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Abstract

A continuous Trigonometrically-fitted Second Derivative Method (CTSDM) whose coefficients depend on the

frequency and stepsize is constructed using trigonometric basis functions. A discrete Trigonometrically-fitted second

derivative method (TSDM) is recovered from the CTSDM as a by-product and applied to solve initial value problems

(IVPs) with oscillating solutions. We discuss the stability properties of the TSDM and present numerical experiments to

demonstrate the efficiency of the method.
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Introduction
In this paper, we consider the subclass of first order

differential equation

y′ = f (x, y), y(a) = y0, x ∈ [a, b] , (1)

with periodic or oscillating solutions where f : ℜ ×

ℜm → ℜm, y, y0 ∈ ℜm. Oscillatory IVPs frequently arise

in areas such as classical mechanics, celestial mechan-

ics, quantum mechanics, and biological sciences. Several

numerical methods based on the use of polynomial basis

functions have been developed for solving this class of

important problems (see Lambert , Hairer et al. in (Hairer

and Wanner 1996), Hairer 1982, and Sommeijer 1993).

Other methods based on exponential fitting techniques

which take advantage of the special properties of the solu-

tion that may be known in advance have been proposed

(see Simos 1998, Vanden Berghe et al. 2001a, Vanden

Berghe et al. 2009, Vigo-Aguiar et al. 2003, Franco 2002,

Fang et al. 2009, Nguyen et al. 2007, Ozawa 2005, Jator

et al. 2012, and Ngwane et al. 2012b). In the spirit of

2005, the motivation governing the exponentially-fitted

methods is inherent to the fact that if the frequency or a

reasonable estimate of it is known in advance, these meth-

ods will be more advantageous than the polynomial based

methods.
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Full list of author information is available at the end of the article

The aim of this paper is to construct a TSDM. This

construction is done by initially developing a CTSDM

which then provides a discrete method that is applied as

a TSDM which takes the frequency of the solution as a

priori knowledge. In particular, CTSDM consists of a sum

of continuous functions while TSDM is a by-product of

CTSDM. The coefficients of the TSDM are functions of

the frequency and the stepsize, hence the solutions pro-

vided by the proposed method are highly accurate if (1)

has periodic solutions with known frequencies. We adopt

the approach given in Jator et al. in (Ngwane and Jator

2012a; Jator et al. 2012), where the TSDM is used to obtain

the approximation yn+1 to the exact solution y(xn+1) on

the interval [xn, xn+1], h = xn+1 − xn, n = 0, . . . ,N − 1,

on a partition [a, b], where a, b ∈ R, h is the constant step-

size, n is a grid index and N > 0 is the number of steps.

We note that second derivative methods with polynomial

basis functions were proposed to overcome the Dahlquist

1956 barrier theorem whereby the conventional linear

multistep method was modified by incorporating the sec-

ond derivative term in the derivation process in order to

increase the order of the method, while preserving good

stability properties (see Enright 1974).

This paper is organized as follows. In Section “Develop-

ment of method”, we obtain a trigonometric basis repre-

sentation U(x) for the exact solution y(x) which is used to

generate a TSDM for solving (1). The analysis and imple-

mentation of the TSDM are discussed in Section “Error

analysis and stability”. Numerical examples are given in
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Section “Numerical examples” to show the accuracy and

efficiency of the TSDM. Finally, we give some concluding

remarks in Section “Conclusion”.

Development of method
In this section, our objective is to construct a CTSDM

which produces a discrete method as a by-product. The

method has the form

yn+1 = yn + h(β0(u)fn + β1(u)fn+1) + h2(γ0(u)gn

+ γ1(u)gn+1),
(2)

where u = wh, βj(u), γj(u), j = 0, 1, are coefficients that

depend on the stepsize and frequency. We note that yn+j

is the numerical approximation to the analytical solution

y(xn+j), and

fn+j = f (xn+j, yn+j), gn+j =
df (x, y(x))

dx
|
xn+j
yn+j

with j = 0, 1. In order to obtain equation (2) we proceed

by seeking to approximate the exact solution y(x) on the

interval [xn, xn + h] by the interpolating function U(x) of

the form

U(x) = a0 +a1x+a2x
2 +a3 sin(wx)+a4 cos(wx), (3)

where a0, a1, a2, a3 and a4 are coefficients that must be

uniquely determined. We then impose that the interpolat-

ing function in (3) coincides with the analytical solution at

the point xn to obtain the equation

U (xn) = yn. (4)

We also demand that the function (3) satisfies the differ-

ential equation (1) at the points xn+j, j = 0, 1 to obtain the

following set of three equations:

U ′
(

xn+j

)

= fn+j, U ′′
(

xn+j

)

= gn+j, j = 0, 1. (5)

Equations (4) and (5) lead to a system of five equations

which is solved by Cramer’s rule to obtain aj, j =

0, 1, 2, 3, 4. Our continuous CTSDM is constructed by

substituting the values of aj into equation (3). After some

algebraic manipulation, the CTSDM is expressed in the

form

U(x) = yn + h(β0(w, x) fn + β1(w, x) fn+1) + h2(γ0(w, x)gn

+ γ1(w, x)gn+1), (6)

where w is the frequency, β0(w, x), β1(w, x), γ0(w, x),

and γ1(w, x), are continuous coefficients. The continuous

method (6) is used to generate the method of the form (2).

Thus, evaluating (6) at x = xn+1 and letting u = wh, we

obtain the coefficients of (2) as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎩

β0 = 1
2 ,
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2 ,

γ0 =
(

− csc
(

u
2

) (

u cos
(

u
2

)

− 2 sin
(

u
2

)))

/
(

2u2
)
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γ1 =
(

csc
(

u
2

) (

u cos
(
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2

)

− 2 sin
(

u
2

)))

/
(

2u2
)

.

(7)

Error analysis and stability
Local truncation error

We note that when u → 0 the coefficients given by (7) are

vulnerable to heavy cancellations and hence the following

Taylor series expansion must be used (see Simos 1998).

⎧
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β0 = 1
2

β1 = 1
2

γ0 = 1
12 + u2

720 + u4

30240 + u6

1209600 + u8

47900160 + 691u10

1307674368000 + . . .

γ1 = − 1
12 − u2

720 − u4

30240 − u6

1209600 − u8

47900160 − 691u10

1307674368000 + . . . .

(8)

In fact, for practical computations when u is small, it

is better to use the series expansion (8) (see Calvo et al.

2009).

Thus the Local Truncation Error (LTE) of (2) subject to

(8) is obtained as

LTE = y(xn+1) − yn+1 =
h5

720

(

w2y(3)(xn)+y(5)(xn)
)

+O
(

h6
)

.

(9)

Remark 1. The method (2) specified by (8) is a fourth-

order method and reduces to a one-step conventional sec-

ond derivative method as u → 0 (see Lambert 1973,

p. 201).

Stability

Proposition 1. The TSDM (2) applied to the test

equations y′ = λy and y′′ = λ2y yields

yn+1 = M(q;u)yn, q = hλ, u = wh, (10)

with

M(q;u)=
(

1+qβ0(u)+q2γ0(u)
)−1 (

1 − qβ1(u)−q2γ1(u)
)

.

(11)

Proof. We begin by applying (2) to the test equations

y′ = λy and y′′ = λ2y which are expressed as f (x, y) = λy

and g(x, y) = λ2y respectively; letting q = hλ and u = wh,

we obtain a linear equation which is used to solve for yn+1

with (11) as a consequence.
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Remark 2. The rational function M(q;u) is called the

stability function which determines the stability of the

method.

Definition 1. A region of stability is a region in the q−u

plane, in which |M(q;u)| ≤ 1.

The TSDMmethod (2) specified by (7) is given by

yn+1 = yn +
h

2
( fn + fn+1) +

h2

2u2
csc(u/2)

× (cos(u/2) − 2 sin(u/2))(−gn + gn+1).

(12)

Definition 2. The method (12) is zero-stable provided

the roots of the first characteristic polynomial have modu-

lus less than or equal to unity and those of modulus unity

are simple (see Lambert 1991).

Definition 3. The method (12) is consistent if it has

order p > 1 (see (Fatunla 1991)).

Remark 3. The TSDM (12) is consistent as it has order

p > 1 and zero-stable, hence it is convergent since zero-

stability + consistency = convergence.

Corollary 1. The TSDM (12) has M(q;u) specified by

M(q;u) =

(

1 +
q

2
−

csc
(

u
2

) (

u cos
(

u
2

)

− 2 sin
(

u
2

))

q2

2u2

)

×

/(

1 −
q

2
−

csc
(

u
2

) (

u cos
(

u
2

)

−2 sin
(

u
2

))

q2

2u2

)

.

Remark 4. In the q−u plane the TSDM (12) is stable for

q ≤ 0, and u ∈[−2π , 2π ], since from above |M(q;u)| ≤ 1,

q ≤ 0.

Remark 5. Figure 1 is a plot of the stability region and

Figure 2 shows the zeros and poles of M(q;u). We note from

Figure 1 The shaded region represents the truncated region of absolute stability.
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Figure 2M(q; u) has zeros(�) and no poles(+) inC
−, with u = π .

Figure 2 that the stability region includes the entire left side

of the complex plane.

Definition 4. The TSDMwith the stability function (11)

is said to be A-stable at u = u0, − 2π ≤ u0 ≤ 2π , if

|M(q;u)| ≤ 1, ∀q ∈ C
−, (see Nguyen et al. 2007).

Remark 6. We observe from definition 1, remarks 4,

5, and Figure 2, that TSDM is A-stable. In particular,

|M(q; iy)| = 1 ∀y ∈ R, and by the maximum principle,

Table 1 Results with ω = 1, e = 0.005, for Example 1

TSDM FESDIRK4(3) ESDIRK4(3)

N |Error| N |Error| N |Error|

150 1.203 × 10−2 170 2.866 × 10−1 277 2.153 × 100

200 5.694 × 10−3 225 7.846 × 10−3 496 1.494 × 10−1

300 3.143 × 10−4 381 1.399 × 10−3 884 9.359 × 10−3

600 1.259 × 10−6 680 1.690 × 10−4 1573 6.200 × 10−4

800 1.264 × 10−7 1207 1.846 × 10−5 2796 4.416 × 10−5

1600 4.947 × 10−10 2144 1.938 × 10−6 4970 3.412 × 10−6

2400 1.931 × 10−11 3806 1.993 × 10−7 8833 2.848 × 10−7

3200 1.944 × 10−12 6762 2.021 × 10−8 15706 2.530 × 10−8

the method will be A-stable if |M(q;u)| has no poles in the

left plane (see E. Hairer et al. 1996, p.43, 53). Moreover, the

real part of the zeros of |M(q;u)| must be negative, while

the real part of the poles of |M(q;u)| must be positive.

Implementation

In the spirit of Ngwane et al. in (Ngwane and Jator 2012a;

2012b), the TSDM (12) is implemented to solve (1) with-

out requiring starting values and predictors. For instance,

if we let n = 0 in (12), then y1 is obtained on the sub-

interval [x0, x1], as y0 is known from the IVP. Similarly, if

n = 1, then y2 is obtained on the sub-interval [x1, x2], as

y1 is known from the previous computation, and so on;

until we reach the final sub-interval [xN−1, xN ]. We note

Table 2 Results with ω = 1.01, for Example 2

TSDM Simos Ixaru et al.

N |Error| N |Error| N |Error|

150 3.3 × 10−3 300 1.7 × 10−3 300 1.1 × 10−3

300 6.4 × 10−5 600 1.9 × 10−4 600 5.4 × 10−5

600 5.1 × 10−6 1200 1.4 × 10−5 1200 1.9 × 10−6

2000 1.0 × 10−7 2400 8.7 × 10−7 2400 6.2 × 10−8
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Table 3 Results with ω = 10, for Example 3

TSDM Simos 1998

N |Error| NFEs |Error| NFEs

1000 1.7 × 10−3 4004 1.4 × 10−1 8000

2000 2.5 × 10−4 8004 3.5 × 10−2 16000

4000 2.7 × 10−5 16004 1.1 × 10−3 32000

8000 1.6 × 10−6 32004 8.4 × 10−5 64000

16000 1.0 × 10−7 64004 5.5 × 10−6 128000

32000 6.3 × 10−9 128004 3.5 × 10−7 256000

that for linear problems, we solve (1) directly using the

feature solve[ ] in Matlab, while nonlinear problems use

the Newton’s method in Matlab enhanced by the feature

fsolve[ ].

Numerical examples
In this section, we give numerical examples to illustrate

the accuracy (small errors) and efficiency (fewer number

of function evaluations (NFEs)) of the TSDM.We find the

approximate solution on the partition πN , where πN : a =

x0 < x1 < x2 < ... < xn < xn+1 < . . . < xN =

b, and we give the errors at the endpoints calculated as

Error=yN − y(xN ). We note that the method requires only

two function evaluations per step and in general requires

(2N + 2) NFEs on the entire interval. All computations

were carried out using a written code in Matlab.

Example 1. Consider the given two-body problem which

was solved by Ozawa 2005.

y′′
1 = −

y1

r3
, y′′

2 = −
y2

r3
, r =

√

y21 + y22,

y1(0) = 1 − e, y′
1(0) = 0, y2(0) = 0, y′

2(0)

=

√

1 + e

1 − e
, x ∈[ 0, 50π ] ,

where e, 0 ≤ e < 1 is an eccentricity. The exact solution of

this problem is

Exact : y1(x) = cos(k) − e, y2(x) =
√

1 − e2 sin(k),

where k is the solution of the Kepler’s equation k = x +

e sin(k). We choose ω = 1.

Table 4 Results with ω = 1, for Example 4

TSDM Nguyen et al. 2007

N |Error| NFEs N |Error| NFEs

10 1.3 × 10−15 88 73 3.3 × 10−12 327

43 8.4 × 10−14 368 142 0.9 × 10−11 707

80 7.1 × 10−15 648 170 3.7 × 10−12 811

Table 5 Results with ω = 314.16, for Example 5 on [0, 100]

TSDM CHEBY24

N |Error| NFEs N |Error| NFEs

9 5.9 × 10−14 40 9 1.84 × 10−11 450

20 4.0 × 10−15 84 - - -

Table 1 contains the results obtained using the TSDM.

These results are compared with the explicit singly diago-

nally implicit Runge-Kutta (ESDIRK) and the functionally

fitted ESDIRK (FESDIRK) methods given in Ozawa 2005.

In terms of accuracy, Table 1 clearly shows that TSDM

performs better than those in Ozawa 2005.

Example 2. We consider the nonlinear Duffing equation

which was also solved Ixaru et al. 2004.

y′′ + y + y3=B cos(�x), y(0)=C0, y
′(0)=0, x ∈ [ 0, 300] .

The analytic solution is given by

Exact : y(x) = C1 cos(�x) + C2 cos(3�x) + C3 cos(5�x)

+ C4 cos(7�x),

where � = 1.01, B = 0.002, C0 = 0.200426728069, C1 =

0.200179477536, C2 = 0.246946143 × 10−3, C3 =

0.304016× 10−6, C4 = 0.374× 10−9.We choose ω = 1.01

and for more on frequency choice see Ramos et al. 2010.

We compare the end-point global errors for TSDMwith

the fourth order methods in Ixaru et al. 2004.We see from

Table 2 that the results produced by TSDM are better than

Simos’ method used in (Ixaru and Berghe 2004), as TSDM

produces better error magnitude while using less number

of steps and fewer number of function evaluations. TSDM

is very competitive to the method used by Ixaru et al.

2004.

Example 3. We consider the following inhomogeneous

IVP by Simos 1998.

y′′ = −100y + 99 sin(x), y(0) = 1, y′(0)

= 11, x ∈[0, 1000]

where the analytic solution is given by

Exact : y(x) = cos(10x) + sin(10x) + sin(x).

The exponentially-fittedmethod in Simos 1998 is fourth

order and hence comparable to our method, TSDM. We

Table 6 Results with ω = 314.16, for Example 5 on [0, 1]

TSDM CHEBY1

N |Error| NFEs N |Error| NFEs

1 1.29 × 10−21 8 1 1 × 10−16 8
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Table 7 Results with ω = 1, for Example 6 with β = −3

TSDMwith(β = −3) Nguyen et al. 2007 with (β = −3)

N |Error| NFEs N |Error| NFEs

6 8.9 × 10−6 28 10 5.4 × 10−6 47

10 9.0 × 10−7 44 19 8.3 × 10−8 88

27 1.3 × 10−8 112 23 4.5 × 10−4 113

40 2.7 × 10−9 164 - − -

see from Table 3 that TSDM is more efficient than the

method in Simos 1998. We also compare the computa-

tional efficiency of the two methods by considering the

NFEs over N integration steps for each method. Our

method, TSDM, requires only 2N+2 function evaluations

inN steps compared to 4N function evaluations inN steps

for the method in Simos 1998. Hence for this example,

TSDM performs better.

Example 4. Linear Kramarz problem We consider the

following second-order IVP, (see Nguyen et al. 2007[p. 204])

y′′(t) =

(

2498 4998

−2499 −4999

)

y(t), y(0) =

(

2

−1

)

,

y′(0) =

(

0

0

)

, 0 ≤ t ≤ 100.

Exact : y(t) = (2 cos(t),− cos(t))T .

We use this example to show the efficiency of TSDM on

linear systems. Nguyen et al. 2007 used the “trigonometric

implicit Runge-Kutta”, TIRK3, method to solve the above

linear Kramarz problem. Clearly, TSDM performs better

as seen in Table 4.

Example 5. We consider the IVP (see Vigo-Aguiar et al.

2003)

y′′ + K2y = K2x, y(0) = 10−5, y′(0)

= 1 − K10−5 cot(K), x ∈ [0, 100]

where K = 314.16, and we choose ω = 314.16. The

analytic solution is given by

Exact : y(x) = x + 10−5(cos(Kx) − cot(K) sin(Kx)).

Table 8 Results with ω = 1, for Example 6 with β = −1000

TSDMwith (β = −1000) Nguyen et al. 2007 with (β = −1000)

N |Error| NFEs N |Error| NFEs

6 8.9 × 10−6 28 13 1.0 × 10−6 61

16 1.2 × 10−7 68 16 1.6 × 10−7 76

24 2.3 × 10−8 100 21 7.0 × 10−8 98

Table 9 Results, with predictor-corrector (PreCor) and

ω = 1.01, for Example 2

TSDM PreCor Simos Ixaru et al.

N |Error| CPU |Error| CPU N |Error| N |Error|

150 3.3(−3) 1.6 1.7(−2) 0.76 300 1.7(−3) 300 1.1(−3)

300 6.4(−5) 2.3 4.0(−4) 1.6 600 1.9(−4) 600 5.4(−5)

600 5.1(−6) 5.5 1.2(−4) 2.9 1200 1.4(−5) 1200 1.9(−6)

2000 1.0(−7) 18.2 2.0(−5) 10 2400 8.7(−7) 2400 6.2(−8)

This problem demonstrates the performance of TSDM

on a well-known oscillatory problem. We compare the

results from TSDM with the Dissipative Chebyshev

exponential-fitted methods, CHEBY24 and CHEBY1 used

in Vigo-Aguiar et al. 2003. We see that TSDM uses fewer

number of function evaluations with better accuracy than

CHEBY24 that is designed to use fewer number of steps.

Integrating in the interval [0, 1] with a stepsize equal to

the total length of the interval, we obtain an error of

order 10−21. Hence TSDM is a more efficient integra-

tor. We note that compared with the methods CHEBY24

and CHEBY1 which use stepsizes considerably larger than

those used in multistep methods, TSDM is very competi-

tive and superior to both CHEBY24 and CHEBY1.

Example 6. A nearly sinusoidal problem

We consider the following IVP on the range 0 ≤ t ≤ 10,

(see Nguyen et al. 2007, p. 205)

y′
1 = −2y1 + y2 + sin(t), y1(0) = 2

y′
2 = −(β+2)y1+(β+1)y2+sin(t)−cos(t), y2(0) = 3.

We choose β = −3 and β = −1000 in order to illus-

trate the phenomenon of stiffness. Given the initial con-

ditions y1(0) = 2 and y2(0) = 3, the exact solution is

β-independent and is given by

Exact : y1(t) = 2 exp(−t) + sin(t) , y2(t)

= 2 exp(−t) + cos(t).

This example is chosen to demonstrate the performance

of TSDM on stiff problems. We compute the solutions to

Table 10 Results, with predictor-corrector (PreCor) and

ω = 1, for Example 3

TSDM PreCor Simos 1998

N NFEs CPU |Error| CPU |Error| NFEs |Error|

1000 4004 73 1.7(−3) 4.8 2.9(0) 8000 1.4(−1)

2000 8004 145 2.5(−4) 9.5 4.1(0) 16000 3.5(−2)

4000 16004 290 2.7(−5) 19 3.1(−2) 32000 1.1(−3)

8000 32004 584 1.6(−6) 38 2.3(−2) 64000 8.4(−5)

16000 64004 1194 1.0(−7) 75 3.3(−3) 128000 5.5(−6)

32000 128004 2546 6.3(−9) 150 4.1(−4) 256000 3.5(−7)
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Figure 3 Efficiency curves for Example 1.

Figure 4 Efficiency curves for Example 2.

Figure 5 Efficiency curves for Example 3.
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Figure 6 Efficiency curves for Example 4.

Figure 7 Efficiency curves for Example 6 with β = −3.

Figure 8 Efficiency curves for Example 6 with β = −1000.
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Figure 9 Efficiency curve for Example 2 with predictor-corrector.

Figure 10 Time efficiency curve for Example 2 with predictor-corrector.

Figure 11 Efficiency curve for Example 3 with predictor-corrector.
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Figure 12 Time efficiency curve for Example 3 with predictor-corrector.

Example (6) with β = −3, −1000. We obtain better abso-

lute errors than Nguyen et al. (2007). This efficiency is

achieved using fewer number of steps and less number of

function evaluations than Nguyen et al. (2007). For exam-

ple when β = −3, our method generates a solution with

error magnitude 10−6 involving just 6 steps and 28 func-

tion evaluations, whereas (Nguyen et al. 2007) attains the

same error magnitude using 10 steps and 47 function eval-

uations. When β = −1000, TSDM generates solutions

with comparable error magnitude. We see that TSDM is

competitive and better than the method in Nguyen et al.

(2007) which is of order six and is thus expected to do

better.

An implementation in predictor-corrector mode

In this section, we also implement our CTSDM in a

predictor-corrector mode. The predictor is given by

yn+1 = yn + h(α0(u)fn) + h2(λ0(u)gn), (13)

where
⎧

⎪

⎨

⎪

⎩

α0 =
sin(u)
u

λ0 =
2 sin( u

2

4 )

u2

(14)

and the corrector is given by equations (6) and (7). We

note that when u → 0 we use the following Taylor series

expansion (see Simos 1998)
⎧

⎪

⎨

⎪

⎩

α0 = 1 − u2

6 + u4

120 − u6

5040 + u8

362880 − u10

39916800 + . . .

λ0 = 1
2 − u4

192 + u8

61440 − u12

41287680 + u16

47563407360 + . . .

(15)

As we expected, the predictor-corrector (PreCor) mode

runs faster than the TSDM but is less accurate compared

to the TSDM.We illustrate this by applying the predictor-

corrector to Example 2 and Example 3. We plot the

efficiency curves showing the accuracy versus the CPU

computation time, and the accuracy versus the NFEs.

Estimating the frequency

A preliminary testing indicates that a good estimate of the

frequency can be obtained by demanding that LTE = 0,

and solving for the frequency. That is, solve for ω given

that
(

− h5

720

(

w2y(3)(xn) + y(5)(xn)
)

)

= 0, where y(j), j =

2, . . . , 5 denote derivatives. We used this procedure to

calculate ω for the problem given in example (5) and

obtained ω ≈ ± 314.16, which approximately gives the

known frequency ω = 314.16. Hence, this procedure is

interesting and will be seriously considered in our future

research.

We note that estimating the frequency and the choice of

the frequency in trigonometrically-fitted methods is chal-

lenging and has grown in interest. Existing references on

how to estimate the frequency and on the choice of the fre-

quency include G. Vanden Berghe et al. 2001b, and Ramos

et al. 2010.

Conclusion
We have proposed a TSDM for solving oscillatory IVPs.

The TSDM is A-stable and hence, an excellent candidate

for solving stiff IVPs. This method has the advantages of

being self-starting, having good accuracy with order 4,

and requiring only two functions evaluation at each inte-

gration step. We have presented representative numerical

examples that are linear, non-linear, stiff and highly oscil-

latory. These examples show that the TSDM is more

accurate and efficient than those in Nguyen et al. 2007,

Simos 1998, Ixaru et al. 2004, and Ozawa 2005. Details of

the numerical results are displayed in Tables 1, 2, 3, 4, 5,

6, 7, 8, 9 and 10 and the efficiency curves are presented in

Figures 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Our future research

will incorporate a technique for accurately estimating the

frequency as suggested in subsection “Estimating the fre-

quency” as well as implementing the method in a variable

step mode.
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