{\lambda_{j}}, \quad \Sigma\left|a_{\lambda_{j}}\right|<\infty,
$$

where $a_{\lambda_{0}}=2, a_{\lambda_{2 j+1}}=2 /(2 j+1)(2 j+3), j \geq 0$, and $a_{\lambda_{2 j}}=-2 / 2 j(2 j-2), j>1$.
b. We must show that there are non-discrete measures $T \sim k_{j} \varepsilon M(E)$ such that $\Sigma\left|k_{j}-k_{j+1}\right|<\infty$. Let $E \subseteq[0,2 \pi)$ be perfect and set $k_{j}=\frac{1}{j}$; we show supp $T=E$ so that since $\Sigma \frac{1}{j(j+1)}<\infty$ we have $T \in M(E)-$ $-M_{d}(E)$. Since the accessible points are deuse in E it is enough to prove that each λ_{m} (and γ_{m}) is in supp T. If $\lambda_{m} \ddagger \operatorname{supp} T$ we find $p \in C(\Gamma)$ such that $\varphi=0$ on (a neighborhood of) supp T and $\langle T, \varphi\rangle \neq 0$. To do this, first note that every subsequence of $\left\{k_{j}\right\}$ converges to 0 and so there is an open interval $V\left(\lambda_{m}\right)$ with center λ_{m} such that if $I_{j} \leq I_{m}$ and $I_{j} \cap V\left(\lambda_{m}\right) \neq \varnothing$
then $\frac{1}{j}<\frac{1}{m}$. Next take non-negative $p \in C^{1}(\Gamma), \operatorname{supp} \varphi \subseteq V\left(\lambda_{m}\right), \varphi\left(\lambda_{m}\right)=1$ and φ symmetric about λ_{m}. Thus

$$
|\langle T, \varphi\rangle|=\left|\frac{1}{m}-\alpha\right|, \alpha<\frac{1}{m}
$$

c. We now observe that there are continuous measures $T \sim k_{j} \in M(E)$, such that $\Sigma\left|k_{j+1}-k_{j}\right|$ diverges. For example the continuous Cantor function on the Cantor set is of the form $f \equiv \Sigma k_{j} \chi_{I_{j}}$ on $\bigcup_{0} I_{j}$ and there are an infinite number of pairs k_{j}, k_{j+1} such that $\left|k_{j}-k_{j+1}\right| \geq \frac{1}{2}$. More generally, if $E \subseteq[0,2 \pi)$ has more than one limit point and $f \equiv \sum k_{k} \chi_{I_{j}}$ is in. creasing, then there is $\varepsilon>0$ such that $\left|k_{j}-k_{j+1}\right|>\varepsilon$ for infinitely many j; thus there are no non trivial positive measures $T \sim k_{j}$ on such sets with the property $\sum\left|k_{j}-k_{j+1}\right|<\infty$.

3. Trigonometric Sums Associated with Accessible Points.

Proposition $3.1 \sup _{n}\left|\sum_{j=1}^{\infty} c_{j, n}\right| \leq 2$.
Proof. Let $\varphi \in C^{1}(\Gamma),|\varphi| \equiv 1$, and $T \equiv-\delta_{\lambda_{0}}+\delta_{\gamma_{0}}$. Then $g^{\prime}=T$ distributionally, where $g=\chi_{\Gamma-I_{0}}$. Now, let $f_{T}=\sum_{1} \chi_{I_{j}}$ so that $f_{T}=g$ a.e.

By definition, $\langle T, \varphi\rangle=\varphi\left(\gamma_{0}\right)-\varphi\left(\lambda_{0}\right) ;$ and since $f_{T}^{\prime}=T$,

$$
\langle T, \varphi\rangle=-\left\langle f_{T}, \varphi^{\prime}\right\rangle=\sum_{1}^{\infty}\left(\varphi\left(\lambda_{j}\right)-\varphi\left(\gamma_{j}\right)\right)
$$

where the last equality follows by the Lebesgue dominated convergence theorem.

Consequently, for $\varphi(\gamma)=e^{i n \gamma}$,

$$
\left|\sum_{1}^{\infty}\left(e^{i n \lambda_{j}}-e^{i n \gamma_{j}}\right)\right|=\left|e^{i n \lambda_{0}}-e^{i n \lambda_{0}}\right| \leq 2
$$

q.e.d.

Obviously the bound of 2 in Prop. 3.1 can be refined depending on the arithmetic character of λ_{0} and γ_{0}. Note also that for each $n, \sum_{j}\left|c_{j, n}\right|<\infty$.

Example 3.1 a. Let E be independent. Then $\left\{\varepsilon_{j}\right\} \subseteq[0,2 \pi)$ is independent. Thus, by Kronecker's theorem [7, pp. 176-177], if we take any k
there is N_{k} so that for real α satisfying $\left|1-e^{i \alpha}\right|>1$ there is $n \varepsilon\left[0, N_{k}\right]$ for which $\left|e^{i n \varepsilon_{j}}-e^{i \alpha}\right|<\frac{1}{2}$ if $j=1, \ldots, k$. For this n

$$
\left|e^{i n \varepsilon_{j}}-1\right| \geq\left\|e^{i n \varepsilon_{j}}-e^{i \alpha}|-| e^{i \alpha}-1\right\|>\frac{1}{2}
$$

if $j=1, \ldots, k$. Therefore

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|e^{i n \varepsilon_{j}}-1\right|>k / 2 \tag{3.1}
\end{equation*}
$$

and for any k we can find n such that (3.1) holds; thus

$$
\sup _{n} \sum_{j}\left|c_{j, n}\right|=\infty
$$

b. Now let E be a countable Helson set, or, more generally, a set of strong spectral resolution. Obviously such a set need not be independent; for example, let $E \equiv\left\{0, \frac{2 \pi}{2^{j}}: j=1, \ldots\right\}$. Note that if

$$
\sup _{n} \sum_{j=1}^{\infty}\left|c_{j, n}\right|<\infty
$$

then $A_{b}^{\prime}(E)=D_{b}(E)$; whereas, by the hypothesis on $E, A_{b}^{\prime}(E)=M(E)$, a contradiction (for E infinite). Consequently, once again $\sup _{n} \sum_{j}\left|c_{j, n}\right|=\infty$.

The phenomena of Example 3.1 is general ; in fact, the following lemma is straightforward.

Lemma 3.1. Let E be infinite. Then, for any intinite sequence $\left\{p_{j}\right\}$ of natural numbers,

$$
\sup _{n} \sum_{j=1}^{\infty}\left\|c_{p_{j+1}, n}|-| c_{p_{j}, n}\right\|=\infty
$$

In the following theorem, part a is, of course, proved independent of Lemma 3.1.

Theorem 3.1 a.

$$
\begin{equation*}
\sup _{n} \sum_{j}\left|d_{j, n}\right| \tag{3.3}
\end{equation*}
$$

diverges if and only it there is $T \sim k_{j} \in D_{1}(E)-A^{\prime}(E)$ such that Σk_{j} converges.
b. There is $T^{\prime} \sim k_{j} \in D_{1}(E)-A^{\prime}(E)$ such that $\sum k_{j}$ converges for every infinite E.

Proof. b is immediate from a and Lemma 3.1.
a. Assume there is such a T and let (3.3) be finite. Then from Prop. 1.3 we have

$$
2 \pi|\widehat{T}(n)| \leq \sum_{j=1}^{\infty}\left(\sum_{p=1}^{j} k_{p}\right)\left|d_{j, n}^{-}\right| ;
$$

so that with our hypothesis on (3.3) we get the desired contradiction since we' ze proved $T \in A^{\prime}(E)$.

For the converse assume without loss of generality that

$$
\begin{equation*}
\sup _{n \geq 0} \sum_{j}\left|d_{j, n}\right|=\infty \tag{3.4}
\end{equation*}
$$

We shall choose a sequence of $j^{\prime} s$ and $n^{\prime} s$ inductively such that for a given j_{r} we'll choose j_{r+1} and n_{r}.

Beginning with j_{1} assume we have j_{1}, \ldots, j_{r} and n_{1}, \ldots, n_{r-1}. Take $n_{r}>n_{r-1}$ such that

$$
\sum_{j=1}^{\infty}\left|d_{j, n_{r}}\right|>8 r j_{r}+r^{2}+2 r+2
$$

by (3.4).
Note that

$$
\sum_{j=1}^{j_{r}}\left|d_{j, n_{r}}\right|<4 j_{r}+1
$$

Now for our n_{r} take $j_{r+1}>j_{r}$ such that

$$
\sum_{j_{r+1}+1}^{\infty}\left|d_{j, n_{r}}\right|<1
$$

Combining these three inequalities gives

$$
\begin{align*}
\sum_{j=j_{r}+1}^{j_{r+1}}\left|d_{j, n_{r}}\right| & =\sum_{j=1}^{\infty}-\sum_{j=1}^{j_{r}}-\left(\sum_{j=1}^{\infty}-\sum_{j=1}^{j_{r+1}}\right)> \tag{3.5}\\
8 r j_{r} & +r^{2}+2 r+2-4 j_{r}-1->4 j_{r}+r^{2}+2 r
\end{align*}
$$

since $2 r-1>r$.
Next we define $T \sim k_{j}$.
Let $s_{j} \equiv \sum_{1}^{j} k_{m}$ and let $s_{j}=0$ for $j \leq j_{1}$; thus define

$$
k_{1}=\ldots=k_{j_{1}}=0
$$

For $j_{r}<j \leq j_{r+1}$ take

$$
s_{j}=\frac{1}{r} \frac{\overline{d_{j, n}}}{\left|d_{j, n_{r}}\right|}
$$

noting that $s_{j} \rightarrow \mathbf{0}$.
In this manner we define all k_{j}. For example, let

$$
k_{j_{1}+1}=\frac{\overline{d_{j_{1}+1, n_{1}}}}{\left|d_{j_{1}+1, n_{1}}\right|}
$$

and since $s_{j_{1}+2 n_{1}}=\overline{d_{j_{1}+2, n_{1}}} /\left|d_{j_{1}+2, n_{1}}\right|$ we set

$$
k_{j_{1}+2}=\operatorname{sgn} \overline{d_{j_{1}+2, n_{1}}}-\sum_{j=1}^{j_{1}+2} k_{j}
$$

Now, from Prop. 1.3,

$$
2 \pi\left|\widehat{T}\left(-n_{r}\right)\right|=\left|\sum_{j=1}^{\infty} s_{j} d_{j, n_{r}}\right|
$$

and so

$$
\begin{aligned}
& 2 \pi\left|\widehat{T}\left(-n_{r}\right)\right| \geq\left|\left|\sum_{j=j_{r}+1}^{j_{r+1}}\right|-\right| \sum_{j=1}^{j_{r}}+\sum_{j=j_{r+1}+1}^{\infty} s_{j} d_{j, n_{r}} \| \geq \\
& \frac{1}{r} \sum_{j=j_{r}+1}^{j_{r+1}}\left|d_{j, n_{r}}\right|-\left|\sum_{j=1}^{j_{r}} s_{j} d_{j, n_{r}}\right|-\left|\sum_{j=j_{r+1}+1}^{\infty} s_{j} d_{j, n_{r}}\right|
\end{aligned}
$$

Notice that for any domain D of summation

$$
\left|\sum_{D} s_{j} d_{j, n_{r}}\right| \leq \sum_{D}\left|d_{j, n_{r}}\right|
$$

Consequently from (3.5)

$$
2 \pi\left|\widehat{T}\left(-n_{r}\right)\right|>4 j_{r}+r+2-\left(4 j_{r}+1\right)-1=r
$$

and hence $T \notin A^{\prime}(E)$.
q.e.d.

Independent of Therrem 3.1, it is trivial to see that if there is $T \in D_{b}(E)-A_{b}^{\prime}(E)$ then $\sup \sum\left|c_{j, n}\right|=\infty$; and a proof similar to that of the second part of Theorem $3.1 a$ shows that the converse is also true.

Such T exist since every infinite E has a countably infinite Helson subset; in this regard, we further refer to [8].

Proposition 3.2. If $\sum_{1} \varepsilon_{j} e^{-\varepsilon_{j}} \log \left(\frac{1}{\varepsilon_{j}}\right)<\infty$ then

$$
\begin{equation*}
\sum_{j} \sum_{n} \frac{\left|e_{j, n}\right|}{n^{2}}<\infty \tag{3.6}
\end{equation*}
$$

Proof. Because $\left|c_{j, n}\right|=2\left|\sin \frac{n \varepsilon_{j}}{2}\right|$ and by the Fourier series expansion of $|\sin x|$ it is sufficient to show

$$
\sum_{j=1} \sum_{n=1} \frac{1}{n^{2}}\left(\sum_{m=1}^{\sum} \frac{\sin ^{2} \frac{m n \varepsilon_{j}}{2}}{4 m^{2}-1}\right)<\infty
$$

Further, by an elementary calculation with residues,

$$
\int_{1}^{\infty} \frac{\sin ^{2} \frac{x n \varepsilon_{j}}{2}}{4 x^{2}-1} d x \leq \frac{1}{2} \int_{0}^{\infty} \frac{d x}{x^{2}+1}-\frac{1}{2} \int_{0}^{\infty} \frac{\cos x n \varepsilon_{j}}{x^{2}+1} d x=\frac{\pi}{4}\left(1-e^{-n \varepsilon_{j}}\right)
$$

for $n \geq 1$ and $j \geq 1$.
Thus, since we can estimate $\sin ^{2}\left(\frac{m n \varepsilon_{j}}{2}\right) /\left(4 m^{2}-1\right)$ in terms of

$$
\int_{m=1}^{m} \frac{\sin ^{2} \frac{x n \varepsilon_{j}}{2}}{4 x^{2}-1} d x
$$

for $m \geq 2$, it is sufficient to prove

$$
\begin{equation*}
\sum_{j=1} \sum_{n=1} \frac{1-e^{-n \varepsilon_{j}}}{n^{2}}<\infty \tag{3.7}
\end{equation*}
$$

Noting that $\varepsilon_{j} \in(0,2 \pi)$ we have by the mean-value theorem that $\left|e^{-\varepsilon_{j}}-1\right| \leq \varepsilon_{j}$ so that (3.7) reduces to showing

$$
\sum_{j=1}^{\sum} \sum_{n=2} \frac{1-e^{-n \varepsilon_{j}}}{n^{2}}<\infty
$$

Letting $f(x)=\left(1-e^{-x \varepsilon_{j}}\right) / x^{2}$ on $[1, \infty)$ we see that $f^{\prime}<0$ so that f is
decreasing, and, hence, by the integral test we need only prove

$$
\begin{equation*}
\sum_{j=1}^{\infty} \int_{i}^{\infty} \frac{1-e^{-x \varepsilon_{j}}}{x^{2}} d x<\infty \tag{3.8}
\end{equation*}
$$

We have

$$
\begin{gathered}
\int_{1}^{\infty} \frac{1-e^{-x \varepsilon}}{x^{2}} d x=\varepsilon_{j} \int_{\varepsilon_{j}}^{\infty} \frac{1-e^{-u}}{u^{2}} d u=\left(1-e^{-\varepsilon_{j}}\right)- \\
\varepsilon_{j} e^{-\varepsilon_{j}} \log \varepsilon_{j}+\varepsilon_{j} \int_{\varepsilon_{j}}^{\infty}(\log u) e^{-u} d u .
\end{gathered}
$$

As is well known

$$
\int_{0}^{\infty}(\log u) e^{-u} d u=L
$$

Euler's constant, and so by hypothesis and the fact that

$$
\Sigma\left(1-e^{-\varepsilon_{j}}\right)<\infty
$$

we have (3.8).
q.e.d.

Note that generally, by Prop. 1.1, if $T \sim k_{j} \in A^{\prime}(E)$ then $k_{j}=0\left(\log \frac{1}{\varepsilon_{j}}\right)$, $j \rightarrow \infty$, whereas for E satisfying the hypothesis of Prop. 3.2, $k_{j}=$ $O\left(e^{-\varepsilon_{j}} \log \frac{1}{\varepsilon_{j}}\right), j \rightarrow \infty$.

In [2] it is made clear that closure of the multiplication operation of (bounded) pseudo-measures is important on Helson sets. For example, when $A^{\prime}(E)$ is a Banach algebra for this multiplication not only does $A^{\prime}(E) \subset$ $\subseteq G(E)$, as we showed in [2], but, by the open mapping theorem, $A^{\prime}(E) \neq$ $\neq G(E)$ - for if there was equality we' d have $\overline{M(E)}=A^{\prime}(E)$ since $\overline{M(E)}=$ $=G(E)$, a contradiction since $M(E) \neq G(E)$ and $M(E)$ is closed in $A^{\prime}(E)$.
4. Subspaces of Bounded Variation in $\boldsymbol{A}(\Gamma)$.

Proposition 4.1. Given any infinite E. There is $\varphi \in A(\Gamma)$ such that

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|\varphi\left(\lambda_{j}\right)-\varphi\left(\gamma_{j}\right)\right| \tag{4.1}
\end{equation*}
$$

diverges.

Proof. Assume (4.1) is finite for all $q \in A(\Gamma)$.
Take any $T \sim k_{j} \in D_{b}(E)$ and define measures μ_{J} (on $\left.A(\Gamma)\right)$ by

$$
\begin{equation*}
\left\langle\mu_{J}, \varphi\right\rangle=\sum_{1}^{J} k_{j}\left(\varphi\left(\lambda_{j}\right)-\varphi\left(\gamma_{j}\right)\right) . \tag{4.2}
\end{equation*}
$$

Since (4.1) is finite we have that given $\varphi \in A\left(I^{\circ}\right)$ there is $K_{\varphi}>0$ such that for all $J,\left|\left\langle\mu_{J}, \varphi\right\rangle\right| \leq K_{\varphi}$.

By (4.2) we consider $\varphi \in A(E)$ and so by the uniform boundedness principle $\left\{\mu_{J}\right\}$ is bounded in $A_{s}^{\prime}(E)$. Hence, by Alaoglu, the fact that $\mu_{J} \rightarrow T$ on $O^{1}(\Gamma)$, and T is arbitrary in $D_{b}(E)$, we have $D_{b}(E)=A_{b}^{\prime}(E)$.

This contradicts Theorem 3.1.
q.e.d.

Remark a. Prop. 4.1 tells us something more than the well known fact that there are functions of infinite variation in $A(\Gamma)$; it tells us that locally - that is, on any given infinite set of points - there are elements of $A(\Gamma)$ with infinite variation.
b. Prop. 4.1 has some interest from the point of view of Helson sots. More precisely, if E were Helson and (4.1) were finite for all $\varphi \in A(\Gamma)$ then the argument of Prop. 4.1 is used to show $A_{b}^{\prime}(E)=M(E)$; in fact, for $T \in A_{b}^{\prime}(E)$ a weak * convergent subnet of $\left\{\mu_{J}\right\}$ converges to an element of $A_{S}^{\prime}(E)$, and hence to a measure (for Helson sets). Thus there is some relation between the structure of $A_{\dot{b}}^{\prime}(E)$ and the variation of $A(\Gamma)$ on the accessible points of E. Of course, if an even stronger variation criterion held on $A(\Gamma)$, we could get conditions that $A^{\prime}(E)=M(E)$.

Let $A_{1}(\Gamma)$ be the elements φ of $A\left(\Gamma^{\prime}\right)$ for which there is $\left\{\varphi_{n}\right\} \subseteq C^{1}(\Gamma)$ such that $\left\|\varphi_{n}-\varphi\right\|_{A} \rightarrow 0$ and

$$
\begin{equation*}
\sup _{n} \int\left|\varphi_{n}^{\prime}\right|<\infty \tag{4.3}
\end{equation*}
$$

$A_{1+}(\Gamma)$ is the subspace of $A_{1}(\Gamma)$ in which the condition (4.3) is replaced by

$$
\begin{equation*}
\sup _{n} \int\left|\varphi_{n}^{\prime}\right|^{p}<\infty, \text { some } 1<p<\infty \tag{4.4}
\end{equation*}
$$

The vector space is normed by

$$
\|\varphi\| \equiv\|\varphi\|_{A}+K_{\varphi}
$$

where

$$
\boldsymbol{K}_{\varphi} \equiv \inf \left\{\sup _{n} \int\left|\varphi_{n}^{\prime}\right|:\left\{\varphi_{n}\right\} \subseteq O^{1}(\Gamma),\left\|\varphi_{n}-\varphi\right\|_{A} \rightarrow 0, \text { and (4.3) }\right\}
$$

Because of Prop. 1.1 we define, for each $T \sim k_{j} \in A^{\prime}(B)$, the sequence of measures with finite support

$$
\begin{equation*}
\mu_{J} \equiv \sum_{1}^{J} k_{j}\left(\delta_{\lambda_{j}}-\delta_{\gamma_{j}}\right) \tag{4.5}
\end{equation*}
$$

As might be expected, generally, μ_{J} does not converge to T in the weak * topology. We do have

Proposition 4.2. For all $T \sim k_{j} \in A^{\prime}(E)$ and for all $p \in A_{1}(\Gamma)$,

$$
\lim _{J}\left\langle\mu_{J}-T, \varphi\right\rangle=0
$$

Proof. Let $\left\{\varphi_{n}\right\} \subseteq C^{1}(\Gamma)$ correspond to φ, and note that

$$
\left\langle\mu_{J}, \varphi_{n}\right\rangle=-\sum_{1}^{J} k_{j} \int_{\lambda_{j}}^{\gamma_{j}} \varphi_{n}^{\prime}
$$

Further, $\lim _{J}\left\langle\mu_{J}-T, \varphi_{n}\right\rangle=0$ since $\varphi_{n} \in C^{1}(\Gamma)$, and

$$
\lim _{n}\left\langle\mu_{J}, \varphi-\varphi_{n}\right\rangle=0 \text { since } \mu_{J} \varepsilon A^{\prime}(E)
$$

Letting K be a bound for $\int\left|\varphi_{n}^{\prime}\right|$, we have

$$
\left|\left\langle T-\mu_{J}, \varphi_{n}\right\rangle\right| \leq K \sum_{J+1}^{\infty}\left|k_{j}\right| \varepsilon_{j}
$$

and so $\lim _{J}\left\langle T-\mu_{J}, \varphi_{n}\right\rangle=0$ uniformly in n by Prop. 1.1. Consequently we apply the Moore-Smith theorem and have
$\langle T, \varphi\rangle=\lim _{n}\left\langle T, \varphi_{n}\right\rangle=\lim _{n} \lim _{J}\left\langle\mu_{J}, \varphi_{n}\right\rangle=\lim _{J} \lim _{n}\left\langle\mu_{J}, \varphi_{n}\right\rangle=\lim _{J}\left\langle\mu_{J}, \varphi\right\rangle$,
since $\left\|\varphi-\varphi_{n}\right\|_{A} \rightarrow 0$.
q.e.d.

Corollary 4.2.1 $A_{1}(\Gamma) \neq A(\Gamma)$.
Proof. If $A_{1}(\Gamma)=A(\Gamma)$ then every E (of measure 0) is S, a contradiction. (Note that the triadic Cantor set has non S subsets). q.e.d.

Remark. Note that if, in the definition of $A_{1}(\Gamma)$, we demanded that $\varphi_{n} \equiv \varphi * \varrho_{n}, \varrho_{n}$ some mollifier - that is, $\varrho_{n} \geq 0, \int \varrho_{n}=1, \varrho_{n}(0) \rightarrow \infty$, then it is trivial to show $A_{1}(\Gamma) \neq A(\Gamma)$ by the fundamental theorem of calculus.

There are several other natural subspace of $A(\Gamma)$ with bounded variation properties, with the corresponding questions of topologies, duals, category, and inter-relation, that seem interesting to investigate.

5. Bounded Pseudo-Measures.

We begin by showing that even on countable E there is no reason to expect $A^{\prime}(E)=A_{b}^{\prime}(E)$ unless E has some additional, generally arithmetic, properties.

Example 5.1. To define E we adopt a construction of G. Salmons [8]; E will be a subset of $\left\{0, \frac{1}{n}: n=1, \ldots\right\} \subseteq[0,2 \pi)$. We then construct an unbounded pseudo-measure on E. Let $F_{n} \subseteq[0,2 \pi)$ be a finite arithmetic progression with $2 M_{n}+1$ terms such that if $\gamma \in F_{n+1}$ then $\gamma<\lambda$ for each $\lambda \in F_{n}$; inductively we choose $M_{n}>M_{n-1}$ so that

$$
\sum_{j=1}^{M_{n}} \frac{1}{j} \geq n^{3}
$$

and let $E=\overline{U F_{n}}$. On F_{n} we define a measure μ_{n} which has mass 0 at the «center» of F_{n} and mass $1 / j(-1 / j)$ at the $j-$ th point (of F_{n}) to the right (to the left) of the center. A standard calculation shows that $\left\|\mu_{n}\right\|_{A^{\prime}} \leq$ $\leq 2(\pi+1)$. Next, we calculate h_{n} so that $h_{n}^{\prime}=\mu_{n}$ and note that $\left|h_{n}\right|=$ $=\sum_{1}^{M_{n}} \frac{1}{j}$ on the two intervals contiguous to the center of F_{n}. Hence, setting

$$
\boldsymbol{\nu}_{k}=\sum_{n=1}^{k} \frac{1}{n^{2}} \mu_{n} \quad \text { and } \quad f_{k} \equiv \sum_{n=1}^{k} \frac{1}{n^{2}} h_{n}
$$

we have $\left\|\nu_{k}\right\|_{A^{\prime}} \leq 2(\pi+1) \sum_{1}^{k} \frac{1}{u^{2}}$ and $\left|f_{k}\right|=\left|h_{k}\right| / k^{2} \geq k$ (on the two intervals contiguous to the center of $F_{1 c}$).

Consequently, a subset of $\left\{\boldsymbol{v}_{p}\right\}$ converges to $T \in A^{\prime}(E)-M(E)$ in the weak * topology, $f_{p} \rightarrow f$ pointwise a. e., $f^{\prime}=T$, and f is unbounded.

Proposition 5.1. $A^{\prime}(E)=A_{b}^{\prime}(E)$ if and only if

$$
\begin{equation*}
A^{\prime}(E) \times D_{1}(E) \rightarrow D_{1}(E) \tag{5.1}
\end{equation*}
$$

$$
\left(S \sim k_{j}, T \sim h_{j}\right) \rightarrow S T \sim k_{j} h_{j}
$$

is a well-defined multiplication.
Proof. If $A^{\prime}(E)=A_{b}^{\prime}(E), S \sim k_{j} \in A_{\dot{b}}(E)$, and $T \sim h_{j} \in D_{1}(E)$, then $\Sigma h_{j} k_{j} \chi_{I_{j}} \in L^{1}(\Gamma)$ since

$$
\int\left|\Sigma h_{j} k_{j} \chi_{I_{j}}(\gamma)\right| d \gamma \leq K \int\left(\Sigma\left|h_{j}\right| \chi_{I_{j}}(\gamma)\right) d \gamma<\infty .
$$

Conversely if $A^{\prime}(E) \neq A_{b}^{\prime}(E)$ let $T \backsim k_{j} \in A^{\prime}(E)$ where $\lim _{j}\left|k_{n_{j}}\right|=\infty$. Without loss of generality take $\left|k_{n_{j}}\right| \geq j$ and define $g \equiv \Sigma h_{j} \chi_{I_{j}}$ such that $h_{n_{j}}=1 /\left(j^{2} \varepsilon_{n_{j}}\right)$ and $h_{m}=0$ if $m \neq n_{j}$.

Then

$$
\int|g|=\int \Sigma\left|h_{j}\right| \chi_{I_{j}}(\gamma) d \gamma=\sum_{j} \frac{1}{j^{2} \varepsilon_{n_{j}}} \int \chi_{I_{n_{j}}}=\Sigma \frac{1}{j^{2}}=\infty .
$$

On the other hand

$$
\int\left|\Sigma k_{j} h_{j} \chi_{r_{j}}\right| \geq \int\left(\frac{1}{j \varepsilon_{n_{j}}} \chi_{I_{n_{j}}}(\gamma) d \gamma \geq \Sigma \frac{1}{j},\right.
$$

a contradiction.
q.e.d.

Obviously, Prop. 5.2 is just a usual duality property between L^{∞} and L^{1}, and has nothing to do with $A_{b}^{\prime}(E)$ per se.

Remark. Note that $A^{\prime}(E)=A_{b}^{\prime}(E)$ if $\Sigma_{n}^{\prime}\left|c_{j, n}\right| / n^{2}=0\left(\varepsilon_{j}\right), j \rightarrow \infty$, from Prop. 1.2; and that the metric condition of Prop. 3.2 is much weaker than this.

In [4, Theorem 19], Hardy and Littlewood prove that if $p \in H^{1}$ [5, pp. 70-71] has the Fourier series $\sum_{0}^{\infty} a_{n} e^{i n y}$ then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|}{n} \leq \pi\|r\|_{1} . \tag{5.2}
\end{equation*}
$$

They show by counter-example that if $\varphi(\gamma)=\sum_{|n| \leq N}^{\sum} a_{n} e^{i n \gamma}$ then (5.2) is not necessarily true. We shall give another type of counter example as well as showing

Proposition 5.2. For all $T \in A^{\prime}(\Gamma)$ there is $S \in D_{b}(\Gamma)$ such that $\widehat{S}(n) \equiv \widehat{T}(\mathrm{n})$ for $n \geq 1$.

Proof. Given T.
A direct application of (5.2) says that if $\varphi(\gamma)=\sum_{0}^{N} a_{n} e^{i n y}$ then

$$
\sum_{1}^{N} \frac{\left|a_{n}\right|}{n} \leq \pi \int_{0}^{2 \pi}\left|\sum_{0}^{N} a_{n} t^{i n \gamma}\right| d \gamma
$$

Now, if $f^{\prime}=T$ we have $\widehat{f}(n)=0\left(\frac{1}{|n|}\right),|n| \rightarrow \infty$; and hence there is a constant K_{T} such that for all trigonometric polynomials of the form $\phi(\gamma) \equiv \sum_{1}^{N} a_{n} e^{i n y}$

$$
\left|\int f \bar{\varphi}\right| \equiv|\langle f, \varphi\rangle| \leq K_{T}\|\varphi\|_{1}
$$

Consequently, by the Hahn-Banach theorem there is $g \in L^{\infty}$ such that〈 f -$-g, \varphi\rangle=0$ for all $\varphi(\gamma)=\sum_{1}^{N} a_{n} e^{i n \gamma}$.

In particular, $\widehat{f}(n)=\widehat{g}(n)$ for all $n>0$.
q.e.d.

Because of Prop. 5.2 we say that E has bounded halves if for all $T \in A^{\prime}(E)$ there is $S \in D_{b}(E)$ such that $\widehat{T}(n)=\widehat{S}(n)$ for $n \geq 1$. The question is, of course, to determine for given $E \subseteq I$ the type of subset $X \subseteq Z$ such that for all $T \in A^{\prime}(E)$ there is $S \in D_{b}(E)$ for which $\widehat{T}=\widehat{S}$ on X. Obviously the problem is meaningful in a much more general context.

Now, assuming E has bounded halves we wish to find conditions so that $A^{\prime}(E)=A_{b}^{\prime}(E)$. Arithmetic properties definitely play a role here. In fact, using a (by now) standard approximation technique [6,10], we have

Proposition 5.3. Let E be a Dirichlet set with bounded halves. Then $A^{\prime}(E)=A_{b}^{\prime}(E)$.

Proof. Let $T \in A^{\prime}(E)$ and $S \in D_{b}(E), \widehat{S}=\widehat{T}$ for $n \geq 1$.

Observe that E Dirichlet is equivalent to

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{\gamma \in \mathbb{D}}|\sin n \gamma|=0 \tag{5.3}
\end{equation*}
$$

From (5.3) we know that for all $\varepsilon>0$ there is a positive integer n_{ε} such that
and

$$
\begin{equation*}
\sup _{\gamma \in E}\left|\sin n_{\varepsilon} \gamma\right|<\frac{\varepsilon}{2} \tag{5.4}
\end{equation*}
$$

$$
\lim _{s \rightarrow 0} n_{\varepsilon}=\infty
$$

Next we define the continuous ε - diminishing - M function M_{s} in $[-\pi, \pi)$ to be 0 at 0 and outside ($-2 \varepsilon, 2 \varepsilon$), ε at $\pm \varepsilon$, and linear otherwise.

Then from (5.4) we have for $S=g^{\prime}$,

$$
(\widehat{S}-\widehat{T})\left(2 n_{\varepsilon}\right)-(\widehat{S}-\widehat{T})(0)=-\frac{i}{\pi}\left\langle S-T, e^{-i n_{\varepsilon} y} M_{\varepsilon}\left(\sin n_{s} \gamma\right)\right\rangle,
$$

since there is a neighborhood of E in which $\left|\sin n_{\varepsilon} \gamma\right| \leq \varepsilon$. A main feature of M_{ε} is that $\left\|M_{\varepsilon}\right\|_{A} \rightarrow 0$ and so, since $\left.\left.\widehat{(S}-\widehat{T}\right)\left(2 n_{\varepsilon}\right)=0, \widehat{S}-\widehat{T}\right)(0)=0$. A similar calculation shows $\widehat{(S}-\widehat{T})(n)=0$ for all $n<0$. Thus $S=T$.
q.e.d.

Note that every Kronecker set is both Helson and Dirichlet, and that there are Dirichlet sets which aren't Helson and vice-versa. Further, Dirichlet sets are not only sets of uniqueness, but Kahane [6] has shown that if E is Dirichlet then for all $T^{\prime} \in A^{\prime}(E)$

$$
\varlimsup_{|n| \rightarrow \infty}|\widehat{T}(n)|=\|T\|_{A^{\prime}}
$$

Observe that Kronecker sets E are $S[10]$ so that, in particular, $A^{\prime}(E)=$ $=A_{b}^{\prime}(E)$ in this case.

Example 5.2. If the analogue of (5.2) were true for $\varphi(\gamma)=\sum_{|n| \leq N} a_{n} e^{i n \gamma}$ then the proof of Prop. 5.2 shows that $A^{\prime}(\Gamma) \subseteq D_{b}(\Gamma)$ which contradicts Example 5.1.

6. Helson Sets and Summability Topologies.

Using Wik's theorem that $A(E)=A_{+}(E)$ characterizes Helson sets [7] we have

Proposition 6.1. Let E be Helson. For all $m<0$ there is $\sum_{n=0}^{\infty}\left|a_{n, m}\right|<\infty$ so that for each $T \in A^{\prime}(E)$ we have

$$
\begin{equation*}
\widehat{T}(-m)=\lim _{J} \sum_{n=0}^{\infty} a_{n, m} \widehat{\mu_{J}}(-n) \tag{6.1}
\end{equation*}
$$

where $\left\{\mu_{J}\right\}$ is the sequence of measure corresponding to T (as in (4.5)).
Proof. $e^{i m \gamma}=\sum_{n=0} a_{n, m} e^{i n \gamma} \equiv \varphi(\gamma)$ on $E, \sum_{n=0}\left|a_{n, m}\right|<\infty$ since E is Helson.
Thus, using the notation of (4.5) for $T \sim k_{j} \in A^{\prime}(E)$, we have

$$
2 \pi \widehat{\mu_{J}}(-m)=\left\langle\mu_{J}, \varphi\right\rangle
$$

and hence $\lim _{J}\left\langle\mu_{J}, \varphi\right\rangle$ exists.
q.e.d.

Now, if $\varphi(\gamma) \equiv \sum_{0} a_{n} e^{i n y} \in A_{+}(E)$ we write

$$
\varphi_{r}(\gamma) \equiv \sum_{n=0} a_{n} r^{n} e^{i n \gamma}, r \in(0,1)
$$

Note that $\varphi_{r} \in O^{\infty}(\Gamma)$, and hence for each $r \in(0,1), T \in A^{\prime}(E)$, and $\varphi \in A_{+}(E)$ we have $\lim _{J}\left\langle\mu_{J}-T, \varphi_{r}\right\rangle=0$.

Proposition 6.2 Let E be Helson. Assume $T \in A^{\prime}(E)$ has the property that for each $\varphi \in A_{+}(E)$, there exists

$$
\begin{equation*}
\lim _{J \rightarrow \infty}\left\langle\mu_{J}, \varphi_{r}\right\rangle, \quad \text { uniformly in } r \varepsilon\left[\frac{1}{2}, 1\right) . \tag{6.2}
\end{equation*}
$$

Then $T \in M(E)$.
Proof. (6.2) allows us to use Moore-Smith so that $\left\langle\mu_{J}, \varphi\right\rangle$ converges for all $\varphi \in A(\Gamma)$.

Thus by the uniform boundedness principle and the fact that E is Helson we have $\left\{\left\|\mu_{J}\right\|_{1}\right\}$ bounded. Consequently by Alaoglu and Prop. 1.1, $T \in M(E)$.

For example, if $r=1-\frac{1}{n}$ then for $\varphi \sim \Sigma a_{n} e^{i n \gamma} \in A_{+}(E)$ and $T \in A^{\prime}(E)$,

$$
\left\langle\mu_{J}, \varphi_{r}\right\rangle=2 \pi \sum_{j=1}^{\infty}\left(\sum_{p=1}^{i} a_{p} \widehat{\mu_{J}}(-p)\right)\left(1-\frac{1}{n}\right)^{j} \frac{1}{n}
$$

noting that $1-\frac{1}{n}=\sum_{j=1}^{\infty} \frac{1}{n}\left(1-\frac{1}{n}\right)^{j}$.

Prompted by Prop. 6.2 consider diagonal sums

$$
\sum_{n=0}^{\infty} a_{n} \widehat{\mu_{J}}(-n) \vec{F}(J)^{n}
$$

where $0<F(J)<1$ and $\quad E(J) \longrightarrow 1$.
Generally, in a dual system (X, Y) of T_{2} locally convex spaces we say that a directed system $\left\{T_{a}\right\} \subseteq X$ converges in the $a \sigma(X, Y)$ topology to $T \in X$ if for all $\varphi \in \boldsymbol{Y}$ there is $\left\{\varphi_{a}\right\} \subseteq Y$ such that φ_{a} converges to φ and

$$
\lim _{a}\left\langle T_{a}-T, \varphi_{a}\right\rangle=0
$$

Although significantly weaker than the weak * topology, it is not generally minimal [9, p. 191] and the intermediate topologies between $\sigma(X, Y)$ and $\sigma \sigma(X, Y)$ become interesting in light of Prop. 6.2, the lack of weak * convergence in § 4, and the convergence in Prop. 1.1 (in terms of (4.5)).
U. of Maryland, College Park, Ma.
and
Souola Normale Superiore, Pisa, Italia.

BIBLIOGRAPHY

[1] J. Benedetto, "Sets without True Distributions», Ball. Soc. Roy. Sci. de Liege 7-8 (1970) 434-437.
[2] J Benedetto, *Support Preserving Measure Algebras and Spectral Synthesis», Math. Zeitschrift 118 (1970) 271-280.
[3] J. Benedetto, «Harmonic Analysis on Totally Disconnected Sets» Lecture Notes in Mathematics, Springer-Verlag (1971) 1-261.
[4] G. H. Hardy and J. E. Littlewood, "Some New Properties of Fourier Constants», Math. Ann. 97 (1926) 159-209.
[5] K. Hoffman, "Banach Spaoes of Analytic Functions", Prentice Hall, N. Y., 1962.
[6] J. P. KAhane, "A Metric Condition for a Closed Circular Set to be a Set of Uniqueness», J. of Approximation Theory, 2 (1969) 233-246.
[7] J. P. Kahant and R. Salem, *Ensembles parfaits et béries trigonométriques", Hermann, Paris, 1963.
[8] G. Salmons, (thesis in Harmonic Analysis) University of Maryland, 1971.
[9] H. Scharfer, "Topological Feotor Spaces", Mac Millan, New York, 1966.
[10] N. Varofoulos, "Sur les ensembles parfaits et les séries trigonomélriques», C. R. Acad, Sc. Paris 260 (1965) 3831-3834.

