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Abstract

Trilinos I/O Support (Trios) is a new capability area in Trilinos that serves two important roles: 1) it
provides and supports I/O libraries used by in-production scientific codes; 2) it provides a research vehicle
for the evaluation and distribution of new techniques to improve I/O on advanced platforms. This paper
provides a brief overview of the production-grade I/O libraries in Trios as well as some of the ongoing
research efforts that contribute to the experimental libraries in Trios.

1 Introduction

The Trilinos project was started as an effort to “facil-
itate the design, development, and ongoing support”
of mathematical libraries for scientific codes [12]. Ini-
tially, that involved developing parallel solver algo-
rithms and libraries for large-scale multi-physics ap-
plications. As the project evolved, it became evident
that support of scientific codes on high-performance
computing (HPC) platforms required more than effi-
cient parallel solvers. One identified gap in Trilinos
was I/O support. In late 2010, the Trilinos project
added the Trilinos I/O Support (Trios) capability
area to address this gap.

To address current and future needs, the Trios ca-
pability area consists of two efforts. The first effort is
to support the current needs of active users through
providing standard, extensible I/O APIs. Second, an
active 1/O research platform for experimenting with
techniques and architectures on new and evolving
platforms. Developments made through the research
platform are available for users willing to try newer
techniques that are less mature. As these techniques
mature, they will evolve into options for the users re-
quiring a more proven, widely supported technology
set.

1.1 Trios Software Components

Trios began with two primary objectives: provide
I/O support for existing production scientific codes
and provide a common repository and evaluation
framework for experimental I/O software for next-
generation platforms.

In early 2011, Trios was granted copyright approval
to release the well-established Sandia National Lab-
oratories Engineering Analysis Code Access System
(SEACAS) [29]. Some of these libraries have been in
use at Sandia for more than a decade. Incorporat-
ing the SEACAS libraries into Trios serves multiple
purposes: it allows the SEACAS development team
to leverage the stringent testing framework of Trili-
nos to ensure robustness, it provides a single point
of access to existing Sandia customers, and it enables
a broader distribution of SEACAS to potential ex-
ternal users. Section 2 provides a description of the
SEACAS I/0 libraries.

To address the research objective of Trios, the Trios
team added the in-situ and in-transit data-services
work that evolved from the Lightweight File Sys-
tems project at Sandia [21, 22]. The data-services
software allows large-scale scientific applications to
leverage additional computational resources for real-
time data-staging [8, 16, 24, 30] or integrated data
analysis [18]. Putting the data-services software in
Trios simplifies development by providing a unified
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Figure 1: Trios Software Componets and Supporting
Technology

software repository for researchers at different insti-
tutions and it provides an opportunity for co-design
through increased access to application code teams
and external users of Trilinos. In Section 3, we de-
scribe the Trios libraries used to support data services
along with three examples of data-services currently
in use.

1.2 Supported Platforms

As with the other capability areas in Trilinos, Trios
provides an enabling technology that is “robust” and
“efficient” on parallel computing platforms. Some of
the experimental libraries in the Trios package are
designed specifically for capability class supercom-
puters with low-level support for RDMA, such as
the CrayXT, CrayXE, and large InfiniBand clusters.
While there are third-party libraries, like the Portals3
reference implementation [4], that enable this code to
execute on traditional TCP /IP based clusters, perfor-
mance and robustness is not guaranteed or supported
on all platforms.

2 SEACAS I/0 Libraries

SEACAS includes applications and libraries that sup-
port a wide range of functionality including prepro-
cessing and postprocessing (mesh generation, visual-
ization); libraries (including I/0), FORTRAN exten-
sions (memory management, parsing, and system ser-
vices), visualization, and domain decomposition; and
Exodus database manipulation (combination, paral-
lel decomposition, concatenation, translation, differ-
encing, and merging). In the context of this paper,
we only discuss the I/O libraries Exodus, Nemesis,
and I0SS.

2.1 Exodus

Exodus [27] is a library and data-model used for fi-
nite element analysis. It provides a common database
for multiple application codes (e.g., mesh generators,
analysis codes, and visualization software) rather
than code-specific utilities. A common database gives
flexibility and robustness for both the application
code developer and the application code user. The
use of the Exodus data model gives the user access
to the large selection of application codes (including
vendor-supplied codes) that read and/or write the
Exodus format either directly or via translators.

The Exodus data model design was steered by
finite-element application developers to meet the fol-
lowing requirements:

e Random read/write access.

e Portability - The data should be readable and
writable on many systems from large HPC clus-
ters down to small personal computers without
translation.

e Robustness - Any data written to the file should
not be corrupted if the application crashes or
aborts later.

e Support multiple languages - Application pro-
gramming interfaces (API) exist for FORTRAN,
C, C++, and Python.

e Efficiency - It should be efficient, both in file
space and time, to store and retrieve data
to/from the database.

e Real-time access during analysis - Allow read ac-
cess to the data in a file while the file is being
created.

e FExtensibility - Allow new data objects to be
added without modifying the application pro-
grams that use the file format.

To address these requirements, the Exodus design-
ers chose to layer the API on top of the Network Com-
mon Data Form (NetCDF) library [25]. NetCDF pro-
vides a portable, well-supported, self-describing data
format with APIs in C, FORTRAN, C++, Python,
Java, and Perl; The data sets structure is also easily
extendible without copying or modifying the struc-
ture of the file-thus satisfying the final requirement
of Exodus users.

Because an Exodus file is a netCDF file, an appli-
cation program can access data via the Exodus API
or the netCDF API directly. This functionality is il-
lustrated in Figure 2. Although accessing the data
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Figure 2: Exodus Software Stack

directly via the netCDF API requires more in-depth
understanding of netCDF, this capability is a pow-
erful feature that allows the development of auxil-
iary libraries of special purpose functions not offered
in the standard Exodus library. For example, if an
application required specialized data access not pro-
vided by the Exodus API, a function could be written
that calls netCDF routines directly to read the data
of interest. This feature can also be used if an appli-
cation needs to store data that is not supported by
Exodus. The application can write the data directly
at the netCDF level. However, the disadvantages of
this direct access is that: 1) other applications will
not know about this data, 2) changes to the Exodus
datastructure may result in the direct netCDF calls
to fail, and 3) if a different data format were chosen
in the future to replace netCDF, these calls would
have to be modified before using the newer version of
Exodus.

The Exodus file can contain nodes, edges, faces,
and elements grouped in “blocks” or “sets”. A block
is a collection of homogeneous entities and all entities
must be in one, and only one, block. A set is a col-
lection of possibly heterogeneous entities of a single
entity type and are optional. An additional entity
group is a sideset which is a collection of “element -
local element side” pairs. A sideset is typically used
to specify a surface of the model where a boundary
condition is applied. Each set and block can have op-
tional named attribute data, results data, and map
data.

Initialization data includes sizing parameters (e.g.,
number of nodes and number of elements), optional
quality assurance information (names of codes that
have operated on the data), and optional informa-
tional text.

The model data is static (does not change through
time). This data includes block and set definitions;
nodal coordinates; element, face, and/or edge con-

nectivity'; attributes; and maps?.

The results data are optional and include several
types of variables — block and set data on nodes,
edges, faces, and elements; sideset; and global — each
of which is stored through time. Variables are out-
put at each time step for all entities in the specific
set or block. For example, the “node block” con-
sists of all nodes in the model so a node block re-
sult variable would be output for all nodes in the
model. Examples of a node block variable include
displacement in the X direction; an element block
variable example is element stress for all “hexahe-
dral” elements in an element block. Another use of
element variables is to record element status, a bi-
nary flag indicating whether each element is “active”
or “inactive”, through time. Global results are output
at each time step for a single element or node or for a
single property. Kinetic energy of a structure and the
acceleration at a particular point are both examples
of global variables. Although these examples corre-
spond to typical finite element applications, the data
format is flexible enough to accommodate a spectrum
of uses.

Exodus files can be written and read by applica-
tion codes written in C, C++, or Fortran via calls
to functions in the application programming inter-
face (API). Functions within the APT are categorized
as data file utilities, model description functions, or
results data functions.

In general, the following pattern is followed for
writing data objects to a file using the C APIL.

1. create the file with ex_create;
2. define global parameters using ex_put_init;

3. write out specific data object parameters; for
example, define element block parameters with
ex_put_block;

4. write out the data object; for example, out-
put the connectivity for an element block with
ex_put_conn;

5. close the file with ex_close.

Steps 3 and 4 are repeated within this pattern
for each data object (e.g, nodal coordinates, element
blocks, node sets, side sets, and results variables). For
some data object types, steps 3 and 4 are combined
in a single call. During the database writing process,
there are a few order dependencies (e.g., an element
block must be defined before element variables for

Inode lists for each element, face, and/or edge
2used to assign an arbitrary integer value to an entity, for
example, a global id



—>( EXODUS Il Database )

Mesh Partitioning Utility
(exolllb)

NEMESIS | Scalar Load
Balance File

-

EXODUS/NEMESIS to
Parallel Database Utility

(pex)

v

EXODUS/NEMESIS Geometry Files

(e R S

[MP FE Applicationj [MP FE Applicationj
Output Output
Solution Solution

Figure 3: Conceptual description of how EXO-
DUS/Nemesis files are generated and used by a par-
allel finite element application

that element block are written) that are documented
in the description of each library function.

For more details on the APIs and the Exodus data
model, as well as application examples, see [27].

2.2 Nemesis

The analysis process for most application codes us-
ing Exodus mesh and results data on multi-processor
parallel systems is that the original mesh database
is “spread” into multiple databases—one per-process.
The application code on each processor reads and
writes its individual file and then the files are joined
back together at the end of execution.

Nemesis [11] is an addition to the Exodus finite el-
ement database model that adds communication and
partitioning information to the Exodus data model
to facility this parallel analysis process. The SEA-
CAS package includes applications that read Exodus
data defining the model topology and then create a
database containing structures that facilitate the par-
titioning of a single, scalar Exodus file into a set of
files, read independently by each process in a paral-
lel job. Nemesis takes advantage of the extensibility
of Exodus to add additional information to an ex-
isting Exodus database, thus, any existing software
that reads Exodus files can also read files that con-
tain Nemesis information.

A Nemesis data set consists of a scalar “load-
balance” file and a set of N “parallel geometry” files
that contain the partition information for the par-
allel execution on each of the N processes used by
the finite element code. The load-balance file con-
tains information about the association of elements
to processes and how processes exchange data with
each other to obtain required boundary information.
The load-balance file does not generally contain ge-
ometry information, such as element connectivity,
nodal coordinates, or boundary-condition informa-
tion. This information remains in the original Exodus
database. The SEACAS nem_slice application uses
the CHACO [10]® and Zoltan [7] graph-partitioning
libraries to create the Nemesis load-balance file

Given the original Exodus file and the load-balance
file, an application has all the information required
to execute a parallel finite element code. However, as
mentioned previously, typically an additional appli-
cation nem_spread is used to read the load-balance
file and the original Exodus database and to create
the N individual geometry files, each containing the
portion of the original model for analysis by a specific
processes. The geometry files are basically a standard
Exodus file plus some additional datastructures that
indicate which nodes are shared with other processes,
which element boundaries are shared with other pro-
cesses, and for which process this file is intended.
Each process in a parallel analysis then reads the
mesh information from the specific Exodus database
for the process that contains the mesh geometry and
topology for that process and the communication in-
formation specifying with which process(es) this pro-
cess communicates. The output results file(s) are
treated similarly with each process writing data to
its own Exodus database. At the end of the analysis,
the individual databases can be joined together using
the SEACAS application epu while some visualiza-
tion packages can handle the multiple files without
joining.

For a more complete description of the Nemesis C
and C++ APIs, see [11].

2.3 Sierra IO System

The Sierra IO system is a collection of C++ classes
designed to provide an abstract interface to multiple
finite-element database formats. Currently, Exodus,
XDMF [6], embedded visualization, heartbeat, and
history database formats are supported. The applica-
tion accesses data at the abstract Ioss: :DatabaselIl
level, which is independent of the database format.
Concrete DatabaseI0 classes provide access to the

3CHACO is also provided in the Trilinos SEACAS package.
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Figure 4: Toss: :DatabaselI0 inheritance diagram.

data for each database type. In the context of this
paper, we discuss the Ioss: :DatabaseI0 class.

Figure 4 shows the inheritance structure of
Toss::DatabaseI0. There are currently three con-
crete databases implemented: Exodus, in class
Toex:DatabaselO; the eXtensible Data Model For-
mat (XDMF) in class Iohb: :DatabaseI0; and Heart-
beat in Iohb::DatabaselO, a simple text output of
global data at each timestep.

The TIoss::DatabaseI0 class has a pointer
to an Toss::Region, the root of the generic
model representation. = The Ioss:Region is an
Toss: :GroupingEntity representing a portion of the
finite-element model that can be read from or writ-
ten to a database. Specific GroupingEntity classes
include (all in the Ioss namespace): ElementBlock,
FaceBlock, EdgeBlock, NodeBlock, ElementSet,
FaceSet, EdgeSet, and NodeSet. There are also a
Field class that is used to represent model, attribute,
and transient field data; a Property class that is used
to store properties of a GroupingEntity, for exam-
ple, node count of a node block; and element topology
for an element block.

While there are a number of details missing from
this description, these classes form the basis of the
finite-element database I/O capabilities in the Sierra
system and are also used in several of the SEACAS
database manipulation applications. The loss library
is emerging as a viable C++-based API for the Exo-
dus library.

3 Data Services in Trios

The reserach platform portion of Trios includes
emerging I/0 techniques. One such techique is pro-
viding data services. Simply put, a data service is a
separate (possibly parallel) application that performs
operations on behalf of an actively running scientific
application.

This data service architecture uses remote direct-
memory access (RDMA) to move data from mem-
ory to memory between the application and the ser-
vice(s). Figure 5 illustrates the organization of an ap-
plication using data services. On current capability-
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Figure 5: A data service uses additional compute re-
sources to perform operations on behalf of an HPC
application.

class HPC systems, services execute on compute
nodes or service nodes and provide the application
the ability to “offload” operations that present scal-
ability challenges for the scientific code. One com-
monly used example for data services is data staging,
or caching data between the application and the stor-
age system [19, 20, 24]. Section 3.3 describes such a
service. Other examples include proxies for database
operations [23]| and in-situ data analysis [9, 16, 30].

This section provides descriptions of the data ser-
vice support libraries as well as examples of data
services currently in use or in development. The
data-transfer service, described in Section 3.2, is the
canonical example on how to develop a data ser-
vice using Nessie, the PnetCDF service from Sec-
tion 3.3 is an example of link-time replacement 1/0
library that performs data-staging for bursty 1/0 op-
erations, and the CTH in-transit analysis service in
Section 3.4 demonstrates how we use a data service
to perform real-time fragment detection for the CTH
shock physics code.

3.1 Data Service Support Libraries

The primary library to support data services is the
Network Scalable Service Interface (Nessie). It is
used on all platforms and provides a basic frame-
work for developing new services. Trios also includes
a support library called “CommSplitter” used to en-
able data on the Cray XE6 platform.

3.1.1 Nessie

The NEtwork Scalable Service Interface, or Nessie, is
a framework for developing parallel client-server data
services for large-scale HPC systems [16, 22].



Nessie was originally developed out of necessity for
the Lightweight File Systems (LWFS) project [21], a
joint effort between researchers at Sandia National
Laboratories and the University of New Mexico. The
LWEFS project followed the same philosophy of “sim-
plicity enables scalability”, the foundation of ear-
lier work on lightweight operating system kernels at
Sandia [26]. The LWFS approach was to provide
a core set of fundamental capabilities for security,
data movement, and storage and afford extensibility
through the development of additional services. For
example, systems that require data consistency and
persistence might create services for transactional se-
mantics and naming to satisfy these requirements.
The Nessie framework was designed to be the vehicle
to enable the rapid development of such services.

Because Nessie was originally designed for I/O sys-
tems, it includes a number of features that address
scalability, efficient data movement, and support for
heterogenous architectures. Features of particular
note include 1) using asynchronous methods for most
of the interface to prevent client blocking while the
service processes a request; 2) using a server-directed
approach to efficiently manage network bandwidth
between the client and servers; 3) using separate
channels for control and data traffic; and 4) using
XDR encoding for the control messages (i.e., requests
and results) to support heterogenous systems of com-
pute and service nodes.

A Nessie service consists of one or more processes
that execute as a serial or parallel job on the compute
nodes or service nodes of an HPC system. We have
demonstrated Nessie services on the Cray XT3 at
Sandia National Laboratories, the Cray XT4/5 sys-
tems at ORNL, and a large InfiniBand cluster at SNL.
The Nessie RPC layer has direct support of Cray’s
SeaStar interconnect [3], through the Portals APT [4];
Cray’s Gemini interconnect [1]; and InfiniBand [2].

The Nessie API follows a remote procedure call
(RPC) model, where the client (i.e., the scientific ap-
plication) tells the server(s) to execute a function on
its behalf. Nessie relies on client and server stub func-
tions to encode/decode (i.e., marshal) procedure call
parameters to/from a machine-independent format.
This approach is portable because it allows access to
services on heterogeneous systems, but it is not effi-
cient for I/O requests that contain raw buffers that do
not need encoding. It also employs a ‘push’ model for
data transport that puts tremendous stress on servers
when the requests are large and unexpected, as is the
case for most I/O requests.

To address the issue of efficient transport for bulk
data, Nessie uses separate communication channels
for control and data messages. In this model, a con-
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Figure 6: Network protocol for a Nessie storage server
executing a write request. The initial request tells the
server the operation and the location of the client
buffers. The server fetches the data through RDMA
get commands until it has satisfied the request. Af-
ter completing the data transfers, the server sends
a small “result” object back to the client indicating
success or failure.

trol message is typically small. It identifies the oper-
ation to perform, where to get arguments, the struc-
ture of the arguments, and so forth. In contrast, a
data message is typically large and consists of “raw”
bytes that, in most cases, do not need to be encod-
ed/decoded by the server. For example, Figure 6
shows the transport protocol for an I/O server ex-
ecuting a write request.

The Nessie client uses the RPC-like interface to
push control messages to the servers, but the Nessie
server uses a different, one-sided API to push or pull
data to/from the client. This protocol allows inter-
actions with heterogeneous servers and benefits from
allowing the server to control the transport of bulk
data [15, 28]. The server can thus manage large vol-
umes of requests with minimal resource requirements.
Furthermore, since servers are expected to be a crit-
ical bottleneck in the system (recall the high pro-
portion of compute nodes to I/O nodes in MPPs), a
server directed approach affords the server optimizing
request processing for efficient use of underlying net-
work and storage devices — for example, re-ordering
requests to a storage device [15].



3.1.2 CommSplitter

The CommSplitter library was designed to overcome
a security model limitation in the Gemini intercon-
nect. On Gemini systems, multiple user space ap-
plications are not allowed to communicate*. We
overcame that limitation by launching our jobs in
Multiple Program, Multiple Data (MPMD) mode.
MPMD mode enables a set of applications to ex-
ecute concurrently, sharing a single MPI Commu-
nicator. The problem with this approach is that
legacy applications were not designed to share a com-
municator with other applications. In fact, most
HPC codes assume they have exclusive use of the
MPI_COMM_WORLD communicator. When this is not
the case, a global barrier, such as an MPI_Barrier
function will hang because the other applications did
not call the MPI_Barrier function.

To address this issue, we developed the Comm-
Splitter library to allow applications to run in MPMD
mode while still maintaining exclusive access to a vir-
tual MPI_COMM_WORLD global communicator.

The CommSplitter library identifies the processes
that belong to each application, then “split” the real
MPI_COMM_WORLD into separate communicators. The
library then uses the MPI profiling interface to inter-
cept MPI operations, enforcing the appropriate use
of communicators for collective operations.

No changes are required to the application source
code to enable this functionality. The user simply
links the CommSplitter library to the executable be-
fore launching the job. The library has no effect on
applications that are not run in MPMD mode.

3.2 A Simple Data-Transfer Service

The data-transfer service is included in the
“examples/xfer-service/” directory of the Trios pack-
age. This example demonstrates how to construct a
simple client and server that transfer an array of 16-
byte data structures from a parallel application to a
set of servers. The code serves three purposes: it is
the primary example for how to develop a data ser-
vice, it is used to test correctness of the Nessie APIs,
and we use it to evaluate network performance of the
Nessie protocols.

Creating the transfer-service requires the following
three steps:

1. Define the functions and their arguments.
2. Implement the client stubs.

3. Implement the server.

4Cray is currently addressing this issue to better support
data services in future versions of Gemini

3.2.1 Defining the Service API

To properly evaluate the correctness of Nessie, we
created procedures to transfer data to/from a remote
server using both the control channel (through the
function arguments or the result structure) and the
data channel (using the RDMA put/get commands).
We defined client and server stubs for the following
procedures:

xfer_write_encode Transfer an array of data struc-
tures to the server using the control channel.
This method sends the data through the proce-
dure parameters, forcing the client to encode the
array before sending and the server to decode the
array when receiving. This procedure evaluates
the performance of the encoding/decoding the
arguments. For large arrays, this method also
tests our two-phase transfer protocol in which
the client pushes a small header of arguments
and lets the server pull the remaining arguments
on demand.

xfer_write_rdma Transfer an array of data struc-
tures to the server using the data channel. This
procedure passes the length of the array in the
arguments. The server then “pulls” the unen-
coded data from the client using the nssi_get
function. This method evaluates the RDMA
transfer performance for the nssi_get_data
function.

xfer_read_encode Transfer an array of data struc-
tures to the client using the control channel.
This method tells the server to send the data
array to the client through the result data struc-
ture, forcing the server to encode the array before
sending and the client to decode the array when
receiving. This procedure evaluates the perfor-
mance of the encoding/decoding the arguments.
For large arrays, this method also tests our two-
phase transfer protocol for the result structure in
which the server pushes a small header of the re-
sult and lets the client pull the remaining result
on demand (at the nssi_wait function).

xfer_read_rdma Transfer an array of data struc-
tures to the client using the data channel. This
procedure passes the length of the array in the
arguments. The server then “puts” the unen-
coded data into the client memory using the
nssi_put_data function. This method evalu-
ates the RDMA transfer performance for the
nssi_put_data function.

Since the service needs to encode and decode
remote procedure arguments, the service-developer



/* Data structure to transfer x/
struct data t {
int int_ val; /% 4 bytes x/
float float wvalj; /% 4 bytes x/
double double val; /x 8 bytes */

s

/x Array of data structures x/
typedef data t data_array_t<>;

/* Arguments for zfer write encode x/
struct xfer write encode args {

data array t array;
}s

/* Arguments for zfer write rdma */
struct xfer write rdma args {

int len;
}s

Figure 7: Portion of the XDR file used for a data-
transfer service.

has to define these data structures in an XDR
file. Figure 7 shows a portion of the XDR file
used for the data-transfer example. XDR data
structures definitions are very similar to C data
structure definitions. During build time, a macro
called “TriosProcessXDR’ converts the xdr file into a
header and source file that call the XDR library to en-
code the defined data structures. TriosProcessXDR
executes the UNIX tool “rpcgen” the remote proce-
dure call protocol compiler to generate the source and
header files.

3.2.2 Implementing the client stubs

The client stubs provide the interface between the
client application and the remote service. The stubs
do nothing more than initialize the RPC arguments,
and call the nssi_call_rpc method. For RDMA op-
erations, the client also has to provide pointers to the
appropriate data buffers so the RDMA operations
know where to put or get the data for the tranfer
operation.

Figure 8 shows the client stub for the
xfer_write_rdma  method. Since  the
nssi_call_rpc method is asynchronous. The

client checks for completion of the operation by call-
ing the nssi_wait method with the nssi_request
as an argument.

int xfer write rdma(
const nssi_service xsvc,
const data array t xarr,
nssi_request xreq)

xfer write rdma args args;
int nbytes;

/* the only arg is
args.len =

size of array x/
arr—>data_array t len;

/* the RDMA buffer x/
const data t xbuf=array-—>data_array_t_val;

/* size
nbytes =

of the RDMA buffer x/
args.lenxsizeof(data_t);

/* call the remote methods */
nssi_call rpc(sve, XFER PULL,

&args, (char x)buf, nbytes,
NULL, req);
}
Figure 8: Client stub for the xfer_write_rdma

method of the transfer service.

3.2.3 Implementing the server

The server consists of some initialization code along
with the server-side API stubs for any expected re-
quests. Each server-side stub has the form described
in Figure 9. The API includes a request identifier, a
peer identifier for the caller, decoded arguments for
the method, and RDMA addresses for the data and
result. The RDMA addresses allow the server stub
to write to or read from the memory on the client. In
the case of the xfer_write_rdma_srvr, the stub has
to pull the data from the client using the data_addr
parameter and send a result (success or failure) back
to the client using the res_addr parameter.

For complete details on how to create the transfer
service code, refer to the online documentation or the
source code in the trios/examples directory.

3.2.4 Performance of the transfer service

As mentioned earlier in the text, the

3.3 PnetCDF staging service

Demonstrating the performance and functionality
advantages Nessie provides, the NetCDF/PnetCDF
link-time replacement library offers a transparent way
to use a staging area with hosted data services with-
out disturbing the application source code and not
impacting the ultimate data storage format. At a
simple level, the library is inserted into the I/O path



int xfer write rdma_srvr(
const unsigned long request id,
const NNTI_peer_t *caller ,
const xfer pull args xargs,
const NNTI buffer t xdata addr,
const NNTI buffer t xres addr)

const int len = args—>len;
int nbytes = lenxsizeof(data t);

/* allocate space for the buffer x/
data_t xbuf = (data_t #x)malloc(nbytes);

/* fetch the data from the client x/
nssi_get data(caller ,buf,nbytes,
data_addr);

/* send the result to the client x/
rc = nssi_send result(caller ,request id,
NSSI_ _OK, NULL, res addr);

/* free buffer =/
free (buf);
}
Figure 9: Server stub for the xfer_write_rdma

method of the transfer service.

affording redirecting the NetCDF API calls into the
staging area for further processing prior to calling the
native NetCDF APIs for the ultimate movement of
data to storage. This structure is illustrated in Fig-
ure 10.
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Figure 10: System Architecture

At a minimum, this architecture affords reducing
the number of processes participating in collective
coordination operations enhancing scalability [16].
Overall, it affords changing or processing the data
prior to writing to storage without impacting the ap-

plication source code.

The staging functionality can be hosted over any
number of processes and nodes as memory and pro-
cessing capabilities demand. The initial results shown
in the Parallel Data Storage Workshop 2011 paper
uses a single staging node, but with 12 staing pro-
cesses on that node. Those processes are capable of
coordinating among themselves in order to manipu-
late the data. Currently there are five data processing
modes for the data staging area:

1. direct - immediately use the PnetCDF library to
execute the request synchronously with the file
system

2. caching independent - caches the write calls in
the staging area until either no more buffer space
is available or the file close call is made. At that
time, the data is written using an independent
IO mode rather than collective I0. This avoids
both coordination among the staging processes
and any additional data rearrangement prior to
movement to storage.

3. aggregate independent - similar to caching inde-
pendent except that the data is aggregated into
larger, contiguous chunks as much as possible
within all of the server processes on a single com-
pute node prior to writing to storage. That is, to
optimize the data rearrangement performance,
the movement is restricted to stay within the
same node avoiding any network communication
overhead.

4. caching collective - works like the chaching in-
dpendent mode, except that it attempts to use
as many collective I/O calls as possible to write
the data to storage. If the data payloads are not
evenly distributed across all of the staging pro-
cesses, a number of collective calls correspond-
ing to the number of smallest number of data
payloads in any staging process followed by a se-
ries of independent calls to complete writing the
data.

5. aggregate collective - operates as a blend of the
caching collective in that it tries to use as many
collective I/0O calls as possible to write the data,
but uses the aggregation data pre-processing
steps to reduce the number of data packets writ-
ten.

Unlike many aschronous staging approaches, the
PnetCDF staging service ultimately performs syn-
chronously. The call to the file close function blocks
until the data has been flushed to storage.



Using the staging service at run time is a 4 step
process. First, the staging area is launched gener-
ating a list of contact strings. Each string contains
the information necessary to reach a single staging
process. The client (science application) can choose
which client process communicates with which stag-
ing service process. Second, these strings are pro-
cessed to generate a standard XML-based format
making client processing simpler and environment
variables are set exposing the contact file filename
in a standard way. Third, the science application
is launched. Finally, as part of the PnetCDF ini-
tialization, the re-implementation of the PnetCDF
reads the environment variable to determine the con-
nection information file filename, reads the file, and
broadcasts the connection information to all of the
client processes. These processes select one of the
server processes with which to communicate based
on a load-balancing calculation.

The current functionality of increasing the perfor-
mance of PnetCDF collective operations is just a first
step. The current architecture offer the ability to
have any parallel or serial processing engine installed
in the staging area application. The scaling of this
application is independent of scaling of the science
application. This decoupling of concerns simplifies
programming of the integrated workflow of the simu-
lation generating raw data and the analysis routines
distilling the data into the desired processed form.

Ultimately, this technique of reimplementing the
API for accessing staging offers a way to enhance the
functionality of online scientific data processing with-
out requiring changing the application source code.
As in the case of the PnetCDF service, these analysis
or other data processing routines can be inserted as
part of the I/O path with the data ultimately hitting
the storage in the format prescribed by the original
APIL

3.3.1 PnetCDF staging service performance
analysis

Evaluating the performance of the service is per-
formed in two parts. First, an examination of
IOR [13] performance is evaluated followed by an I/0
kernel for Sandia’s S3D [5] combustion code.

IOR Performance To evaluate the potential of
PnetCDF staging, we measured the performance of
our PnetCDF staging library when used by the IOR
benchmark code. IOR (Interleave-or-random) [13] is
a highly configurable benchmark code from LLNL
that IOR is often used to find the peak measurable
throughput of an I/O system. In this case, IOR pro-
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vides a tool for evaluating the impact of offloading the
management overhead of the netCDF and PnetCDF
libraries onto staging nodes.

Figure 11 shows measured throughput of three dif-
ferent experiments: writing a single shared file us-
ing PnetCDF directly, writing a file-per-process us-
ing standard netCDF3, and writing a single shared
file using the PnetCDF staging service. In every ex-
periment, each client wrote 25% of its compute-node
memory, so we allocated one staging node for each
four compute nodes to provide enough memory in
the staging area to handle an I/O “dump”.

Results on Thunderbird show terrible performance
for both the PnetCDF and netCDF file-per-process
case when using the library directly. The PnetCDF
experiments maxed out at 217 MiB/s and reached the
peak almost immediately. The PnetCDF shared file
did not do much better, achieving a peak throughput
of 3.3 GiB/s after only 10s of clients. The PnetCDF
staging service, however, achieved an “effective” 1/O
rate of 28 GiB/s to a single shared file. This is the
rate observed by the application as the time to trans-
fer the data from the application to the set of staging
nodes. The staging nodes still have to write the data
to storage, but for applications with “bursty” 10 pat-
terns, staging is very effective.

S3D Performance In the final set of experiments,
we evaluate the performance of the PnetCDF stag-
ing library when used by Sandia’s S3D simulation
code [5], a flow solver for performing direct numeri-
cal simulation of turbulent combustion.

All experiments take place on the JaguarPF sys-
tem at Oak Ridge National Laboratories. JaguarPF
is a Cray XT5 with 18,688 compute nodes in addition
to dedicated login and service nodes. Each compute
node has dual hex-core AMD Opteron 2435 proces-
sors running at 2.6GHz, 16 GB RAM, and a SeaStar
2+ router. The PnetCDF version is 1.2.0 and uses
the default Cray MPT MPI implementation. The file
system, called Spider, is a Lustre 1.6 system with
672 object storage targets and a total of 5 PB of disk
space. It has a demonstrated maximum bandwidth of
120 GB/sec. We configured the file system to stripe
using the default 1 MB stripe size across 160 storage
targets for each file for all tests.

In our test configuration, we use ten, 32 cubes
(32x32x32) of doubles per process across a shared,
global space. The data size is 2.7 GB per 1024 pro-
cesses. We write the whole dataset at a single time
and measure the time from the file open through the
file close. We use five tests for each process count and
show the best performance for each size. In this set
of tests, we use a single node for staging. To max-
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Figure 11: Measured throughput of the IOR benchmark code on Thunderbird

imize the parallel bandwidth to the storage system,
one staging process per core is used (12 staging pro-
cesses). Additional testing with a single staging pro-
cess did not show significant performance differences.
The client processes are split as evenly as possible
across the staging processes in an attempt to balance
the load.

Figure 12 shows the results of S3D using the
PnetCDF library directly with the four different con-
figurations of our PnetCDF staging library described
in Section 3.3. In all cases measured, the base
PnetCDF performance was no better than any other
technique at any process count. The biggest differ-
ence between the base performance and one of the
techniques is for 1024 processes using the caching in-
dependent mode at only 32% as much time spent per-
forming IO. The direct technique starts at about 50%
less time spent and steadily increases until it reached
parity at 7168 processes. Both cache independent and
aggregate independent advantages steadily decrease
as the scale increases, but still have a 20% advantage
at 8192 processes.

In spite of there only being 12 staging processes
with a total gross of 16 GB of RAM, the perfor-
mance improvement is still significant. The lesser
performance of the direct writing method is not very
surprising. By making the broadly distributed calls
synchronous through just 12 processes, the calling ap-
plication must wait for the staging area to complete
the write call before the next process will attempt to
write. The advantage shown for smaller scales shows
the disadvantage of the communication to rearrange
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the data compared to just writing the data. Ulti-
mately, the advantage is overwhelmed by the number
of requests being performed synchronously through
the limited resources.

The advantage of the caching and aggregating over
the direct and base techniques shows that by queue-
ing all of the requests and letting them execute with-
out interruption and delay of returning back to the
compute area offers a non-trivial advantage over the
synchronous approach. Somewhat surprisingly, the
aggregation approach that reduces the number of 10
calls via data aggregation did not yield performance
advantages over just caching the requests. This sug-
gests that for the configuration of the Spider file
system at least, reducing the number of concurrent
clients to the IO system is the advantageous ap-
proach. Additional efforts to reduce the number of
IO calls do not yield benefits.

3.4 CTH in-transit analysis

As an example of using Nessie for in-transit analysis,
we implemented an in-transit analysis capability for
the CTH shock physics code [14]. For export-control
issues, the code is not available in the Trilinos repos-
itory. It is included in this document merely as an
example.

Much like the PnetCDF staging service, the in-
transit CTH analysis service is a drop-in replacement
for an already used library. In this case, we imple-
mented client and server stubs for the PVSPY library
— an API for performing in-situ analysis using the
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ParaView coProcessing libraries [17]. The difference
between the in-situ approach and the in-transit ap-
proach is that in-situ, meaning “in place”, executes
the analysis on the same compute nodes as the sci-
entific code. Instead of performing the analysis on
the CTH compute nodes, our PVSPY client marshals
requests, sends data to the staging nodes, and per-
forms the analysis on the staging nodes. Figure 13
illustrates this process for analysis that does fragment
detection.

There are a couple of trade-offs to consider when
deciding whether to perform the analysis in-transit
or in-situ. First, the in-transit approach allows frag-
ment detection to execute in parallel with CTH, un-
like the in-situ approach that requires CTH to wait
for the analysis to complete. If the time to execute
the analysis code is substantially larger than the time
to transfer the raw data to the service, there is a per-
formance advantage to using the in-transit approach.

A second consideration is library scalability. While
significant effort has gone into making the CTH code
scale to extremely large core counts, not as much ef-
fort has gone into scalability of the analysis code. For
example, the ParaView coProcessing libraries have
not successfully run on more than 32 thoousand cores.
Linking CTH to ParaView for in-situ analysis also
limits the scalability of the ParaView run. In con-
trast, the data service will likely use a much smaller
number of cores, putting no limitation on the scale of
CTH.

Another often overlooked consideration is the
memory required to link a large analysis library into
a production scientific code. In the in-situ case, CTH
has to link ParaView. Since many HPC systems do
not efficiently support dynamic libraries®, the entire

5Support for dynamic libraries is currently being evaluated
for the Cray XE6.
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static ParaView library has to be linked. On the Cray
XE6, the in-situ binary for CTH is 330 MiB, where
the in-transit binary for CTH is 30 MiB. That is a
substantial difference, especially on systems that are
memory limited — as is the case for most multi-core
HPC platforms.

For efficiency reasons, our PVSPY client imple-
mentation does not simply forward all the functions
to the service. In many cases, the client maintains
metadata to avoid unnecessary data transfers. For
example, the PVSPY API includes “setup” functions
for initializing data structures, assigning cell and ma-
terial field names, and setting cell and material fields
pointers. Not all of these functions require an imme-
diate interaction with the data service. In fact, the
only operation that requires a bulk data transport is
the function to initiate the analysis.

Development and testing of the CTH in-transit ser-
vice is ongoing. We expect to publish a more com-
plete description along with performance results in
the near future.

4 Future Work

4.1 Exodus

The current Exodus database format has some limi-
tations that will be addressed in the near future.

e The Exodus data model uses 32-bit integers for
all ids and offsets which limits the model size to
approximately 2.1 billion entities of each type.
This limitation is planned to be eliminated soon
in a backwardly-compatible manner which will
allow existing databases to be accessed by appli-
cations using the new API.

The Exodus data model currently only stores
scalar data (X-displacement at a node) and
higher-order data structures (vector, tensor,
quaternion) are implied via naming conventions.
For example, the variablesd x,d_y,d 2z would
be interpreted by some applications as a 3D vec-
tor “d”. Native support for higher-order vector,
tensor, and quaternion data is planned.

Store the model hierarchy/part structure in the
Exodus datamodel and permit storing of tran-
sient data on the parts and assemblies. The cur-
rent Exodus model is a flat array of named ele-
ment blocks, sidesets, and nodesets. As models
become more complicated, it is necessary to re-
flect the geometric model assembly structure in
the mesh to facilitate visualization and analysis.
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e Support for changing topologies in Exodus. The
current Exodus requires generating a completely
new file every time the model topology changes.
This can result in hundreds of "topology-change"
files during a routine analysis which can over-
whelm filesystems, and more importantly, the
analyst. Need to modify the Exodus format to be
able to efficiently handle changing model topol-
ogy. In the short-term, need to develop tools to
make the handling of lots of files more eflicient
for the analyst.

Better support for Parallel I/O using the parallel
capabilities of NetCDF and/or Parallel NetCDF.

Additional API language support including
C++ and Python and improvements to the C
and Fortran APIL.

The Exodus library is expected to evolve to support
the ever-increasing data demands of finite element
analysis models and codes.

4.2 Comparing in-transit with in-situ

Since there are a number of research projects inves-
tigating both in-situ and in-transit approaches, we
are interested in doing a thorough performance eval-
uation between the two approaches. Our decision
to develop drop-in replacements for existing libraries
makes this type of investigation relatively easy, par-
ticularly for the CTH example. In the next year, we
expect to perform a detailed performance comparison
of CTH in-transit verses in-situ.

5 Summary

This paper describes the new capability area for Trili-
nos called Trios. By providing two sets of functional-
ity, both production quality and experimental, Trios
addresses both immediate needs of the Trilinos com-
munity and provides a platform for experimentation
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with new I/O techniques and technologies in a har-
monious form with the Trilinos pacakages.

The inclusion of the Exodus foundational API, the
Nemesis extensions, and the Sierra C++ wrappers,
a variety of interfaces to a standardized NetCDF file
format are offered. Much of this technology has been
in productive use for a decade or longer proving it is
a mature and useful product.

The more recent developments of the Nessie frame-
work affords experimentation with new I/O tech-
niques including easier access to staging as well as
a transparent way to incorporate ‘in flight’ data pro-
cessing between the science application and storage.

In combination, these technologies provide both a
mature, proven API and file format in use by many
science codes as well as interesting technology that
is proving to provide ways to enhance the scalabilty
and richness of the I/0O path.

Continuing developments in both the mature tools
and the experimental platforms will continue to en-
hance both the usability and usefulness of Trios to
the greater Trilinos community.



References

1

2]
13]

4]

5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

R. Alverson, D. Roweth, and L. Kaplan. The Gemini system interconnect. In Proceedings of the 18th
Annual Symposium on High Performance Interconnects (HOTI). IEEE Computer Society Press, August
2010.

InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.2, October 2004.

Ron Brightwell, Kevin Pedretti, Keith Underwood, and Trammell Hudson. SeaStar interconnect: Bal-
anced bandwidth for scalable performance. IEEE Micro, 26(3):41-57, 2006.

Ron Brightwell, Rolf Riesen, Bill Lawry, and Arther B. Maccabe. Portals 3.0: protocol building blocks
for low overhead communication. In Proceedings of the International Parallel and Distributed Processing
Symposium. IEEE Computer Society Press, April 2002.

J H Chen, A Choudhary, B de Supinski, M DeVries, E R Hawkes, S Klasky, W K Liao, K L Ma,
J Mellor-Crummey, N Podhorszki, R Sankaran, S Shende, and C S Yoo. Terascale direct numerical
simulations of turbulent combustion using S3D. Computational Science & Discovery, 2(1):31pp, 2009.

Jerry A. Clarke and Eric R. Mark. Enhancements to the eXtensible Data Model and format (XDMF). In
Proceedings of the DoD High Performance Computing Modernization Program Users Group Conference,
pages 322-327, June 2007.

Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay Vaughan. Zoltan

data management services for parallel dynamic applications. Computing in Science and Engineering,
4(2):90-97, March/April 2002.

Tan Foster, David Kohr, Jr., Rakesh Krishnaiyer, and Jace Mogill. Remote I/O: Fast access to distant
storage. In Proceedings of the Fifth Workshop on Input/Output in Parallel and Distributed Systems,
pages 14-25, San Jose, CA, November 1997. ACM Press.

Jing Fu, Ning Liu, O. Sahni, K.E. Jansen, M.S. Shephard, and C.D. Carothers. Scalable parallel I/0
alternatives for massively parallel partitioned solver systems. In International Parallel and Distributed
Processing Symposium, Workshops and PhD Forum, Atlanta, GA, April 2010.

Bruce Hendrickson and Robert Leland. The Chaco user’s guide: Version 2.0. Technical Report SAND94-
2692, Sandia National Laboratories, 1994.

Gary L. Hennigan and John N. Shadid. NEMESIS I: A set of functions for describing unstructured
finite-element data on parallel computers. Technical report, Sandia National Laboratories, December
1998.

Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu, Tamara Kolda, Richard
Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, Andrew Salinger, Heidi Thornquist, Ray Tumi-
naro, James Willenbring, and Alan Williams. An overview of trilinos. Technical Report SAND2003-2927,
Sandia National Laboratories, 2003.

IOR interleaved or random HPC benchmark. http://sourceforge.net/projects/ior-sio/.

E. S. Hertel Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. M. McGlaun, S. V.
Petney, S. A. Silling, P. A. Taylor, and L. Yarrington. CTH: A software family for multi-dimensional
shock physics analysis. In R. Brun and L.D. Dumitrescu, editors, Proceedings of the 19°th International
Symposium on Shock Physics, volume 1, pages 377-382, Marseille, France, July 1993.

David Kotz. Disk-directed I/O for MIMD multiprocessors. In Hai Jin, Toni Cortes, and Rajkumar
Buyya, editors, High Performance Mass Storage and Parallel I/0: Technologies and Applications, chap-
ter 35, pages 513-535. IEEE Computer Society Press and John Wiley & Sons, 2001.

14



[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

Jay Lofstead, Ron Oldfield, Todd Kordenbrock, and Charles Reiss. Extending scalability of collective
1/0 through nessie and staging. In Proceedings of the 6th Parallel Data Storage Workshop, November
2011.

Kenneth Moreland, Nathan Fabian, Pat Marion, and Berk Geveci. Visualization on supercomputing
platform level II ASC milestone (3537-1b) results from Sandia. Technical Report SAND2010-6118,
Sandia National Laboratories, September 2010.

Kenneth Moreland, Ron Oldfield, Pat Marion, Sebastien Joudain, Norbert Podhorszki, Venkatram
Vishwanath, Nathan Fabian, Ciprian Docan, Manish Parashar, Mark Hereld, Michael E. Papka, and
Scott Klasky. Examples of in transit visualization. In Proceedings of the PDAC 2011 : 2nd International
Workshop on Petascale Data Analytics: Challenges and Opportunities, November 2011. Submitted.

Ron A. Oldfield. Lightweight storage and overlay networks for fault tolerance. Technical Report
SAND2010-0040, Sandia National Laboratories, Albuquerque, NM, January 2010.

Ron A. Oldfield, Sarala Arunagiri, Patricia J. Teller, Seetharami Seelam, Rolf Riesen, Maria Ruiz Varela,
and Philip C. Roth. Modeling the impact of checkpoints on next-generation systems. In Proceedings
of the 24th IEEE Conference on Mass Storage Systems and Technologies, San Diego, CA, September
2007.

Ron A. Oldfield, Arthur B. Maccabe, Sarala Arunagiri, Todd Kordenbrock, Rolf Riesen, Lee Ward, and
Patrick Widener. Lightweight 1/O for scientific applications. In Proceedings of the IEEE International
Conference on Cluster Computing, Barcelona, Spain, September 2006.

Ron A. Oldfield, Patrick Widener, Arthur B. Maccabe, Lee Ward, and Todd Kordenbrock. Efficient data-
movement for lightweight 1/0. In Proceedings of the 2006 International Workshop on High Performance
I/0 Techniques and Deployment of Very Large Scale 1/0 Systems, Barcelona, Spain, September 2006.

Ron A. Oldfield, Andrew Wilson, George Davidson, and Craig Ulmer. Access to external resources
using service-node proxies. In Proceedings of the Cray User Group Meeting, Atlanta, GA, May 2009.

Charles Reiss, Gerald Lofstead, and Ron Oldfield. Implementation and evaluation of a staging proxy
for checkpoint I/O. Technical report, Sandia National Laboratories, Albuquerque, NM, August 2008.

Russ Rew, Glenn Davis, Steve Emmerson, and Harvey Davies. The NetCDF Users Guide: Data Model,
Programming Interfaces, and Format for Self-Describing, Portable Data. Unidata Program Center,
version 4.1.3 edition, June 2011.

Rolf Riesen, Ron Brightwell, Patrick Bridges, Trammell Hudson, Arthur Maccabe, Patrick Widener, and
Kurt Ferreira. Designing and implementing lightweight kernels for capability computing. Concurrency
and Computation: Practice and Ezperience, 21(6):793-817, August 2008.

Larry A. Schoof and Victor R. Yarberry. EXODUS II: A finite element data model. Technical Report
SAND92-2137, Sandia National Laboratories, Albuquerque, New Mexico 87185, 1992.

K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collective I/O in Panda.
In Proceedings ofSupercomputing ’95, San Diego, CA, December 1995. IEEE Computer Society Press.

Gregory D. Sjaardema. Overview of the Sandia National Laboratories engineering analysis code access
system (seacas). Technical Report SAND92-2292, Sandia National Laboratories, Albuquerque, New
Mexico 87185 and Livermore, California 94550, January 1993.

Fang Zheng, Hasan Abbasi, Ciprian Docan, Jay Lofstead, Scott Klasky, Qing Liu, Manish Parashar,
Norbert Podhorszki, Karsten Schwan, and Matthew Wolf. PreDatA - preparatory data analytics on
Peta-Scale machines. In Proceedings of the International Parallel and Distributed Processing Symposium,
pages 1-12, April 2010.

15



