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Abstract. We study ways to expedite Yates’s algorithm for computing the zeta and
Moebius transforms of a function defined on the subset lattice. We develop a trimmed
variant of Moebius inversion that proceeds point by point, finishing the calculation at
a subset before considering its supersets. For an n-element universe U and a family F

of its subsets, trimmed Moebius inversion allows us to compute the number of packings,
coverings, and partitions of U with k sets from F in time within a polynomial factor (in
n) of the number of supersets of the members of F.

Relying on an intersection theorem of Chung et al. (1986) to bound the sizes of set
families, we apply these ideas to well-studied combinatorial optimisation problems on
graphs of maximum degree ∆. In particular, we show how to compute the Domatic Number
in time within a polynomial factor of (2∆+1 − 2)n/(∆+1) and the Chromatic Number in

time within a polynomial factor of (2∆+1 − ∆ − 1)n/(∆+1). For any constant ∆, these
bounds are O

`
(2− ε)n

´
for ε > 0 independent of the number of vertices n.

1. Introduction

Yates’s algorithm from 1937 is a kind of fast Fourier transform that computes for a
function f : {0, 1}n → R and another function υ : {0, 1} × {0, 1} → R the values

f̂(x1, . . . , xn) =
∑

y1,...,yn∈{0,1}

υ(x1, y1) · · · υ(xn, yn)f(y1, . . . , yn) . (1.1)

simultaneously for all X = (x1, . . . , xn) ∈ {0, 1}n using only O(2nn) operations, instead of
the obvious O(4nn). The algorithm is textbook material in many sciences. Yet, though it
appears in Knuth [13, §3.2], it has received little attention in combinatorial optimisation.

Recently, the authors [3, 4] used Yates’s algorithm in combination with Moebius inver-
sion to give algorithms for a number of canonical combinatorial optimisation problems such
as Chromatic Number and Domatic Number in n-vertex graphs, and n-terminal Minimum
Steiner Tree, in running times within a polynomial factor of 2n.
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From the way it is normally stated, Yates’s algorithm seems to face an inherent 2n

lower bound, up to a polynomial factor, and it also seems to be oblivious to the structural
properties of the transform it computes.

The motivation of the present investigation is to expedite the running time of Yates’s
algorithm for certain structures so as to get running times with a dominating factor of the
form (2−ε)n. From the perspective of running times alone, our improvements are modest at
best, but apart from providing evidence that the aesthetically appealing 2n bound from [4]
can be beaten, the combinatorial framework we present seems to be new and may present
a fruitful direction for exact exponential time algorithms.

1.1. Results

In a graph G = (V,E), a set D ⊆ V of vertices is dominating if every vertex not in D
has at least one neighbour in D. The domatic number of G is the largest k for which V can
be partitioned in to k dominating sets. We show how to compute the domatic number of
an n-vertex graph with maximum degree ∆ in time

O∗
(
(2∆+1 − 2)n/(∆+1)

)
;

the O∗ notation suppresses factors that are polynomial in n. For constant ∆, this bound is
always better than 2n, though not by much:

∆ 3 4 5 6 7 8 · · ·

(2∆+1 − 2)1/(∆+1) 1.9344 1.9744 1.9895 1.9956 1.9981 1.9992 · · ·
The chromatic number of a graph is the minimum k for which the vertex set can be

covered with k independent sets; a set I ⊆ V is independent if no two vertices in I are
neighbours. We show how to compute the chromatic number of an n-vertex graph with
maximum degree ∆ in time

O∗
(
(2∆+1 −∆− 1)n/(∆+1)

)
.

This is slightly faster than for Domatic Number:
∆ 3 4 5 6 7 8 · · ·

(2∆+1 −∆− 1)1/(∆+1) 1.8613 1.9332 1.9675 1.9840 1.9921 1.9961 · · ·
One notes that even for moderate ∆, the improvement over 2n is minute. Moreover,

the colouring results for ∆ ≤ 5 are not even the best known: by Brooks’s Theorem [5],
the chromatic number of a connected graph is bounded by its maximum degree unless
the graph is complete or an odd cycle, both of which are easily recognised. It remains to
decide if the chromatic number is 3, 4, or 5, and with algorithms from the literature, 3-
and 4-colourability can be decided in time O(1.3289n) [1] and O(1.7504n) [6], respectively.
However, this approach does stop at ∆ = 5, since we know no o(2n) algorithm for 5-
colourability. Other approaches for colouring low-degree graphs are known via pathwidth:
given a path decomposition of width w the k-colourability can be decided in time kwnO(1)

[11]; for 6-regular graphs one can find a decomposition with w ≤ n(23 + ε)/45 for any ε > 0
and sufficiently large n [11], and for graphs with m edges one can find w ≤ m/5.769 +
O(log n) [12]. However, even these pathwidth based bounds fall short when k ≥ 5—we are
not aware of any previous o(2n) algorithm.

For the general case, it took 30 years and many papers to improve the constant in
the bound for Chromatic Number from 2.4423 [14] via 2.4151 [9], 2.4023 [6], 2.3236 [2],
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Figure 1: Trimmed evaluation. Originally, Yates’s algorithm considers
the entire subset lattice (left). We trim the evalation from below by
considering only the supersets of ‘interesting’ points (middle), and from
above by abandoning computation when we reach certain points (right).

to 2 [4], and a similar (if less glacial) story can be told for the Domatic Number. None
of these approaches was sensitive to the density of the graph. Moreover, what interests us
here is not so much the size of the constant, but the fact that it is less than 2, dispelling
the tempting hypothesis that 2n should be a ‘difficult to beat’ bound for computing the
Chromatic Number for sparse graphs. In §4 we present some tailor-made variants for
which the running time improvement from applying the ideas of the present paper are more
striking.

Chromatic Number and Domatic Number are special cases of set partition problems,
where the objective is to partition an n-element set U (here, the vertices of a graph) with
members of a given family F of its subsets (here, the independent or dominating sets of the
graph). In full generality, we show how to compute the covering, packing, and partition
numbers of (U,F) in time within a polynomial factor of

|{T ⊆ U : there exists an S ∈ F such that S ⊆ T}| , (1.2)

the number of supersets of the members of F. In the worst case, this bound is not better
than 2n, and the combinatorial challenge in applying the present ideas is to find good bounds
on the above expression.

1.2. Techniques

The main technical contribution in this paper, sketched in Figure 1, is that Yates’s
algorithm can, for certain natural choices of υ : {0, 1} × {0, 1} → R, be trimmed by
considering in a bottom-up fashion only those X ∈ {0, 1}n that we are actually interested
in, for example those X for which f(X) 6= 0 and their supersets. (We will understand
X as a subset of {1, . . . , n} whenever this is convenient.) Among the transforms that are
amenable to trimming are the zeta and Moebius transforms on the subset lattice.

We use the trimmed algorithms for zeta and Moebius transforms to expedite Moebius
inversion, a generalisation of the principle of inclusion–exclusion, which allows us to compute
the cover, packing, and partition numbers. The fact that these numbers can be computed
via Moebius inversion was already used in [2, 3, 4], and those parts of the present paper
contain little that is new, except for a somewhat more explicit and streamlined presentation
in the framework of partial order theory.

The fact that we can evaluate both the zeta and Moebius transforms pointwise in such
a way that we are done with X before we proceed to Y for every Y ⊃ X also enables us to
further trim computations from what is outlined above. For instance, if we seek a minimum
set partition of sets from a family F of subsets of U , then it suffices to find the minimum
partition of all X such that U \X = S for some S ∈ F. In particular, we need not consider
how many sets it takes to partition X for X’s large enough for U \X not to contain any
set from F.

The main combinatorial contribution in this paper is that if F is the family of maximal
independent sets, or the family of dominating sets in a graph, then we show how to bound
(1.2) in terms of the maximum degree ∆ using an intersection theorem of Chung et al.
[8] that goes back to Shearer’s Entropy Lemma. For this we merely need to observe that
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the intersection of F and the closed neighbourhoods of the input graph excludes certain
configurations.

In summary, via (1.2) the task of bounding the running time for (say) Domatic Number
reduces to a combinatorial statement about the intersections of certain families of sets.

Notation. Yates’s algorithm operates on the lattice of subsets of an n-element universe U ,
and we find it convenient to work with notation established in partial order theory.

For a family F of subsets of U , let min F (respectively, max F) denote the family of
minimal (respectively, maximal) elements of F with respect to subset inclusion. The upper
closure (sometimes called up-set or filter) of F is defined as

↑F = {T ⊆ U : there exists an S ∈ F such that S ⊆ T } .
For a function f defined on subsets of U , the support of f is defined as

supp(f) = {X ⊆ U : f(X) 6= 0} .
For a graph G, we let D denote the family of dominating sets of G and I the family

of independent sets of G. Also, for a subset W ⊆ V of vertices, we let G[W ] denote the
subgraph induced by W . For a proposition P , we use Iverson’s bracket notation [P ] to
mean 1 if P is true and 0 otherwise.

2. Trimmed Moebius Inversion

For a family F of sets from {0, 1}n and a set X ∈ {0, 1}n we will consider k-tuples
(S1, . . . , Sk) with Si ∈ F and Si ⊆ X. Such a tuple is disjoint if Si1 ∩ Si2 = ∅ for all
1 ≤ i1 < i2 ≤ k, and covering if S1 ∪ · · · ∪ Sk = X. From these concepts we define for fixed
k

(1) the cover number c(X), viz. the number of covering tuples,
(2) the packing number p(X), viz. the number of disjoint tuples,
(3) the partition number or disjoint cover number d(X), viz. the number of tuples that

are both disjoint and covering.
In this section we show how to compute these numbers in time |↑F|nO(1), rather than

2nnO(1) as in [3, 4]. The algorithms are concise but somewhat involved, and we choose
to present them here starting with an explanation of Yates’s algorithm. Thus, the first
two subsections are primarily expository and aim to establish the new ingredients in our
algorithms.

At the heart of our algorithms lie two transforms of functions f : {0, 1}n → R on the
subset lattice. The zeta transform fζ is defined for all X ∈ {0, 1}n by

(fζ)(X) =
∑
Y⊆X

f(Y ) . (2.1)

(The notation fζ can be read either as a formal operator or as a product of the 2n-
dimensional vector f and the matrix ζ with entries ζY X = [Y ⊆ X].) The Moebius transform
fµ is defined for all X ∈ {0, 1}n by

(fµ)(X) =
∑
Y⊆X

(−1)|X\Y |f(Y ) . (2.2)
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These transforms are each other’s inverse in the sense that f = fζµ = fµζ, a fundamental
combinatorial principle called Moebius inversion. We can (just barely) draw an example
in four dimensions for a function f given by f({4}) = f({1, 2, 4}) = 1, f({1, 3}) = 2 and
f(X) = 0 otherwise:

1

1

2

ζ−→
µ←− 1

1 1 1

2 3 3

2

2

4

Another example that we will use later is the connection between the packing number and
the disjoint cover number,

p = dζ , (2.3)
which is easy to verify: By definition,

(dζ)(X) =
∑
Y⊆X

d(Y ) .

Every disjoint k-tuple (S1, . . . , Sk) with S1 ∪ · · · ∪ Sk ⊆ X appears once on the right hand
side, namely for Y = S1 ∪ · · · ∪ Sk, so this expression equals the packing number p(X).

2.1. Yates’s algorithm

Yates’s algorithm [17] expects the transform in the form of a function υ : {0, 1} ×
{0, 1} → R and computes the transformed values

f̂(X) =
∑

Y ∈{0,1}n
υ(x1, y1) · · · υ(xn, yn)f(Y ) . (2.4)

simultaneously for all X ∈ {0, 1}n. Here, we let (x1, . . . , xn) and (y1, . . . , yn) denote the
binary representations (or, ‘incidence vectors’) of X and Y , so xj = [j ∈ X] and yj = [j ∈
Y ]. To obtain (2.1) set υ(x, y) = [y ≤ x] and to obtain (2.2) set υ(x, y) = [y ≤ x](−1)x−y.

The direct evaluation of (2.4) would take 2n evaluations of f for each X, for a total of
O(2n2nn) = O(4nn) operations. The zeta and Moebius transforms depend only on Y ⊆ X,
so they would require only

∑
X 2|X| =

∑
0≤i≤n

(
n
i

)
2i = 3n evaluations. Yates’s algorithm is

faster still and computes the general form in O(2nn) operations:

Algorithm Y. (Yates’s algorithm.) Computes f̂(X) defined in (2.4) for all X ∈ {0, 1}n given f(Y )
for all Y ∈ {0, 1}n and υ(x, y) for all x, y ∈ {0, 1}.

Y1: For each X ∈ {0, 1}n, set g0(X) =f(X).
Y2: For each j = 1, . . . , n and X ∈ {0, 1}n, set

gj(X) = υ([j ∈ X], 0)gj−1(X \ {j}) + υ([j ∈ X], 1)gj−1(X ∪ {j}) .
Y3: Output gn.

The intuition is to compute f̂(X) ‘coordinate-wise’ by fixing fewer and fewer bits of X
in the sense that, for j = 1, . . . , n,

gj(X) =
∑

y1,...,yj∈{0,1}

υ(x1, y1) · · · υ(xj , yj)f(y1, . . . , yj , xj+1, . . . , xn) . (2.5)
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Indeed, the correctness proof is a straightforward verification (by induction) of the above
expression.

2.2. Trimmed pointwise evaluation

To set the stage for our present contributions, observe that both the zeta and Moebius
transforms ‘grow upwards’ in the subset lattice in the sense that supp(fζ), supp(fµ) ⊆
↑supp(f). Thus, in evaluating the two transforms, one ought to be able to trim off redundant
parts of the lattice and work only with lattice points in ↑supp(f).

We would naturally like trimmed evaluation to occur in O(|↑supp(f)|n) operations, in
the spirit of Algorithm Y. However, to obtain the values at X in Step Y2 of Algorithm Y,
at first sight it appears that we must both ‘look up’ (at X ∪ {j}) and ’look down’ (at
X \{j}). Fortunately, it suffices to only ‘look down’. Indeed, for the zeta transform, setting
υ(x, y) = [y ≤ x] and simplifying Step Y2 yields

gj(X) = [j ∈ X]gj−1(X \ {j}) + gj−1(X) . (2.6)

For the Moebius transform, setting υ(x, y) = [y ≤ x](−1)x−y and simplifying yields

gj(X) = −[j ∈ X]gj−1(X \ {j}) + gj−1(X) . (2.7)

Furthermore, it is not necessary to look ‘too far’ down: for both transforms it is immediate
from (2.5) that

gj(X) = 0 holds for all X /∈ ↑supp(f) and j = 0, . . . , n . (2.8)

In what follows we tacitly employ (2.8) to limit the scope of (2.6) and (2.7) to ↑supp(f).
The next observation is that the lattice points in ↑supp(f) can be evaluated in order of

their rank, using sets L(r) containing the points of rank r. Initially, the sets L(r) contain
only supp(f), but we add elements from ↑supp(f) as we go along. These observations result
in the following algorithm for evaluating the zeta transform; the algorithm for evaluating
the Moebius transform is obtained by replacing (2.6) in Step Z3 with (2.7).
Algorithm Z. (Trimmed pointwise fast zeta transform.) Computes the nonzero part of fζ given the
nonzero part of f . The algorithm maintains n+1 families L(0), . . . ,L(n) of subsets X ∈ {0, 1}n; L(r)
contains only sets of size r. We compute auxiliary values gj(X) for all 1 ≤ j ≤ n and X ∈ ↑supp(f);
it holds that gn(X) = (fζ)(X).

Z1: For each X ∈ supp(f), insert X into L(|X|). Set the current rank r = 0.
Z2: Select any X ∈ L(r) and remove it from L(r).
Z3: Set g0(X) = f(X). For each j = 1, . . . , n, set

gj(X) = [j ∈ X]gj−1(X \ {j}) + gj−1(X) .

[At this point gn(X) = (fζ)(X).]
Z4: If gn(X) 6= 0, then output X and gn(X).
Z5: For each j /∈ X, insert X ∪ {j} into L(r + 1).
Z6: If L(r) is empty then increment r ≤ n until L(r) is nonempty; terminate if r = n and L(n)

is empty.
Z7: Go to Z2.

Observe that the evaluation at X is complete once Step Z3 terminates, which enables
further trimming of the lattice ‘from above’ in case the values at lattice points with higher
rank are not required.
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By symmetry, the present ideas work just as well for transforms that ‘grow downwards’,
in which case one needs to ‘look up’. However, they do not work for transforms that grow
in both directions, such as the Walsh–Hadamard transform.

In the applications that now follow, f will always be the indicator function of a family
F. In this case having supp(f) quickly available translates to F being efficiently listable;
for example, with polynomial delay.

2.3. Covers

The easiest application of the trimmed Moebius inversion computes for each X ∈ ↑F
the cover number c(X). This is a particularly straightforward function of the zeta transform
of the indicator function f : simply raise each element of fζ to the kth power and transform
the result back using µ. To see this, observe that both sides of the equation

(cζ)(Y ) =
(
(fζ)(Y )

)k (2.9)

count the number of ways to choose k-tuples (S1, . . . , Sk) with Si ⊆ Y and Si ∈ F. By
Moebius inversion, we can recover c by applying µ to both sides of (2.9).
Algorithm C. (Cover number.) Computes c(X) for all X ∈ ↑F given F. The sets L(r) and auxiliary
values gj(X) are as in Algorithm Z; also required are auxiliary values hj(X) for Moebius transform.

C1: For each X ∈ F, insert X into L(|X|). Set the current rank r = 0.
C2: Select any X ∈ L(r) and remove it from L(r).
C3: [Zeta transform.] Set g0(X) = [X ∈ F]. For each j = 1, . . . , n, set

gj(X) = [j ∈ X]gj−1(X \ {j}) + gj−1(X) .

[At this point it holds that gn(X) = (fζ)(X).]
C4: [Evaluate zeta transform of c(X).] Set h0(X) = gn(X)k.
C5: [Moebius transform.] For each j = 1, . . . , n, set

hj(X) = −[j ∈ X]hj−1(X \ {j}) + hj−1(X) .

C6: Output X and hn(X).
C7: For each j /∈ X, insert X ∪ {j} into L(r + 1).
C8: If L(r) is empty, then increment r ≤ n until L(r) is nonempty; terminate if r = n and L(n)

is empty.
C9: Go to C2.

2.4. Partitions

What makes the partition problem slightly less transparent is the fact that we need to
use dynamic programming to assemble partitions from sets with different ranks. To this
end, we need to compute for each rank s the ‘ranked zeta transform’

(fζ(s))(X) =
∑

Y⊆X,|Y |=s

f(Y ) .

For rank s, consider the number d(s)(Y ) of tuples (S1, . . . , Sk) with Si ∈ F, Si ⊆ Y ,
S1 ∪ · · · ∪ Sk = Y and |S1| + · · · + |Sk| = s. Then d(Y ) = d(|Y |)(Y ). Furthermore, the
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zeta-transform (d(s)ζ)(X) counts the number of ways to choose (S1, . . . , Sk) with Si ⊆ X,
Si ∈ F, and |S1|+ · · ·+ |Sk| = s. Another way to count the exact same quantity is

q(k, s,X) =
∑

s1+···+sk=s

k∏
i=1

(fζ(si))(X) . (2.10)

Thus we can recover d(s)(Y ) from q(k, s,X) by Moebius inversion.
As it stands, (2.10) is time-consuming to evaluate even given all the ranked zeta trans-

forms, but we can compute it efficiently using dynamic programming based on the recurrence

q(k, s,X) =

{∑s
t=0 q(k − 1, s− t,X)(fζ(t))(X), if k > 1 ,

(fζ(s))(X), if k = 1 .

This happens in Step D4.
Algorithm D. (Disjoint cover number.) Computes d(X) for all X ∈ ↑F given F. The sets L(r) are
as in Algorithm Z; we also need auxiliary values g(s)

j (X) and h(s)
j (X) for all X ∈ ↑F, 1 ≤ j ≤ n, and

0 ≤ s ≤ n; it holds that g(s)
n (X) = (fζ(s))(X) and h

(s)
n (X) = d(s)(X).

D1: For each X ∈ F, insert X into L(|X|). Set the current rank r = 0.
D2: Select any X ∈ L(r) and remove it from L(r).
D3: [Ranked zeta transform.] For each s = 0, . . . , n, set g(s)

0 (X) = [X ∈ F][|X| = s]. For each
j = 1, . . . , n and s = 0, . . . , n, set

g
(s)
j (X) = [j ∈ X]g(s)

j−1(X \ {j}) + g
(s)
j−1(X) .

[At this point it holds that g(s)
n (X) = (fζ(s))(X) for all 0 ≤ s ≤ n.]

D4: [Evaluate zeta transform of d(s).] For each s = 0, . . . , n, set q(1, s) = g
(s)
n (X). For each

i = 2, . . . , k and s = 0, . . . , n, set q(i, s) =
∑s

t=0 q(i− 1, s− t)g(t)
n (X).

D5: [Ranked Moebius transform.] For each s = 0, . . . , n, set h(s)
0 (X) = q(k, s). For each j =

1, . . . , n and s = 0, . . . , n, set

h
(s)
j (X) = −[j ∈ X]h(s)

j−1(X \ {j}) + h
(s)
j−1(X) .

[At this point it holds that h(s)
n (X) = d(s)(X) for all 0 ≤ s ≤ n.]

D6: Output X and h
(|X|)
n (X).

D7: For each j /∈ X, insert X ∪ {j} into L(r + 1).
D8: If L(r) is empty, then increment r ≤ n until L(r) is nonempty; terminate if r = n and L(n)

is empty.
D9: Go to D2.

2.5. Packings

According to (2.3), to compute p(X) it suffices to zeta-transform the partition number.
This amounts to running Algorithm Z after Algorithm D. (For a different approach, see [4].)
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3. Applications

3.1. The number of dominating sets in sparse graphs

This section is purely combinatorial. Let D denote the dominating sets of a graph. A
complete graph has 2n − 1 dominating sets, and sparse graphs can have almost as many:
the n-star graph has 2n−1 dominating sets and average degree less than 2. Thus we ask how
large |D| can be for graphs with bounded maximum degree. An easy example is provided
by the disjoint union of complete graphs of order ∆ + 1: every vertex subset that includes
at least one vertex from each component is dominating, so |D| = (2∆+1 − 1)n/(∆+1). We
shall show that this is in fact the largest possible D for graphs of maximum degree ∆. Our
analysis is based on the following intersection theorem.

Lemma 3.1 (Chung et al. [8]). Let U be a finite set with subsets P1, . . . , Pm such that
every u ∈ U is contained in at least δ subsets. Let F be a family of subsets of U . For each
1 ≤ ` ≤ m, define the projections F` = {F ∩ P` : F ∈ F }. Then

|F|δ ≤
m∏
`=1

|F`| .

Theorem 3.2. The number of dominating sets of an n-vertex graph with maximum degree
∆ is at most (2∆+1 − 1)n/(∆+1).

Proof. Let G = (V,E) be a graph with |V | = n and maximum degree ∆. For each v ∈ V ,
let Av be the closed neighbourhood around vertex v,

Av = {v} ∪ {u ∈ V : uv ∈ E } . (3.1)

Next, for each u ∈ V with degree d(u) < ∆, add u to ∆ − d(u) of the sets Av not already
containing u (it does not matter which). Let av = |Av| and note that

∑
v av = (∆ + 1)n.

We want to apply Lemma 3.1. To this end, let U = V and m = n. By construction,
every u ∈ V belongs to exactly δ = ∆ + 1 subsets Av. To get a nontrivial bound on D

we need to bound the size of Dv = {D ∩ Av : D ∈ D }. Every D ∩ Av is one of the 2av

subsets of Av, but none of the D ∩ Av can be the empty set, because either v or one of its
neighbours must belong to the dominating set D. Thus |Dv| ≤ 2av − 1. By Lemma 3.1, we
have

|D|∆+1 ≤
∏
v

(2av − 1) . (3.2)

Since x 7→ log (2x − 1) is concave, Jensen’s inequality gives
1
n

∑
v

log (2av − 1) ≤ log (2
P

v av/n − 1) = log (2∆+1 − 1) .

Taking exponentials and combining with (3.2) gives |D|∆+1 ≤ (2∆+1 − 1)n.

3.2. Domatic Number

We first observe that a graph can be packed with k dominating sets if and only if it
can be packed with k minimal dominating sets, so we can consider k-packings from min D

instead of D. This has the advantage that min D can be listed faster than 2n.

Lemma 3.3 (Fomin et al. [10]). Any n-vertex graph has at most O∗(1.7170n) minimal
dominating sets, and they can be listed within that time bound.
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Theorem 3.4. For an n-vertex graph G with maximum degree ∆ we can decide in time

O∗
(
(2∆+1 − 2)n/(∆+1)

)
whether G admits a packing with k dominating sets.

Proof. We use Algorithm D with F = min D. By the above lemma, we can complete Step D1
in time O∗(1.7170n). The rest of the algorithm requires time O∗(|↑min D|). Since every
superset of a dominating set is itself dominating, ↑min D is a sub-family of D (in fact, it is
exactly D), so Theorem 3.2 bounds the total running time by

O∗
(
(2∆+1 − 1)n/(∆+1)

)
.

We can do slightly better if we modify Algorithm D in Step D7 to insert X ∪ {j} only
if it excludes at least one vertex for each closed neighbourhood. Put otherwise, we insert
X ∪ {j} only if the set V \ (X ∪ {j}) dominates the graph G. The graph then has Domatic
Number at least k+1 if and only if the algorithm reports some X for which d(X) is nonzero.
The running time can again be bounded as in Theorem 3.2 but now D ∩Av can neither be
the empty set, nor be equal to Av. Thus the application of Lemma 3.1 can be strengthened
to yield the claimed result.

3.3. Chromatic Number

Our first argument for Chromatic Number is similar; we give a stronger and slightly
more complicated argument in §3.4.

We consider the independent sets I of a graph. An independent set is not necessarily
dominating, but it is easy to see that a maximal independent set is dominating. Moreover,
the Moon–Moser bound tells us they are few, and Tsukiyama et al. tell us how to list them
with polynomial delay:

Lemma 3.5 (Moon and Moser [15]; Tsukiyama et al. [16]). Any n-vertex graph has at
most O∗(1.4423n) maximal independent sets, and they can be listed within that bound.

Theorem 3.6. For an n-vertex graph G with maximum degree ∆ we can decide in time

O∗
(
(2∆+1 − 1)n/(∆+1)

)
whether G admits a covering with k independent sets.

Proof. It is easy to see that G can be covered with k independent sets if and only if it can
be covered with k maximal independent sets, so we will use Algorithm C on max I. Step C1
is completed in time O∗(1.4423n), and the rest of the algorithm considers only the points
in ↑max I, which all belong to D. Again, Theorem 3.2 bounds the total running time.

3.4. Chromatic Number via bipartite subgraphs

We can do somewhat better by considering the family B of vertex sets of induced
bipartite subgraphs, that is, the family of sets B ⊆ V for which the induced subgraph G[B]
is bipartite. As before, the literature provides us with a nontrivial listing algorithm:

Lemma 3.7 (Byskov and Eppstein [7]). Any n-vertex graph has at most O∗(1.7724n)
maximal induced bipartite subgraphs, and they can be listed within that bound.

The family max B is more than just dominating, which allows us to use Lemma 3.1 in
a stronger way.
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Theorem 3.8. For an n-vertex graph of maximum degree ∆ it holds that

|↑max B| ≤ (2∆+1 −∆− 1)n/(∆+1) .

Proof. Let G = (V,E) be a graph with |V | = n and maximum degree ∆. Let F = ↑max B.
Let Av be as in (3.1). With the objective of applying Lemma 3.1, we need to bound the
number of sets in Fv = {F ∩Av : F ∈ F }.

Assume first that G is ∆-regular. Let Av = {v, u1, . . . , u∆}. We will rule out ∆ + 1
candidates for F ∩Av, namely

∅, {u1}, . . . , {u∆} /∈ Fv . (3.3)

This then shows that |Fv| ≤ 2∆+1 −∆− 1 and thus the bound follows from Lemma 3.1.
To see that (3.3) holds, observe that F ∈ F contains a B ⊆ F such that the induced

subgraph G[B] is maximal bipartite. To reach a contradiction, assume that there exists a
v ∈ V with F ∩Av ⊆ {u`}. Since B ⊆ F , we have B ∩Av ⊆ {u`}, implying that v does not
belong to B, and that at most one of its neighbours does. Consequently, G[B ∪ {v}] is also
bipartite, and v belongs to a partite set opposite to any of its neighbours. This contradicts
the fact that G[B] is maximal bipartite.

To establish the non-regular case, we can proceed as in the proof of Theorem 3.2,
adding each u ∈ V with d(u) < ∆ to some ∆ − d(u) of the sets Av not already including
u. Note that by adding y new vertices to Av originally containing x vertices, we get
|{F ∩Av : F ∈ F}| ≤ 2y(2x − x− 1). Next, since 2y(2x − x− 1) ≤ 2y+x − (y+ x)− 1 for all
non-negative integers y, x and log (2x − x − 1) is a concave function, the bound follows as
before via Jensen’s inequality.

Theorem 3.9. For an n-vertex graph G with maximum degree ∆ we can decide in time

O
(
(2∆+1 −∆− 1)n/(∆+1)

)
whether G admits a covering with k independent sets.

Proof. When k is even, it is easy to see that G can be covered by k independent sets if and
only if it can be covered by k′ = k/2 maximal bipartite sets, so we will use Algorithm C on
max B and investigate whether c(V ) 6= 0.

When k is odd, we again use Algorithm C with k′ = (k − 1)/2 maximal bipartite sets,
but this time we check whether an X is output such that both c(X) 6= 0 and V \ X is
independent in G.

In both cases the running time bound follows from Theorem 3.8.

4. Concluding Remarks

Since the presented improvements on running time bounds are modest, one can ask
whether this is because of weak bounds or because of inherent limitations of the technique.
We observe that the running time bounds in Theorems 3.4, 3.6, and 3.9 are met by a disjoint
union of complete graphs of order ∆ + 1. Thus, either further trimming or splitting into
connected components is required for improved algorithms in this context.

We chose to demonstrate the technique for Chromatic and Domatic Number since these
are well-known and well-studied. To briefly demonstrate some further application potential,
more artificial problem variants such as determining if a ∆-regular graph has domatic
number at least ∆/2, or if the square of a ∆-regular graph has chromatic number at most
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3∆/2, admit stronger bounds. For example, if G has domatic number at least d, d even,
then its vertices can be partitioned into two sets, both of which contain d/2 dominating
sets. This suggests the following meet-in-the-middle strategy. Run Algorithm D with F

equal to all dominating sets and k = d/2, but modify Step D7 to insert X ∪ {j} only
if |Av \ (X ∪ {j})| ≥ d/2 holds for all vertices v. At termination, we check whether the
algorithm has output two sets X and Y such that X ∪ Y = V and d(X), d(Y ) > 0. (For
example, one can check for duplicates in a table with entry {X,V \X} for each outputX with
d(X) > 0.) This algorithm variant considers only sets with many forbidden intersections
with the neighbourhoods of vertices, which translates into stronger bounds via Lemma 3.1.
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