SCISPACE

formerly Typeset

@ Open access « Journal Article - DOI:10.1080/01621459.1980.10477560
Trimmed Least Squares Estimation in the Linear Model — Source link [4

David Ruppert, Raymond J. Carroll

Institutions: University of North Carolina at Chapel Hill

Published on: 01 Dec 1980 - Journal of the American Statistical Association (Taylor & Francis Group)

Topics: Trimmed estimator, Least trimmed squares, Estimator, Truncated mean and Generalized least squares

Related papers:

» Robust Regression and Outlier Detection

» Least Median of Squares Regression

+ L-Estimation for Linear Models

» Robust statistics: the approach based on influence functions

« One-Step Huber Estimates in the Linear Model

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/trimmed-least-squares-estimation-in-the-linear-model-
2c52220px2


https://typeset.io/
https://www.doi.org/10.1080/01621459.1980.10477560
https://typeset.io/papers/trimmed-least-squares-estimation-in-the-linear-model-2c5222opx2
https://typeset.io/authors/david-ruppert-slb44peue2
https://typeset.io/authors/raymond-j-carroll-jt71t3t2j3
https://typeset.io/institutions/university-of-north-carolina-at-chapel-hill-1436f8fx
https://typeset.io/journals/journal-of-the-american-statistical-association-390w2s2p
https://typeset.io/topics/trimmed-estimator-3hfm5cjx
https://typeset.io/topics/least-trimmed-squares-2wsehlqv
https://typeset.io/topics/estimator-1c072feq
https://typeset.io/topics/truncated-mean-q51f6yta
https://typeset.io/topics/generalized-least-squares-3bzdpvu0
https://typeset.io/papers/robust-regression-and-outlier-detection-4kyy6j2fjp
https://typeset.io/papers/least-median-of-squares-regression-3r9g5e6ols
https://typeset.io/papers/l-estimation-for-linear-models-1cszo47ed1
https://typeset.io/papers/robust-statistics-the-approach-based-on-influence-functions-1w499j6nyx
https://typeset.io/papers/one-step-huber-estimates-in-the-linear-model-1c64xwusjn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/trimmed-least-squares-estimation-in-the-linear-model-2c5222opx2
https://twitter.com/intent/tweet?text=Trimmed%20Least%20Squares%20Estimation%20in%20the%20Linear%20Model&url=https://typeset.io/papers/trimmed-least-squares-estimation-in-the-linear-model-2c5222opx2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/trimmed-least-squares-estimation-in-the-linear-model-2c5222opx2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/trimmed-least-squares-estimation-in-the-linear-model-2c5222opx2
https://typeset.io/papers/trimmed-least-squares-estimation-in-the-linear-model-2c5222opx2

TRIMMED LEAST SQUARES ESTIMATION IN- THE LINEAR MODEL

by

David Ruppert and Raymond J. Carroll

Abstract

We consider two methods of defining a regression analogue to a trimmed
mean. The first was suggested by Koenker and Bassett and uses their concept
of regression quantiles. Its asymptotic behafior is completely analogous to
that of a trimmed mean. The second method uses residuals from a preliminary
estimator. 1Its asymptotic behavior depends heavily on the preliminary
estimate; it behaves, in general,.quite differently than the estimator
proposed by Koenker and Bassett, and it can be rather inefficient at the
normal model even if.the percent trimming is small. However, if the‘
preliminary estimator is the average of the two'regression quantiles used
with Koenker and Bassett's estimator, then the first and second mefhods are

asymptotically equivaient for symmetric error distributions.
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1. Introduction.

This paper is concerned with the linear model

y=XB+2, (1.1)
where y' = (yl,...,yn), X is a nxp matrix of known constants whose i-th row is
Ei’-ﬁ' = (Bl,...,BP) is a vector of unknown parameters, and Z' = (Zl,...,Zn) is

a vector of independent identically distributed random variables with unknown
distribution function F. Despite the:advantages, including efficiency when F
is normal, of the least squares estimator of B, this estimator is inefficient
when F has heavier tails than the Gaussian distribution and possesses high
sensitivity to spurious observations. This inefficiency to heavy-tailed F has
been amply demonstrated for the location submodel by a Monte-Carlo study
(Andrews (1972)) and by asymptotics, e.g., Table 1 of this paper. The presence
of spurious data can be modelled by letting F be a mixture of the distribution
function of the "good" data, say standard normal, and that of the ''bad" data,
say normal with variance exceeding 1. Such an F will have heavier tails than a
normal distribution, and inefficiency with heavy-tailed F appears to be closely
related to sensitivity to outliers. Huber (1977, p. 3) states that "for most
practical purposes, 'distributional robust' and 'outlier resistant' aré
interchangeable." For the location model, three classes of estimators have
been proposed as alternatives to the sample mean, M, L, and R estimators; see
Huber (1977) for an introduction. Among the L-estimates, the trimmed mean is
particularly attractive because it is easy to compute and is rather efficient
under a variety of circumstances.

As with M-estimates, trimmed means can be used to form confidence
intervals. Let TM(a) be the o-trimmed mean, let Y(i) be the i-th order

statistic, and with k = [na], define



Sz(u) = n{k(Y(k+l)-—'TM(oc))2 + k(Y(n_k)-TM(oc))2

n-k 2 ' ,
+ ) (Y(i)-'TM(a)) }/{(n-2k) (n-2k-1) } . -
i=k+1

1
2

If F is symmetric about yu, then n*(TM(a)-u)/S(a) is asymptotically N(0,1).

(This can be easily seen from Theorems 1 and 2 of deWet and Venter (1974).)

Therefore if we define zY to be the (1-y)th quantile of the standafd normal

distribution,

T™(o) * ZY/2 S(a)

is a large sample confidence interval. Tukey and McLaughlin (1963) suggest

replacing ZY/Z by the (1-y/2)th quantile of the t distribution with (n-2k-1)

degrees of freedom. Huber (1970) uses a heuristic argument to justify a ‘
different choice of degrees of freedom, which is somewhat too complex to give
here. Gross's (1976) Monte-Carlo study of the distribution of TM(0) /S (o)
indicates that the validity (agreement of nominal and actual significance
level) of these confidence intervals will not be wholly satisfactory if n is
small (he studies n = 10 and 20), but with F non-normal they appear to be as
valid as the standard confidence interval based on the sampie mean and standard
deviation and the t distribution with n-1 degrees of freeddm. Gross also
suggests a more conservative interval procedure.

Hogg (1974) favors trimmed means for the above reasons, and because they °
can serve as a basis for adaptive estimators.. Stigler (1977) applied robust

estimators to data from 18th and 19th century experiments designed to measure

basic physical constants. He concluded that 'the 10% trimmed mean (the

smallest nonzero trimming percentage included in the study) emerges as the .

recommended estimator."



One might argue, of course, that alfhough L-estimates have desirable
properties, they really offer no advantages over other estimators. After
all, Jaeckel (1971) has shown that if F is symmetric then for each
L-estimator of location there are asymptotically equivalent M and R
estimators. However, without knowledge of F it is not possible to match up
an L-estimator with its corresponding M and R estimators. For example,
trimmed means are asymptotically equivalent to Huber's M-estimate, which is

the solution b to

nHes13

p((X;-b)/s ) = min! | (1.2)

i=1

where

p(x) x2/2 if |x| <k
: (1.3)

k(|x| -k/2) if |x]| > k .

The value of k is determined by the trimming proportion o of the trimmed
mean, F, and the choice of She In the scale non-invariant case (sn = 1),
k = F-l(l-a). The practicing statistician who knows only his data may find

his intuition of more assistance when choosing o compared with k.

We do not believe that trimmed means are always preferable to M-estimates,
but rather that they are worthwhile alternatives to M-estimates, particularly
to Huber's M-estimate.

For the linear model, Bickel (1973) has proposed a class of one-step
L-estimators depending on a preliminary estimate of E) but, while these have
good asymptofic efficiencies, they are computationally complex and are

apparently not invariant to reparameterization.



In this paper we consider two other methods of defining a regression
analogue to the trimmed mean. In the location problem, both estimates
" reduce to the trimmed mean. The first, which we‘call_éPE(a)Afor 0<ac<kh,
requires a preliminary estimate, which is denoted by %0. Suppose that the
residuals from BO are calculated, and those observations correspondlng to
the [no] smallest and [no] largest observatlons are removed Then |
_ﬁPE(=_§PE(G))is defined to be the least squares estimator calculated from
the remaining observations.

The definition oféPE was motivated by the applied statisticians'
practice of examining the residuals from a least squares fit, removing the
points with large (absolute) residuals, and recalculating the least squares
solution with the remaining observations. Generally, there is no formal
rule for deciding which points to remove, but-QPE is at least similar to
this practice.

The second method of defining an analogue to the trimméd mean was
proposed by Koenker and Bassett (1978), who extend the concept of quantiles

to the linear model. Let 0 < 6 < 1. Define

we(x) 6 - I(x<0) - (1.4)

and

Pg(x) = xyY,(x) .
A .
Then they call B(6), any value of b which solves

Z pe(y -X .b) = min! (1.5)
ie1




a 0th regression quantile. (Recall that X, is the i-th row of X.) Koenker
and Bassett's Theorem 4.2 states that regression quantiles have asymptotic
behavior similar to sample quantiles in the location problem. (Since ﬁ;e)
is an M-estimate its large sample behavior can also be deduced from standard
M-estimate theory, as we show later.) Therefore, L-estimates consisting of
linear combinations of a fixed number of order statistics--for example, the
median, trimean, and Gastwirth's éstimator-—are easily extended to the
linear model and have'the same asymptotic efficiencies as in the location
model. As they point out, regression quantiles can be computed by standard
linear programming techniques. They also suggest the following trimmed
least squares estimators, call it-éKB: remove from the sample any
observations whose residual from ﬁ(a) is negative or whose residual from
Eﬁl-a) is positive and calculate the least squares estimator using thé

remaining observations. They conjectuie that if lim n_ICX'X) = Q (positive
P o 1}->co

definite), then the covariance of_éKB(u) is n'lcz(a,F)Q_l, whefe n_loz(a,F)
is the variance of an o-trimmed mean from a population with distribution F.

.In this paper we develop asymptotic expansions for Eﬁe) and_gKB(a)
which provide simple proofs of Koenker and Bassett's Theorem 4.2 and their
conjecture about the asymptotic covariance of_éKB(a).

The close ahalogy between the asymptotic distributions of trimmed means
aﬁd the trimmed least squares estimator_éKB(u) is remarkable. A result that
is perhaps even more surprising is that the distribution of the estimator
EPE depends heavily on that of the preliminary estimator_éo. In particular,
using least squares or least absolute deviations as the preliminary

A
estimator results in versions of_gPE which are inefficient at the normal

- . - - A
model and which are not regression analogues to the trimmed mean (as ls-ﬁKB)’



) - A o A
(By a version of B, we mean B, for a particular B9 | .

A -
Our results are such that we are able to find a version Of'EPE which
corresponds to a trimmed mean when the error distribution F is symmetric.

A .
The "right choice" for —B-O is the average of the ath and (1-o)th regression

quantiles, i.e., EO = ’/z(_/é(oc)+_/é(l—oc))~ :

Hogg (1974, p. 917) mentions that adaptive estimators can be
constructed from estimators similar or identical to L/?:_PE(OL) with o a function
of the residuals from _@_0. The advanté.ge of this class of adaptive estimators,
he feels, is that they "would correspond more to the trimmed means for which
" we can find an error structure." However, from the above results, we can

conclude that even if o is non-stochastic, estimators of the type suggested

by Hogg will not necessarily have error structures which correspond to the

-

trimmed mean. .

Besides its nice asymptotic covariance,_gKB has aﬁother desirable |
property. In the location model, if F is asymmetric then there is no .
natural parameter to estimate. In the linear modél, if the design matrix is
centered so one column, say the first, consists entirely of ones and the

remaining columns each sum to zero, then our expansions show that for each

0<ac<k

nl/zcé KB(a)-_B_-_ﬁ_(oc)) !; N(O,Q'lo2 (o, F))

where §(a) is a vector whose components are all zero except for the first. .
Therefore, the ambiguity about the parameter being estimated involves only
the intercept and none of the slope parémeters. However, this is also true

for M-estimates (see, e.g., Carroll and Ruppert (1979) or Carroll (1979)).




We will present a large sample theory of confidence ellipsoids and
general linear hypothesis testing, which is quite similar to that of least
squares estimation. The same theory holds foréPE whené0 = (@(a)+§ﬁl-a))/2,
but only if F is symmetric. |

The methods of this paper can be applied to other estimators. For
example, 1et'§A[a)GﬁgA) be the least squares estimate after the points with
the [20N] largest absolute residuals fromqéO are removed. In section 6 we
state results for.gA. Their proofs are omitted, but are similar to the
prbofs of analogous results for.ng.

In section 2 we give notation and assumptions. In section 3, asymptotic

A
representations of B are developed, and their significance is discussed in

—PE
section 4, Section 5 contains asymptotic results for'gKB, and section 6
discusses conditions under which EJGYVQPE are asymptotically equivalent. In
section 7, we compare the asymptotic behavior ofﬁ_PE for several choices of
30. Large sample inference is the subject of section 8. Several examples

using real data are considered in section 9. All proofs are found in the

appehdix.

2. Notation and Assumptions.

Although y, X and Z_ini(l.l) depend upon n, this will not be made
explicit in the notation. Let e' = (1,0,...,0)(1xp) and let Ip be the pxp

identity matrix. Whenever r is a scalar, r = re. For 0 < p < 1, define

E = F'l(p). Also, suppose 0 < o, <% < a, <1, and define £, = £ and

P 1 2 17 "o

Ez = Ea . Let NP(E’ L) denote the p-variate Gaussian distribution with mean
2

Y and covariance X. We will make the following assumptions throughout.



Cl. F has a continuous density f which is positive on the
support of F.
. v - . -
C2. Letting (xil,...,xip) Eiibe the i-th row of X, X1 1

for i =1,...,n and

n .
X.. =0 for j=2,...,
izl i j=2,...,p
-k
€3. lim[ = max (n zlxi.l) =0 .
noe|j<p and isn J

C4. There exists positive definite Q such that
. -1
limn “(X'X) = Q .
n-oo

N e g
c5. (§O-§- fe) = Op(n %) for some constant 6.

We will assume that E; = 0. By C2, this involves no loss in generality.

, e TR : S B e
Assumption C5 is satisfied by many estimators, including the LAD (least
absolute deviation or median regression) (see Corollary 5.1) and, if

Eef < », the LS (least squares) estimators.

T o T A
The residuals from the preliminary estimate_ﬁO are

A
= 7 (B

. - X,
0 i —-1i-=

joo>

T, =Y. 0—@9

- X.
1 1 -

1

Let Tin and Ton be the [no]th and [n(l-0)]th ordered residuals, respectively.
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A
Then the estimate_§PE is a least squares (LS) estimate calculated after

removing all observations satisfying

T, < T or ry 2T (2.1)

i in 2n

Because of Cl, asymptotic results are unaffected by requiring strict
,inequalities in (2.1). Let a; = 0 or 1 according as i satisfies (2.1) or
not, and let A be the nxn diagonal matrix with Aii = a,. The matrix A

indicates which observations are not trimmed. Thus

joo>

pp(®) = (X'AX)” X' Ay ,

where (X'AX) is a generalized inverse for X' AX. (Later we show that
n-l(X'AX) g (1-20)Q, whence P (X' AX is invertible) = 1.)

Since_@KB behaves similarly to a trimmed mean, even for asymmetric E
and for asymmetric trimming, we will not restrict ourselves to symmetric
trimming when definingngB.

Let o = (al,uz) and define_gKB(g) to be a least squares estimator

calculated after removing all observations satisfying

A A '
y; - 5i§(a2) 20 o0or y. - X _B_(ocl) < 0. o (2.2)

(Again asymptotic results are unaffected by requiring strict inequalities in
(2.2), which is Koenker and Bassett's Suggestion.) Let bi = 0orl
according as i satisfies (2.2) or not, and let B be the nxn diagonal matrix

with B.. = b.. Then
ii i

Bep(@ = (X BOT (X'BY) ,
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where (X'BX) 1is a generalized inverse of (X' BX). (Again, for n

sufficiently large X' BX will be invertible.) Let

¢(X) = gl/ (0"2'0('1) if X < gl
='x/(a2-a1) if gl <x < £2 (2.3)
= 52/(a2-al) if 52 <X .
Define
-1 52
6(9'_) = (a'z_u'l) f XdF(X) >

£1

and letting nj = (Ej-é(gg) define

g
(@) = (0072 (f 2 (x-6())2 dF(x)+oclnf+(1—oc2)n§-((l-oc2)n2+ 0yn)%)
1 |

By, for example, deWet and Venter (1974, equation (6)), oz(u,F)/n is the
asymptotic variance of a trimmed mean with trimming proportions 0y and 1-a2

from a population with distribution F.

A
3. Main Results for.ﬁpE.

First we will find relationships of the form

1 1
3 -5

n (ﬁPE—ﬁ) BN G(x;,2;) + n’ H(ﬁo__s_) , (3.1)

([l g

i=1

where G and H are given functions. We then show that in many special cases
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(including LS and LAD) the latter term in (3.1) can be further expanded so

that

1
-4

H*(x ;5 2;) (3.2)

[l R ]

A -y n
n (E'PE—'@) ®n Z G(g(_i,Zi) + N

1 i=1

for some function H*, It is then a simple matter to obtain the limit
. . . A
distribution of n (ﬁpE—ED from (3.2).
In this section we only consider symmetric trimming, so we assume

o, = 1 - o, = 0. Now define a = ng(gz) - Slf(il) and

1 2
c; = (I-ee')id_= (O,Xiz,...,xip)'. The specific relationship of form (3.1)
is:
‘ Theorem 3.1. As n =+ «,

5 1

A - - -
n?(B -8 = (1-20)"' n Q' ez, 10822,

ie~13

i=1

(3.3)

-1 % 8 5§
+ (1-2(1) an (I - EE') (E 0_ _B_) + 1n z E(b(zi) + Op(l)
i=1 '

We will call the first entry of B the intercept and the remaining
entries’will be called the slopes. Since premultiplication of a vector by
(I-ee') simply replaces the first coordinate by 0, the first two terms on
the RHS of (3.3) represent the,sloPeAestimate§. Note the similarity (and
the differencel) between the first term and a representation of the

A
(untrimmed) LS estimate, B; since

® G-p=xx0lxz

and
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@ ! x X +Q
it follows that

-1
Q Eizi + op(l)

L A -5
n*(g-§ =n

he~13

i=1

The second term indicates the contribution of the preliminary estimate to

the trimmed LS estimate; this contribution is only to the slope’estimates.
Since only the first coordinate of e is non-zero, the third term on the RHS
of (3.4) is a representation of the intercept estimate and is identical to a
representation of the trimmed mean in the location model (cf. Corollary 3.1).

To specify the relationship of form (3.2) we make the aSsumption:

C6. For some function g,

-1
Q" x;8(2) * o (1)

1
e

A
n CEO_—) =1

e~

i=1l

A
As indicated above, C6 holds with g(x) = x if.go is the LS estimate.
- A
By Theorem 5.3, C6 holds with g(x) = (£(0))" (%-I(x<0)) if B, is the LAD
estimate. As an immediate consequence of Theorem 3.1, we have our main

result.

Theorem 3.2.

1
“3

Q! e {z,1(8,52,5E,) + ag(z,)}

| o~

i@ - B = (207t n7? .

n (3.4)

+n ? izl 3¢(Zi) + op(l)



In the next section, limit distributions are obtained from (3.4) for
various special cases. Both (3.3) and (3.4) show how the preliminary
K
estimate influences the asymptotic behavior of_@PF.

As a special case of Theorem 3.2 we obtain:

Corollary 3.1. In the location model (p =.1 and x; = 1 for all i)

1
¢

n-(

1
-4

|oo>

.._) =1

bp 3(2;) + o (1)

e~

i=1

The key technical step in the proofs is an "asymptotic linearity"

result for ordered residuals, which generalizes work of Bahadur (1966) and

B Ghosh (1971) for the location model.

. | .
Lemma 3.1. For 0 < 8 < 1, lLet Ton be the [n®]th ordered residual from B -

Then

1
2

ni(ry -Eg) = £(E) T n”

2 ;5 A |
ACRSESLNCILRERE

I oe~13

i

(Recall that we(x) = 0 - I(x<0);)

A
4. Asymptotic Behavior of_ng.

14

In this section we show that Theorem 3,2 leads to these basic conclusions

A A
about_ng.
1) The intercept estimate is asymptotically unbiased if F is symmetric.

2) The slope estimates are asymptotically unbiased even if F is

asymmetric.
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3) The asymptotic variance of the intercept, which does not depend upon

A
the choice of_ﬁo, is that of the trimmed mean in the location model.

A
4) The asymptotic covariance matrix of the slopes depends upon_gO and,

in general, will be difficult to estimate.

Let 0 be a (p-1)X1 vector of zeroes. By C2, there is a 6 such that

1 —0-' 1 9'
Q= . | and Q_1 = ~1
0 Q Y Q
Moreover,
1 D 0 0’
limn™" } —-1£; =
n->o i=1 0 a
and
n 0
Q) ;= (4.1)
i=1 0

A
If we estimate E-With-ﬁPE then the asymptotic bias of the intercept is

-1 E2
E¢(Z;) = (1-20) [ © xdF(x) ,
&
which is zero if F is symmetric about zero. By (3.4) and (4.1) the slope

estimates are asymptotically unbiased, even if F is asymmetric. The

asymptotic variance of the normalized intercept is

Gz(a,F) = Var ¢(Zl) ,
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' the asymptotic variance of the normalized o-trimmed mean in the location
model. The intercept is asymptotically uncorrelated with the slopes, and
- the asymptotic covariance matrix of the normalized slopes is a_loz(a,g,F)

where

0% (a,g,F) = (1-20)7% Var(z,1(E;< 2,5 E,) +ag(Z)))

We see that the asymptotic distribution of the intercept estimate does

1
-3

A A
not depend upon the choice of§_0 provided qgo—ﬁj = Op(n ). On the other
' : A
hand, we see from (3.4) that the slope estimates depend upon_go, since the
unusual situation where a = 0 is ruled out by assumption Cl. Using the

Lindeberg central limit theorem and Theorem 3.2, it is easy to show that

L A
" under C3 and C4, néﬁng-.g-gE¢(Zl)) converges in distribution to a normal

‘l’ law.

-

A
In general, large sample statistical inference based on_§_PE will be a
challenging problem because of the difficulties of estimating
a= (ng(gz)-glf(gl)). Obtaining reasonably good estimates of the density f

might take very large sample sizes.

. A
5. Main Results for.gKB.

In section 1, we defined a 6th regression quantile to be any value of b

which solves (1.5). There may be multiple solutions, though'in our few
examples we found that the solution was always unique. However, the
asymptotic results we present do not depend upon the rule used to select

one. We suppose, then, that a definite rule has been used, and we denote

A
‘ this solution by B(8).
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A I3
For'QKB we obtain an asymptotic representation which is similar to

A
those for B, but perhaps simpler.

PE

A
Theorem 5.1. The estimator B . satisfies

1 1
)

N 1
Wi @- 8 = L X 0E)EE)) £ 9@ e oy, (5D

1

and therefore
P L 2 -1
n?(8 p(@)-B-8(0)) ~ Np(_o_,o (@,F)Q"7) . (5.2)

Expression (5.1) is similar to a result of deWet and Venter (1974,
equation (5)). Note that (5.2) verifies Koenker and Bassett's hypothesis on
the covariance Of-éKB' Moreover, the bias of_/éKB for B involves only the
intercept,_§1; and not the slopes. Also,_léKB is asymptotically unbiased if
F is symmetric.

Theorem 5.1 requires the next result on regression quantiles. Define
B(O) = §-+-§6' The next theorem, which is a special case of a general
result for M-estimators, shows that (ﬁ[e)fﬁﬁe)) is essentially a sum of

independent random variables.

Theorem 5.2. The following representation holds:

i
i.we(zi-ge) + op(l) .

5 A - -1 -1
n*(B(8)-B(8)) = n “(£(&y) ~ Q 7

. 1
1

L naet ren

1

Theorem 5.2 and the Lindeberg central limit theorem provide an easy
proof of Theorem 4.2 of Koenker and Bassett (1978), which we state as a

corollary.
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Corollary 5.1. Let Q = Q(0,,.. .,em;F) be the symmetric mxm matrix defined

1°°
by
ei(l—ej)
Qij = TTETGETT?TETEETT—, 1<i<ji<m.
Then

1
2

A A ' L -1
(B(0;)-B(8;)5..., B8 )-B(6)) ~ Nmp(g, f8Q 7) .

- n

A A A
6. A Choice of § , For Which Byp and Bpp Are Asymptotically Equivalent.

A , .
We have seen that —B-KB is a close analogue to the trimmed mean, but the

A A
behavior of §PE depends upon —B-O and is not similar, in general, to that of

A

A
a trimmed mean. One might ask whether B , can be chosen so that §,. has the

0

A
same asymptotic distribution as B The answer is yes, provided F is

KB*

symmetric and we allow only symmetric trimming.
A A A A ‘
Let _B_PE(RQ,-OL) (=§PE(RQ)) be éPE when -B—O is the average of the oth and
A F A A
(1-0)th regression quantiles, i.e., —B—O = ((B(a)+B(1-a))/2. Then, by

Theorem 5.2, this —/éO satisfies C6 with
g0 = (8,7 U (x-E)) + EEN T b (x-Ey)
If F is symmetric, then El = -EZ, f(F,l) - f(Ez), and therefore
ag(x) = & T(xsE)) + £,1(x2E) . (6.1)

By (3.4) and (6.1),
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PO B n
ni(E pp (R0~ ) = 27 L

-1
. Q" x,;0(2;) + Op(l) s

and therefore, since §(a) = 0, (5.1) implies

B)\H

so that asymptotically there is no difference between trimming with this
preliminary estimate and using Koenker and Bassett's (1978) proposal.
(However, (6.2) does not necessarily hold if F is aéymmetric.)

Notice that (5.1) and (6.2) imply that

35 A L -1 2
n*(B pp(RQ-B) > N(0,Q “07(a,F))

A
7. Comparisons of Several Choices Of-§0'

" -
The choice of_@_O should be based on the efficiency of the resulting

A A
BPE’ not its similarity to_gKB. In this section we find further support

for using EPE(RQ) by comparing.ng(RQ) with two other estimators,.ﬁpE(LS)
and.gPE(LAD), which are.éPE withg0 equal to the least squares estimétor
and éﬁ.S), respectively. Comparisons aré made within the family of

contaminated normal distributions, which was introduced by Tukey (1960) to

study the behavior of statistical procedures under heavy-tailed distributions.

These distributions have the form
F(x) = (1-e)%(x) + ed(x/b) ,

where 0 < € < 1 and ¢ is standard normal distribution. Typically, b > 1 and
®(x/b) is the distribution of the 'bad" data, while € is the proportion of

"bad" observations. Recall that the asymptotic variance of the intercept
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does not depend upon_@o, and that the asymptotic covariance matrix of the
slopes is a-lcz(a,g,F), where 6'1 depends only on the sequence of design

’ matrices. Therefore, we can compare the estimators by using only oz(a,g,F).
Table 1 displays cz(u,g,F) for several choices of o, €, and b, and for g

A A A
corresponding to_ngﬁLS),_ng(LAD), and_ng(RQ). For comparison, we

include the standardized asymptotic variance (that is 02 where oZQ_l is the
asymptotic covariance matrix) for the LS estimate and two M-estimates, a
Huber and a Hampel. Both of the M-estimates use Huber's Proposal 2 to

obtain scale equivariance. The Huber uses
P(x) = min(2, |x|)sign(x),

and the Hampel uses

. ¥(x)

=X if 0sx=1.5
= 1.5 if 1.5 £x < 3.5
= (8-x)/3 if 3.5<x<8
=0 if 8 <£x
and P(-x) = -Y(x). For discussion of Huber's Proposal 2 see Carroll and

Ruppert (1979). Several conclusions emerge from Table 1.
1) EPE(LS) and‘ng(LAD) are rather inefficient at the normal
distribution. |
2)_§PE(RQ)15 quite efficient at the normal model.
3) Under heavy contamination (b large or € 1afge) gPE(LS)’-gPE(LAD)’
andlng(RQ) are relatively efficient compared with LS. Also_ﬁPE(RQ)
and EPE(LAD) compare well against the M-estimates, but EPE(LS) does

- ’ poorly compared to the M-estimates if € = .25, b = 10, and o = .25.
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A
(Intuitively, one can expect that when a = .25,_§PE(LS) will be

heavily influenced by its preliminary estimate, which estimates B

poorly for these b and €.)

Because of 1) and 3), the practice of fitting by least squares or LAD,
removing points corresponding to extreme residuals, and computing the least
squares estimate from the trimmed sample is not an adequate substitute for

robust methods of estimation.

If, instead of removing those observations with the [na] smallest and
A
[na] largest residuals from_go, we remove those observations with the [2na]
largest absolute residuals, then the asymptotic variance of the intercept is

A A
the same as that of the slopes. Specially, 1et‘§A(u)(=§JQ be the estimate

formed in this manner. Then, if F is symmetric,

1 1
% %

(1-2a)n Q'1 ;_'i{zilcgls Z,SE)) + a(_éio-g_)} + op(l) s

1

[{R s =]

A -
Ey-B =n

i
and if C6 holds, then

i, A ' _L - -
z(EA_ B) =n? Q 1 ii{ziI(gls Zis 52;) + ag(Zi)} + op(l) s

(1-20)n

iR e b

i=1

which in the location case reduces to

1. A Y

(1-20)n*(8 ;- B) = n

. {2,1(8,27,58,) + ag(z;)} + 0p(1)

it~

i

The proofs are similar to those of Theorems 3.1 and 3.2 and are omitted.

A .
Since_@A is particularly easy to compute in the location model, it is

very suitable for Monte-Carlo studies. It is hoped that such studies will
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indicate the degree of agreement between the asymptotic énd finite sample
variances of_ﬁ_PE as well as EJV Table 1 displays the variance ofiéA(LS),
i.e.,:\B_A with.go the LS estimate, for sample sizes of n = 50, 100, 200;
300, and 400. The Monte-Carlo swindlé (Gross (1973)) was employed as a
variance reduction technique. One sees from this table that convergence of
the variance to its asymptotic value can be extremely slow for some

distributions, e.g., b = 10 and € = .10 or .25.

8. Large Sample Inference.

Here we sketch a large sampie methodology of confidence ellipsoids and
hypothesis testing based upon.gKB. 'For symmetric trimming and symmetric F;
the theory is gpp}ing}g_t?lépﬁ(RQ) as well. The asymptotic covariance
matrix, oz(u,F)Q°1, can be consiétenti& estimated since n_l'X'X.+ Q, and a

consistent estimate of Oz(a,F) is provided by the next theorem.

Theorem 8.1. Let S be the sum of squares for residuals caleulated from the

trimmed sample, <.e.
S=y' B(Ip-X(X' BX). X')By .
A A )
Let cj = e [ﬁ(aj)-_B_KB(g)] for j =1, 2, and
sz(u F) = (a,-0 )—2((n-p)—1 S+a0 c2-+(1-a )cz‘(u c.+(1 c )2)
o 2" % 1°1 2)¢y = (@6 * (1-0ay)Cy

Then

(@) > o2(oF) .
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Theorem 8.2. Suppose m i& the number of observations which have been
removed by trimming. For 0 < € <1, let F(nl,nz,e) denote the (1-€£)

quantile of the F distribution with n; and n, degrees of freedom and let

_ -1 .2 .
d(nl,nz,s) = (ocz-ocl‘) S.(g_,F)an(nl,nZ,e:) .

Suppose for some integer %, K and ¢ are matrices of sizes Wxp and X1,
respectively, and that X has rank %. If K'(B + 8(a)) = ¢, then

. A -1 -1 A
lim P{(K'QKB(QL_)-E)' [K' (X' AX) ™" K177 (K' Bp(@)-0) 2 d(% ,n-m-p,€)} = € .
N>

Letting K = Ip and ¢ = B-68(a), the confidence ellipsoid

(§K5(23-§-§(9°,_))' (X' AX) (QKB@-QQ@) < d(, n-m-p, €)  (8.1)

for B+ §(a) has an asymptotic confidence coefficient of (l1-g). Moreover, if

we test
HO: K'(B+8(@)) = ¢
versus
Hi: K'(B+8(@) # ¢
by rejecting HO whenever | , *

K B p(@-0 K@ A0 KT @ @m0 2d®amp,e)  (8.2)

then the asymptotic size of our test is €.
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. Of course, in the special cases where o, = 0, a, = 1 (som=0and A = I)

and F is Gaussian, (8.1) is an exact l-¢€ cbnfidenceAellipsoid and (8.2) is

- an exact size € test.
9. Examgles.

In this section we contrast:the results obtained for different
estimates when applied to two data sets: (i) the stackloss data set given
by Andrews (1974) and (ii) a set of measurements of water salinity and river
discharge taken in North Carolina's Pamlico Sound (see Table 2). The
estimates we consider are listed in Table 2. Both HUBER and ANDREW are

M-estimates and are calculated by the iterative solution to

. ' 121 Y((yy-x;B)/8)x; = 0
where s = MAD/C, C is a constant, and MAD = medién of thé absolute values of
the residuals. For Huber, C = .6745 and P(z) = max(-1.25 ,min(Z,l.ZS)).
This choice of ¢ should give results for normal data similar to those for
the regression analogues of a 10% trimmed mean. The estimate ANDREW uses
C =1 and ¥(Z) = sine(2)I(|z]|sm). |

We defined_gKB a bit differently than in section 2. Bofh data sets
have four independent variables and each regression quantile hyperplane

. A
passes through four observations. Therefore, if one defines__B_KB as in

.
section 2, at least eight observations are trimmed. Instead, we definedﬁKB
< by requiring strict inequality in (2.2). If o = (.1,.9), this leads to no
trimming for the stackloss data, and only two observations trimmed for the
‘ salinity data, so we use O = (.15,.85). Then observations 4, 9, and 21 are

trimmed in the stackloss data and observations 1, 13, 15, and 17 in the

salinity data.
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>

A . .
An important advantage of EPE(RQ) over BKB is that residuals from a | .

preliminary estimate are rarely tied (at least in these data sets), and with
BPE(RQ) one can have the actual percent trimming close to any specified a. .
The observations deleted when calculating_ﬁPE(RQ,.lo) are 1, 3, 9, and 21
for the stackloss data and 1, 11, 13, 15, 16, and 17 for the salinity data.

Since both data sets have outliers, asymptotic theory and Monte-Carlo

studies for the location problem (Andrews et al. (1972)) lead us to expect

>

that LSE will be worst, ANDREW will do very well, and HUBER B (RQ), and

-éKB vﬁj}»have ropghly comparable performances. Of course, w1th these data
the true parameters are unknown, and we can only measure performance by
closeness of fit te the bulk of the observations, say with MAD or IQR
(= interquartile range of the residuals). Using either MAD or IQR as
‘criteria, our study does seem to agree with our expectations. The
redescending M-estimator (ANDREWS) appears to be best overall.

Also, we haﬁe included éﬁ.S), the least absolute deviation estimate.
Its performance4was quite good here, but of course it is known to have
rather poor efficiency at the normal model. |

In Table 3, we list the regression coefficients, MAD, and IQR for each
estimator. Figures 1 and 2 are box.plots of the residuals and were obtained
from the SAS package.

Least squares computations were performed on SAS. Regression quantiles

were computed using MPS/360, a linear programming package, and LPMPS, a

.
preprocessor for MPS/360 (McKeown and Rubin (1977)).
10. Summary.

We have con51dered two methods of defining a trimmed least squares '

estimator: wh1ch uses Koenker and Bassett's (1978) regression

BKB’
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quantiles, andlng, which uses a preliminary estimate.

Despite its intuitive appeal,_/B\_PE based on an arbitrary preliminary
estimate will not be very satisfactory. Its behavior will
depend heavily upon the choice of the preliminary estimate. Some choices
(e.g. median regression) result in very inefficient trimmed estimates at the
normal distribution, even if the trimﬁing proportion is small. Other
choices (e.g. least squares) can lead to low efficiency for heavy-tailed
distributions, especially if the trimming proportion is high. Moreover, the
contribution of the pfeliminary estimate to the variance of_gPE depends on
the density of the error distribution and might be difficult to estimate in
practical situations.

The estimate‘gKB behaves analogously to a trimmed mean. Also, for a
particular choice of preliminary estimate, the average of.two regression‘
quantiles,_g_PE (which for this preliminary estimate we call_ﬁPE(RQ)), is
asymptotically equivalent tongB, provided the error distribution is
symmetric.

For moderately-sized data sets,q@PE(RQ) has one major advantage over
8
=K

close to any specified a. Since the number of observations lying on a

A
B’ with_@PE(RQ) the proportion of observations rejected can be made quite

regression quantile hyperplane is typically equal to the number of independent
A . . A .
variables,_@KB does not share this property with_@PE(RQ).
A A
The trimmed estimates_@KB andlng(RQ) seem to be worthwhile alternatives

to M-estimates based on Huber's ¥, but perhaps not to redescending M-estimates.
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Appendix

Lemma A.1. With probability one there exists no vector, b, and p+l rows of

such that y; = b for j = 1,...,p+l.

Y X5y Xy Xi5)2

Proof. Routine. Use the continuity of F. |

A
Lemma A.2. Let TioeeesT) be the residuals from_go, suppose 0 < 6 < 1, and

let My be a sequence of solutions to

n .. -
.Z pe(ri-un) = min .,
i=1 :

Then

L
-k
n

It ~13

wG(ri-IﬁJ + 0 a.é. (A1)

i=1

A
In addition, the sequence of solutions B(0) of (1.5) satisfies

1, 1 A :

=2

n"t ) X Uely;-x; BO)) > 0 a.s. (A2)
i=1

Proof. We will proof only (A2) because (Al) can be demonstrated in a

similar manner.

Let {gj}?=l be the standard basis of RP. Define

n A .



28

n A .
HJ(a) = .Zl xijwe(yi—£1(§(6)+agj)) *
Notice that Hj(a) is non-decreasing. Therefore, for € > 0 .
H.(-€) < H,(0) < H, () , B
J( ) J() J()
and because Gj(a) achieves its minimum at a = o,
Hj(-e)rs 0 and Hj(e) >0 .

Consequently,

H; ()| < H;(e) - Hy(-e) . (A3)

Letting € -~ 0 in (A3), we see that

1~

;@] <

i=1

Now (A2) follows from Lemma A.1l. A s

Lemma A.3. For A ¢ RP, define

y &, =
M(a) =n"° ] X bg(Z;-X An f-g) -
i=1
Then for all L > 0 )
sup | [M(8) - M(0) + £(EQAI| = 0 (1) . 4y

o</ [4] st
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Proof. The result follows from Lemma 4.1 of Bickel (1975) because
EM_(8)-M_(0)) + -£(Eg)e' b . o

Remark. Equation (A4) is a special case of the conclusion of Jureckovd's

(1977) Theorem 4.1, which she proves under conditions different from ours.

1
%

Her C.. is our X..n
Jji 1]

Proof of Lemma 3.1. Since u = Ton is a solution to

il B~

pe(ri_ U) = min >

i=1

(Al) implies that

Uy (23 Eg- x; (Bom B) + elrgy - £)) + 0 aus. NS

I
Ny
e~

i=1

1 1
-4 -4

n
Define V(A) = n } 0, (Z,-x.An
i=1 e "1 =i—

(1977, proof of Lemma 5.2) and (A4), we can show that for all € > 0 there

-Eé). Using the method of Jureckova

exists n, K, and n0 such that

P( inf |V(8)|<n) < e for n 2 n, . (A6)
leral>x

Next, (A5) and (A6) allow us to conclude that

n®(e' (By-B) +rg -8yl = Op(l) . (A7)

L A

By (A7) and C5 we may substitute,n2(60;£§+§ﬁren-£e)) for A in (A4) and

complete the proof by examining first coordinates, using C2. a
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Lemma A.4. Let Din(=Di) be a rxc matrix. Suppose

-1 38 2
st 3 |10, 11 <, :
n i=1
where HDiI |2 = Tr D; D, is the Euclidean novm of D;. Let I be an open
interval containing El and 62 and let the function g(x) be defined for all x

and Lipschitz continuous on 1. For A4, '_4_2," and és in RP and A= (Al, A, és)

define
- —1/27 2 -1/2 { "1/2 < < A —1/2}
T(A) = n 121 D;g(Z;+A X n )I{g, + x; 4D 2, <E, +x;A,m -
Then, for all M > 0,
sup  |T()-T(Q-E(T@A)-TO)] =0 (1) .
Hlalfswm )

Proof. The proof is very similar to that of Bickel's (1975) Lemma 4.1 and

is omitted here, but it can be found in Ruppert and Carroll (1978). 0

A, in RP and A = (A, 4 ,), define

Proof of Theorem 3.1. For A

1° =2
n

_ -1 ' ! -k 1 -y

U(d) =n izl x,x; I(E, +x;8, 0" 2, SE +x;8,n }
and

W(A s IZI I{ 2 ' e

= <
(A) = n L X, 25 g1+x1A1n S21“52+3(—1A2n }

i
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Using Lemma A.4, it is easy to show that for all M > O,

sup - |U(d) - (1-20)Q| = o (1) (A8)
os|[A]|sM P

and

SUP W) - WD) - QUA, &, £(E)- A4 &y £(ED)]

1) . AS
o< 4] | <M pt - 09

! .
Then using the fact that X, e= 1, we have

1] A
Hrpy sy sry b= HE + x,((B-B) velr =€) < Z

<8, 4 x (BB +elry -},

L oA )
and so replacing ég by nz((_B_O- 8) +§_(r%n— 52)) for 2 = 1,2 in (A8) and (A9),

we have
A lxrAX) = (1-20)Q + 0, (1) - (A10)
and

n" ¢ X' A(y - AXB) = W(0) + Q{Ezf(iz)nl/z(g_o'ﬁ“i(rzn' &)

(All)
L A
- Elf(gl)n (E()-§+§‘(rln_ E.;l))} + Op(l) .
By (A10)
ril/z(X'A(y—AXﬁ)) = (1-2a)n1/2 Q(EPE-@ + op(l) . (A12)

By (All), (Al2) and Lemma 3.1
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5% oA 5y
(1-200n7 QB pg- B) = W(O) + Qg en™™ [ ¥ ((Z;-E)) - Ejen

‘ i=1 i

1
-4

[ e §=1

s n? a(l —gg')(go-ﬁ)}? op(l)

Then (3.3) follows from the definition of W(O0). 0

Proof of Theorem 5.3. Using (A4) and the method of Jureckovd (1977, proof

of Lemma 5.2) we can show that

L A

n*(8(6)- B(6)) = Op(l)

L A
Therefore, we can substitute nzcgﬁgg-lgce)) for A in (A4) and use (A2) to

obtain

M(0) = £(E)n*(B8)- B(8)) + o (1)

and Theorem 5.3 follows easily. O

Proof of Theorem 5.1. The proof is quite similar to the proof of

Theorem 3.1 and can be found in Ruppert and Carroll (1978). | o

. P . _ ,
Proof of Theorem 8.1. For él,_A_z,_A_3 in RY define A = (él,éz,és) and

n
- -1 : - 2 v -1 ' -k
V(A) = n 121 (Z;-x Agn - 8(@)" T(E+x; 8,0 SZ;<Ex A 0

We see that

S ='hV(/rT(§K'B(§t_)-(_B_+§ﬂ(oc)) , /E(ﬁ(ocl)—gcal)) , /ﬁ(ﬁ(az)-g(ocz)))
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Applying Lemma A.4 with g(x) = x* and D, = 1 we have for M > 0

SUp  |y(A) - V(0) - E(V(A)-V(O)| = o (1) .
|A|sM | P

By a Taylor expansion of F and additional simpie calculations

E(V(4)-V(0)) > 0 ,

whence

sup  |V(8) - V(O] = o (1)
|al<M |

Therefore by Corollary 5.1 and (5.2) we have

s = V(0) + o (1)

Now Var V(0) = 0, so by Chebyshev's inequality,

]
il

EV(0) + op(l)

B(Z,- 6(@)° 1(§;SZ,5E,) + 0, (1)

Furthermore for j = 1,2

Cj = gj - 6(9"_) + Op(l)

by Corollary 5.1 and (5.2); and Theorem 8.1 follows. O

Proof of Theorem 8.2. This follows in a straightforward manner from (5.2),

Theorem 8.1, and Theorem 4.4 of Billingsley (1968). g
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The water salinity data set.
at time period i, SALLAG = salinity at time i-1,
six biweekly periods in March-May and H20FLOW = river discharge in time 1.

OBS

W W 3 N U1 B~ -

RN RN RN NN NN e e e
0 3 O 1 B WNN R O W N U AW N O

SALINITY

7.6
7.7
4.3
5.9
5.0
6.5
8.3
8.2
13.2
12.6
10.4
10.8
13.1
12.3
10.4
10.5
7.7
9.5
12.0
12.6
13.6
14.1
13.5
11.5
12.0
13.0
14.1
15.1

Table 2

SALLAG

8.2
7.6
4.6
4.3
5.9
5.0
6.5
8.3

10.1

13.2

12.6

10.4

10.8

13.1

13.3

10.4

10.5
7.7

10.0

12.0

12.1

13.6

15.0

13.5

11.5

12.0

13.0

14.1

TREND

4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
0
1
4
5
0
1
2
3
4
5

i = TREND = one of the

H20FLOW

23.
23.
26.
24.
29.
24.
23.
.862
22.
23.
25.
.430

21

22

21,
22.
23.
33.
.859

.686-

24
22

21.
.041
21.
21.
25.
26.
22.
21.
20.
21,

22

005
873
417
868
895
200
215

274
830
144

785
380
927
443

789

033
005
865
290
932
313
769
393

YEAR

72

73

74

75

76

77

35:

The values are biweekly averages of SALINITY



Table 3

Regression coefficients, MAD and IQR for the Stackloss data.

Code

LSE
(.50)

KB(.lS)

|> >

A
8 pp (RQ, .10)

HUBER

ANDREW

Code

LSE

(.50)

o> o>

KB(.15)
A
B pg (RQ, . 10)

HUBER

ANDREW

TemEerature

Intercept Air Flow
39.92 -.72 -1.30
39.69 -.83 -.57
42,83 -.93 -.63
40.37 -.72 -.96
41.00 -.83 -.91
37.20 -.82 -.52
Water Salinity Data
Intercept SALLAG TREND
9.59 777 -.026
14.21 .740 -.111
9.69 .800 -.128
14.49 774 -.160
13.36 .756 -.094
17.22 .733 . -.196

Acid

.15
.06

.10
.07

.13

.07

H20FLOW
-.295
-.458

-.290

-.488

-.439

-.578

1.60
1.37

1.63

.99

MAD
.72
.50

.67
.60

.56

.47

36

.49

.59

.07

.50
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