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ABSTRACT

Empirical researchers routinely encounter sample selection bias whereby 1) the regressor of
interest is assumed to be exogenous, 2) the dependent variable is missing in a potentially non-random
manner, 3) the dependent variable is characterized by an unbounded (or very large) support, and 4) it is
unknown which variables directly affect sample selection but not the outcome. This paper proposes a
simple and intuitive bounding procedure that can be used in this context. The proposed trimming
procedure yields the tightest bounds on average treatment effects consistent with the observed data. The
key assumption is a monotonicity restriction on how the assignment to treatment effects selection -- a

restriction that is implicitly assumed in standard formulations of the sample selection problem.
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1 Introduction

It is well-known that the econometric identification of causal parameters of interest becomes even
more challenging when outcome data are unobserved in a non-random way. In some cases, outcome data is
“missing” due to non-response or sample attrition. In other cases, outcomes may not even be well-defined
for the entire population. For example, hourly or weekly wages are not defined for the non-working (Heck-
man, 1974). When the process determining observability of the outcome is related to determinants of the
outcome, an analysis that ignores the sample selection process will in general yield biased estimates of
the effects of the exogenous regressor of interest (Heckman, 1979). Even the most well-designed random-
ized experiment or the most compelling quasi-experiment is susceptible to selection bias due to missing
outcomes.

There are two general approaches to addressing the problem. One is to explicitly model the process
determining selection. In some cases, it involves assuming that data are missing at random, perhaps condi-
tional on a set of covariates (Rubin 1976). Alternatively, it involves assuming the existence of exogenous
variables that determine selection, but do not have its own direct impact on the outcome of interest. Such an
exclusion restriction is often utilized in parametric and semi-parametric models of the censored selection
process (Heckman 1979, 1990; Ahn and Powell 1993; Andrews and Schafgans 1998; Das, Newey, and
Vella 2000).

Researchers’ reluctance to rely upon specific exclusion restrictions motivates an alternative ap-
proach. This approach utilizes boundedness of the support of the outcome variable in order to construct
“worst-case” bounds for the treatment effect parameter — bounds that are still consistent with the data that
are observed. Horowitz and Manski (2000a) use this notion to provide a general framework for construct-
ing bounds for treatment effect parameters when outcome and covariate data are non-randomly missing in
an experimental setting. Others (Balke and Pearl 1997; Heckman and Vytlacil 1999, 2000a, 2000b) have
constructed such bounds to address a different problem — that of imperfect compliance of the treatment,

even when “intention” to treat is effectively randomized (Bloom 1984; Robins 1989; Imbens and Angrist,



1994; Angrist, Imbens, and Rubin 1996). A limitation of these kinds of procedures is that when outcomes
are unbounded (or have very large support), finite (or reasonably informative) bounds for means cannot be
generated without some further restriction on the sample selection process (Manski 1995).

This paper proposes a procedure for bounding average treatment effects in the presence of non-
randomly missing outcomes, without relying on exclusion restrictions, even when the support of the out-
come variable is unbounded. A monotonicity restriction on the sample selection process allows one to
“trim” observed distributions of data in order to yield sharp bounds on average treatment effects. The two
key assumptions which justify the procedure are 1) “as good as” random assignment of treatment (inde-
pendence between the regressor of interest and the errors in the outcome and selection equations) and 2)
a monotonicity condition — whereby assignment to treatment impacts selection probabilities only in “one
direction”. The first assumption is commonly adopted by both the existing modeling and bounding ap-
proaches, and the second is also implicitly assumed in existing approaches that explicitly model the sample
selection process. The procedure can be directly applied, for example, to the analysis of randomized exper-
iments in which there is missing outcome data.

In addition, the discussion below makes it clear that, given unbounded outcomes, these two as-
sumptions are not sufficient for generating bounds on the average treatment effect for the entire population.
Bounds can only be generated for a specific sub-population: individuals whose outcomes will be observed,
irrespective of the assignment to treatment. As shown below, in some contexts, this effect may in fact be the
parameter of interest. However, when bounds of the effects for other sub-populations (e.g. those whose out-
comes will not be observed, irrespective of the assignment to treatment) are the objects of interest, further
restrictions on the sample selection process are necessary.

The paper is organized as follows. Section 2 describes the basic model and trimming procedure,
providing economic examples in which the above average treatment effect is the parameter of interest, and
in which the monotonicity condition will or will not hold. Section 3 describes how baseline covariates
can be used narrow the width of the bounds. Section 4 discusses some testable implications of the key
restrictions of the model for trimming, and Section 5 concludes. Throughout this paper, the treatment
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variable is assumed to be dichotomous, and always observed; hence, the analysis applies to censored and

not truncated samples.
2 Missing Outcomes in a Heterogeneous Treatment Effect Model

I begin by outlining conditions under which a trimming approach can produce bounds for average
treatment effects for a specific sub-population of interest. Consider the random variables (Y7*, Yy, S1, So,
D) where Y{* and Y{}* are continuous and unbounded potential outcomes of interest when D = 1 and D = 0,
respectively. S1 and Sy denote whether the outcome is observed when D = 1 and D = 0, respectively. For
example, the realization S; = 1, Sy = 0 implies that the outcome would be observed if D = 1, but would
be missing if D = 0. (Y, S, D) is observed, where Y = Y*D + Y (1 — D) if S = 1, Y is missing if
S =0;also, S = 51D+ Sp (1 — D). Y7" and Y are never simultancously observed, and .S; and S are
never simultaneously observed.

Assumption A

(Y7, Yy, S1, So) is independent of D (1)
This assumption corresponds to the “as good as” random assignment of D. It is useful to consider this
assumption, as it means that any bias in identifying average treatment effects will be due to censored
selection, rather than to the usual confounding problem.

Furthermore, it is assumed that assignment to D, if it affects .S at all, can affect S in only “one
direction”. This is a “monotonicity” assumption.

Assumption B

Pr[S1=0,5=1]=0 )
This assumption precludes the possibility that within a population of interest, some individuals are induced
to drop out of the sample because of the treatment. It is important to note that the choice of imposing
Pr[S; = 0,Sp = 1] = 0 rather than Pr [S; = 1, Sp = 0] = 0 is innocuous. I consider this case for exposi-
tional purposes, and a parallel argument to that presented below is valid if the latter assumption is imposed

instead. This assumption is analogous to the monotonicity assumption in studies of imperfect compliance



of treatment (Imbens and Angrist 1994; Angrist, Imbens, and Rubin 1996).
Assumptions A and B imply that the difference between the means of the sample-selected treatment

and control groups is

ElY|D=1,S=1-E[Y|D=0,5 = 1] 5
_ Pr[Sy=0,8=1|D=1] e -
- Pr(S=1|D =1] E[Y{|So=0,51 =1]
Pr[S[):l?Sl:l‘D:H i B -
Pr[S=1|D=1] EY{[So=1,8 =1]

—E[Y5|So=1,5 =1]
In general, this will be biased for a particular parameter of interest: E [Y}* — Y |Sp = 1,51 = 1] = E[Y{'|

So = 1,5 = 1]— E[Y|So = 1,51 = 1], the average treatment effect for the subpopulation whose

PI‘[S():O,Sl:”D:l]
Prs=1p=1]  and

outcome data will be observed irrespective of treatment status. While the weights

Pr[i,‘]r[:;’:%';l:‘ﬁ:” can be identified from the observed data, £ [Y{*|Sp = 0,51 = 1] and E[Y{*|Sy = 1,

S1 = 1] cannot be identified without further restrictions.
However, without further restrictions, the observed data can yield upper and lower hounds E and

E such that E < E[Y{*|So = 1,81 = 1] < E. It follows that there exist bounds such that
E—-FE[YID=0,S=1<E[Yf-Y{[S=1,8=1<E-E[Y|D=0,8=1] 4)
for the average treatment effect for this subpopulation.

The approach in this paper is to construct these bounds by trimming the lower or upper tails of

Pr[S=1|D=1]—Pr[S=1|D=0]
Pr[S=1|D=1]

the observed distribution of Y for the treatment group, by a proportion given by

the proportion of the selected treatment group that is induced to have a non-missing value of the outcome

because of the assignment to treatment.

Proposition 1 Suppose Assumptions A and B hold, and Pr [S = 1|D = 0] # 0. Denote the observed den-
sity and cumulative distribution of Y, conditional on D = 1 (and S = 1), as f (y) and F (y), respectively.
Then
1 Fi(1-p) .
p=1—/ yf (W) dy < E[Y7|So = 1,81 = 1]
and >
1

B=r— [ ufWdy=E1S =15 =1]
P JF(p)



where
B Pr(S=1D=1]—-Pr[S=1|D =0]

Pr[S=1|D =1]
Also, E (E) is equal to the smallest (largest) possible value for E [Y{*|So = 1,51 = 1] that is consistent
with the distribution of observed data on (Y, S, D).

Given Assumption B, E [Y|So = 1,51 = 1] equals E [Y|D = 0, S = 1], which can be computed
from the observed data from the control group.

Corollary 2 Given Assumptions A and B and Pr[S = 1|D = 0] # 0
E—-FE[YID=0,S=1<E[Yy-Y|S9=1,8=1<E-E[Y|D=0,8=1]

where the lower bound (upper bound) is the smallest (largest) possible value for the average treatment
effect, E[Y*—Y|So = 1, S1 = 1], that is consistent with the distribution of the observed data on (Y, S, D).

The “monotonicity” assumption is crucial to this approach. It ensures that subpopulation of the
control group for whom we observe outcomes consists only of those for whom Sy = 1,57 = 1 — that
is, those who will always have non-missing outcome data, irrespective of the assignment to treatment.
Without monotonicity, the control and treatment groups could consist solely of the sub-populations for
whom Sy = 1,57 = 0and Sy = 0,57 = 1, respectively. This would imply no “overlap” between the two
sub-populations, making it impossible to make a comparison that could be interpreted as a causal effect.
The independence assumption is also important, since it is what justifies the contrast between the trimmed
population of the treatment group and the control group.

The following are two economic examples of when the parameter E [Y}* — Y{f|So = 1,51 = 1] is
of economic interest. In the first, the monotonicity condition could be expected to hold, and in the second,

economic reasoning suggests that monotonicity would probably not hold.

Example 1 Labor supply with a Negative Income 1ax, experimental variation in tax rate

Consider a static labor supply setting, where we are interested in the infensive margin response
of hours of work to a change in marginal tax rates. Subjects are randomized into treatment and control
groups. Both groups are given the same guaranteed income subsidy of (z, which is taxed away at rates ¢,
and t.(> t;), for the treated and control, respectively. Suppose we are interested in the average treatment

effect of the experimental variation in the tax rate on Y, the natural logarithm of hours worked. Obviously,
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Y will be undefined for the nonworking, and we might expect the treatment (a higher effective wage) to
induce some individuals to work, causing a potential sample selection bias.

Under the assumption of optimizing behavior given a complete, transitive, and strictly monotone
preference relation over leisure and consumption (I and c), any consumer who would work positive hours
facing tax rate ¢, would work positive hours facing ¢;. To see this, consider any individual who works
positive hours under ¢.. Denote the optimal hours as exp (Y;) = hg > 0. The bundle of consumption and
leisure (G + w (1 —t¢) ho,T — ho), (where T is total time available), which is a bundle that is feasible
given the treatment, is strictly preferred to (G + w (1 — t.) ho, T — hg), which itself is preferred to (G, T)
(the bundle attained by not working) by hypothesis. By transitivity, (G, T") cannot be the optimal choice for
the consumer facing ¢;.

Thus, in this economic context, the monotonicity assumption (B) is rationalized by optimizing
behavior given a fairly standard preference relation. The trimming procedure described above can be used to
generate bounds on the percentage change in hours of labor supply induced by a marginal tax rate reduction,
accounting for the presence of non-random sample selection that results from labor supply behavior on the

extensive margin of employment.

Example 2 Labor supply with a Negative Income Tax, experimental variation in tax rate and guaranteed
subsidy

Consider the same setting as above, except that in addition to different tax rates, different levels
of the guaranteed subsidy GG; > G are offered to the treatment and control groups, respectively. Again,
consider the control group individual who optimally chooses positive hours of work by choosing the com-
bination (G, + w (1 — t¢) ho, T — ho). Without further information about preferences, we cannot rule out
the possibility that (G, T') is strictly preferred by this individual, and that it would have been the optimal
choice under the treatment assignment. In other words, we cannot rule out the possibility that treatment
induces some individuals to stop working. We also cannot rule out that the treatment induces other indi-
viduals to work positive hours (in other words, that (G; +w (1 — t;) hy,T — hy), hy > 0, is preferred to

(G, T') (which, in turn, is preferred to (G, T))). In this example, economic reasoning cannot be used to
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justify Assumption B.

It should also be noted that the independence and monotonicity conditions are implicitly assumed
within typical latent-variable formulations of the sample selection process (as in Heckman 1979). Consider
the system of equations

Y* = Bo+BT+U (5)

Z" = y+T+V
where Y* is an outcome of interest, 7" takes on the values 0 or 1, 3; is the treatment effect of interest. ¥
is observed and equals Y* if Z* > 0, but is missing if Z* < (. It is often assumed (for example, in maxi-
mum likelihood estimation of parametric selection models) that (U, V') is independent of 7". In addition, if
v1 > 0, then it is possible to use the bounds proposed above to assess missing outcome bias. To see this, note
that this system implies Yi* = By + 6, + U, Yy = 8o + U, S1 =1 (V > —y5 —71), So = 1(V > =),
where 1 (A) is an indicator variable that equals 1 in the event of A (0 otherwise), and D = T'. The inde-
pendence of 7" implies Assumption A, and if y; > 0, then Pr (V < —y, — v,V > —v¢) = 0, implying
that Assumption B holds also. It should be noted that the proposed bounding procedure is applicable to
a more general “heterogencous treatment effect” version of the above latent-variable formulation. This
is because the independence and monotonicity assumptions are equivalent to a generalized latent index,
threshold-crossing model (Vytlacil 2000).

An important implication of Assumptions A and B is that as p vanishes, so does the sample selection
bias. The intuition is that if p = 0, then under the monotonicity assumption, the population with observed
outcome data — whether in the treatment or control group — is comprised of individuals whose sample
selection was unaffected by the assignment to treatment (those for whom Sy = 1, and S; = 1). These
individuals can be thought of as the “always-takers” sub-population (Angrist, Imbens, and Rubin 1996),
except that “taking” is not the taking of the treatment, but rather selection into the sample. One example
of a practical implication of this is that when analyzing randomized experiments, if the “drop-out” rates in

the treatment and control groups are similar, and if the monotonicity condition is believed to hold, then a
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comparison of the treatment and control means is a valid estimate of an average treatment effect.

The notion that there is no sample selection bias when the probability of selection is the same in
the treated and control groups can also be seen by examining the dichotomous treatment case within the
frameworks that condition on an unknown function of the probability of selection (as in Heckman and Robb
1986; Heckman 1990; Ahn and Powell 1993; Angrist 1997; Andrews and Schafgans 1998; Das, Newey,
and Vella 2000). However, in these studies, it is clear that when the treated and control group selection
probabilities are different, point identification is lost without imposing an exclusion restriction on auxiliary
variables that determine selection. Thus, the bounding or “sensitivity” analysis proposed here can be viewed
as an alternative to hypothesizing the existence of such auxiliary variables, that are needed to achieve point
identification.

It is instructive to highlight the primary features of the proposed trimming procedure that distin-
guish it from existing bounds approaches in the literature. First, the model and procedure proposed here can
produce finite bounds when the outcome has unbounded support. This should be contrasted to a method
that addresses missing outcomes by essentially assigning the values of upper and lower bounds of support
to missing data to bound parameters of interest (Horowitz and Manski 1998, 2000a).

This advantage of trimming, however, does not come without a cost. The second distinctive feature
(and disadvantage) of the model proposed above is that it relies crucially on an unverifiable assumption
about the selection process. For example, the model assumes that every control (treatment) group individual
who reported an outcome would have reported outcome if they had been assigned treatment (to the control
group) — a conjecture that simply cannot be verified one way or another. The appropriateness of this
“monotonicity” assumption may or may not be “plausible” depending on the particular application, as
illustrated in the economic examples above.

A third distinctive feature is that the bounds can only be generated for the average treatment ef-
fects for a specific sub-population: those individuals whose outcomes will be observed, irrespective of
the assignment to treatment. Sometimes, that parameter may be of interest (as in the economic exam-
ples described above), but in other situations, one may be interested in average treatment effects for the
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other two sub-populations: 1) those that were “induced” to yield valid outcome data because of the treat-
ment, F [Y* — Y [So = 0,51 = 1], and 2) those that will always have missing outcomes, irrespective of
the treatment status, E [Y;* — Y |So = 0,51 = 0]. In those cases, it is clear that the independence and
monotonicity conditions will not be sufficient for generating informative bounds for those effects. Further

stochastic restrictions would be necessary.
3 Trimming Using Baseline Covariates

Researchers often possess “baseline” characteristics of both the treatment and control subjects.
When analyzing randomized experiments, these covariates are typically used to assess whether or not the
randomization “failed”, and if successful randomization is not rejected by the data the covariates are often
included in the analysis to reduce the sampling variability of the estimates. These covariates can be used
in a modified trimming method that will lead to tighter bounds on E [Y{* — Y{f|Sp = 1, S1 = 1] than that
constructed without the covariates. I suppose that there is no missing data on these baseline covariates, in
contrast to the generalized bounds analysis of Horowitz and Manski (2000a).

Suppose there exists a vector of baseline covariates X, where each element has discrete support,
so that this vector can take on one of a finite number of discrete values. Focus on the values {x1,...,z},
such that foreach j =1,...,J,Pr(X =z;|D=0,5 =1) #0.

Assumption C

(Y7, Yy, S1, S0, X) is independent of D (6)
Assumption C would hold if D were randomly assigned, and X were pre-determined, relative to the point
of random assignment.

Under this assumption, an upper (lower) bound for £ [Y7* — Y|So = 1,51 = 1] can also be con-
structed by trimming the lower (upper) tails of distributions of y, conditional on D = 1 and X, by a propor-

tion given by p; = PriS=1|D :Plrféjf‘%_jrgzi‘ﬁ =0X=2)] The overall mean of the truncated distributions of

the sub-groups of the treated is computed by averaging across values of X.

Proposition 3  Suppose Assumptions B and C hold, and Pr[S = 1|D = 0] # 0. Denote the observed

9



density and cumulative distribution of Y, conditional on D =1 (and S = 1) and X = xj, as f (y|z;) and
F (y|z;), respectively. Then

. J 1 F~1(1-pjlz;) .
E*=) Pr[X =u1,|S=1,D =0 / yf (ylzj) dy < E[Y{|So = 1,81 = 1]
j=1

1 —DjJ-o
and
E' =) PriX =uS=1,D=0] / yf (ylzj)dy > E[YSo = 1,8 = 1]
j=1 L= pj F=1(p;lz;)
where

 Pr[S=1D=1,X=2;]-Pr[S=1/D =0,X = 1]
Pi= Pr[S=1D=1X =
Also, E* (E*> is equal to the smallest (largest) possible value for E [Y{*|Sy = 1,51 = 1] that is consistent
with the distribution of observed data on (Y, S, D, X)

Corollary 4 Given Assumptions B and C and Pr[S = 1|D = 0] # 0
E*—E[Y|D=0,S=1<E[Y; —Y{|S9=1,8=1<E —E[Y|D=0,8 = 1]

where the lower bound (upper bound) is the smallest (largest) possible value for the average treatment
effect, E[Y]" — Y§|So = 1, S1 = 1], that is consistent with the distribution of the observed data on
(Y,S,D, X).

Intuitively, Assumption C implies that the assumptions used to justify the trimming procedure will
also justify trimming, conditional on X. Given bounds for E[Y;* — Y [So =1,51 =1, X = x|, it is
possible to average across values of X to produce bounds for E [Y}* — Y{f|Sp = 1, 51 = 1].

The motivation for this modified trimming procedure is that using the covariates in this way will
lead to tighter bounds on the treatment effect parameter of interest.

Proposition 5  [f Assumptions B and C hold and Pr [S = 1|D = 0] # 0, then E* > E and E <E.

Intuitively, this is true because a lower-tail truncated mean of a distribution will always be larger
than the average of lower-tail truncated means of sub-groups of the population, provided that the proportion
of the entire population that is eventually truncated remains fixed. An implication of Proposition 5 is that in
general, using more baseline covariates will lead to producing tighter bounds on E[Y}* — Y |So = 1,51 =
1].

It is interesting to relate these trimming bounds to the estimand that would result from a “match-
ing on observables” approach to addressing missing outcome bias. Matching on the baseline covariates
would dictate computing the quantity Z;.Izl PrX=2zjS=1,D=0{E[Y|D=1,S=1,X =] —
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EY|D=0,5=1,X = z;]}. A comparison with the comparable quantity in the Corollary above makes

it clear that this quantity will lie strictly in between the upper and lower “trimming” bounds.
4 Testable Implications

While it is clear that the assumptions of the model proposed above are fundamentally unverifiable,
it is important to examine whether the restrictions generate any testable implications, however weak they
might be. As is well known, the independence assumption (C), which corresponds to random assignment,
has the implication that the baseline pre-determined characteristics X be distributed identically between the
treatment and control groups.

The monotonicity assumption (B) is restrictive enough to generate a testable restriction. In par-
ticular, Assumption B implies that there exists no j, such that Pr(S=1/D =1,X =z;] < Pr[S =
1|D = 0, X = z;]. Essentially, the monotonicity restriction is inconsistent with the existence of ;'
and j” such that Pr(S=1D=1,X =z;] < Pr[S = 1|D = 0, X = xj] while at the same time
PriS=1D=1,X =24 >Pr[S=1D=0,X = z;/].

Finally, suppose Pr[S = 1|D = 1] = Pr[S = 1|D = 0]. As mentioned earlier, in this case, As-
sumptions B and C imply that there is no sample selection bias, and that a simple contrast between
EY|ID=1,S=1] - E[Y|D =0,S = 1] is valid for identifying a meaningful causal parameter. 0 =
PriS=1D=1]-Pr[S=1|D=0] = Zj{Pr (X =2;D=0] (Pr[S=1|D=1,X = z;]— Pr[S =
1| D = 0,X = z;])} because of Assumption C. Since Pr[X = ;D =0] > 0forallj =1,...,J, and
Assumption B implies that Pr[S =1|D =1, X = ;] —-Pr[S=1D=0,X =z;] >0forj =1,...,J,
then it must be true that Pr[S = 1D =1, X = 2] - Pr(S=1D=0,X =z =0forj=1,...,J. It
can then be shown, using Assumption C and Bayes’ Rule, that this implies Pr [ X = z;|S =1,D =1] =
Pr(X =z;|S=1,D=0]forj = 1,...,J. Therefore, if Pr[S =1|D = 1] = Pr[S = 1|D = 0], then
Assumptions B and C imply that the distributions of the baseline covariates between the selected treatment

group and the selected control group are identical, which is testable given the observed data.
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5 Conclusions and Extensions

In many situations, researchers may be willing to entertain the possibility that treatments are “as
good as randomly assigned” but are at the same time considerably less confident about the underlying pro-
cess that determines whether outcomes are missing. A potentially useful alternative to specifying exclusion
restrictions is a bounding analysis that takes generates “worst-case” sample selection biases. In the con-
text of outcomes with essentially unbounded support, existing nonparametric bounding approaches (e.g.
Horowitz and Manski 1998, 2000a) of unbounded outcomes immediately suggest there will be no finite
bounds on average treatment effects. This can be informative in the sense that it suggests that any finite
bounds on treatment effects in this context will necessarily be a consequence of some further stochastic re-
striction on the data generating process (Horowitz and Manski 2000b). The question then becomes Which
restrictions have relatively large benefits and/or small costs?

This paper has proposed a simple and intuitive trimming procedure that is justified under the added
restriction of monotonicity of the censored selection process. The main benefit from imposing this restric-
tion is that it allows one to generate finite bounds even when the outcome variable has unbounded support.
The main cost of the restriction is that such a behavioral assumption may or may not be plausible, depending
on the particular context of the selection problem. This paper has described two economic contexts: one in
which the monotonicity assumption could be considered plausible, and another where economic reasoning
suggests the assumption is unwarranted.

The following are potentially useful avenues for future research. First, it would be interesting to
apply the proposed trimming procedure to appropriate applied contexts, and to compare the bounds to
estimates obtained from other parametric and semi-parametric modeling approaches and other bounding
procedures. Second, since the number of baseline covariates may be so large as to create a “small cell”
problem, it would be helpful to generalize the procedure to utilize continuous covariates. Third, it seems
possible to generalize the procedure in various directions. For example, it could be extended to apply to

1) the case of an endogenous regressor of interest with a valid instrument (or imperfect compliance of a
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treatment whose “intention-to-treat” is randomized), 2) the case of a continuous treatment variable, or 3)
the case of more than one sample selection process (e.g. sample attrition as distinct from the labor force
participation decision). Finally, it would be interesting to explore what additional plausible assumptions,

beyond the monontonicity restriction, would lead to tighter bounds on average treatment effects.
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Appendix A.

Lemma 6 Suppose the probability density f* (y) is a mixture of two probability densities, m* (y) and
n* (y) such that f*(y) = p*m* (y) + (1 — p*)n* (y), where p* € [0,1) is fixed. Let F*(y) be the
cumulative distribution function corresponding to f* (y). Consider the truncated density g* (y) which

is equal to ljp* f*(y)on [F*_l (»*), oo], 0 otherwise. Then ffooo yg* (y)dy > ffooo yn* (y) dy.

Proof of Lemma 6. First consider p* € (0,1). Let N* (y) be the cumulative distribution function corre-
sponding to n* (y). First, compare the truncated density, g* (y) to an arbitrarily chosen n* (y) that is not
identical to g* (). [% yg* (y)dy — [T yn* (y) dy = [m sy Y (ﬁ) fry)dy — [T yn* (y) dy =

f]?f,l(p) y [(ﬁ) f*(y) —n* (y)} dy— ffFooi ®) 4. n* (y)dy. Multiplying both sides by W

yields W {ffooo yg* (y) dy — ffooo yn* (y) dy} = W f;ffl(p*) y[(ﬁ) [ () —
n* (y)]dy— W ffo(: () yn* (y)dy. By definition n* (y) = %}W, so for any y on

[F*1 (p*), 0] , %pf* (y) —n*(y) > 0. Ifn*(y) # g* (y), then it can be shown that W

[(ﬁ) fry) —n (y)} defined on [F*~* (p*) , 0o] and ety (y) defined on [—oo, F*~1 ()]
are each proper probability densities that integrate to 1. The support of the former is strictly above the

support of the latter. Therefore, W { 2 ug* (y) dy — [0 yn* (y) dy} > 0. Second, consider
the case that n* (y) = ¢* (y). Then [*_yg* (y)dy — [*5 yn* (y) dy = 0.

Now consider p* = 0. Then g* (y) = f* (y) = n* (), so [~ yg* (y) dy = [ yn* (y) dy.

Pr[S=1|D=1]—-Pr[S=1|D=0] __
Pr[S=1D=1] =

Proof of Proposition 1. Assumption A and B implies that p =

Pr[SOZ[),Sl:l‘D:l]
Pr[S=1|D=1]

. pis strictly less than 1 by assumption. Assumption B also implies that f (y) = pm (y)+
(1 —p)n(y), where m (y) denotes the density of Y;*, conditional on D = 1, Sp = 0, 1 = 1, and
n (y) denotes the density of Y*, conditional on D = 1, Sy = 1, 1 = 1. By Assumption A, n (y) is
also the density of Y;*, conditional on Sy = 1,S; = 1. By Lemma 6, E = ﬁ f;‘il(p) yf (y)dy >
ooy (y)dy = E[Y{][So = 1,81 = 1].

To show that E equals the maximum possible value for £ [Y}*|Sp = 1,51 = 1] that is consistent with the
distribution of the observed data on (Y, S, D), note first that the observed data can be completely de-
scribed by 1) f (y), 2) the density of Y conditional on S = 1, D = 0, and 3) the probability function
Pr[S=s,D =d], s, d =0,1. By Assumptions A and B, the density of Y conditionalon S =1,D =0
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is equal to the density of Y conditional on Sy = 1,S5; = 1. Set n(y) equal to the density 1Tlp f(y)

defined on [F~! (p), 00|, and m (y) equal to the density %f (y) defined on [—oo, F~1 (p)] where p =

—11D=11— —11D= 1-&-P—Ml . . . .
Pr[s_lg[fglilgfﬁ D=0 _ 1 _ E SLD ”; there is only one p consistent with the probability func-

1+PSOD0

[S=1,D=0]

tion Pr[S = s, D =d], s,d = 0, 1. These choices for n (y) and m (y) are consistent with f (y) satisfying
f(y) =pm(y)+ (1 —p)n(y). Then E [Y*|Sy = 1,5 = 1] will equal — fF ) Y (W) dy = F,and it
has already been shown that E > E [Y{*|Sp = 1,$; = 1].

An argument parallel to that made above can be made for E.

Proof of Proposition 3. Given Assumption C, this implies that Assumption A holds, conditionally on X.
It is given that for each j, Pr [X = z;|D = 0,5 = 1] # 0. So Pr [S = 1|D = 0] # 0 implies, using Bayes’
Rule, that Pr[S = 1|D = 0,X = z;] #0forall j = 1,...,J. Thus, by the Proposition 1, it can be shown
that 72 [2%1 oy 0 (Wlag) dy > E[Y7|So = 1,81 = 1, X =zl forj = 1,..., J. It follows that E” >
Z}-]:1 Pr(X =z;S=1,D =0] E[Y{*|So = 1,51 = 1, X = z;]. The latter quantity equals Z;-Izl{Pr[X
=[Sy =1,51 = 1]E[Y|So=1,5 =1, X =z;]} = E[Y{|So = 1,51 = 1] by Assumptions B and
C.

To show that E is equal to the largest possible value for E [Y{*|Sp = 1, S; = 1] that is consistent with
the distribution of observed data on (Y, S, D, X), note first that the data can be completely described by 1)
fylz;),j=1,...,J,2)the densities of Y conditional on S = 1, D = 0, X = x;, 3) the probability func-
tion Pr[S =s,D =d|X = z;],s,d = 0,1, and 4) the probability function Pr [ X =z;], j = 1,...,J.
Since Assumptions A and B hold conditionally on X, by Proposition 1, 1%” f ;‘i psles) Y [ (ylz;) dy is
equal to the largest possible value for E [Y*|So = 1,51 = 1, X = z;] consistent with the observed data on
(Y, S, D), conditional on X = z;, foreachj =1,...,J.

Pr[X =Sy = 1,51 = 1] = Pr[X = z;|S = 1, D = 0], by assumptions B and C, and Pr[X = z;|5 =

1, D = 0] is uniquely determined by the probability functions Pr[S = s, D = d|X = z;]|,s,d = 0, 1, and

PriX=uzj,j=1,...,Jsince Pr[X =z;|S=1,D =0] = kaj[gr[;Dl g%l;ﬂ;[é[;]w j by Bayes’
Rule. Therefore E is equal to the largest possible value for ijl Pr(X =2;|S=1,D = 0] E[Y"|Sy =
LS =1,X =aj] =57 Pr(X =a;|S = 1,8 = | E[¥{"]So = 1,1 =1, X = ;] = [EY/|Sp =
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1,51 = 1] that is consistent with the observed data on (Y, S, D, X).

An argument parallel to that made above can be made for E*.

Proof of Proposition 5. As shown in the beginning of the proof of Proposition 3, Assumptions B and
Cand Pr[S =1|D =0] # 0 implies that Pr[S =1|D =0,X = ;] # 0 forall j = 1,...,J. There-

fore p; € [0,1) for j = 1,...,J. Let g(ylz;) = 1=/ (ylx;) on [F~*(pjla;),o0], O otherwise.

1-p;

Let h(ylz;) = 1(p; >0) - pijf (ylx;) on [—oo, F~1 (pj|z;)], 0 otherwise. By construction, f(y) =
S PrX =alS =1,D=1]f (yle;) = S/, Pr[X = ;|8 = 1,D = 1p;h (yla;) + 37, Pr[X
= ;|9 =1,D = 1] (1 — p;) g (yla;). Let p= S 7_ Pr[X = x;|S = 1, D = 1] p;; since p; € [0,1) for
j=1,...,J,palsolieson [0,1). Then f (y) can be re-written as pm™* (y)+(1 — p) n* (y), where m* (y) =
P {Pr[X =S =1,D=1]- ph(yle;)} and n* (y) = 537 PriX =4S =1,D=1]-
(1—pj) g (yle;).

Consider first p € (0,1). Since m* (y) and n* (y) are both probability densities that integrate to 1,
Lemma 6 applies: 1%;3 [ ;Cil(ﬁ) yf (y)dy > [°5 yn* (y)dy. All that needs to be shown is that 1) p =
p, 2) n*(y) = Z}-]:1 Pr[X =x;|S =1,D = 0] g (y|lz;). If these two statements are true, then E =
5 [y uf W) dy > [Z yn* (y)dy = E.

The definition of p; implies p = Z;-Izl{Pr[X =ux;/S=1,D=1](1- gi%i%%igﬁ;ﬁgi[gjﬁzﬂ )}

TP . ~ Pr[S=1,D=0,X=zx;]| Pr[D=1] _ Pr[$=1,D=0]Pr[D=1] _
Simplifying, and by assumption C, p = 1 — Z}Tzl r[pr[gﬂ, 2):1} ;r}[Dr:[O] 41— PﬂS:},D:% Pi{D:(l)} -

Pr[S=1|D=0] _
1— P§[5:1|D:1} =D

Now, it is true that n* (y) = Z}'Izl Pr(X =z;|S=1,D =1] 1111;)]- g (y|x;). Using definitions of p and p,
Pr[S=1,D=0,X=a;| Pr[D=1,X=a,]

this is equal to ijl{Pr[X =z;|S=1,D =1] Pr[D:(i;f(s:j{J;ﬂf}i’gjfxzm g (y|z;)}. Applying Assump-
Pr[D=0] Pr[S=1,D=1]

tion C, this becomes Z}'Izl PriX =zjS=1,D=1] g;gjgjﬁzij gi{gjzgzé}g (y|z;). Simplifying

further yields -7, PIEer 05 bb=0g (yla;) = S, Pr(X = ;]S = 1,D = 0] g (y|;).

Now consider the case p = p = 0. Thismeans Pr[S =1|D =1] =Pr[S=1|D=0]. 0=Pr[S=1|D =
1] - Pr[S=1D=0=Y/{Pr[X =2;/D=0] (Pr[S=1D=1,X =a;]- Pr[S =1 D=0,X =
x;])} because of Assumption C. Since Pr[X = ;D =0] > 0 forall j = 1,...,J, and Assumption B
implies that Pr([S =1|D =1, X =z;] - Pr[S=1|D=0,X =x;] > 0forj = 1,...,J, then it must
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be true that Pr(S=1D=1,X =2;] - Pr[S=1D=0,X =z;] =0forj = 1,...,J, which means
that p; = 0 for j = 1,...,J. So no trimming is done at either the aggregate level or by values of X. It
can then be shown, using Assumption C and Bayes’ Rule, that this implies Pr[X = z;|S =1,D =1] =
PrX =uS=1,D=0forj=1,...,J. ThenE = [* yf(y)dy= S| {Pr[X =a;|S=1,D =

1 % uf (laj)dy} =35 PriX = 458 = 1,D = 0] [ yf (ylej)dy =F".
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