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TRIGONOMETRIC WAVELETS
FOR HERMITE INTERPOLATION

EWALD QUAK

Abstract. The aim of this paper is to investigate a multiresolution anal-
ysis of nested subspaces of trigonometric polynomials. The pair of scaling
functions which span the sample spaces are fundamental functions for Her-
mite interpolation on a dyadic partition of nodes on the interval [0, 2π). Two
wavelet functions that generate the corresponding orthogonal complementary
subspaces are constructed so as to possess the same fundamental interpola-
tory properties as the scaling functions. Together with the corresponding dual
functions, these interpolatory properties of the scaling functions and wavelets
are used to formulate the specific decomposition and reconstruction sequences.
Consequently, this trigonometric multiresolution analysis allows a completely
explicit algorithmic treatment.

1. Introduction

Trigonometric polynomials – being the simplest periodic analytic functions –
have recently become the object of investigations from the point of view of wavelet
theory. For the basic terminology and fundamental concepts of wavelets, the
reader is referred to the monograph of C. K. Chui [3]. A multiresolution analysis
for 2π-periodic square-integrable functions consisting of finite-dimensional nested
spaces of trigonometric polynomials was first studied in a paper by C. K. Chui and
H. N. Mhaskar [4]. Their scaling functions and wavelets, however, do not possess in-
terpolatory properties. Alternatively, a trigonometric multiresolution analysis can
be based on fundamental functions of Lagrange interpolation. Trigonometric inter-
polants have a long history in approximation theory (see [14] and [17, Chapter 10]).
Recently, A. A. Privalov [14] used specific interpolants to tackle the problem of
finding orthogonal trigonometric polynomial bases of minimal degree for the space
of 2π-periodic continuous functions. His results were then improved by D. Offin
and K. Oskolkov [10], who used a periodized wavelet basis, and the final answer
was given by R. A. Lorentz and A. A. Sahakian [9], who adopted a wavelet packet
approach. Using Privalov’s interpolants from [14], J. Prestin and E. Quak [11]
explicitly computed the basis transformations connecting the spaces of trigonomet-
ric scaling functions and wavelets. The corresponding transformation matrices have
circulant structure, thus giving rise to efficient decomposition and reconstruction al-
gorithms that can be implemented using Fast Fourier Transform techniques. Prestin
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684 EWALD QUAK

and Quak also formulated the duality principle for this trigonometric multiresolu-
tion analysis [12] and considered the decay rates for the trigonometric interpolatory
scaling functions and wavelets [13].

Recently, Y. W. Koh, S. L. Lee and H. H. Tan [8] presented a general approach to
non-stationary multiresolution analysis of the space of square-integrable 2π-periodic
functions, which contains the trigonometric wavelets of Chui and Mhaskar [4] as
a special case. It remains to be investigated how the trigonometric interpolatory
wavelets of [11-14] fit into their framework and how their approach may be adapted
to the use of two (or more) different types of scaling functions and wavelets in the
respective sample and wavelet spaces. This paper describes one particular situation
where two different scaling functions arise quite naturally, namely in trigonometric
interpolation of Hermite data.

Other Hermite-type functions, which are not trigonometric polynomials, have
already been studied in a wavelet context. For instance, P. Auscher [1] considers
wavelets with boundary conditions on an interval based on cardinal Hermite B-
spline functions, and T. N. T. Goodman [7] proves the existence of interpolatory
Hermite spline wavelets on the real axis based on the B-spline theory of Schoen-
berg and Sharma. Trigonometric interpolants, however, as in the Lagrange case,
enable a completely explicit description of the corresponding decomposition and
reconstruction coefficients by means of circulant matrices.

In §2 of this paper, two different types of trigonometric scaling functions are
constructed: one type whose function values in dyadic points are the fundamental
Kronecker data and whose first derivatives in these points are all zero, and the other
type for which the function values are all zero and the first derivatives are given by
the Kronecker data. Certainly, these interpolants are well known, but for the sake
of completeness and for later use, basic notations and properties are reviewed. The
sample spaces spanned by these interpolants are identified as the same ones that
were used by Chui and Mhaskar [4], but now the two different types of interpolatory
scaling functions give rise to a Hermite interpolation operator instead of the quasi-
interpolation operator defined in [4].

In §3, the trigonometric wavelets are constructed, which span the relative orthog-
onal complements for the sample spaces. These wavelets show the same interpola-
tory Hermite properties as the scaling functions and thus constitute high-frequency
interpolants of the fundamental data, whereas the scaling functions on the same
level can be considered as low-frequency interpolants. This is maybe the most in-
teresting result in this context, as the wavelets for the Lagrange interpolants in [11]
do not have this property – they interpolate the fundamental Lagrange data in the
midpoints of the original knots.

The interpolation properties help to derive the two-scale (or reconstruction) rela-
tions for the Hermite multiresolution analysis in §4. A concise matrix representation
using circulants is also given at this point. As usual in this context, the decomposi-
tion relations need more effort. First, in §5, the inner product matrix of the scaling
functions is explicitly computed as well as the entries of its inverse, which are the
coefficients of the biorthogonal bases of dual functions. The usefulness of these dual
functions – as described in [3] and [5] for functions on the real axis – can be seen in
§6, where they are used to establish the more complicated decomposition relations.
Finally, §7 provides a short numerical example illustrating practical results and
offers a discussion of open questions. The Appendix was added to provide some
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TRIGONOMETRIC HERMITE WAVELETS 685

background material concerning an error estimate (similar to the one in [4]) for the
Hermite interpolation operator of §2.

2. Interpolatory Hermite-type scaling functions

For ` ∈ N, the Dirichlet kernel D` ∈ T` and the conjugate Dirichlet kernel
D̃` ∈ T` are defined as

(2.1) D`(x) =
1

2
+
∑̀
k=1

cos kx =

{
sin(`+ 1

2 )x

2 sin x
2

for x /∈ 2πZ,

`+ 1
2 for x ∈ 2πZ,

and

(2.2) D̃`(x) =
∑̀
k=1

sin kx =

{
cos x2−cos(`+ 1

2 )x

2 sin x
2

for x /∈ 2πZ,

0 for x ∈ 2πZ,

where T` denotes the linear space of trigonometric polynomials of degree `.
Following Zygmund [17, Vol. I, p.49], we recall that these kernels allow represen-

tation formulae for Fourier sums. In fact, let us start with the `th partial Fourier
sum

S`(f)(x) =
a0

2
+
∑̀
k=1

(ak cos kx+ bk sin kx),

where

ak =
1

π

∫ 2π

0

f(t) cos kt dt and bk =
1

π

∫ 2π

0

f(t) sin kt dt

are the usual Fourier coefficients of a function f ∈ L2
2π, i.e., a square-integrable

2π-periodic function. Then the conjugate `th partial sum is defined as

S̃`(f)(x) =
∑̀
k=1

(ak sin kx− bk cos kx) ,

and it follows that for any x ∈ [0, 2π]

(2.3) S`(f)(x) =
1

π

∫ 2π

0

f(t)D`(t− x)dt = 2〈f(·), D`(· − x)〉

and

(2.4) S̃`(f)(x) = − 1

π

∫ 2π

0

f(t)D̃`(t− x)dt = −2〈f(·), D̃`(· − x)〉 .

Here and throughout, the inner product 〈·, ·〉 of two functions f and g in L2
2π is

defined, as usual, by 〈f, g〉 = 1
2π

∫ 2π

0
f(x)g(x) dx.

The nodes for the interpolation processes of this section are equally spaced on
the interval [0, 2π) with a dyadic step size, i.e.,

xj,n =
nπ

2j
for any j ∈ N0 and n = 0, . . . , 2j+1 − 1.

In the following, the relations between the nodes on consecutive levels such as
xj,n = xj+1,2n or ‘the midpoint of xj,n and xj,n+1 is xj+1,2n+1’ will be exploited
frequently.
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Definition 2.1 (Scaling functions). For any j ∈ N0, consider two different kinds
of kernels,

φ0
j,0(x) :=

1

22j+1

2j+1−1∑
`=0

D`(x)(2.5)

and

φ1
j,0(x) :=

1

22j+1

(
D̃2j+1−1(x) +

1

2
sin(2j+1x)

)
.(2.6)

For n = 0, . . . , 2j+1 − 1, define φ0
j,n(x) := φ0

j,0(x − xj,n) and, in a similar way,

φ1
j,n(x) := φ1

j,0(x − xj,n). Furthermore, for notational convenience, let φ0
j,n =

φ0
j,nmod2j+1 and φ1

j,n = φ1
j,nmod2j+1 for any n ∈ Z.

These functions are well known and have been studied in detail, e.g., in [17].
Closed formulae for them are given in

Lemma 2.1. For any j ∈ N0, we have

φ0
j,0(x) =

{
1

22j+2
sin2(2jx)
sin2( x2 )

for x /∈ 2πZ,

1 for x ∈ 2πZ,
(2.7)

φ1
j,0(x) =

{ 1
22j+2

(
1− cos(2j+1x)

)
cot x2 for x /∈ 2πZ,

0 for x ∈ 2πZ,
(2.8)

and their derivatives are given by

(2.9) φ0
j,0
′
(x) =

{
1

2j+2
sin(2j+1x)

sin2( x2 )
− 1

22j+2

sin2(2jx) cot(x2 )

sin( x2 ) for x /∈ 2πZ,

0 for x ∈ 2πZ

and

(2.10) φ1
j,0
′
(x) =

{
1

22j+3
cos(2j+1x)−1

sin2( x2 )
+ 1

2j+1 sin(2j+1x) cot(x2 ) for x /∈ 2πZ,

1 for x ∈ 2πZ.

Proof. The function φ0
j,0 is actually the (positive) Fejér kernel and its representation

(2.7) is listed in [17, Vol. I, p. 88, (3.1), (3.2)]. The representation (2.8) is given in
[17, Vol. II, p.23, (6.8)]. The expressions (2.9) and (2.10) are then obtained by just
taking derivatives. For the cases x ∈ 2πZ, the summation formulae (2.1) and (2.2)
and their respective derivatives were used. �

By evaluating the explicit formulae of Lemma 2.1, the following interpolatory
properties can be established, taking into account that φij,n(x) = φij,0(x−xj,n), for

i = 0, 1, and that consequently only the interpolatory properties of φij,0, i.e., for
the case n = 0, need to be checked.

Theorem 2.1 (Interpolatory properties of the scaling functions). The following
interpolatory properties hold for each k, n = 0, . . . , 2j+1 − 1:

(2.11) φ0
j,n(xj,k) = δk,n and φ0

j,n
′
(xj,k) = 0 ,
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and

(2.12) φ1
j,n(xj,k) = 0 and φ1

j,n
′
(xj,k) = δk,n .

The values at the interlacing points xj+1,2k+1, k = 0, . . . , 2j+1 − 1, are given by

φ0
j,n(xj+1,2k+1) =

1

22j+2
sin−2(xj+2,2k+1−2n),(2.13)

φ0
j,n
′
(xj+1,2k+1) = − 1

22j+2

cot(xj+2,2k+1−2n)

sin2(xj+2,2k+1−2n)
,(2.14)

while

φ1
j,n(xj+1,2k+1) =

1

22j+1
cot(xj+2,2k+1−2n)(2.15)

and

φ1
j,n
′
(xj+1,2k+1) = − 1

22j+2
sin−2(xj+2,2k+1−2n). �(2.16)

Now, the sample spaces Vj spanned by the translates φ0
j,n and φ1

j,n are intro-
duced, which will be shown to form a trigonometric multiresolution analysis of
L2

2π.

Definition 2.2. For j ∈ N0, the spaces Vj are defined by

Vj := span{φ0
j,n, φ

1
j,n : n = 0, . . . , 2j+1 − 1}.

As a first step of studying the spaces Vj , the following result identifies the trigono-
metric polynomials which form alternative bases of these spaces.

Theorem 2.2. For any j ∈ N0, we have

Vj = span{1, cosx, . . . , cos(2j+1 − 1)x, sinx, . . . , sin 2j+1x}.

Consequently,

dim Vj = 2j+2.

Proof. By the definition of the function φ0
j,0, it is clear that φ0

j,0 and its translates by
nπ
2j are elements of T2j+1−1 ⊂ span{1, cosx, . . . , cos(2j+1−1)x, sinx, . . . , sin 2j+1x}.
Also, it is apparent that φ1

j,0 is an element of this span. A translation of φ1
j,0 by

nπ
2j does not cause any problem as the term sin 2j+1x is not affected. Altogether,

this means that Vj ⊂ span{1, cosx, . . . , cos(2j+1 − 1)x, sinx, . . . , sin 2j+1x}. The
equality follows from the interpolation conditions (2.11) and (2.12), which show
that the functions spanning Vj are indeed linearly independent, and therefore we
have dim Vj = 2j+2. �

Moreover, Theorem 2.2 implies that

Vj ⊂ Vj+1 ,
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i.e., the spaces Vj form a sequence of nested subspaces of L2
2π, the space of 2π-

periodic square-integrable functions. With the notation V−1 = {0}, it is also clear
that

L2
2π = closL2

 ∞⋃
j=−1

Vj

 and
∞⋂

j=−1

Vj = {0} .

A relation between φ0
j,0 and φ0

j+1,0 as well as between φ1
j,0 and φ1

j+1,0 based solely
on dilation is incompatible with the periodicity of the functions involved. Using
properties (2.7) and (2.8) of the scaling functions, we can compute that

φ0
j+1,0(x) = φ0

j,0(2x)
1

4

sin2(x)

sin2(x/2)
and φ1

j+1,0(x) = φ1
j,0(2x)

1

4

cot(x/2)

cot(x)
.

Note that the corrective factors 1
4

sin2(x)
sin2(x/2) and 1

4
cot(x/2)
cot(x) , respectively, are indepen-

dent of the level j.
Now, a Hermite-type interpolation operator can be introduced.

Definition 2.3. For any j ∈ N0, the interpolation operator Lj mapping any real-
valued differentiable 2π-periodic function f into the space Vj is defined as

Ljf(x) =
2j+1−1∑
n=0

f(xj,n)φ0
j,n(x) +

2j+1−1∑
n=0

f ′(xj,n)φ1
j,n(x).

The following properties of the operators Lj are therefore obvious:

Ljf ∈ T2j+1 ,(i)

Ljf(xj,k) = f(xj,k) and (Ljf)′(xj,k) = f ′(xj,k), k ∈ Z,(ii)

Ljf = f for all f ∈ Vj .(iii)

It is possible to establish an error estimate for the Hermite interpolation opera-
tor Lj . For this purpose, define the space W p

2 as the set of all functions f ∈ L2
2π for

which the second derivative f ′′ is Lp-integrable, where the Lp-norm of a 2π-periodic
function g is defined as

‖g‖p :=

(
1

2π

∫ 2π

0

|g(x)|pdx
)1/p

, 1 ≤ p ≤ ∞,

with the usual supremum modification for p =∞.

Theorem 2.3. For a function f ∈ W p
2 , 1 ≤ p ≤ ∞, the following error estimate

for the Hermite interpolation operator Lj holds:

‖ f − Ljf ‖p ≤ Cp,j 2−2j E2j (f
′′)p ,

with E2j (f
′′)p being the best approximation to f ′′ from T2j in Lp2π. The constant

Cp,j depends only on p for 1 < p < ∞, while an additional logarithmic factor j
appears for p = 1 and p =∞.

The proof of Theorem 2.3 is based on approximation-theoretical results not im-
mediately connected to the wavelet context of this paper. Therefore, the relevant
material is not presented here, but in the appendix.
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Some further remarks are appropriate at this point.

Remarks. 1. The first paper that describes nested spaces of trigonometric polyno-
mials from a wavelet point of view is by C. K. Chui and H. N. Mhaskar [4]. The
spaces Vj in Definition 2.2 are in fact the very same ones (up to a shift of the indices
by one) as those investigated in the Chui and Mhaskar paper, where only one scal-
ing function is used to span Vj as well as only one wavelet (instead of two, as shall
be seen in the next section) to span the orthogonal complements. Furthermore,
the scaling function in [4] gives rise to only a quasi-interpolation operator, and the
corresponding wavelet also has no obvious interpolatory properties. This makes
the construction of the relevant decomposition and reconstruction sequences more
complicated. The Hermite interpolation operator in Definition 2.3 allows a simpler
approach to the construction of the reconstruction and decomposition matrices (see
§§ 4 and 6).
2. A Lagrange interpolation approach to trigonometric wavelets based on results by
A. A. Privalov [14] was investigated by J. Prestin and E. Quak in [11, 12, 13]. The
nested spaces generated by this method are different from the sample spaces Vj of
Definition 2.2. For the so-called de la Vallée Poussin interpolants, the trigonometric
polynomials contained in the corresponding nested spaces satisfy a more intricate
relation. For Fourier-type interpolants, however, the highest-degree polynomial is
in fact a cosine term. For more details, see Theorem 7.1 in [11].

3. Interpolatory Hermite-type wavelets

As the next step, the orthogonal complement Wj of Vj relative to Vj+1, i.e., the
so-called wavelet space, needs to be described in more detail.

Definition 3.1 (wavelet functions). For j ∈ N0, define

ψ0
j,0(x) =

1

2j+1
cos 2j+1x+

1

3 · 22j+1

2j+2−1∑
`=2j+1+1

(3 · 2j+1 − `) cos `x(3.1)

and

ψ1
j,0(x) =

1

3 · 22j+1

2j+2−1∑
`=2j+1+1

sin `x+
1

22j+3
sin 2j+2x.(3.2)

As for the scaling functions, for any j ∈ N0 and n = 0, . . . , 2j+1 − 1, set ψ0
j,n(x) =

ψ0
j,0(x − xj,n) and ψ1

j,n(x) = ψ1
j,0(x − xj,n) with the same use of indices modulo

2j+1 as in Definition 2.1.

Definition 3.2. For j ∈ N0, the spaces Wj are defined by

Wj := span{ψ0
j,n, ψ

1
j,n : n = 0, . . . , 2j+1 − 1}.

Using Theorem 2.2, a careful inspection shows that ψ0
j,0, ψ

1
j,0 ∈ Vj+1, and a

translation by nπ
2j does not influence the terms cos 2j+1x and sin 2j+2x, so that also

for any n = 0, . . . , 2j+1 − 1, it follows that

ψ0
j,n, ψ

1
j,n ∈ Vj+1.
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From the usual orthogonality properties of trigonometric polynomials, it is clear
that

ψ0
j,n, ψ

1
j,n ⊥ Vj ,

where orthogonality (denoted by ⊥) is considered with respect to the usual inner
product as introduced in §2. Since the cardinality of the spanning set for Wj (i.e.,
2j+2) is the same as the dimension of the relative orthogonal complement

span{cos 2j+1x, . . . , cos(2j+2 − 1)x, sin(2j+1 + 1)x, . . . , sin 2j+2x}

of the space Vj in Vj+1, it remains to verify the linear independence of the functions
that spanWj . This will again be accomplished by using the interpolation properties.

In [11], following Privalov [14], we used a simple construction formula for the
wavelet functions in terms of just one scaling function of the level j + 1 and one of
level j. In this Hermite case, the formulae are much more complicated.

Lemma 3.1. For j ∈ N0, the wavelets ψ0
j,0 and ψ1

j,0 have the following represen-
tation in terms of the scaling functions of level j + 1 and j:

ψ0
j,0 =

4

3
φ0
j+1,0 −

1

3
φ0
j,0

+
4

3

2j+1−1∑
n=0

cot(xj+2,2n+1)φ1
j+1,2n+1 −

1

3 · 2j
2j+1−1∑
n=0

φ0
j+1,2n+1(3.3)

and

(3.4) ψ1
j,0 =

4

3
φ1
j+1,0 −

1

3
φ1
j,0 +

1

3 · 2j
2j+1−1∑
n=0

φ1
j+1,2n+1.

Proof. Let us start with the expression in (3.4). Using the definitions (2.6) and
(3.2), one finds directly

ψ1
j,0(x) =

4

3
φ1
j+1,0(x)− 1

3
φ1
j,0(x) +

1

3 · 22j+3
(sin 2j+2x− 2 sin 2j+1x).

As the Hermite operator Lj+1 defined in Definition 2.3 is a projection on Vj+1, one
obtains by direct computation

1

3 · 22j+3
(sin 2j+2x− 2 sin 2j+1x) =

1

3 · 22j+3
Lj+1((sin 2j+2 · −2 sin 2j+1·))(x)

=
1

3 · 2j
2j+1−1∑
n=0

φ1
j+1,2n+1(x).

For (3.3), definitions (2.5) and (3.1) yield

ψ0
j,0(x) =

4

3
φ0
j+1,0(x) − 1

3
φ0
j,0(x)

+
1

3 · 2j

 2j+2−1∑
`=2j+1+1

cos `x−
2j+1−1∑
`=1

cos `x

+
1

3 · 2j+1
(cos 2j+1x− 1).
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As above, an application of the operator Lj+1 and some straightforward computa-
tion yields

1

3 · 2j+1
(cos 2j+1x− 1) =

1

3 · 2j+1
Lj+1(cos 2j+1 · −1)(x)

= − 1

3 · 2j
2j+1−1∑
n=0

φ0
j+1,2n+1(x).

The remaining term can be dealt with in a similar way, but it is necessary to com-

pute the values of the sums
∑2j+2−1
`=2j+1+1 cos `x and

∑2j+1−1
`=1 cos `x and of their deriva-

tives
∑2j+2−1
`=2j+1+1−` sin `x and

∑2j+1−1
`=1 −` sin `x at the knots xj,n and xj+1,2n+1,

respectively. This can be performed by taking into account the explicit formula
(2.1) for the Dirichlet kernel and its derivative, and yields, after some computa-
tions for n = 1, . . . , 2j+1 − 1, the following results, which are recorded for later
use:

2j+1−1∑
`=1

cos(`xj,n) =
2j+2−1∑
`=2j+1+1

cos(`xj,n) = −1,(3.5)

2j+1−1∑
`=1

cos(`xj+1,2n+1) =
2j+2−1∑
`=2j+1+1

cos(`xj+1,2n+1) = 0,(3.6)

2j+1−1∑
`=1

−` sin(`xj,n) =
2j+2−1∑
`=2j+1+1

−` sin(`xj,n) = 2j cot(xj+1,n),(3.7)

while

2j+1−1∑
`=1

−` sin(`xj+1,2n+1) = −2j cot(xj+2,2n+1)(3.8)

and
2j+2−1∑
`=2j+1+1

−` sin(`xj+1,2n+1) = 3 · 2j cot(xj+2,2n+1).(3.9)

These results imply the final equality

1

3 · 2j

 2j+2−1∑
`=2j+1+1

cos `x−
2j+1−1∑
`=1

cos `x

 =
4

3

2j+1−1∑
n=0

cot(xj+2,2n+1)φ1
j+1,2n+1(x),

which concludes the proof of this lemma. �

Lemma 3.1 now enables us to state the interpolatory properties of the wavelets.
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Theorem 3.1 (Interpolatory properties of the wavelets). The following interpola-
tory properties hold for k, n = 0, . . . , 2j+1 − 1, namely

(3.10) ψ0
j,n(xj,k) = δk,n and ψ0

j,n
′
(xj,k) = 0

as well as

(3.11) ψ1
j,n(xj,k) = 0 and ψ1

j,n
′
(xj,k) = δk,n.

The values at the interlacing points xj+1,2k+1 for k = 0, . . . , 2j+1 − 1 are given by

ψ0
j,n(xj+1,2k+1) = − 1

3 · 2j −
1

3 · 22j+2
sin−2(xj+2,2k+1−2n),(3.12)

ψ0
j,n
′
(xj+1,2k+1) =

4

3
cot(xj+2,2k+1−2n) +

1

3 · 22j+2

cot(xj+2,2k+1−2n)

sin2(xj+2,2k+1−2n)
,(3.13)

while

ψ1
j,n(xj+1,2k+1) = − 1

3 · 22j+1
cot(xj+2,2k+1−2n),(3.14)

ψ1
j,n
′
(xj+1,2k+1) =

1

3 · 2j +
1

3 · 22j+2
sin−2(xj+2,2k+1−2n).(3.15)

Proof. All these properties can be established by using the representations for the
wavelets given in Lemma 3.1 and the interpolatory properties of the scaling func-
tions of Theorem 2.1. �

As a first application, (3.10) and (3.11) imply the linear independence of all
wavelet functions ψ0

j,n and ψ1
j,n, and thus we have

Corollary 3.1. The space Wj is the orthogonal complement of Vj in Vj+1, i.e.,

Vj+1 = Vj ⊕Wj ,

where ⊕ denotes orthogonal summation. �
Remark. In [11], trigonometric Lagrange interpolants were investigated, where the
corresponding wavelet functions interpolated the fundamental data set {δk,n} at
the midpoints of the underlying partition. In fact, it can be shown that it is
impossible to construct a wavelet function that is also a fundamental Lagrange
interpolant on the original partition. The situation here, for Hermite interpolants,
is strikingly different. Theorem 3.1 shows that the pair of functions in Definition 3.1
indeed interpolate the fundamental data of function and first derivative values at
the points of the given original partition.

Thus, the scaling function φ0
j,0 is a low-frequency fundamental interpolant of

function data, while ψ0
j,0 is a high-frequency fundamental interpolant at the same

points (and analogously for the first derivative for φ1
j,0 and ψ1

j,0). Figures 1 and 2

show the functions φ0
4,16, φ

1
4,16 and ψ0

4,16 and ψ1
4,16, respectively.

Note also that while the scaling function φ0
j,0 is even and the scaling function

φ1
j,0 is odd, this is also true for the corresponding wavelets, namely ψ0

j,0 is even and

ψ1
j,0 is odd.
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Figure 1
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Figure 2

4. Two-scale relations

The availability of the Hermite interpolation operator facilitates the computa-
tion of the finite two-scale sequences considerably as compared to the corresponding
treatment of the two-scale sequences of the spaces Vj in [4]. In the Lagrange case
(see [11]), a reconstruction matrix consisting of four circulant blocks was computed.
Here, since we have two scaling functions and two wavelets, there will be sixteen
such circulant blocks. Its particular entries are already known by applying Theo-
rems 2.1 and 3.1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRIGONOMETRIC HERMITE WAVELETS 695

As Vj ⊂ Vj+1, there have to exist specific coefficients p0,0
j,n,s and p0,1

j,n,s such that

φ0
j,n =

∑
s(p

0,0
j,n,sφ

0
j+1,s + p0,1

j,n,sφ
1
j+1,s), as well as coefficients p1,0

j,n,s and p1,1
j,n,s such

that φ1
j,n =

∑
s(p

1,0
j,n,sφ

0
j+1,s + p1,1

j,n,sφ
1
j+1,s). The following result establishes their

precise values.

Theorem 4.1. For j ∈ N0 and n = 0, 1 . . . , 2j+1 − 1, we have

φ0
j,n = φ0

j+1,2n +
2j+1−1∑
s=0

φ0
j,n(xj+1,2s+1)φ0

j+1,2s+1 +
2j+1−1∑
s=0

φ0
j,n
′
(xj+1,2s+1)φ1

j+1,2s+1

= φ0
j+1,2n +

2j+1−1∑
s=0

1

22j+2
sin−2(xj+2,2s+1−2n)φ0

j+1,2s+1

+
2j+1−1∑
s=0

− 1

22j+2

cot(xj+2,2s+1−2n)

sin2(xj+2,2s+1−2n)
φ1
j+1,2s+1

and

φ1
j,n = φ1

j+1,2n +
2j+1−1∑
s=0

φ1
j,n(xj+1,2s+1)φ0

j+1,2s+1 +
2j+1−1∑
s=0

φ1
j,n
′
(xj+1,2s+1)φ1

j+1,2s+1

= φ0
j+1,2n +

2j+1−1∑
s=0

1

22j+1
cot(xj+2,2s+1−2n)φ0

j+1,2s+1

+
2j+1−1∑
s=0

− 1

22j+2
sin−2(xj+2,2s+1−2n)φ1

j+1,2s+1.

Proof. Using once again the fact that the interpolatory operator Lj+1 in Defini-
tion 2.3 is a projection for Vj+1, we find that

φ0
j,n(x) = Lj+1(φ0

j,n)(x) =
2j+2−1∑
k=0

φ0
j,n(xj+1,k)φ0

j+1,k(x) + φ0
j,n
′
(xj+1,k)φ1

j+1,k(x)

and

φ1
j,n(x) =

2j+2−1∑
k=0

φ1
j,n(xj+1,k)φ0

j+1,k(x) + φ1
j,n
′
(xj+1,k)φ1

j+1,k(x).

The interpolatory properties of Theorem 2.1 now imply the desired results. �

Analogously, from Wj ⊂ Vj+1, it is clear that there have to be coefficients q0,0
j,n,s

and q0,1
j,n,s such that ψ0

j,n =
∑
s(q

0,0
j,n,sφ

0
j+1,s + q0,1

j,n,sφ
1
j+1,s), as well as coefficients

q1,0
j,n,s and q1,1

j,n,s such that ψ1
j,n =

∑
s(q

1,0
j,n,sφ

0
j+1,s + q1,1

j,n,sφ
1
j+1,s). These coefficients

are determined in the following theorem.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



696 EWALD QUAK

Theorem 4.2. For j ∈ N0 and n = 0, 1 . . . , 2j+1 − 1, we have

ψ0
j,n = φ0

j+1,2n +
2j+1−1∑
s=0

ψ0
j,n(xj+1,2s+1)φ0

j+1,2s+1 +
2j+1−1∑
s=0

ψ0
j,n
′
(xj+1,2s+1)φ1

j+1,2s+1

= φ0
j+1,2n +

2j+1−1∑
s=0

(
− 1

3 · 2j −
1

3 · 22j+2
sin−2(xj+2,2s+1−2n)

)
φ0
j+1,2s+1

+
2j+1−1∑
s=0

(
4

3
cot(xj+2,2s+1−2n) +

1

3 · 22j+2

cot(xj+2,2s+1−2n)

sin2(xj+2,2s+1−2n)

)
φ1
j+1,2s+1

and

ψ1
j,n = φ1

j+1,2n +
2j+1−1∑
s=0

ψ1
j,n(xj+1,2s+1)φ0

j+1,2s+1 +
2j+1−1∑
s=0

ψ1
j,n
′
(xj+1,2s+1)φ1

j+1,2s+1

= φ0
j+1,2n −

2j+1−1∑
s=0

1

3 · 22j+1
cot(xj+2,2s+1−2n)φ0

j+1,2s+1

+
2j+1−1∑
s=0

(
1

3 · 2j +
1

3 · 22j+2
sin−2(xj+2,2s+1−2n)

)
φ1
j+1,2s+1 .

Proof. As in Theorem 4.1 above, the projection property of Lj+1 and the interpo-
latory properties of the functions ψ0

j,n and ψ1
j,n from Theorem 3.1 are the necessary

ingredients for the proof. �
Let Φ0

j denote the vector (φ0
j,0, φ

0
j,1, . . . , φ

0
j,2j+1−1)T , and let us also introduce

Φ1
j = (φ1

j,0, φ
1
j,1, . . . , φ

1
j,2j+1−1)T , Ψ0

j = (ψ0
j,0, ψ

0
j,1, . . . , ψ

0
j,2j+1−1)T , and finally Ψ1

j =

(ψ1
j,0, ψ

1
j,1, . . . , ψ

1
j,2j+1−1)T .

Furthermore, we define a reordering for the vector of scaling functions (either
for 0 or 1) by

PjΦj+1 = (φj+1,0, φj+1,2, . . . , φj+1,2m, . . . , φj+1,2j+2−2,

φj+1,1, φj+1,3, . . . , φj+1,2m+1, . . . , φj+1,2j+2−1)T ,

i.e., Pj is chosen to be the suitable permutation matrix for this ordering. Then
Theorems 4.1 and 4.2 can be expressed as

Φ0
j

Φ1
j

Ψ0
j

Ψ1
j

 = Cj

(
PjΦ

0
j+1

PjΦ
1
j+1

)
.

Here, the two-scale relation or reconstruction matrix Cj has the following form:

Cj =


Ij 2−2j−2Sj 0 −2−2j−2Uj
0 2−2j−1Tj Ij −2−2j−2Sj
Ij − 1

3 (2−jEj + 2−2j−2Sj) 0 1
3 (4Tj + 2−2j−2Uj)

0 − 1
32−2j−1Tj Ij

1
3 (2−jEj + 2−2j−2Sj)

 ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRIGONOMETRIC HERMITE WAVELETS 697

where for each block the subscript j indicates a submatrix of dimension 2j+1. In
fact, all these submatrices are circulant (see the monograph of Davis [6] for a com-
prehensive treatment of circulant matrices) and, consequently, in implementations
it is possible to use efficient techniques such as Fast Fourier Transforms. According
to Theorems 4.1 and 4.2, Ij is the identity matrix, Sj = (sin−2(xj+2,2s+1−2n))n,s,

Tj = (cot(xj+2,2s+1−2n))n,s, Uj = (
cot(xj+2,2s+1−2n)
sin2(xj+2,2s+1−2n) )n,s and Ej = (1)n,s the matrix

with constant entries one. Thus, Cj is a square matrix of dimension 2j+3 with 16
circulant blocks.

As a consequence of Corollary 3.1, both the sets {φ0
j,r, φ

1
j,r , ψ

0
j,r, ψ

1
j,r}2

j+1−1
r=0 and

{φ0
j+1,r, φ

1
j+1,r}2

j+2−1
r=0 are bases of Vj+1. Therefore, as it represents a change of

basis, the reconstruction matrix Cj is nonsingular and its inverse Dj is the decom-
position matrix such that

(
PjΦ

0
j+1

PjΦ
1
j+1

)
= Dj


Φ0
j

Φ1
j

Ψ0
j

Ψ1
j

 .

In order to obtain a detailed description of the entries ofDj , it becomes necessary
to investigate inner products of scaling functions and to introduce dual scaling
functions.

5. Inner products of scaling functions and dual functions

In this section, dual scaling functions, and thus the inner products of the func-
tions φ0

j,k and φ1
j,k, are studied in more detail to eventually facilitate the computa-

tion of the decomposition matrix Dj in §6.

Definition 5.1. For any j ∈ N0, the functions φ̃0
j,r and φ̃1

j,r ∈ Vj , for r =

0, . . . , 2j+1 − 1, uniquely determined by the conditions

〈φ̃0
j,r, φ

0
j,k〉 = δr,k, 〈φ̃0

j,r, φ
1
j,k〉 = 0

and
〈φ̃1
j,r , φ

0
j,k〉 = 0, 〈φ̃1

j,r , φ
1
j,k〉 = δr,k,

respectively, for all r, k = 0, . . . , 2j+1−1, are called dual scaling functions (or duals
of the functions φ0

j,r , φ
1
j,r).

Note that the dual scaling functions lie in the same space Vj as the original scaling
functions. Consequently, the dual functions can be written as linear combinations
of these scaling functions. It is a well-known fact that the coefficients in these linear
combinations are nothing but the entries of the inverse matrix of the inner product
matrix of the scaling functions. Specifically, for any j ∈ N0, we have

φ̃0
j,r =

2j+1−1∑
s=0

(
α0,0
j,r,sφ

0
j,s + α0,1

j,r,sφ
1
j,s

)
and

φ̃1
j,r =

2j+1−1∑
s=0

(
α1,0
j,r,sφ

0
j,s + α1,1

j,r,sφ
1
j,s

)
,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



698 EWALD QUAK

where the duality conditions lead to a linear system of equations for each dual
function φ̃ij,r, r = 0, . . . , 2j+1 − 1, i = 0, 1, namely,

2j+1−1∑
s=0

αi,0j,r,s〈φĩj,k, φ0
j,s〉+ αi,1j,r,s〈φĩj,k, φ1

j,s〉 = δr,k · δi,̃i, k = 0, . . . , 2j+1 − 1, ĩ = 0, 1.

Its coefficient matrix is always the inner product matrix

Gj =

(
G0,0
j G0,1

j

G1,0
j G1,1

j

)
,

where

G0,0
j =

(
〈φ0
j,k, φ

0
j,s〉
)2j+1−1

k,s=0
, G0,1

j =
(
〈φ0
j,k, φ

1
j,s〉
)2j+1−1

k,s=0
,

G1,0
j =

(
〈φ1
j,k, φ

0
j,s〉
)2j+1−1

k,s=0
, G1,1

j =
(
〈φ1
j,k, φ

1
j,s〉
)2j+1−1

k,s=0
,

and different right-hand sides correspond to different dual functions. Note that, of

course, G1,0
j = G0,1

j

T
.

Therefore, the next step must be a closer investigation of the inner products of
the scaling functions. This is done in the following lemma, which also implies that
the scaling functions are not mutually orthogonal.

Lemma 5.1. The inner products of the scaling functions on level j ∈ N0 are

〈φ0
j,k, φ

0
j,s〉 =

{ 1
3 ( 1

2j + 1
23j+3 ), k = s,

1
23j+3 sin−2(xj+1,k−s), k 6= s,

(5.1)

〈φ0
j,k, φ

1
j,s〉 =

{
0, k = s,

1
23j+3 cot(xj+1,k−s), k 6= s,

(5.2)

〈φ1
j,k, φ

1
j,s〉 =

{ 1
23j+2 − 3

24j+5 , k = s,

− 3
24j+5 , k 6= s.

(5.3)

Proof. First, observe that after an appropriate substitution, it suffices to consider
inner products of the form 〈φj,0, φj,s〉. Secondly, it is possible to use the representa-
tion formulae in (2.3) for the Dirichlet kernel and (2.4) for the conjugate Dirichlet
kernel to facilitate the evaluation of the inner products.

The simplest case is (5.3), where (2.4) can be used to establish

〈φ1
j,0, φ

1
j,s〉 =

1

24j+2
〈D̃2j+1−1(·) +

1

2
sin 2j+1(·), D̃2j+1−1(· − xj,s) +

1

2
sin 2j+1(·)〉

=
1

24j+2

(
〈D̃2j+1−1(·), D̃2j+1−1(· − xj,s)〉+

1

4
〈1
2

sin 2j+1(·), 1

2
sin 2j+1(·)〉

)
=

1

24j+2

(
−1

2
S̃2j+1−1(D̃2j+1−1)(xj,s) +

1

8

)

=
1

24j+2

1

2

2j+1−1∑
`=1

cos(`xj,s) +
1

8

 .
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Here, the summation formula (3.5) for s 6= 0 and a direct computation for s = 0
are used.

In order to prove (5.2), we consider

〈φ0
j,0, φ

1
j,s〉 =

1

24j+2
〈
2j+1−1∑
`=0

D`(·), D̃2j+1−1(· − xj,s) +
1

2
sin 2j+1(·)〉

=
1

24j+2

2j+1−1∑
`=0

〈D`(·), D̃2j+1−1(· − xj,s)〉 =
1

24j+2

2j+1−1∑
`=0

−1

2
S̃2j+1−1(D̃`)(xj,s)

= − 1

24j+3

2j+1−1∑
`=1

∑̀
r=1

sin(rxj,s) = − 1

24j+3

2j+1−1∑
`=1

(2j+1 − `) sin(`xj,s)

=
1

24j+3

2j+1−1∑
`=1

` sin(`xj,s)

by using (2.12), so that for s 6= 0, (3.7) yields (5.2).
Finally, by using (2.1), the Fejér kernel (2.5) can be rewritten as

1

22j+1

2j+1−1∑
`=0

D`(x) =
1

2j+1
+

1

22j+1

2j+1−1∑
`=1

(2j+1 − `) cos `x.

Thus, we have

〈φ0
j,0, φ

0
j,s〉 = 〈 1

2j+1
+

1

22j+1

2j+1−1∑
`=1

(2j+1 − `) cos `·, 1

22j+1

2j+1−1∑
r=0

Dr(· − xj,s)〉

=
1

23j+2

2j+1−1∑
r=0

〈1, Dr(· − xj,s)〉

+
1

24j+2

2j+1−1∑
`=1

(2j+1 − `)
2j+1−1∑
r=0

〈cos `·, Dr(· − xj,s)〉

=
1

22j+2
+

1

24j+3

2j+1−1∑
`=1

(2j+1 − `)
2j+1−1∑
r=0

Sr(cos `·)(xj,s)

=
1

22j+2
+

1

24j+3

2j+1−1∑
`=1

(2j+1 − `)2 cos(`xj,s)

=
1

22j+2
+

1

24j+3

2j+1−1∑
`=1

`2 cos(`xj,s).

For s = 0, a direct computation gives (5.1), so that it remains to establish that, for
s 6= 0,

(5.4)
2j+1−1∑
`=1

`2 cos(`xj,s) = 2j sin−2(xj+1,s)− 22j+1.
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This is accomplished by starting from the formula (2.1), namely

2 sin
x

2
D2j+1−1(x) = sin(2j+1 − 1

2
)x.

Taking the second derivative yields

(5.5)
2 sin

x

2
D′′2j+1−1(x) + 2 cos

x

2
D′2j+1−1(x) − 1

2
sin

x

2
D2j+1−1(x)

= −(2j+1 − 1

2
)2 sin(2j+1 − 1

2
)x.

The formulae (3.5) and (3.7) give the values of D2j+1−1(xj,s) and D′2j+1−1(xj,s),
so that the result of an evaluation of (5.5) at the knots xj,s can be rewritten to
produce

D′′2j+1−1(xj,s) = −2j cot2(xj+1,s)− 2j + 22j+1 ,

which implies (5.4). �
The interpolatory properties of the functions φ0

j,k and φ1
j,k allow us to establish

some results on the matrices G0,0
j , G0,1

j , G1,0
j and G1,1

j which turn out to be useful
when it comes to the computation of the inverse of Gj .

Lemma 5.2. For j ∈ N0, the row sums of the matrices G0,0
j , G0,1

j = G1,0
j

T
and

G1,1
j are

2j+1−1∑
`=0

(G0,0
j )

k,`
=

1

2j+1
,(5.6)

2j+1−1∑
`=0

(G0,1
j )

k,`
= 0,(5.7)

2j+1−1∑
`=0

(G1,1
j )

k,`
=

1

23j+4
,(5.8)

for arbitrary k = 0, . . . , 2j+1−1. By using the matrix Ej = (1)2j+1−1
k,s=0 with constant

entries 1, we can express this as

G0,0
j Ej =

1

2j+1
Ej , G0,1

j Ej = 0 and G1,1
j Ej =

1

23j+4
Ej .

Proof. As all matrices are circulant, only the first rows have to be investigated.
Using the fact that the constant function 1 is interpolated exactly at each level j,
we obtain

2j+1−1∑
`=0

φ0
j,` = 1

and thus

2j+1−1∑
`=0

(G0,0
j )

0,`
= 〈φ0

j,0,
2j+1−1∑
`=0

φ0
j,`〉 =

1

22j+1

1

2π

∫ 2π

0

2j+1−1∑
`=0

D`(t) dt =
1

2j+1
.
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To prove (5.7), we make use of the following fact:

1

2j+1
sin 2j+1x =

1

2j+1
Lj(sin 2j+1·)(x) =

2j+1−1∑
`=0

φ1
j,`.

Therefore, we have

2j+1−1∑
`=0

(G0,1
j )

0,`
= 〈φ0

j,0,
2j+1−1∑
`=0

φ1
j,`〉 =

1

23j+2
〈
2j+1−1∑
`=0

D`(·), sin 2j+1(·)〉 = 0.

Finally, (5.8) is merely a consequence of some direct computation. �
By using the values of the matrix entries in (5.1) and (5.2), we have the following

Corollary 5.1. For j ∈ N0, the formulae (5.6) and (5.7) can be written as

2j+1−1∑
`=1

sin−2(xj+1,`) =
1

3

(
22j+2 − 1

)
(5.9)

and
2j+1−1∑
`=1

cot(xj+1,`) = 0.(5.10)

Consequently, it follows that

2j+1−1∑
`=1

sin−2(xj+2,2`+1) = 22j+2(5.11)

and
2j+1−1∑
`=1

cot(xj+2,2`+1) = 0.(5.12)

The final step before the computation ofG−1
j is to find a way to rewriteG0,1

j ·G
0,1
j .

Lemma 5.3. For any j ∈ N0, we have

G0,1
j ·G

0,1
j =

1

24j+4
Ij +

1

25j+5
Ej −

1

23j+2
G0,0
j .

Proof. First, the diagonal elements (G0,1
j ·G

0,1
j )

k,k
for any k = 0, . . . , 2j+1 − 1

according to the representation (5.2) of the elements of G0,1
j are

1

26j+6

2j+1−1∑
`=0,` 6=k

cot(xj+1,k−`) cot(xj+1,`−k)

= − 1

26j+6

2j+1−1∑
`=0,` 6=k

(sin−2(xj+1,k−`)− 1)

=
1

25j+5
− 1

26j+6
− 1

26j+6

2j+1−1∑
`=1

sin−2(xj+1,`)

=
1

24j+4
+

1

25j+5
− 1

23j+2

(
1

3 · 2j +
1

3 · 23j+3

)
(by (5.9)).
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For the off-diagonal elements, i.e., k 6= s, it follows that

(G0,1
j ·G

0,1
j )

k,s
=

1

26j+6

2j+1−1∑
`=0,` 6=k,` 6=s

cot(xj+1,k−`) cot(xj+1,`−s).

The formula

(5.13) cotα · cotβ = cot(α + β)[cotα+ cotβ] + 1

(for appropriate values of α and β) yields

(G0,1
j ·G

0,1
j )

k,s

=
1

26j+6

2j+1−1∑
`=0,` 6=k,` 6=s

{cot(xj+1,k−s) [cot(xj+1,k−`) + cot(xj+1,`−s)] + 1}

=
1

26j+6
cot(xj+1,k−s)[−2 cot(xj+1,k−s)] +

1

25j+5
− 1

26j+5
,

where (5.10) has been used twice for the sums of cotangents. �

Now, the inverse of the inner product matrix Gj can be described in some detail.

Theorem 5.1. The inverse of the inner product matrix Gj of the scaling functions,
and therefore the coefficient matrix of the dual scaling functions, is given by

G−1
j =

(
α0,0
j α0,1

j

α1,0
j α1,1

j

)
,

where

α0,0
j = 2j+2Ij −Ej , α0,1

j = −24j+4G0,1
j ,

α1,0
j = −24j+4G1,0

j = 24j+4G0,1
j and α1,1

j = 24j+4G0,0
j + 22j+2Ej .

Here, as above, Ij is an identity matrix, Ej a matrix with constant entries 1,

and the matrices G0,0
j , G0,1

j and G1,0
j are the inner product matrices introduced in

Lemma 5.1. All of these matrices are circulant square matrices of dimension 2j+1.

Proof. The proof is obtained by a direct computation and an investigation of the
four matrix equations stemming from(

G0,0
j G0,1

j

G1,0
j G1,1

j

)(
α0,0
j α0,1

j

α1,0
j α1,1

j

)
=

(
Ij 0
0 Ij

)
.

First, by using the definitions for the α-terms, the matrix version of (5.6), and
Lemma 5.3, we have

G0,0
j α0,0

j +G0,1
j α1,0

j = 2j+2G0,0
j −G

0,0
j Ej + 24j+4G0,1

j ·G
0,1
j = Ij .
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Secondly, by applying the matrix version of (5.7) and taking into account that
circulant matrices commute [6, p.68], we have

G0,0
j α0,1

j +G0,1
j α1,1

j = −24j+4G0,0
j ·G

0,1
j + 24j+4G0,1

j ·G
0,0
j + 22j+2G0,1

j Ej = 0.

For the other two steps, the simple structure of G1,1
j = 1

23j+2 Ij − 3
24j+5Ej is used.

In the third equation, this along with the definitions of the α-terms, yields

G1,0
j α0,0

j +G1,1
j α1,0

j = 2j+2G1,0
j −G

1,0
j Ej − 2j+2G1,0

j +
3

2
EjG

1,0
j = 0,

where (5.7) and the fact that the column sums of circulant matrices are identical

to the row sums, i.e., EjG
1,0
j = 0, are also used.

Finally, using that G1,0
j = −G0,1

j , Lemma 5.3, (5.6) for column sums and E2
j =

2j+1Ej , we have

G1,0
j α0,1

j +G1,1
j α1,1

j

= −24j+4G1,0
j ·G

0,1
j + 2j+2G0,0

j +
1

2j
Ej −

3

2
EjG

0,0
j −

3

22j+3
E2
j = Ij . �

Again, some remarks seem to be in order.

Remarks. 1. The circulant structure of the α-matrices in Theorem 5.1 can be used
to show (much like the Lagrange case in [12]) that the dual functions are also

translates by multiples of π
2j of the functions φ̃0

j,0 and φ̃1
j,0, just as is the case for

the original scaling functions.
2. The wavelets in the Hermite multiresolution analysis are not mutually orthogonal
on a given level j, but of course there is orthogonality between scales, i.e., by Chui
[3, p.15] the wavelets are semiorthogonal.

Along the same lines as presented in §5 for scaling functions, it is also possible
to define dual wavelet functions as an alternative basis of the wavelet spaces Wj .
In order to do so, the inner products of the wavelet functions need to be com-
puted, again leading to a matrix Hj with four circulant blocks. Analogously, the
coefficients of the dual wavelets would then be the entries of the inverse matrix of
Hj .

As the dual wavelets are not necessary for the purpose of finding the decom-
position matrices (see the following section), the relevant computations are not
described in this paper.

At the end of this section, we will consider inner products of scaling functions on
consecutive levels, which form another building block for the subsequent detailed
computation of the entries of the decomposition matrix.

Lemma 5.4. The inner products of scaling functions on levels j ∈ N0 and j + 1
for k = 0, . . . , 2j+1 − 1 and s = 0, . . . , 2j+2 − 1 are given by

〈φ0
j,k, φ

0
j+1,s〉 =


1
3 ( 1

23j+5 + 5
2j+3 ), 2k = s,

1
23j+5 sin−2(xj+2,s−2k), 2k 6= s, s even,

1
23j+4 sin−2(xj+2,s−2k), s odd,

(5.14)
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〈φ0
j,k, φ

1
j+1,s〉 =

{
0, 2k = s,

− 1
23j+5 cot(xj+2,s−2k), 2k 6= s,

(5.15)

〈φ1
j,k, φ

0
j+1,s〉 =


0, 2k = s,

1
23j+5 cot(xj+2,s−2k), 2k 6= s, s even,

3
23j+5 cot(xj+2,s−2k), s odd,

(5.16)

〈φ1
j,k, φ

1
j+1,s〉 =

{ 1
23j+4 − 1

24j+6 , 2k = s,

− 1
24j+6 , 2k 6= s.

(5.17)

Proof. Similar to Lemma 5.1, and because of 〈φj,k, φj+1,s〉 = 〈φj,0, φj+1,s−2k〉, all
statements will be proved for the case k = 0. Also, as in Lemma 5.1, the computa-
tions will rely on the representations (2.3) and (2.4).

First, we have

〈φ0
j,0, φ

0
j+1,s〉 =

1

24j+4
〈2j +

2j+1−1∑
`=1

(2j+1 − `) cos `·,
2j+2−1∑
r=0

Dr(· − xj+1,s)〉

=
1

22j+3
+

1

24j+4

2j+1−1∑
`=1

(2j+1 − `)
2j+2−1∑
r=0

1

2
Sr(cos `·)(xj+1,s)

=
1

22j+3
+

1

24j+5

2j+1−1∑
`=1

(2j+1 − `)(2j+2 − `) cos(`xj+1,s)

=
1

22j+3
+

1

23j+4

2j+1−1∑
`=1

(2j+1 − `) cos(`xj+1,s) +
1

24j+5

2j+1−1∑
`=1

(2j+1 − `)2 cos(`xj+1,s)

=
1

22j+3
+

1

23j+4
(−1)s

2j+1−1∑
`=1

` cos(`xj+1,s) +
1

24j+5
(−1)s

2j+1−1∑
`=1

`2 cos(`xj+1,s).

The case s = 0 follows by a straightforward computation. To evaluate the cosine
sums, note that

2j+1−1∑
`=1

` cos(`xj+1,s) = 22j+1φ1
j,0
′
(xj+1,s)− 2j(−1)s

=

{ − 1
2 sin−2(xj+1,s) + 2j , s odd,

−2j, s even, s 6= 0.

Furthermore, we have

2j+1−1∑
`=1

`2 cos(`xj+1,s) = −D′′2j+1−1(xj+1,s) ,
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and evaluation of formula (5.5) at the knots xj+1,s gives

D′′2j+1−1(xj+1,s) = (−1)s
(
22j+1 − 2j sin−2(xj+2,s)

)
.

Combining these results yields (5.14).
Secondly, we have

〈φ0
j,0, φ

1
j+1,s〉 =

1

24j+4
〈
2j+1−1∑
`=0

D`(·), D̃2j+1−1(· − xj+1,s) +
1

2
sin 2j+2(·)〉

= − 1

24j+5

2j+1−1∑
`=0

S̃2j+2−1(D`)(xj+1,s) = − 1

24j+5

2j+1−1∑
`=0

(2j+1 − `) sin(`xj+1,s)

= − 1

24j+5
(−1)sD′2j+1−1(xj+1,s).

From here, the case s = 0 is immediate, while taking the first derivative of the
closed formula for the Dirichlet kernel and evaluating it at xj+1,s takes care of the
rest of (5.15).

Thirdly, we have

〈φ1
j,0, φ

0
j+1,s〉 =

1

24j+4
〈D̃2j+1−1(·) +

1

2
sin 2j+1(·),

2j+2−1∑
`=0

D`(· − xj+1,s)〉

=
1

24j+5

2j+1−1∑
`=1

+
2j+2−1∑
`=2j+1

S`(D̃2j+1−1(·) +
1

2
sin 2j+1(·))(xj+1,s)

=
1

24j+5

2j+1−1∑
`=1

(2j+1 − `) sin(`xj+1,s) + 2j+1D̃2j+1−1(xj+1,s)


=

1

24j+5

(−1)s
2j+1−1∑
`=1

−` sin(`xj+1,s) + 23j+2φ1
j,0(xj+1,s)

 .

Thus, from (3.8) and the interpolatory properties (2.12) and (2.15), one obtains
(5.16).

Finally, we have

〈φ1
j,0, φ

1
j+1,s〉

=
1

24j+4
〈D̃2j+1−1(·) +

1

2
sin 2j+1(·), D̃2j+2−1(· − xj+1,s) +

1

2
sin 2j+2(·)〉

= − 1

24j+5
S̃2j+2−1

(
D̃2j+1−1(·) +

1

2
sin 2j+1(·)

)
(xj+1,s)

=
1

24j+5

(
D2j+1−1(xj+1,s)−

1

2
+

1

2
(−1)s

)
.

Evaluation of formula (2.1) now settles (5.17). �
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6. Decomposition sequences

Since Vj+1 = Vj ⊕Wj for j ∈ N0, any φ0
j+1,n and φ1

j+1,n ∈ Vj+1 can be written

as a linear combination of the basis functions of Vj and Wj , i.e., φ0
j,k, φ

1
j,k, ψ

0
j,k

and ψ1
j,k. The computation of the relevant coefficients will not be performed by

inverting the reconstruction matrix, but instead, by using the dual functions and
the interpolatory properties of the scaling functions and the wavelets.

Theorem 6.1. For any j ∈ N0 and m = 0, . . . , 2j+1 − 1, we have

φ0
j+1,2m =

2j+1−1∑
s=0

(
a0,0
j,m,sφ

0
j,s + a0,1

j,m,sφ
1
j,s + b0,0j,m,sψ

0
j,s + b0,1j,m,sψ

1
j,s

)
,

where for s = 0, . . . , 2j+1 − 1 the decomposition coefficients are given by

a0,0
j,m,s =

3

4
δm,s −

1

2j+3
,

a0,1
j,m,s =

{
0, m = s,

− 1
4 cot(xj+1,m−s), m 6= s,

b0,0j,m,s =
1

4
δm,s +

1

2j+3
,

b0,1j,m,s =

{
0, m = s,
1
4 cot(xj+1,m−s), m 6= s.

Proof. The general approach for the proof of this theorem and the ones that follow
will always be the same. The coefficients for the scaling functions are determined
by taking inner products with the corresponding dual functions, then by using
the formulae for the dual coefficients and the inner products of Lemma 5.4. The
wavelet coefficients can then be derived simply by using the interpolatory properties
of scaling functions and wavelets from Theorems 2.1 and 3.1.

Starting from the representation

φ0
j+1,2m =

2j+1−1∑
k=0

(
a0,0
j,m,kφ

0
j,k + a0,1

j,m,kφ
1
j,k + b0,0j,m,kψ

0
j,k + b0,1j,m,kψ

1
j,k

)
,

we take inner products with the dual function φ̃0
j,s ∈ Vj ⊥ Wj , which results –

according to Definition 5.1 – in

a0,0
j,m,s = 〈φ̃0

j,s, φ
0
j+1,2m〉 =

2j+1−1∑
`=0

(
α0,0
j,s,`〈φ

0
j,`, φ

0
j+1,2m〉+ α0,1

j,s,`〈φ
1
j,`, φ

0
j+1,2m〉

)

=
2j+1−1∑
`=0

(2j+2δs,` − 1)〈φ0
j,`, φ

0
j+1,2m〉 − 2j+1

2j+1−1∑
`=0,` 6=s

cot(xj+1,s−`)〈φ1
j,`, φ

0
j+1,2m〉

= 2j+2〈φ0
j,0, φ

0
j+1,2m−2s〉 − 〈1, φ0

j+1,2m〉

− 2j+1
2j+1−1∑
`=0,` 6=s

cot(xj+1,s−`)〈φ1
j,0, φ

0
j+1,2m−2`〉

= 2j+2〈φ0
j,0, φ

0
j+1,2m−2s〉 −

1

2j+2
− 1

22j+4

2j+1−1∑
`=0,` 6=s,` 6=m

cot(xj+1,s−`) cot(xj+1,m−`),
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by using the results of Theorem 5.1 and Lemma 5.4 in the process. For the case
m = s, this yields

5

6
+

1

3 · 22j+3
− 1

2j+2
− 1

22j+4

2j+1−1∑
`=1

(sin−2(xj+1,`)− 1)

and thus by (5.9) the desired term. For m 6= s, one obtains

1

22j+3
sin−2(xj+1,m−s)−

1

2j+2
+

1

22j+4

2j+1−1∑
`=0,` 6=s,` 6=m

cot(xj+1,`−s) cot(xj+1,m−`) ,

and then one handles the cotangent sum as in the proof of Lemma 5.3.
To compute a0,1

j,m,s, the inner product is taken with φ̃1
j,s, producing

a0,1
j,m,s = 〈φ̃1

j,s, φ
0
j+1,2m〉

= 2j+1
2j+1−1∑
`=0,` 6=s

cot(xj+1,s−`)

(
1

23j+5
sin−2(xj+1,m−`)(1− δ`,m)

+ δ`,m
1

3
(

1

23j+5
+

5

2j+3
)

)

+
1

22j+4

2j+1−1∑
`=0,` 6=s,` 6=m

sin−2(xj+1,s−`) cot(xj+1,m−`)

+ 2j−1 1

3
(

1

2j
+

1

23j+3
) cot(xj+1,m−s)(1− δs,m) + 22j+2〈

2j+1−1∑
`=0

φ1
j,`, φ

0
j+1,2m〉

= 2j+1 cot(xj+1,s−m)
1

3
(

1

23j+5
+

5

2j+3
)(1− δs,m)

+ 2j−1 1

3
(

1

2j
+

1

23j+3
) cot(xj+1,m−s)(1− δs,m) + 2j+1〈sin 2j+1·, φ0

j+1,2m〉.

For the wavelet coefficients, evaluation of the decomposition equation at the
knots xj,s and the use of the interpolatory properties from Theorems 2.1 and 3.1

give the equation δs,m = a0,0
j,m,s + b0,0j,m,s, while taking the derivative followed by

evaluation at the knots xj,s results in 0 = a0,1
j,m,s + b0,1j,m,s. �

Theorem 6.2. For any j ∈ N0 and m = 0, . . . , 2j+1 − 1, we have

φ0
j+1,2m+1 =

2j+1−1∑
s=0

(
ã0,0
j,m,sφ

0
j,s + ã0,1

j,m,sφ
1
j,s + b̃0,0j,m,sψ

0
j,s + b̃0,1j,m,sψ

1
j,s

)
,

where for s = 0, . . . , 2j+1 − 1 the decomposition coefficients are given by

ã0,0
j,m,s =

1

2j+3
+

1

22j+4
sin−2(xj+2,2m+1−2s),

ã0,1
j,m,s =

1

4
cot(xj+2,2m+1−2s) +

1

22j+4

cot(xj+2,2m+1−2s)

sin2(xj+2,2m+1−2s)
,

b̃0,0j,m,s = − 1

2j+3
− 1

22j+4
sin−2(xj+2,2m+1−2s),

b̃0,1j,m,s = −1

4
cot(xj+2,2m+1−2s)−

1

22j+4

cot(xj+2,2m+1−2s)

sin2(xj+2,2m+1−2s)
.
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Proof. As before, we start with taking inner products of the dual function φ̃0
j,s in

the equation

φ0
j+1,2m+1 =

2j+1−1∑
k=0

(
ã0,0
j,m,kφ

0
j,k + ã0,1

j,m,kφ
1
j,k + b̃0,0j,m,kψ

0
j,k + b̃0,1j,m,kψ

1
j,k

)
,

to obtain, by using Theorem 5.1 and Lemma 5.4,

ã0,0
j,m,s = 〈φ̃0

j,s, φ
0
j+1,2m+1〉 = 2j+2〈φ0

j,s, φ
0
j+1,2m+1〉

− 〈
2j+1−1∑
`=0

φ0
j,`, φ

0
j+1,2m+1〉 − 2j+1

2j+1−1∑
`=0,` 6=s

cot(xj+1,s−`)〈φ1
j,`, φ

0
j+1,2m+1〉

=
1

22j+2
sin−2(xj+2,2m+1−2s)−

1

2j+2

− 3

22j+4

2j+1−1∑
`=0,` 6=s

cot(xj+1,s−`) cot(xj+2,2m+1−2`).

Appealing to the cotangent formula (5.13) leads to

ã0,0
j,m,s =

1

2j+3
− 3

22j+4
+

1

22j+2
sin−2(xj+2,2m+1−2s)

+
3

22j+4
cot(xj+2,2m+1−2s)

2j+1−1∑
`=0,` 6=s

(cot(xj+1,`−s) + cot(xj+2,2m+1−2`)) .

In view of (5.10) and (5.12), the cotangent sums collapse to a single term, namely
− cot(xj+2,2m+1−2s), and rewriting everything in sine terms yields the desired re-
sult.

Inner products with the dual function φ̃1
j,s now give

ã0,1
j,m,s = 〈φ̃1

j,s, φ
0
j+1,2m+1〉 =

1

22j+3

2j+1−1∑
`=0,` 6=s

cot(xj+1,s−`) sin−2(xj+2,2m+1−2`)

+
3

22j+4

2j+1−1∑
`=0,` 6=s

cot(xj+2,2m+1−2`) sin−2(xj+1,s−`)

+ (
1

2
+

1

22j+4
) cot(xj+2,2m+1−2s).

Rewriting this expression in cotangent terms and applying (5.13) for both sums
as well as (5.10) and (5.12) results in

ã0,1
j,m,s =

1

22j+3

2j+1−1∑
`=0,` 6=s

cot(xj+1,s−`) cot2(xj+2,2m+1−2`)

+
1

22j+3

2j+1−1∑
`=0,` 6=s

cot(xj+1,s−`)
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+
3

22j+4

2j+1−1∑
`=0,` 6=s

cot(xj+2,2m+1−2`) cot2(xj+1,s−`)

+
3

22j+4

2j+1−1∑
`=0,` 6=s

cot(xj+2,2m+1−2`) + (
1

2
+

1

22j+4
) cot(xj+2,2m+1−2s)

= − 1

22j+3

2j+1−1∑
`=0,` 6=s

cot(xj+2,2m+1−2`) [cot(xj+2,2m+1−2s) (cot(xj+1,`−s)

+ cot(xj+2,2m+1−2`)) + 1]

+
3

22j+4

2j+1−1∑
`=0,` 6=s

cot(xj+1,`−s) [cot(xj+2,2m+1−2s) (cot(xj+1,`−s)

+ cot(xj+2,2m+1−2`)) + 1]

+ (
1

2
− 1

22j+3
) cot(xj+2,2m+1−2s)

=
1

2
cot(xj+2,2m+1−2s)

+
1

22j+4
cot(xj+2,2m+1−2s)

2j+1−1∑
`=0,` 6=s

cot(xj+1,`−s) cot(xj+2,2m+1−2`)

− 1

22j+3
cot(xj+2,2m+1−2s)

2j+1−1∑
`=0,` 6=s

cot2(xj+2,2m+1−2`)

+
3

22j+4
cot(xj+2,2m+1−2s)

2j+1−1∑
`=0,` 6=s

cot2(xj+1,`−s)

=
1

2
cot(xj+2,2m+1−2s) +

1

22j+4
(2j+1 − 1) cot(xj+2,2m+1−2s)

+
1

22j+4
cot2(xj+2,2m+1−2s)

2j+1−1∑
`=0,` 6=s

(cot(xj+1,`−s) + cot(xj+2,2m+1−2`))

− 1

22j+3
cot(xj+2,2m+1−2s)

2j+1−1∑
`=0,` 6=s

(
sin−2(xj+2,2m+1−2`)− 1

)
+

3

22j+4
cot(xj+2,2m+1−2s)

2j+1−1∑
`=0,` 6=s

(
sin−2(xj+1,`−s)− 1

)
=

1

2
cot(xj+2,2m+1−2s)−

1

22j+4
cot3(xj+2,2m+1−2s)

− 1

22j+3
cot(xj+2,2m+1−2s)

2j+1−1∑
`=0,` 6=s

sin−2(xj+2,2m+1−2`)

+
3

22j+4
cot(xj+2,2m+1−2s)

2j+1−1∑
`=0,` 6=s

sin−2(xj+2,`−s) .
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Formulae (5.9) and (5.11) from Corollary 5.1 complete this step.
The wavelet terms are determined just as for Theorem 6.1 by evaluating the

decomposition formula and its derivative at the knots xj,s. �
Theorem 6.3. For any j ∈ N0 and m = 0, . . . , 2j+1 − 1, we have

φ1
j+1,2m =

2j+1−1∑
s=0

(
a1,0
j,m,sφ

0
j,s + a1,1

j,m,sφ
1
j,s + b1,0j,m,sψ

0
j,s + b1,1j,m,sψ

1
j,s

)
,

where for s = 0, . . . , 2j+1 − 1 the decomposition coefficients are given by

a1,0
j,m,s = 0, a1,1

j,m,s =
1

4
δm,s +

1

2j+3
,

b1,0j,m,s = 0, b1,1j,m,s =
3

4
δm,s −

1

2j+3
.

Proof. Again, taking inner products with dual functions is the essential step. We
have

a1,0
j,m,s = 〈φ̃0

j,s, φ
1
j+1,2m〉

= − 1

22j+3
(1− δs,m) cot(xj+1,m−s)− 〈1, φ1

j+1,2m〉

− 2j+1
2j+1−1∑
`=0,` 6=s

cot(xj+1,s−`)(−
1

24j+6
+

1

23j+4
δ`,m) = 0,

while

ã1,1
j,m,s = 〈φ̃1

j,s, φ
1
j+1,2m〉

= − 1

22j+4

2j+1−1∑
`=0,` 6=s,` 6=m

cot(xj+1,s−`) cot(xj+1,m−`)

+ 2j+1
2j+1−1∑
`=0,` 6=s

sin−2(xj+1,s−`)(−
1

24j+6
+

1

23j+4
δ`,m)

+ 24j+4 1

3
(

1

2j
+

1

23j+3
)(− 1

24j+6
+

1

23j+4
δs,m)

+
2j+1−1∑
`=0

22j+2(− 1

24j+6
+

1

23j+4
δ`,m)

= − 1

22j+4

2j+1−1∑
`=0,` 6=s,` 6=m

cot(xj+1,s−`) cot(xj+1,m−`)

− 1

23j+5

2j+1−1∑
`=0,` 6=s

sin−2(xj+1,s−`) +
1

22j+3
(1− δs,m) sin−2(xj+1,s−m)

− 1

3
(

1

2j+2
+

1

23j+5
) +

1

3
(1 +

1

22j+3
)δs,m +

1

2j+3
.

Replacing the cotangent sum as in the proof of Lemma 5.3, using the formulae
(5.9) and (5.11) from Corollary 5.1 and a straightforward computation conclude
this step. The computation of the wavelet coefficients follows as in Theorems 6.1
and 6.2. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRIGONOMETRIC HERMITE WAVELETS 711

Theorem 6.4. For any j ∈ N0 and m = 0, . . . , 2j+1 − 1, we have

φ1
j+1,2m+1 =

2j+1−1∑
s=0

(
ã1,0
j,m,sφ

0
j,s + ã1,1

j,m,sφ
1
j,s + b̃1,0j,m,sψ

0
j,s + b̃1,1j,m,sψ

1
j,s

)
,

where for s = 0, . . . , 2j+1 − 1 the decomposition coefficients are given by

ã1,0
j,m,s = − 1

22j+3
cot(xj+2,2m+1−2s),

ã1,1
j,m,s = − 1

2j+3
− 1

22j+4
sin−2(xj+2,2m+1−2s),

b̃1,0j,m,s =
1

22j+3
cot(xj+2,2m+1−2s),

b̃1,1j,m,s =
1

2j+3
+

1

22j+4
sin−2(xj+2,2m+1−2s).

Proof. Finally, one obtains

ã1,0
j,m,s = 〈φ̃0

j,s, φ
1
j+1,2m〉

= − 1

22j+3
cot(xj+2,2m+1−2s)− 〈1, φ1

j+1,2m〉+
1

23j+4

2j+1−1∑
`=0,` 6=s

cot(xj+1,s−`),

while

ã1,1
j,m,s = 〈φ̃1

j,s, φ
1
j+1,2m〉

= − 1

22j+4

2j+1−1∑
`=0,` 6=s

cot(xj+1,s−`) cot(xj+2,2m+1−2`)

− 1

23j+5

2j+1−1∑
`=0,` 6=s

sin−2(xj+1,s−`)−
1

2j+3
− 1

3
(

1

2j+2
+

1

23j+5
).

A final application of the cotangent formula (5.13) as well as (5.9), (5.10) and (5.11)
yields

ã1,1
j,m,s =

1

22j+4

2j+1−1∑
`=0,` 6=s

[cot(xj+2,2m+1−2s) (cot(xj+1,`−s) + cot(xj+2,2m+1−2`)) + 1]

− 1

23j+5

1

3
(22j+2 − 1)− 1

2j+3
− 1

3
(

1

2j+2
+

1

23j+5
).

The wavelet coefficients are obtained by interpolation as in the previous theorems.�
Using the notation and definitions introduced in §4, we can now completely

describe the 16 circulant submatrices that constitute the decomposition matrix Dj .
Indeed, Dj has the structure


3·2−2Ij−2−j−3Ej 2−2T̃j 2−2Ij+2−j−3Ej −2−2T̃j

2−j−3Ej+2−2j−4STj 2−2TTj +2−2j−4UTj −2−j−3Ej−2−2j−4STj −2−2TTj −2−2j−4UTj

0 2−2Ij+2−j−3Ej 0 3·2−2Ij−2−j−3Ej

−2−2j−3TTj −2−j−3Ej−2−2j−4STj 2−2j−3TTj 2−j−3Ej+2−2j−4STj

 ,
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where the submatrices are defined in §4, except for T̃j = (cot(xj+1,s−n))n,s.
As Vj+1 = Vj ⊕Wj , a function fj+1 ∈ Vj+1 can be written uniquely as

fj+1 = fj + gj, with fj ∈ Vj and gj ∈Wj .

Using the basis functions of these spaces, one obtains

fj+1 =
2j+2−1∑
s=0

(
c0,j+1
s φ0

j+1,s + c1,j+1
s φ1

j+1,s

)
,

fj =
2j+1−1∑
s=0

(
c0,js φ0

j,s + c1,js φ1
j,s

)
, and gj =

2j+1−1∑
s=0

(
d0,j
s ψ0

j,s + d1,j
s ψ1

j,s

)
.

Using coefficient vectors cij = (ci,j0 , ci,j1 , . . . , ci,j2j+1−1)T for i = 0, 1, respectively,

as well as dij = (di,j0 , di,j1 , . . . , di,j2j+1−1)T , yields the representations

fj+1 = c0
j+1

T
Φ0
j+1 + c1

j+1
T

Φ1
j+1, fj = c0

j
T

Φ0
j + c1

j
T

Φ1
j , and gj = d0

j

T
Ψ0
j + d1

j

T
Ψ1
j .

Since cj+1
TΦj+1 = (Pjcj+1)

T
PjΦj+1, the matrix form of the decomposition rela-

tion yields

fj+1 = ( (Pjc
0
j+1)T (Pjc

1
j+1)T )

(
PjΦ

0
j+1

PjΦ
1
j+1

)
=( (Pjc

0
j+1)T (Pjc

1
j+1)T )Dj


Φ0
j

Φ1
j

Ψ0
j

Ψ1
j

 .

On the other hand, we have

fj + gj =
(
c0
j
T

c1
j
T

d0
j

T
d1
j

T
)

Φ0
j

Φ1
j

Ψ0
j

Ψ1
j

 .

Comparing coefficients and taking the transpose, we finally arrive at the matrix
form of one step of the decomposition algorithm,

c0
j

c1
j

d0
j

d1
j

 = DT
j

(
Pjc

0
j+1

Pjc
1
j+1

)
.

Multiplying by the inverse (DT
j )−1 = CTj yields the matrix representation of one

step of the reconstruction algorithm,

(
Pjc

0
j+1

Pjc
1
j+1

)
= CTj


c0
j

c1
j

d0
j

d1
j

 .
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Altogether we obtain the following algorithms:

Algorithm 1 (Decomposition).

Input data: Function values and derivative values for some predetermined level η,

f

(
kπ

2η

)
= (Lηf)

(
kπ

2η

)
and f ′

(
kπ

2η

)
= (Lηf)′

(
kπ

2η

)
, k = 0, . . . , 2η+1 − 1.

Step 1: Set

c0
η =

(
f

(
kπ

2η

))2η+1−1

k=0

and c1
η =

(
f ′
(
kπ

2η

))2η+1−1

k=0

.

Step 2: Repeat for j = η − 1, . . . , 0 the computation
c0
j

c1
j

d0
j

d1
j

 = DT
j

(
Pjc

0
j+1

Pjc
1
j+1

)
.

Output data: The wavelet coefficients d0
j and d1

j for j = 0, . . . , η − 1 and the

lowest-level scaling function coefficients c0
0 and c1

0.

Algorithm 2 (Reconstruction).

Input data: The wavelet coefficients d0
j and d1

j for j = 0, . . . , η − 1 and the

lowest-level scaling function coefficients c0
0 and c1

0.
Step 1: Repeat for j = 0, . . . , η − 1 the computation

(
Pjc

0
j+1

Pjc
1
j+1

)
= CTj


c0
j

c1
j

d0
j

d1
j

 .

Output data: The scaling function coefficients on level η, i.e., c0
η and c1

η. For
perfect reconstruction, these are the vectors(

(Lηf)

(
kπ

2η

))2η+1−1

k=0

and

(
(Lηf)′

(
kπ

2η

))2η+1−1

k=0

.

Note that the efficiency of these two algorithms depends essentially on the proper
implementation of the matrix/vector multiplications using Fast-Fourier-Transform
techniques. As in [6, Chapter 3], the circulant submatrices of Cj and Dj can be
factored into the product of some so-called Fourier matrices and the diagonal matrix
of the eigenvalues, which can be computed directly. All the necessary computations
for these factorizations only need to be done once for a predetermined number of
levels. Thus, Algorithms 1 and 2 need O(j2j) operations, which is best possible
for this type of matrix calculations, but this does not realize the best possible
pyramid algorithms of order O(2j) available for some other wavelet schemes. Thus,
this fully computable trigonometric multiresolution analysis with explicit algebraic
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formulas yields “almost optimal” complexity. Another algorithmic advantage of
the interpolatory approach is the simplicity of finding a suitable projection onto
Vj , just by function and derivative evaluation in the dyadic nodes.

7. Conclusion

Figure 1 shows the two scaling functions φ0
4,16 ∈ V4 and φ1

4,16 ∈ V4 and Figure 2

the two wavelets ψ0
4,16 ∈W4 and ψ1

4,16 ∈W4. Observe their respective interpolatory
properties for the knot sequence x4,n = nπ

16 for n = 0, . . . , 31. Recall also that the
scaling functions and wavelets at higher levels are not just scaled versions of the
ones at level zero, owing to their interpolatory properties.

Figures 3, 4, 5 and 6 illustrate the use of trigonometric wavelet decompositions
to detect discontinuities in higher-order derivatives of a function. In this case, a
cubic B-spline with equidistant knots at {1, 2, 3, 4, 5}, i.e.,

f(x) :=



0, x ∈ [0, 1],
1
6 (x− 1)3, x ∈ (1, 2],
1
6 (−3(x− 1)3 + 12(x− 1)2 − 12(x− 1) + 4, x ∈ (2, 3],
1
6 (−3(5− x)3 + 12(5− x)2 − 12(5− x) + 4, x ∈ (3, 4],
1
6 (5− x)3, x ∈ (4, 5],

0, x ∈ (5, 2π]

(properly periodized to generate a 2π-periodic function), was interpolated by an
element of V10 (Figure 3) using the operator L10 of Definition 2.3. The breakpoints
of the spline, where its third derivative has jump discontinuities, can be clearly de-
tected in both wavelet components, i.e., the one corresponding to the interpolation
of function values (W0 in Figure 4) spanned by the functions ψ0

9,n and the one cor-
responding to the first derivative values (W1 in Figure 4) spanned by the functions
ψ1

9,n, created by one decomposition step and shown in Figure 4. The detection ef-
fect is more and more blurred in subsequent decomposition steps, as illustrated by
the wavelet parts for the levels 8 and 7, shown in Figures 5 and 6. In a whole series
of numerical tests it always happened that both wavelet components (for function
values and derivative values) showed similar edge detection capabilities.

As an outlook on further ongoing research, recall from [11] that Lagrange in-
terpolation for spaces of the type span{T2j−1, cos 2jx} is associated with wavelets
that interpolate in the midpoints of the underlying node sequence. On the other
hand, the Hermite approach of this paper for spaces of the type span{T2j−1, sin 2jx}
gives rise to wavelets that interpolate fundamental data in the given nodes. The
regularity of trigonometric Hermite-Birkhoff interpolation on equidistant nodes has
been thoroughly investigated in [2]. For a proper choice of interpolation nodes,
nested sequences of spaces spanned by Hermite-Birkhoff interpolants can be found.
Consequently, this poses the question as to what kind of interpolatory behavior the
wavelet functions spanning the corresponding relative orthogonal complements will
possess. This problem is currently under investigation.
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Figure 3
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Figure 4
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Figure 5
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Figure 6

Appendix

In order to prove Theorem 2.3, a suitable inequality of Marcinkiewicz-Zygmund
type is needed. Although it is possible to derive the following Theorem A.1 as a
special case of the general investigations by Y. Xu [16], a direct proof will be given
for the sake of completeness and in order to illustrate the behavior of the constants
involved, which cannot be easily obtained from the general result.
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For a trigonometric polynomial T , consider the following expressions, where
1 ≤ p ≤ ∞ (with the usual supremum modification for p =∞):

‖T‖p :=

(
1

2π

∫ 2π

0

|T (x)|pdx
)1/p

and

‖T‖p,j :=

 1

2j+1

2j+1−1∑
k=0

|T (xj,k)|p
1/p

,

where the xj,k’s are the equally spaced knots introduced in §2.
An inequality by Nikol′skii [15, Chapter 4.9] states that for 1 ≤ p ≤ ∞ and any

T ∈ Tn

(∗) ‖T‖p ≤ sup
x

(
1

N

N−1∑
k=0

|T (x− 2kπ

N
)|p
)1/p

≤ (1 +
2nπ

N
)‖T‖p .

Theorem A.1 (Marcinkiewicz-Zygmund type inequality). For a trigonometric
polynomial T ∈ Vj and 1 ≤ p ≤ ∞, it holds that

1

2(1 + 2π)
(‖T‖p,j +

1

2j+1
‖T ′‖p,j) ≤ ‖T‖p ≤ ‖T‖p,j +

1

2j+1
Cp,j‖T ′‖p,j ,

with the constant Cp,j depending only on p for 1 < p < ∞, and Cp,j = j Cp, for a
constant Cp depending only on p, in the cases p = 1 and p =∞.

Proof. The full-length formulation of the statement of the theorem is

1

1 + 2π


 1

2j+1

2j+1−1∑
k=0

|uk|p
1/p

+

 1

2(j+1)(p+1)

2j+1−1∑
k=0

|vk|p
1/p


≤
∥∥∥∥∥

2j+1−1∑
k=0

(ukφ
0
j,k + vkφ

1
j,k)

∥∥∥∥∥
p

≤


 1

2j+1

2j+1−1∑
k=0

|uk|p
1/p

+ Cp,j

 1

2(j+1)(p+1)

2j+1−1∑
k=0

|vk|p
1/p

 .

For

T =
2j+1−1∑
k=0

(ukφ
0
j,k + vkφ

1
j,k),

inequality (∗) yields 1

2j+1

2j+1−1∑
k=0

|uk|p
1/p

≤ (1 +
2(2j+1 − 1)π

2j+1
)‖T‖p ,
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as well as in combination with the classical Bernstein inequality 1

2j+1

2j+1−1∑
k=0

|vk|p
1/p

≤ (1 + 2π)‖T ′‖p ≤ (1 + 2π)2j+1‖T‖p ,

i.e., the left inequality of the theorem.
For the other inequality, we split up as follows:

‖T‖p ≤ ‖
2j+1−1∑
k=0

ukφ
0
j,k ‖p + ‖

2j+1−1∑
k=0

vkφ
1
j,k ‖p .

By Hölder’s inequality (with 1/p + 1/q = 1), one obtains for the second term, if
1 < q <∞,

‖
2j+1−1∑
k=0

vkφ
1
j,k ‖p ≤

 1

2π

∫ 2π

0

2j+1−1∑
k=0

|vk|p
2j+1−1∑

k=0

|φ1
j,k|

q

p/q

dx


1/p

≤

2j+1 ‖T ′‖pp,j
1

2π

∫ 2π

0

2j+1−1∑
k=0

|φ1
j,k|

q

p/q

dx


1/p

= 2j+1‖T ′‖p,j

 1

2π

∫ 2π

0

 1

2j+1

2j+1−1∑
k=0

|φ1
j,k|

q

p/q

dx


1/p

≤ 2j+1 ‖T ′‖p,j
(

1

2π

∫ 2π

0

(
(1 + 2π)‖φ1

j,0‖q
)p
dx

)1/p

< 2j+1 ‖T ′‖p,j (1 + 2π) ‖φ1
j,0‖q,

where (∗) was used again.
Similarly, one can also use (∗) to produce the analogous final estimates for q = 1

and q =∞. The norm of φ1
j,0 now behaves as stated, i.e., it is a constant depending

on p for 1 < p < ∞, while for p = 1 and p = ∞ an additional logarithmic term
appears (note that log 2j = j), see for example [17, Vol. I, Ch. 2.12 and 13].

It remains to investigate the behavior of the first term. Again by Zygmund [17,
Vol. II, Ch. 10], there exists a function g ∈ Lq2π with ‖g‖q = 1 such that

‖
2j+1−1∑
k=0

ukφ
0
j,k ‖p =

1

2π

∫ 2π

0

2j+1−1∑
k=0

ukφ
0
j,k(t)g(t)dt ,

and with Hölder’s inequality

≤ ‖T‖p,j

 1

2j+1

2j+1−1∑
k=0

| 1

2π

∫ 2π

0

2j+1φ0
j,k(t)g(t) dt|q

1/q

.
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Jensen’s inequality yields

 1

2j+1

2j+1−1∑
k=0

| 1

2π

∫ 2π

0

2j+1φ0
j,k(t)g(t)dt|q

1/q

≤

 1

2j+1

2j+1−1∑
k=0

1

2π

∫ 2π

0

2j+1φ0
j,k(t)|g(t)|qdt

1/q

= ‖g‖q(= 1),

using the positivity of φ0
j,k(t) and the fact that

∑2j+1−1
k=0 φ0

j,k(t) = 1, as Lj repro-
duces constants, thus completing the proof of Theorem A.1. �

Applying Theorem A.1, one can now prove Theorem 2.3, following exactly the
steps as given in the general situation by Xu [16, §3].
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(P. J. Laurent, A. Le Méhauté and L. L. Schumaker, eds.), A K Peters, Boston, 1994, pp. 407–
418. CMP 95:03

13. , Decay properties of trigonometric wavelets, Proceedings of the Cornelius Lanczos In-
ternational Centenary Conference (J. D. Brown, M. T. Chu, D. C. Ellison and R. J. Plemmons,
eds.), SIAM, Philadelphia, 1994, pp. 413–415.

14. A. A. Privalov, On an orthogonal trigonometric basis, Mat. Sbornik 182 (3) (1991), 384–394.

MR 92f:42005

15. A. F. Timan, Theory of approximation of functions of a real variable, Pergamon Press, Oxford,
1963. MR 33:465

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



722 EWALD QUAK

16. Y. Xu, The generalized Marcinkiewicz-Zygmund inequality for trigonometric polynomials, J.
Math. Anal. Appl. 161 (1991), 447–456. MR 93f:42008

17. A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, 1959. MR
21:6498

Center for Approximation Theory, Department of Mathematics, Texas A&M Univer-

sity, College Station, Texas 77843-3368

E-mail address: quak@math.tamu.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


