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TRILIN:
A COMPUTER ANALYSIS OF THE
TRANSIENT RESPONSE OF ELASTIC STRUCTURES

Abstract

The computer code TRILIN employs a force method that uses prismatic beam-
type elements and discrete masser. for the analysis of the transient response of linearly
elastic, three-dimensional, frame-type structures subjected to arbitrary loading con-
ditions, Each beara element is capable of resisting tension, bending, and torsion. A
i global stiffness matrix is obtained by inverting the flexibility relationships. Modal
‘ superposition is used to solve the governing equations.

Introduction

The computer program TRILIN (Transient Response In LiNear systems) has been
developed to determine the transient response of linearly elastic, three-dimensional
structures subjected to arbitrary loading conditions. The code has been applied to a
variety of importa.. and practical problems: among these are the Hubmobile Tower,
the Packard Tower, and the Cannikin Space Frame at the nuclear test sites, as well asg
the Bank of Nevada and L.LL's Diagnostic Chemistry Builclings.l'2 Less obvious appli-
catlons have included the determination of critical speed for a rocket-launched sampier
and the analysis for the response of a iarge plate-like slab located in the Laser Building.

TRILIN is hased on a [inite-element scheme that uses uniform, beam-type ele-
ments of a linearly elastic isotropic material. Tke inertial properties of the elements
are concentrated at the nodal points; hence, each nodal point has a diagonal inertia
: matrix of the same order as its degrees of freedom (up to 6}, The stiffness matrix is
obtained after inverting the elements!® flexibility relationships by means of synthesis,

; We agssume that the inertia and stiffness matrices are positive semidefinite. As a
resuit, rotary inertia can be neglected, and rigid body modes can exist. Structural
response is determined through solution of the eigenvalue problem and modal
superposition.

The most important feature of this formulation, in addition to its simplicity, is

: that the displacements and stresses for the entire structure may be found simuitaneously

with considerable ease. This is in sharp contrast to the transfer matrix tachniques dis-

cussged in Refs. 3 and 4 that give displacements and stresses at only one point and
requira subsequent back-substitution to obtain the entire solution. The transfer matrix
technique gives an equivalent solution.

EEITEN
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The purpose of this report is twofold: 1) to present the theory underlying TRILIN,
and 2) to briefly describe the three supporting TRILIN codes (see Table 1). A User's
Manual for the code is available as a separate dor:ument.5

Table 1. Divisions of TRILIN.

Code division Function

SMOC A lumped mass model with massless uniform beam-type element is :
used to model the structure. This code sets up the dynamic equi- :
librium equations and calculates the flexibility coefficients for each ¢
element., The structure is plotted in several rotated positions. vl

FIGEN A disc file generated by SMOC is used to compute the stiffness
matrix of the structural model. The eigenvalues and eigenvectors
are then calculated for use in TRANS,

TRANS The {ransient response of the structure is calculated from input

ground acceleration, impulsive loading, and other time-dependent

forcing functions. A mode superposition analysis is used. The ;
stress resultants and displacements are plotted as functions of time. !

Theoretical Analysis
MODELING

The first step in the analysis is to replace the actual structure by an idealized
model that retains its important characteristics. The model is co;structed by dis-
cretizing the structure into a finite number of linearly elastic, beam-type elements of
aniform cross section that are capable of resisting tension, bending about the two prin-
cipal axes in the planes of their crogs sections, shearing deformation, and tor=ion zbout

their centroidal axes, The elements are

interconnected at locations called nodal

points at which their inertial properties
5Closed end" are concentrated. Exiernal loadings are

"Open applied and deflectiops are calculated at

‘ end" the nadal poincs.

» A / t\ / \ & In this analysis the idealized madel
m = is arbitrarily broken into free bodies con-

sisting of one node and any number of the
Fig. 1. flz)afit:::tt%!;?ar(: Lm‘ﬁg&n&g- node's intersecting elements (see Fig. 1).
the TRILIN code, The governing equations based on the free

bodies are then formulated. The element's
; end that is connected at the free body's nodal point is called the “closed end" and accord-
ingly, the free end is called the "open end."
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COORDINATE SYSTEM AND SIGN CONVENTIONS

Two sets of coordinate systems are employed, The right-handed orthogonal
global system —designated by X,;, X,, X;—is an inertial frame of reference. A local
coordinate sysiem designated by 944 9oy 93¢ is fixed to the closed end of the ith ele-
ment, with a4 pointing towards its open end. We assume that the A; and qg; axes
coincide with the element's principal axes of inertia. The orientation of each element

is obtained by rotating it from a position parallel to the X, axis through an angle ¥ in
a plane parallel to the X1X2 plane and finally through an angle qS.L in a plane perpendic-
ular to the X1X2 plane. The angles ¥; and ¢i are right- and left-handed rotations,
respectively {see Fig. 2). An X4 directed element is obtainable by a single ¢i rotation

of 90°. Three globhal coordinates a;, hi’ and ; locate the element's closed end,

XX, plane
\x

Fig. 2. Orientation of ith element in global space.

1

The transformation between three-dimensional vector quantities, € and g in the
lecal and global coordinate systems, respectively, is

€= T¢iTwig. 1)
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The orthogonal matrices, va and T¢_, represent right- and left-handed rotations for
i i
the ith local coordinate system, respectively, and are defined by

cos ¢’i sin ‘”1 0 cos ¢i. 0 sin ¢i
Td’i = |-siny; cosy; O T¢i = 0 1 0 . (2)
[} 1} 1

~sin c;bi 0 cos d)i

The global coordinates of the end points of each element are read into the SMQC code,
and the angles, ¥ and ¢i‘ are calculated internally.

Consider the ith element whose open and closed ends are located at the jth and
kth nodal points, respectively. The product of the transformation matrices given in
Eq. (1) may be used to form the matrix Ti such that

n; = Tix]- (3)
Hi = Ti Lj' (4)
where:
=t _
:r::j = [xleZj P xﬁj] (5)
=t _
YL U PP PR Y (6)
=t _
L} = L) Ly - . . Lg;] )
ot .
H, = [Hy;Hy . . . Hgl (8)

and the 6 X 6 coordinate transformation matrix Ti is

The [irst three elements in X. represent small translational displacements of the jth
nodal point in the global Xl' XZ' and X3 directions, respectively, and the last three
elements represent small right-handed rotations about the same axes. Similarly, the
vector ?i.l contains the displacements and rotations in the local coordinates. The stress
resultants, T.'.l and ﬁi‘ acting on the element's open end in the global and local coordi-
nate systems are shown in Figs. 3 and 4 oriented in their positive directions.

~4-
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Fig. 3. Positive sign convention for Fig. 4. DPositive sign convention for
shear and tension. moments.

DYNAMIC EQUILIBRIUM EQUATIONS

The dynamic equilibrium equations are obtained by equating the summation of
forces and moments acting on a free body to the inertial forces, The summation, ap-
plied o each free body, must include 1) the forces due to the stress resultants acting
on any open-ended elements terminating at the node; 2) the forces due to the resultants
at the open ends of the closed-ended elements connected to the node; and 3) any external
forces applied at the node,

The Euler equations6 for the rotation of a rigid body about a point are linearized
by using the principal axes and assuming that the product of the angular velocity terms
are relatively small. Under these assumptions Euler's equations reduce to

Ly m, 24
Lyl = mg zg| . (10)
LB m6 x6

This equation is rigorously true if and only if 1) the moments of inertia m 4 Mg, and
mg are defined about the principal axes and 2) m, =mg = mg.

We will now consider a general structural system discretized such that its ith
nodal point has associated with it r; closed-end elements and 8; open-end elements

and is subjected to a conservative forcing function, Fi(t), given in the global coordinate




system, The contribution of the jth element of the r; +5; elements to the summation
of forces in the global directions about the ith node can be expressed in the form
Tt Di ﬁi (11) ‘1—
D -'
where the subscript i refers to the ith node and where the matrix D: relates the forces

acting at the jth element's open end to the forces acting on the ith nodal point. The
matrix D} is given in Appendix A for a general beam-type element.

Consider the simple two-dimensional example problem shown in Fig. 5. In this
example, motion in the X3 direction, rotation about the X, and X2 axes, and

displacement in the X1 direction are suppressed., The problem's nonzero coordinates

F(t)

NN

% x3
v, [ B V2 )
Y b My q I ci o 7@ 2 ( l

Fig. 5. Cantilever-beam model simply supported at one end.
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are x,, 62, 63. Two equations like Eq. (11) corresponding to elements 1 and 2 can be

written for node 2. They are

B 01 [ 1 o'l 'vl'l
2 =2 _
T D2 R -
o 1{le. 1l (m
L 4 L1 1 1
i _ A -
1 o'l : ol v,
ThD3 T, : 12
L 0 1. LEZ 1. I.MZJ

where L2 for element 1 equals 180°. For node 3 we obtain the equation

"1 0 -1 0 v,
t3=3 _
'rznzx-tg . (13

LO 1 0 -1 Mz

We note that the 'I‘2 matrix is the identity matrix.
Including the contributions of the £ closed-end plus 5§ open-end elements to the
force summation yields the equilibrium equations for the ith nodal point:

pa' - m'%, - F,, (14)
in which
i_ S ST e | . 3 i
D - [TIDI:TZDZ:‘ . :Tr.+s.Dr.+s.] 1s)
1 3 11
e [wtw. . w ] (16)
172 r.+si
My
Mo
. m.,.
m! - we ) an
4i
ms5;
L Mg

“The 6§ X 6 matrices are reduced to 2 X 2 to correspond to the two stress resultants
that enter this analysis. The subscripting and notation are changed slightly to avoid
unnecessary awkwardness, i.e., Vy = Hgy, M; = Hgy, V2 = Haa, Mp = Hgo, xp = X33,
6o = Xg2, and 83 = X53-

-7-
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The matrix m' is the inertia matrix of the ith node. In our example problem we see
that putting Eqs. {12) and (13) tnto the form given in £q. (14) yields, for node 2,

)
M
2.2 £ 20t 02
p?w? « [r} o} 1y0]|---
=2
HZ
[ b
vl
-1 0 1 0
: M
s ‘ e
e "
o1
M,
m, o} [z] [Ffm
s - (18)
0 L 62 0
and, for node 3,
\ ma 0 i3 0
3.3 o 373 -
D°H” = T,D; 1, . (19)
0 ls Léa 0

where m,, lz,‘ma, and l3 correspond to My, Mgy, Mg, and Mgq in Eq. (17), respec-
tively. Since X3 © 0, Eq. (19) can be expressed by

~My = 146,, {20}
where D° » -1 and H® « M,

An equation similar to Eq. (14) is obtained for each of the m nodal points associ-
ated with one or more degrees of freedomn. We can write these m matrix equations in
the form

DH = MX - F, {21)

where:
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n! ]
p?
D= ’ (22)
Dm
' o-omltu®t, . g™ (23)
ot ottt =t
= . [xlxzxs. LR (24)
=t fstst
A [t A (25)
m! ]
2
m
M= ) . (26)
m
m
G

The n-dimensfonal vector X (n < 6 m) represents the n generalized unconstrained

coordinates (degrees of freedom) of the structure. For the example problem, Eg. (21)
becomes

vﬂ
<1 0 1 o0 io M, m, %, F
g, 1 g 130 A L 62 - lo] . 27)
DR RS M, L{ (8, 0

M,

GCbviously, each stress resultant may appear twice in the vector E; hence, we
introduce a rectangular connectivity matrix P; such that

T P, (28)

where H represents the d-dimensional vector of stress resultants appearing at the open
ends ordered according to the integer labels on each element, Substitution of Eq. (28)
into Eq. (21) gives the dynamic equilibrium equations in the desired form, that is,
SH-Mx - F, (29)
where S = DPy is an (n X r) rectangular matrix.
-9-
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Equation 28) for the example problem is

Fvl' (1 0 0o o]
\'
1
M, o 1 0 D
M
1
Vol = |0 0 1 0
A"
2
M, 0 v 0 1
M
2
LMZ o 0 0 1

and making the substitution into Eq. (27) yields the dynamic equilibrium equations

Vi
.1 0 1 0O m, %, F
M,
11221V= L 62-0 (30)
2 -
0o 0 0 -1 é 0
M, 3] | %

in the global coordinate system.
DISPLACEMENT FORCE EQUATIONS

The dynamic equilibrium equations furnish n equations, where n is the number
of degrees of freedom used in the analysis of a system; however, these equations are
in terms of d unknown stress resultants., Additional equations (the displacement force
equations) are required to relate these stress resultants and displacements.

Consider a jth closed-end element asscciated with the ith node. Since the total
displacement of the open end is the result of the contributions due to the rotation and
translation of its closed end and the rotation and translation due to its open end loading,
we write the following equation expressed in the local coordinate system:

il ]
- . = . B R 31
T;%, [BJ 1G5 . (31)

which relates the open-end displacements T,X. to the closed-end displacements "‘j ;i
and op_en-end forces ﬁj. The matrix C. ig the flexibility matrix of the jth element,
and B! relates the rigid-body translation and rotation at the _Jjth element's open end due
to the translation of the ith node [Eq. (31) is given in Appendix B for a beam element].
For the example in Fig. 6 we can write two equations like Eq. (31) for the second nodal
point, For element 1 we obtain

~10-
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Inertial reference frame
/

e

Y2

<

]

e s

Reference frame
for x, coardinates

\\x\\\\\\\l\\\\\\ N
l

Fig. 6. Undamped spring-mass model subjected to ground excitation. t
r -
*2
T
]
x, 0 1 !1 i 92 {
Tl = =z 1C.] ] ===~ - s ‘32) Y
t 1 v g
8, 0 0 1 1 :
3 Ml -
and, for elzment 2, 3
_ x, -
T
2
xq 0 1 22 a 92
T, = = 1Cyf J=m~=m=" . ‘33) -é
2 ! 2 v 7
83 93 0 1, 2 ?
M, 1
, I
If we denote the modulus of elagticity and second moment of area by Ei and Ly;, respec- i
tively, then ;
)
o h
TR e :
3EL 2B f
C; = i=1,2. (39 ;
5 g '
SR =
2Bl Bl j

Equation (34) neglects shear deformation.

~11-




In general there are r; equations like Eq,
equation for each closed-end element,
equations yields the eqnation

{31) at the _ith node —that is, one
Combining and rearranging these r; matrix

=i
. ) i xa
[si' ic'] |--| -o. 35)
i
Ht
whose matrices are defined as follows
i
[ B, Pl W
i '
32 ! -1
:
B - | ; ) (36)
. ! .
L]
.
. H .
i
B, -1
L i J
Tl h
. T"i
T! = T, (37)
T2
T
r.
. t p
-12-
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c, ]
G,
ct - ' (38
L C"t.
it Tttt t
w -[EE. . .u ] (a9)
1
t
=t [2"1‘5:";?:"2 . E:,i] (40)

Since it is assumead that the Houndary conditions are known, only those coordinates
associated with degrees of {reedom are retained in Eq. {35); consequently, each ele~
ment of ii represents a degree of [reedom.

Equation (35) for the example problem may be abtained by firgt stacking Eqs, (32)
and (33) in the form

[

- T

PREROU RS

| M; |

and then by eliminating the constrained coocdinates X4, 91’ and Xg,

-13-
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)

ap 10 :
BTy o0 Gy 0 % |
...... I O v =0 (21) :
. 4ot o
1 1 H

BTy i 1 0 1 G M,
H : : v :

2

M, :

If we substitute the matrices Bf, B;, T1 and T2 into Eq. (41) and carry out the :
multiplication, we obtain ?

]
. :
-1og o 2
] C 8
o 1 of:]? 23
i vl =o. (42)
1 2, o]
: c, M,
, o 1 -1|!
% Vs :

Equation (41) is expressed in the local coordinate system.
If the structural model has k nodal points, then £ matrix equations (2 < k)
V similar to Eq. (35) are obtained. Stacking them in matrix form yields the equation

X,
[Br:c]|---| =o. (43)
H

such that B, T, and C are block diagonal matrices given by

_Bl 1

B = (:4)

-14-




1 ]
T2
T = (45)
TJZ
.Cl 3
CZ
C = , (46)
L c’
respectively. The vector X, is defined by
?:t* = [xitxit . xit] . (47)

and H is defined in Eq. (28)., Letting X be the vector defined in Eq. (24) we form the

compatibility matrix P2 such that

%, = P,%, 48)

enabling us to write Eq. (43) in the more compact form

[R ; C] [—i—] =0, (29)

H

where R = BTP, is a (d X n) rectangular matrix, Equation (49) is the displacement

force relationship. Since the example problem in Fig. 6 is somewhat trivial, Eq. (42)

is its displacement force equation. The additional steps represented by Egs. (43) and
(49) were not required.

THE EQUATION OF MOTION

Equation (49) can be explicitly solved for H giving

#=c gz, (50)

and substitution of Eq. (50) into Eq. (29) yields the equations of motion for the entire
structure:

-15-
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)
iu

M¥ + KX = F. (51)
The matrix K, called the stiffness matrix, is obtained from the product i
_ -1
K=SC"R (52)

and is symmetric, as is readily apparent, since M is a diagonal matrix (see Appendix C).
Furthermore, i* may be shown (see Appendix C) that

(53) ;
which greatly simplifies the programming. The SMOC code, therefore, computes only
the S and C matrices.

THE EIGENVALUE PROBLEM
Substitution of

% = Eet (54)

into the homogeneous poartion of Eq. (51) yields the generalized eigenvalue problem

[-Muz +K|E =0, (55)

where v and E are an eigenvalue and eigenvector, respectively.

In some practical problems it may be desirable to neglect rotational inertia,

causing the inertia matrix M to be singular. When this occurs, the program rearranges

the vector E and the matrices M and K, such that their symmetric properties are
retained, and rewrites the eigenvalue problem in the form

M. !0 K _ 1K E

c | 2 PP 3PS P
______ (e B B e Rt -—— =0, (56}

' L _

o o0 Kep ¢ Kog E_

where the subscripts p and s refer to the coordinates associated with the positive
definite portion, M o and the nill portion of the inertia matrix, respectively.
Equation (56) is easily reduced to yield the condensed eigenvalue problem given by

[—Mcu2 + Kc]iz’p =0, (57)

where:

_ _ -1
K. = Kpp KpsKssKsp' (58)

The vector E_ is related to Ep by the relationship

16~




£ - -kl E

s ss 'sp p* (59)

and E is formed by properly combining the elements of Ep and Es'
The solution of Eq. (55) (assuming that M is nonsingular) performed in the second

TRILIN code, EIGEN, yields n eigenvalues u.2 and eigenvectors E, normalized such
e i i

that B E; = 1.
Since the eignevectors are orthogonal, we obtain

EME. - G.5..
J 1

iij

.= _ 2

E].KEi = w]. G; 6ij' {60)
where the subscripts i and ) refer to the ith and jth modes, respectively, &.. isthe

ij
Kronecker delta, G.l is a constant called the generalized mass of the ith mode, and
w.lz is the natural frequency of the ith mode.

The spectral matrix, I', is defined as

, {61)

2
- h J

in which the eigenvalues are arranged in ascending order down the diagonal according

to their magnitudes. The modal matrix E is given by

By o - . - Eyn1 B
By Epy - ) .

E-[ETE,. E, - . 162)
1 Bar Bng - - . Emn]

Where the column occupied by E—i corresponds to that of its respective eigenvalue, it
follows from Eq. (60) that the matrices obtained from the similarity transformations

-17--
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E'ME -G E'KE = G (63)

are diagonal,

For arbitrary excitation, the motion may be determined by superimposing the
contributions of the various modes. To determine the governing equation of each mode,
we introduce the coordinate transformation

¥ = Eq, (64)

where the vector q represents the normal coordinates of the system. By substituting
Eqg. (64) into Eq. (51), premultiplying by G 1Et, and noting the results stated in Eq. (63),
we obtain the uncoupled set of equations

7 +Ig3 =G EFW® = Qw, (65)

in which the ith component of the vector Q(t) is called the generalized force of the ith
mode,

The response of the system is found by integrating Eq. (65) (performed in the
third TRILIN code, TRANS) for a given forcing function F(t) and initial conditions q(0)
and T(0) found via the transformations

0 = %O o0 = =% (66)

Eq. (64) is used to transform the solution q{t) back to the generalized coordinates, x(t).
The stress resultants as functions of time are found from Eq. (50).

DAMPING

Up to this point in the analysis, damping has not been considered. The usual way
of incorporating damping into the equations of motion in a linear analysis is to assume
that it is proportional to the velocity. In matrix form the equations of motion may be
written as

ME +CE + K3 = F), (67)

in which C* is a positive semidefinite symmetric matrix of damping coefficients. Since
any attemptis to add damping will be somewhat arbitrary, we will require that C* is
diagonalized by the same coordinate transformation that uncouples the undamped por-
tion of Eq. (67),

We choose C*, therefore, such that7

E'C*E - 2Gyr /2 (68)

-18-




where v is an n-dimensional diagonal matrix of critical damping ratios (1i = 1 gives
critical damping in the ith mode). Transforming Eq. (§7) into its normal coordinates
yields the n uncoupled equations

+ 21r1/2?i‘ +Tqg = @), (69)

«Qje

which are integrated in place of Eq. (65) when damping is included, Then 1i's are
read into the TRANS code. A typical value of A for a stzel structure is 0,02, that is,
2% of critical damping.

TIME-DEPENDENT NODE ACCELERATION

The type of excitation of primary concern in TRILIN is one where specified nodes
are subjected to an acceleration time history. Ground motion caused by seismic input
is a loading of this type and is discussed in this section,

Let ¥ be an n-dimensional vector of generalized coordinates of the structure with
respect to an inertial reference frame, and let X be the generalized coordinates with
respect 1o a local coordinate aystem. It follows, therefore, that

}'=§'g+§+'c', (70)
where X _ is an n-dimensional vector of displacements due to ground motion, and ¢ is a
vector of constants, Since the potential energy of the structure is due only to its inter-
nal energy, the ground motion contributes nothing to it and, hence, it can be expressed
in terms of the X coordinates. The kinetic energy must be in terms of the ¥ coordi-~
nates, After obtaining the kinetic and potential energy, application of Lagrange's equa-
tions yield the equations of motions in the form

M¥ + KX = 0, (4]
and, since

+¥, (72)

“q
u
mw'

it follows that

ME + KX = -Ms':'g. (13)

Calling

Fit) = -M§g. (74)

-1g9-




we arrive at an equation similar in form to Eq. (51) that can be treated as described by
Egs. (54) to (66). It should be noted, however, that X in Eq. (73) is a vector of relative
displacements.,

As an example, consider the 2-degree-of-freedom undamped system shown in Fig. 6.
The potential and kinetic energies are

s 1{.. 2 2
vV = 3 [hl(yl - xg- cl) + Kz(yg- yl) ] (75)

s 1 °2 =2
T —i(mlyl +m2}'2). {76)

Applying the Lagrange equations

d aT" av"
— e = ) 17)
dt a-yi ayi

yields the matrix equations

m, ¥ K, +K, Kyl lxy
+ =0, (78)
m,||¥, 'KZ Kz x,
Since
71 %) *g ¢
= + + » (79)
Y2 X2 xg €2
we obtain
m, Xy Ky 7K, Kyl x|
e -F, (80)
my| | %2 Ky, Kllx
where

B
[~}
M1

B

F-- -5 ) 81)

o
5

wn

w
B
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The Three Codes of TRILIN

The computer programs SMOC, EIGEN, and TRANS are the three divisions of
TRILIN,

SMOC

The first code, SMOC, accepts data defining a structural model consisting of
straight beam-type elements of uniform cross section. The purpose of this code is to
calculate the elements of the S and C matrices in Egs. (20) and {49), respectively,
store these matrices on a disk file for use in the EIGEN code, and draw the structure
for the user. The integers associated with the elements and nodal points are used by
SMOC to order the vectors H and X,

EIGEN

The code EIGEN calculates the stiffness matrix, eigenvalues, and eigenvectors
of the idealized lumped mass model, using the information stored on the disk file
created by SMOC.

The inversion of C in Eq. (52) ig done using the Gaussian pivot method.a To con~
sServe computer storage space, the matrices S, St, and C are partitioned into compat-
ible segments, which allows the stiffness matrix to be calculated in a piecewise man-
ner. This process is facilitated by C being a block diagonal matrix. Mathematically
we can write S and C in the partitioned forms

] (] [
s=[s;is, 1. .. i8] (82)
3
Cl
c= ) . (83)
" Cic

respectively, where k' is an integer and where S and C' -1 are compatible for multi-
plication such that S. C' lst is defined, By Egs. (52) and (53),

K =sc1st, (84)

and therefore
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. -1t
K=Y sc! st. (85)

For small problems (less than 60 degrees of freedom), no partitioning is required,
The partitioning is done internally in EIGEN,

The eigenvalue problem is solved in a subroutine employing Householder's tri-
angularization, a QR algorithm to find the eigenvalues, followed by inverse iteration to
obtain the eigenvectors (this technique is discussed in detail by Wilkinson and Reinsch).®
The bandwidth of the stiffness matrix is not explicitly used; however, the calculation
proceeds rapidly because of the sparseness of K,

TRANS

The code TRANS calculates the transient response of the structural model by
using mode~-superposition. This method is based on the fact that the modal matrix, E,
in Eq. (62) may be used to reduce the coupled equations of motion to a set of uncoupled
equations [that is, Eq. (69)], Since the lower modes play a far more significant role in
the response than the higher modes, the structure's response is based on these lower
modes, As a result, there is a marked reduction in the number of equations to be
solved, The user may select the number of modes to be used in the calculation of the
response,

The transient response in each of the structural model's normal coordinates is
determined in TRANS by using a simple finite-difference scheme on the integrated
ucoupled modal equations [Egs, (65) and (69)], The elements of the vector function
F(t) are replaced by straight-line segments between successive ordinates, as shown in
Fig. 7, where it is assumed that these ardinates are equally spaced. We can write
Eq. (69) in the following form corresponding to t; st <t

i+1°
qt-t) + 0y /250 - ¢, ) T - 1) =Q LeaQtx (t -t s (86)
where
= ¢ B (87)
s & :ﬂ)_ tQ(t) @8)
i+l i

Integrating Eq. (86) with the initial conditions

30 =ge) =g

o) =) =7, : (89)
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Fig. 7. The representation of the ith forcing function by a finite number of straight
line segments,

we obtain, for the jth equation, the expression
.
q

D% S

gt - ) = [Alagt - 1)) (90)

in which the matrix {Afw.,t ~ ti)] is a {1 X 4) dimensional matrix whose elements depend
: on whether the modal damping in Eq, (69) is underdamped, critically damped, or over-

damped, Differentiating Eq. (90) with respect to time, and setting t = t yields
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j s 91

B where:

. [gi*t i+1]t
s ) 3

‘ . Al(u:j,Ati) Az("“j'Ati) E A3(wj.Ati) A4(u:j,Ati)
[a3" {41 - =
A
: dA_(w,At) dA (w.At) | dA dA (w,At) dA(w,At)
i 1797 P i -
t t P A

and At =t ., - t,. The elements of [Ah' 2’] are given in Ref. 10, Equation (91) can

be wntten in the equivalent form

1+1 [zll 1 ] - _——- (92)

where:
zl ol
1 31
[ - ) =i L
A3(mj'Ati) A (m At_ 2T A (w.,Ati) AL :
21 1 .
zi'= ;
dAs(w,,Ati) ) dA4(wj._Ati) a1 dA4(fj'Ati) 1 !
t dt Ati dt Ati

G [ 4]

In many problems the response readout increment, Atn, is much larger than the
response calculation increment, At,.

To conserve computer time it is desirable to
eliminate as many of the intermediate calculations as possible. This is done in TRANS
by using a simple algorithm that permits the calculation of the response only at the
response readout times, but that uses (and thus retains the accuracy of) the smalter
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time steps. To explain how the algorithm is derived, consider the following equations,

based on Eq, (82), for the response between the time t, end L (see Fig. 7):

[ =i+l
qj*

@2z

i* 1,i+l Ez_z,i+1] ..

J v L Q§+1
. . (93)
[ itk

qj *

-Q-iif-k-

Then, using forward substitution and induction, we obtain the equation

E’H—kﬂ. _ [zjl,i+k ‘:zjz,i-l-k]
1]

¢ T

- A
qj*
Al
~I1 - -i+k+1 = (U 'y ty 1 _Q_]t - (94)
G T TR B e S B . :
=itk
L 9 ]

Since the time increments are assumed to be equal,

Z;“i - Z;”i+l =...= zjl,i+l-i= Z;’
2,1 2,i+1 2,i+k 2
ZX=Z0Y =, L =B = AT
J J 3 1
the constants U!,j' £=12, ..., k+2are given by
/1 k+1
(zj) ifg=1
nEF2=L o .
Uy (zj z3 £e=23 ...,k .
2'5? if 4 = k+2
The forces :‘.ﬂ, %+2, cens Q§+k each appear twice in the 2(k + 2) dimensional column

vector in Eq, (94); hence, we introduce the condensation matrix P3 such that

-25-

S b i o




_-i d i |
i+ Q;
=i+l i+1
s Y
. =Py | . . {98)
: =itk § 4+
L% 9

- P

and introducing Eq. (96) into Eq. (94) yields the desired eguation

t. . . . t
-+l _ [—n [PNEPRT RN ) i.+k+1]
qj* qj* 'Q] Q] Q] “ e Q] N (97)
where
3 - 1 ] 1 '|
=il Wyl Ug fn 0 1 Uy Pole

The matrix P3 merely adds columns 4 and 5, 6, and 7, ..., up to and including col-
umns 2k +2 and 2k + 3 of the {2 X 2(k + 2)] dimensicpal matrix in Eq. (94),

A similar technique is also used in TRANS to calculate the ground velocity and
displacemment for a known ground acceleration,

Concluding Remarks

A procedure has been presented to determine the transient response of linearly
elastic, three~dimensional, framed-type structures subjected to arbitrary loading con-
ditions. To keep the apalysis tractable, a luvmped mass formulation was used, Euler’s
B Equations were simplified, and the flexure~torsion modes were assumed to be un~
: coupled, A mode superposition scheme retaining the lowest modes was used to calcu-
i late the transient response.

The computer pragram TRILIN based on the theory has been found to give results
consistent with available cloged-form "exact" solutions, The computer program con-
tains many features unique to the Lawrence Livermore Laboratory's compiler and

hardware, which makes its implementation on other systems difficult. A user's man-
ual® is available,

'
i
i




Acknowledgments

The authors express their appreciation to T. E, Mcﬂraith,* F. C, Younger,*

R, C. Murray, and A, J. McPhate,‘r who contributed to the development of the pro-
gram, The authors also thank Dr. D. M. Norris for his critical review of this manu-~
script. The continuous support of V. N. Karpenko, head of the Nuclear Test Engineer-
ing Division, is appreciated.

The contributions of the authors are as follows. A, B. Miller provided overall
direction and coordination while the code was being developed. A. W. Weston1 pro-
vided much of the original programming and was responsible with A, B. Miller for the
structural analysis used within the program. D, L. Bernreuter assumed responsibility
for maintenance of the code in its early stages and was responsible for many modifica-
tions. J. O, Hallquict formally developed and documented the general matrix theory of
the TRILIN code and wrote the final report, using preliminary drafts by Miller, Weston,
and Bernreuter, Hallquist modified the coding to simplify the code's input and the
interpretation of its output.

“William M. Brobeck and Associates, consulting engineers.

fAssociate Professor of Mechanical Engineering, Louisiana State University, Baton
Rouge Campus.

~27 -



References

1, F, J. Tokarz and D. L. Bernreuter, Comparison of Calculated and Measured
Response of a High-Rise Building to Ground Motions Produced by Underground
_ Nuclear Detonations, Lawrence Livermore Laboratory, Rept, UCRL-50577 (1870).
2. F. J. Tokarz, Earthquake Analysis of the Diagnostic Chemistry Building,
Lawrence Livermore Laboratory, Rept. UCRL-51192 (1972).

3. W. C, Hurty,and M. F, Rubinstein, Dynamics of Structures (Prentice~Hall Inc,,
Englewoad Cliffs, New Jersey, 1964), pp. 207-217,
: 4., E. C. Pestel and F. A, Leckie, Matrix Methods in Elastomechanics (McGraw-
: Hill Book Co., New York, 1963),
‘ 5. J. O. Hallquist and R, C. Murray, User's Manual for TRILIN —A Computer Code
to Calculate Transient Response in Linear Systems, Lawrence Livermore Labora-
tory, Rept. UCRL-51454 (1973),
6. T. R. Kane, Dynamics (Holt, Rinehart, and Winston, Inc,, New York, 1968),
p. 283,
7. L. Meirovitch, Analytical Methods in Vibrations (Macmillan Co., London, 1969),
p. 397,
8. C., K, Wang, Matrix Method of Structural Analysis (International, Seranton, Penn.,
1970), pp. 14-15.

9. H. H. Wilkinson and C. Reinsch, Linear Algebra, Vol, Il (Springer-Verlag, New
York, 1971).

: 10, A. M, Weston, Code CRASH, Lawrence Livermore Laboratory, Rept. UCID-

13203 (1966).

-28-




Appendixz A

The matrix Di. in Eq. (11} may have one of two possible forms, depending on
whether the jth element has its closed or open end at the ith node. These two possibil-

ities are illustrated in Figs, A-1 and A~2, For the case when the jth element’s closed
end terminates at the ith node (Fig. A-1), Dj is

. (A-1)

Q = O QO

O 0 0 = O

[
[ )

(e

QO O O O =
Q O = O Qo ©
S = QO 0O 0 O
=~ 0 0O O O ©

P
Q




Fig. A-2. The jth element with its open end terminated at the ith nodal point,

If the 1th element's open end terminates at the ith node (Fig. A-2), we see that Dg
becomes )

A-2)

the negative identity matrix, Obviously, the order of the D.; matrix will depend on the
constraints placed on the system,

——e

"In the SMOC code, this case (jth element with an open end at the ith node) is not
treated in the direct manner indicated. Instead, a new transformation matrix based on
an element oriented as shown in Fig. 2 but with its open and closed ends interchanged
is used. This alternative approach will lead fo the same final result.
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Appendix B

In this Appendix we derive an explicit expression for Eq. (31) pertaining to a
beam element. Since the vector on the right- and left-hand sides of Eq. (31) are well-
defined, we are left with the task of giving an explicit representation of the partitioned

B icy]-

The matrix B; is given by

matrix

¢ .
N R R

L
[T — B —~ B — B =
[ 2 — T~ B = A =]
QO 9O = O ©
0O O = g O O
(]
o.—-o._ﬁ-.oo
_ o O o o
-
U
-
~

and the nonzero elements of the symmetric Cj matrix are simply

£ 23 Lo
X g o
Ciy5 = Coo; = +
115 _f}rE] . 22§ FETY; zhlj ’
2 3
% £ 2., .
3
Cop:=Cpyp. = c ‘=“E"’F‘*
e 33 It A,
26) 762) 2By 3 3B B8y
2 (B‘2)
-4 2,
C35=Cs3;" 3 Bl Caq5° e
L. L
C5sj 'E‘i]"'j L Cegj = —f]'-EJ. =

for a straight isotropic beam of vniform cross section, The quantities £, E., G‘-. and
Aj refer to the length, modulus of elasticity, modulus of rigidity, and cross-sectional
area of the jth element, respectively. The symbol «_. is the ratio of maximum to aver-
age shear stress over the cross section of the l'th element where p indicates the direc-
tion of shear, The second moment of area is represented by I;J., where p indicates the
axis about which it is calculated and j refers to the jth element.
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Appendix C

The Symmetry of the Stiffness Matrix

To show that the stiffness matrix, K, is symmetric we make the substitution,

T = A, €-1

where A is an n-dimensional vector and X is an unknown parameter, into Eq. (50} to
obtain )

an?+ )5 = F.

c-2)
Premuitiplying Eq. (C-2) by A gives
Eon?+ KE - K7, €-3)
and taking the transpose yields
Tton?+ kHx - FA. €-4)

Since M'= M and F'X = KtF, Bubtraction of Egs. (C-3) and (C-~4) leads to the expression

Ext- xa =o. {c~5)

Because the elements of A are arbitrary, we conclude that
K=K (C'S)

and hence, that K is symmetric.

The Realtionship R = S¢

To demonstrate that St =R we first note that C and C'l, the flexibility matrix and
its inverse, are positive definite block diagonal matrices with one block per element.
By partitioning S and R we can write Bq, (52) in the form

~32-
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-1 1f .
(S; 85 S5 ... Sp,) FCI By
~1
C2 R2
: 1. €-n
-1
_ %n | [ Fan

where nn is the number of elements in the assemblage. Setting Eq. (C-7) equal to its

transpose [see Eq. (C-6)) and carrying out the multiplication, we obtain the relation-
ship

nn nn
Y sl z ol (C-8)
i=1 i=1

But the elastic properties of each element are independent of all other elements; hence,
we conclude that

t~-1ot
SJCJ R RCJ S] c-9)

We will assume that the 1th element has nodal points q and p at its open and closed ends,

respectively, and that the displacement vector X has the form

¢ u elements
b
x=1- u, elements {C-10)

A D

X
T
* ug elements

&5

where the summation u, +u,+ ug + number of elements in the vectors Xq and ?p yield
the total number of degrees of freedom, n, in the system.

It is apparent from Egs. (14), (21), and (29) that, ifCJ. ia a (v X v) (v < 6) square
matrix, Sj will be an {n X v) matrix of the form
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S. = 0 . (C-11)

[ o

where the sizes of the three null matrices (going down the page) are (u; Xv), (u, Xv),
and (us X v), respectively., Similarly, from Eqs. (31) and (35) we observe that

] ? ] ] )
R =[0oiBT {0 {11, {0], (c-12)

where the null matrices are (v X ul). (v X uz). and (v X u3) dimensional matrices,
respectively, Taking the transpose of Sj we obtain

t_ [t nt
s.-[o;DjT.

0 4-L.T, | 0]. (C-13)
i i

LI I I
From Appendices A and B we note that

t

. =B. (C-~14
leading to the conclusion that
S. =R., (C-~15)
and it immediately follows from Eqs. (C-8) and (C-9) that

S"=R, (C-18)

which is Eq. {53) in the text of this report,

-34-

et e rerilee® & T ttein et mam v w et b o 7 o 22m

:
i
!




Cii,

ci

o I o I e
o 5

o]

Appendix D

NOMENCIATURE

Upper Case Symbols

Coefficients for evaluating the system's displacement response
from time .

2 X 2 matrices containing the coefficients for integrating the jth
modal equation over the ith time increment.

Arbitrary vector.

Relates rigid body motion at the jth element's open end to the
translation of the ith node.

Partitioned matrix containing a block diagonal matrix of B''s and
a negative identity and is associated with the ith free body.

A block diagonal matrix containing the B''s,
Flexibility matrix for the ith element,
An element of the flexibility matrix for the ith element.

Block diagonal matrix for the ith free body with the C. mairices
corresponding to the ith node's closed-end elements on the
diaganal,

A block diagonal matrix of all Cl's,
ith partioned segment of the C matrix.
Modal damping matrix.

Relates the forces acting at the jth element's open end to the
forces acting on the ith nadal point,

A re¢ctangular matrix containing the D; matrices multiplied by
their respective transformation matrices that transforms the
forces at the ith nodal point into the global coordinate system.

Block diagonal matrix that contains all the D''s on its diagonal.
An eigenvector,
Eigenvector associated with the ith normal coordinvate.

Portion of eigenvector corresponding to the condensed eigenvalue
prohlem,

Portion of eigenvector associated with the zero inertias.

Modulus of elasticity for the ith element,
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H,.,...8

11, Hai gt

7

Kss? KSP' KPS’ Kpp

Ly, L L

2il--- Gi

Modal matrix.

Vector of time-dependent forces acting on the ith node,
Force vector for the entire structural system.

Diagonal generalized mass matrix,

Generalized mass of the ith node.

Modulus of rigidity for the ith element.

The stress resultants at the open end of the ith element.
Six-dimensional vector containing the six stress resultants.

Six-dimensional vector containing the stress resultants for the
jth element associated with the ith node,

Vector containing all the stress resultants acting on the ith nodal i
point,

Column vector containing the H''s obtained for each node.

Column vector containing each stress resultant in the system
(each resultant appears only once),

Column vector containing all the stress resultants associated
with the closed-end elements at the ith nodal point.

Identity matrix,
Moments of inertia used in the example problem,

Second moment of area, where p indicates the axis about which it
is calculated and j refers to the jth element.

Stiffness matrix,
Condensed stiffness matrix,

Partitioned segments of the stiffness matrix that corresponds to
the null and positive definite portions of the inertia matrix,

The stress resultants at the open end of the ith element in the
global coordinate system,

Sizx~dimensional containing the ith element's six stress
resultants,

Diagonal lumped mass inertia matrix,
Internal moments used in example problem.
Connectivity and condensation matrices.

ith generalized force.
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Vl’ V2

Xy, X2, X3
i S2i

Z :
J 3

. Z

a., b, c.

o1 & ot

m

Vector of generalized forces.

Q) - Qe M - 1)

(Q_; AQ;), where i and j refer to the ith time increment and the
ith normal coordinate, respectively,

Defined in Eq. (49).

Partitioned segment of R,

Defined in Eq. (29) and is the tanspose of R.

Partitioned segment of S

Coordinate transformation fcr the ¢; rotation of the ith element,

Coordinate transformation marvrix for the 4; rotation of the jth
element.

6 X 6 tranaformation matrix for the ith element,

Matrix of transformation matrices associated with the closed end
elements of the ith node,

Block diagonal matrix with the Tt matricee on its diagonal.
Kinetic energy.

ith segment of coefficient matrix for finding the response of the
j normal coordinate,

Defined in Eq. (37).

Potential energy.

Shear forces used in example problem.

Axes pertaining to the global coordinate system.

Defined by Eq. {92).

Lower Case Symbols

Location of the closed end of the ith element in the global coor-
dinate syastem, '

Vector of constants.

Total number of unknown stress resultants,
Three-dimensional vector in the local coordinate system.
Three-dimensional vector in the global coordinate system.

Number of nodal points associated with one or more degrees of
freedom,
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a*

o

2]

ij

Inertias associated with the ith node.

Inertia matrix of the ith node.

Masses used in the example probiem,

Number of degrees of freedom.

Local coordinate system associated with the ith element,
Vector of normal coordinates.

The ith normal coordinate,

Defined in Eq, (91),

Defined in Eq, (89).

Number of closed end elements at the ith nodal point.
Number of open end elements at the ith nodal point,
Time at start of the ith time step.

See Eq. (C-11).

Assumed dimension of Ci'

Displacement vector of j nodal point in the global coordinate
system.

Elements of the vector ij defined above,

Vector of ground displacements,

Vector of generalized coordinates for the entire structure,
Defined in Eq, (40),

Vector of xi*'s.

Displacement of structure in inertial reference frame,

The ith element of .

Greek Symbols

Maxzimum-~to-average shear stress over the cross section of the
jth element in the p direction,

Spectral matrix.
Matrix critical damping ratio.
Damping ratio for the ith normal coordinate,

Kronecker deita,
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n, Deflection of the open end of the ith element in the local coordi-
nate system,

My Mogge -« Ny Elements cf r')i

61, 62, 03 Rotational coordinates for the example problem.
A Eigenvalue in Eq. (C-1),

q;i, wi Angular coordinates that orient the ith element.
w; ith natural frequency.

Superscripts

Indicates time derivative.
t Indicates transpose.

-1 Inverse.
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