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Seq gene expression estimates
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Abstract

Background: High-throughput RNA-Sequencing (RNA-Seq) has become the preferred technique for studying gene

expression differences between biological samples and for discovering novel isoforms, though the techniques to

analyze the resulting data are still immature. One pre-processing step that is widely but heterogeneously applied is

trimming, in which low quality bases, identified by the probability that they are called incorrectly, are removed.

However, the impact of trimming on subsequent alignment to a genome could influence downstream analyses

including gene expression estimation; we hypothesized that this might occur in an inconsistent manner across

different genes, resulting in differential bias.

Results: To assess the effects of trimming on gene expression, we generated RNA-Seq data sets from four samples

of larval Drosophila melanogaster sensory neurons, and used three trimming algorithms—SolexaQA, Trimmomatic,

and ConDeTri—to perform quality-based trimming across a wide range of stringencies. After aligning the reads to

the D. melanogaster genome with TopHat2, we used Cuffdiff2 to compare the original, untrimmed gene expression

estimates to those following trimming. With the most aggressive trimming parameters, over ten percent of genes

had significant changes in their estimated expression levels. This trend was seen with two additional RNA-Seq data

sets and with alternative differential expression analysis pipelines. We found that the majority of the expression

changes could be mitigated by imposing a minimum length filter following trimming, suggesting that the

differential gene expression was primarily being driven by spurious mapping of short reads. Slight differences with

the untrimmed data set remained after length filtering, which were associated with genes with low exon numbers

and high GC content. Finally, an analysis of paired RNA-seq/microarray data sets suggests that no or modest

trimming results in the most biologically accurate gene expression estimates.

Conclusions: We find that aggressive quality-based trimming has a large impact on the apparent makeup of RNA-

Seq-based gene expression estimates, and that short reads can have a particularly strong impact. We conclude that

implementation of trimming in RNA-Seq analysis workflows warrants caution, and if used, should be used in

conjunction with a minimum read length filter to minimize the introduction of unpredictable changes in expression

estimates.
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Background
Within the past decade, RNA sequencing (RNA-Seq) has

supplanted microarrays as the preferred technique for

gene expression analysis. A typical workflow for RNA-

Seq analysis involves aligning reads to an annotated gen-

ome followed by estimation of gene-level and/or

isoform-level expression. In many cases, this is followed

by statistical identification of genes that are differentially

expressed between two or more sample groups. How-

ever, RNA-Seq presents unique analytical challenges,

and accurate and robust tools to analyze sequencing data

are rapidly evolving. As a result, analysis workflows can

vary widely between studies.

One initial step of RNA-Seq analysis is to evaluate se-

quence read quality, which can vary substantially based

on factors related to nucleic acid library preparation

(e.g., adapter contamination, polymerase errors) and
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sequencing (e.g., cluster density, optical detection errors,

phasing errors) [1]. For example, during library prepar-

ation, random hexamers are sometimes used as primers

for double stranded cDNA synthesis, which leads to

biases in nucleotide composition at the beginning of

reads [2]. A second, intrinsic problem of sequencing by

synthesis is phasing: different fragments within a cluster

fall out of phase with one another as a result of slight

differences in the timing of polymerization. Errors in

phasing accumulate over time; thus, read quality tends

to decrease toward the ends of sequence reads. Further,

errors have a tendency to co-occur, such that reads with

two errors are more common than would be predicted

based on a model in which errors occur independently

of one another [3].

In the absence of pre-processing, phasing and other

sequencing errors can lead to inclusion of incorrect base

calls and, consequently, to erroneous read alignment.

Current next generation sequencing technologies pro-

duce reads as short as 25 bases up to hundreds of bases;

sequencing errors are less frequent in the shorter read

data sets, but the proportional impact of a single incor-

rect base may be larger. Sequencing-associated errors

are aggregated into a quality score that reflects the prob-

ability that a given base has been called incorrectly. Most

common among these, the Phred quality score (Q) used

in the Illumina platforms ranges from 0 to 40, with in-

creasing scores corresponding to higher quality base

calls; for example, a Q score of 40 represents a 1 in

10,000 chance that a base has been called incorrectly [4].

Similar quality scores are produced with alternative se-

quencing platforms as well. During pre-processing, the

quality score can be used to eliminate poor quality bases

that typically occur at the ends of reads, in a procedure

commonly referred to as “trimming”. This quality-based

trimming is distinct from adapter trimming, which can

be used to remove high quality internal bases matching

the sequencing adapters used in library preparation [5].

Numerous approaches to quality-based trimming exist

[6], all with the end result of retaining high quality in-

ternal bases while removing lower quality flanking bases.

However, as for pre-processing in general, quality-

based trimming of reads is widely, but heteroge-

neously, applied. Thus, the specific algorithms and

parameters used for quality score-driven trimming are

a major determinant of what portions of reads are

retained for further analysis. A broad survey of the

major trimming algorithms currently in use found

that although trimming prior to mapping of RNA-Seq

reads leads to a decrease in the total number of

reads, it concurrently increases the proportion of the

remaining reads that map, suggesting that trimming is

effective in removing reads that could not be mapped

to the reference genome [6].

Although the above study suggested that trimming is

beneficial, multiple lines of evidence suggest that it can

also have detrimental effects. First, while errors in the

assembly of a known transcriptome decrease with in-

creased trimming, there is a concomitant decrease in the

number of matching paired reads mapped, as well as the

number of ORFs that can be identified [7]. Second, the

number of distinct transcripts detected through de novo

assembly decreases with more stringent trimming [8].

Finally, trimming can increase the number of false posi-

tive variant calls in genome sequencing studies [9]. All

of these findings are consistent with increasing difficulty

in unambiguously aligning shorter reads to a reference

genome and/or reconstructing less total sequence into

longer contiguous sequences.

The above studies have all investigated the influence

of trimming on the immediately downstream steps of

read alignment and transcriptome reconstruction [6–9],

but it remains to be determined how trimming impacts

further downstream analyses – for example, expression

estimation and statistical identification of differentially

expressed genes. One might expect that the specificity of

read alignments could impact gene expression estimates

and have vital effects on differential expression predic-

tions. Consistent with this possibility, removing the first

ten bases from all reads, irrespective of quality scores,

led to an approximately two percent decrease in the

number of differentially expressed genes detected in the

D. melanogaster larval central nervous system following

neuronal knockdown of a factor involved in spliceosome

assembly [10]. More generally, one might expect that ag-

gressive quality-based trimming would decrease the like-

lihood of detecting false positives that arise from

erroneous mapping due to sequencing errors, while sim-

ultaneously reducing the sensitivity of detecting differen-

tially expressed genes, since expression estimates would

have reduced precision as a consequence of less sequen-

cing information contributing to their measurement.

Here, we set out to explore the effects of quality-based

trimming on gene expression analysis and report that

multiple forms of bias in gene and isoform expression

levels are apparent when comparing an untrimmed

RNA-Seq data set to the same data set with trimming

applied. Most of this bias can be removed by imposing a

minimum read length requirement following trimming,

suggesting that the gains in base calling accuracy that re-

sult from aggressive trimming are offset by the detri-

mental effects of estimating gene expression from short

reads. However, despite the ability to correct much of

the short read-associated bias by imposing a minimum

length filter, a subset of biased genes remains resistant

to correction. Thus, we caution that aggressive trimming

of RNA-Seq data can introduce bias and unpredictability

into RNA-Seq gene expression estimates, which can
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subsequently impact downstream differential expression

analysis.

Results and discussion
Quality-based trimming of ultralow-input RNA-Seq data

increases mappability

Previous work has shown that quality-based trimming of

RNA-Seq data can lead to greatly increased mappability

of reads (i.e., percentage of input reads that can be suc-

cessfully aligned to a genome) [6]. However, this in-

creased mappability of reads remaining after trimming

comes at the expense of a dramatic reduction in the ab-

solute number of aligned reads, as a consequence of

some reads failing to pass minimum quality criteria dur-

ing trimming. We predicted that this loss of information

would impact analyses downstream of alignment; in par-

ticular, gene expression estimation. To assess this, we

first generated RNA-Seq data from multi-dendritic (md)

sensory neurons from D. melanogaster larvae, which had

not yet been transcriptionally characterized by RNA-Seq

despite their frequent use as a model system for neur-

onal development [11]. This approach was selected over

those based on cells grown in culture to maximize

physiological relevance. In this regard, the influence of

trimming on expression measurement is particularly

relevant to approaches using RNA-Seq for systematic

identification of cell type in the nervous system [12, 13].

Neurons were sorted to high purity using two consecu-

tive rounds of flow cytometry (Fig. 1a, b) and four sam-

ples comprised of 100 cells each were processed by

SMART-Seq and sequenced on a HiSeq 2500. Each sam-

ple comprised at least seven million unpaired 51 base

reads and was of high overall quality (Fig. 1c).

To assess whether trimming improved mappability of

our samples, as has been reported elsewhere [6], we

trimmed our sensory neuron data sets with three different

trimming algorithms and determined mappability. First,

we evaluated SolexaQA, a sliding window trimmer that

offers a balanced tradeoff between mappability and the

number of mapped reads [6, 14]. We also evaluated Trim-

momatic, which was shown to achieve high mappability

with less aggressive trimming [6, 15], and ConDeTri,

which demonstrated high mappability when used aggres-

sively [6, 16]. We varied the quality score threshold from

10, corresponding to a 1 in 10 chance of an incorrect base,

up to 40, corresponding to a 1 in 10,000 chance of an in-

correct base – the highest confidence score assigned in

Illumina sequencing data. After trimming, data were

aligned to the annotated D. melanogaster transcriptome

using TopHat2 [17]. As previously shown with another

high quality RNA-Seq data set [6], mappability increased

with increasing quality requirements, but the absolute

number of aligned reads decreased (Fig. 2, SolexaQA;

Additional file 1, Trimmomatic and ConDeTri). Thus, the

impact of trimming on the mappability of the high quality

reads generated from the small cell numbers employed in

our study was similar to that observed from samples gen-

erated from abundant input RNA [6].

Junction spanning reads decrease disproportionately

following trimming

Although trimming increases overall mappability, it can

also substantially shorten many reads, depending on the
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Fig. 1 High quality RNA-Seq data generated from D. melanogaster

sensory neurons. a Confocal image of Drosophila larval sensory

neurons expressing a nuclear-targeted version of mRFP (magenta)

and a membrane-targeted version of GFP (white). Genotype: w118;

Gal421–7, UAS-mCD8-GFP/UAS-Red-Stinger. Scale bar is 100 μm. b

Representative flow plots of D. melanogaster neurons. Plots show

three progressive gates to identify RFP+ neurons, followed by two

additional re-sorts with the same gates to assess purity. Compensated

fluorescent values are shown. c Box plots generated in FastQC show

average (blue lines) and median (red lines) quality scores across all read

positions for each of the four independent replicate samples
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aggressiveness of the trimming parameters. We reasoned

that this reduction in information content might intro-

duce one or more forms of bias during read alignment.

In particular, we predicted that there would be a dispro-

portionate bias against reads aligning to exon-exon junc-

tions, since alignment to such sites requires sequences

long enough to span both the splice donor and acceptor

sides of the junction. TopHat2 requires that reads, either

singly or in combination with other reads, align for at

least eight contiguous bases with no mismatches on both

sides of a junction for initial junction detection, though

subsequent reads may span a shorter distance and will

still map to the junction [17, 18]. This is in contrast to

aligning to non-junction locations, which minimally re-

quires twelve contiguous bases with no more than one

mismatch. As predicted, we observe that trimming dis-

proportionately decreases the proportion of reads

mapped to exon-exon junctions. The frequency of reads

aligned to junctions, as a function of the total number of

reads aligned, decreases as trimming quality score

threshold increases, from 8.5 % (4.27 million reads

aligned to junctions per 50.34 million total reads aligned

in all samples combined) without trimming to 3.0 %

(0.14 million reads per 4.54 million total reads) at Q40

(Fig. 3a, b). Interestingly, this is not the case with the

frequency at which junctions are detected, as the number

of junctions detected per reads aligned increases with in-

creasing quality score stringency, from 1.5 junctions de-

tected per thousand reads mapped without trimming (74

thousand junctions detected) to 4.3 junctions detected

per thousand reads mapped at Q40 (20 thousand junc-

tions detected) (Fig. 3c, d). Although the reason for this

is unclear, we speculate that at the read coverage depth

in our data, our ability to detect junctions is not con-

strained by coverage even after trimming, resulting in

the increased frequency of junction detection largely be-

ing driven by the decrease in the total number of aligned

reads.

Bias in expression levels estimated from untrimmed and

trimmed reads

We predicted that the decreased frequency of reads

aligning to junctions would change estimates of isoform

expression levels, since accurate alignment of reads to

junctions contributes to the assignment of reads to spe-

cific isoforms [19]. Such bias would be expected to

manifest as significantly different expression between

trimmed and untrimmed samples, which we tested using

Cuffdiff2 [20]. We note that throughout this work we

refer to bias in the sense that gene expression is different

between the groups, but with limited a priori knowledge

of whether the gene expression estimates based on un-

trimmed or trimmed reads are more accurately reflective

of the true expression levels (discussed in more detail

below).

As predicted, the expression of many isoforms was sig-

nificantly altered by quality score trimming, with hun-

dreds of differentially expressed isoforms detected with

aggressive trimming (Fig. 4a, b). This finding holds even

if novel junction discovery, the default behavior of

TopHat2 mapping, is disabled (Additional file 2), since

only the annotated transcriptome and junctions were

used for modeling by Cuffdiff2. Because Cuffdiff2 esti-

mates gene-level expression as the sum of the expression

of all individual isoforms [19], we further predicted that

in addition to isoforms, genes would exhibit expression

bias following trimming. As expected, we observed a

progressively increasing number of significant differen-

tially expressed genes between our untrimmed data set

and trimmed data sets with increasingly aggressive qual-

ity filtering (Fig. 4a, c). At the most stringent quality

score, Q40, Cuffdiff2 identified 1829 genes, representing

10.5 % of all annotated genes, biased towards higher ex-

pression in either the untrimmed or trimmed data set,

suggesting that trimming can have a substantial effect

on the apparent composition of a sample.

Although the junction-alignment bias described above

might play a role in these differential expression estimates,
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other factors must contribute as well since junction bias

alone was insufficient to explain all of the observed bias.

For example, we found that loss of junction reads did not

uni-directionally decrease expression estimates. Instead,

bias toward higher expression in untrimmed data was de-

tected for some isoforms, but toward higher expression in

trimmed data for others, including comparisons in which

the number of junctions was held constant. Low expres-

sion level was also not a primary factor driving significan-

ce—no significant genes or isoforms exhibited expression

values, measured as fragments per kilobase of transcript

per million mapped reads (FPKM), of less than one in

both the untrimmed and trimmed data sets (Fig. 4). Thus,

it is likely that trimming introduces or corrects multiple

sources of bias in gene expression estimation, relative to

untrimmed reads, and that filtering based on expression

level would not provide a means by which to eliminate

this bias.

Short trimmed reads are the predominant source of bias

Since bias resulting from differential alignment of

junction-spanning reads could not fully account for the

observed differences in expression estimated from un-

trimmed and trimmed reads, we next hypothesized that

read length might contribute to the observed bias

through other mechanisms. In addition to removing

reads of very low quality in their entirety, trimming also

shortens reads of mixed quality to preserve only high

quality bases. Thus, the trimmed data sets have a distri-

bution of read lengths as compared to the uniform read

length in the untrimmed data set (Fig. 5a, Additional file

3). We predicted that shorter reads would align to more

locations than longer reads, and that this promiscuity in

mapping would drive some of the observed differential

expression estimates. To evaluate this, we removed all

reads below a fixed length in the most heavily trimmed

SolexaQA data set, Q40-trimmed, and compared gene
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expression between these data and untrimmed reads.

Minimum length requirements below 12 bases had no

effect on the number of differentially expressed genes or

isoforms identified by Cuffdiff2, which was expected

since such reads fall below the default threshold for

reads that TopHat2 attempts to align. However, follow-

ing length filtering using longer thresholds, much of the

bias both in isoform and gene expression between un-

trimmed and trimmed samples was eliminated (Fig. 5b-

d). At the highest quality score, Q40, the number of sig-

nificantly biased genes was reduced from 1829 to 150

and the number of significantly biased isoforms was re-

duced from 1269 to 41 when the minimum read length

was increased from 1 to 36. Increasing stringency be-

yond a minimum of length of 36 was not attempted be-

cause few Q40-trimmed reads exceeded this length.

The impact of short reads on trimming-induced bias

was corroborated by results from trimming with Trim-

momatic and ConDeTri. Rather than searching sequen-

cing reads for the longest run of bases over a given

quality, both of these trimmers search from the end of

reads, such that if a stretch of high quality is encoun-

tered near one of the ends, only the bases outside of that

run will be truncated. One consequence of this approach

to trimming is that the retained reads are considerably

longer, with very few short reads retained as compared

with SolexaQA (see Additional file 3). Consistent with

the hypothesis that read length drives bias, even fairly

aggressive application of these trimmers results in con-

siderably less bias than trimming with SolexaQA, with a

maximum of 9 biased genes with Trimmomatic (q = 30)

and 28 biased genes with ConDeTri (hq = 39, lq = 34).

Thus, short reads generated upon trimming are an im-

portant driver of bias in gene expression estimates, but

this can be partially offset by imposing stringent mini-

mum length filters.

Finally, we note that the long reads that remain after

both stringent quality-based trimming and length filter-

ing can be mapped with high accuracy; over 97 % of 36-

mers present in the D. melanogaster genome are unique.

Given that bias is minimized between the full, un-

trimmed data set and this aggressively trimmed and

length filtered high confidence data set, this suggests

that the full, untrimmed data set generates a more faith-

ful representation of true gene expression estimates than

those derived from aggressively trimmed data containing

short reads.

Additional factors contribute to gene expression bias

Although imposing read length requirements counter-

acted bias introduced by trimming, notable differences

remained between the untrimmed and the processed data,

and we next sought to identify additional drivers that

could account for the residual bias. We divided the genes

and isoforms differentially expressed at Q40 without

length filtering into two groups—correctable and resistan-

t—according to whether or not expression bias could be

corrected by length filtering (minimum length = 36), as

assessed using Cuffdiff2.

We assessed five parameters related to read alignment

and transcript structure of the biased genes and iso-

forms. We hypothesized that poorly expressed genes

would be more strongly impacted by promiscuous align-

ment of short reads than highly expressed genes, due to

the proportion of inappropriately aligning reads being

higher for poorly expressed genes. Consistent with this

prediction, the expression levels of resistant genes and

correctable genes differed prior to length filtering, with

the resistant genes exhibiting a median expression of 56

FPKM, as compared with a median expression of 28

FPKM among the biased genes corrected by length fil-

tering (p < 0.05, Mann–Whitney test) (Fig. 6a).

Because short reads are more likely to map to multiple

locations in the genome (referred to as “multi-hits” for

consistency with TopHat2 nomenclature), we next inves-

tigated how this property is associated with the observed

biases. Before length filtering, multi-hit reads mapped to

over 99 % of detected genes, indicating that expression

estimates were broadly influenced by short reads align-

ing to multiple locations. However, this was not the case

after imposing a minimum read length requirement of

36 bases: after filtering, 10 % of genes resistant to bias-

correction, but only 1.8 % of correctable genes, con-

tained any multi-hit reads (p < 0.05, Poisson test). Thus,

mapping of non-unique short reads is rampant in ag-

gressively trimmed data, and may continue to contribute

a small portion of the residual bias even after length fil-

tering. To more directly assess the role of multi-hits in

differential expression following trimming, we repeated

differential expression analysis using only uniquely map-

ping reads. Eliminating multi-hit reads greatly reduced

the number of differentially expressed genes and iso-

forms after trimming at Q40 to 75 and 61, respectively

(Additional file 4). However, as would be predicted based

on the low percentage of non-unique reads present after

length filtering, the effect on differential expression fol-

lowing length filtering was minimal (see Additional file 4),

suggesting that multi-hits are not the primary driver of

the residual bias after length filtering, and that additional

factors may play a role. Although these data indicate that

gene expression estimation from trimmed reads is stabi-

lized by excluding multi-hits, others have found that

allowing multi-hits increases the accuracy of expression

estimates from 36-base RNA-Seq reads [21]. Thus, exclu-

sion of all multi-hits could introduce bias as well; whether

this bias or that associated with promiscuous alignment of

short reads is more tolerable will need to be evaluated on

a case-by-case basis.
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The ability of short reads to align to multiple locations

might be influenced by the intrinsic sequence content of

a given gene or isoform. Specifically, we predicted that

bias-correctable genes might exhibit lower sequence

complexity, which would result in higher rates of multi-

hit mapping, but that could be corrected by length filter-

ing. To examine sequence complexity, we assessed en-

tropy of isoform sequences in the two groups using

Markov models for 1 to 6 base pair oligonucleotides

[22]. Two of the six measures of complexity were signifi-

cantly different between the correctable and resistant

groups, with the correctable group exhibiting lower

complexity in both cases as predicted (Additional file 5).

However, we also noted that length filtering-resistant

isoforms exhibited significantly higher GC content

(Fig. 6b), and that both of the significant complexity

measures were also significantly correlated with GC con-

tent. This observation suggested that GC content, rather

than complexity per se, might be the primary underlying

factor driving resistance to correction by length filtering.

Notably, genes with high GC content exhibit dispropor-

tionately high expression values in RNA-Seq studies

[23], which is also consistent with our observation that

FPKM is associated with resistance to bias-correction

(Fig. 6a). In anticipation of this potential bias, Cuffdiff2

was run with the optional fragment bias correction

protocol [19] enabled; however, as evidenced by the

above findings, some GC content bias remained.

We next evaluated structural properties of transcript

isoforms—specifically, isoform length and number of

exons—as a source of resistance to bias-correction

through length filtering. The distributions of transcript

lengths were not different between the two groups (p >

0.05, Mann–Whitney test) (Fig. 6c). In contrast, the

number of exons, and therefore also the number of junc-

tions, was higher in the correctable group (4.7 exons per

isoform) as compared with the resistant group (3.2

exons per isoform) (Fig. 6d) (p < 0.05, Mann–Whitney

test). In addition, both the frequency of junction detec-

tion and frequency of reads mapped to junctions in-

creased with increasingly stringent length filtering

(Additional file 6). Together, these data suggest that

length filtering of quality-filtered data improves detec-

tion of exon-exon junctions in addition to reducing

spurious multi-hit alignments.

Trimming-induced differential expression is manifest in

diverse analysis pipelines

Although TopHat2 and Cufflinks2 are widely used for

analyzing RNA-Seq data, alternative tools have been

gaining broad acceptance. Different tools vary in their

underlying assumptions about read distribution and in

their approach to handling non-uniquely mapping reads;

therefore, we next examined whether the trimming-

induced biases we identified are generalizable to other

pipelines. Most tools assess differential expression based

on gene-level counts, without discrimination of iso-

forms; thus, we focused our analysis on differential gene

expression. We implemented four additional pipelines

using the read aligners STAR [24] and RSEM [25] in

combination with the differential analysis tools DESeq2

[26] and EdgeR [27]. Consistent with our TopHat2/Cuf-

flinks2 results, significantly differentially expressed genes

were detected with each additional pipeline following

trimming with stringent quality parameters (SolexaQA

with Q = 40), albeit fewer than our original analysis iden-

tified, and these largely disappeared when a length filter

was imposed (Table 1). The differences in the number of

differentially expressed genes between analysis tools may

be due to inherent differences in how liberal or conser-

vative the programs are in calling significant differences,

as previously reported [28, 29]. Despite differences in

the scale of the effect, all of these tools indicated that

trimming affects gene expression estimates in this D.

melanogaster RNA-Seq data set.
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Trimming-induced differential expression is manifest in

diverse RNA-Seq data sets

We next assessed whether the effects of trimming found

in the D. melanogaster RNA-Seq data set were observed

with other independently generated RNA-Seq data. For

these analyses, we chose data sets derived from different

organisms (rat livers [30], yeast cultures [31]) and gener-

ated in different labs using different library preparation

and sequencing protocols. These additional data sets

were comprised of samples with paired 101 base reads;

thus, we anticipated that the negative effects of trimming

would be less severe since longer reads are less likely to

map to multiple locations, and paired reads must map

concordantly. Instead, we found that trimming had a

more pronounced effect on these data than on our ori-

ginal data (Fig. 7). Using the SolexaQA/TopHat2/Cuff-

diff2 pipeline, we found that 54 % of genes (14,470 of

26,689 total) in the rat sample and 78 % of genes (5552

of 7126 total) in the yeast sample were significantly al-

tered in their expression when the most aggressive trim-

ming, Q40, was applied. As in the D. melanogaster data

set, imposing a minimum length filter of 36 bases sub-

stantially reduced the number of differentially expressed

genes, down to 2 % (rat) and 10 % (yeast) of all genes.

We note that smaller fold changes between the trimmed

and untrimmed samples were called as significantly dif-

ferent (visualized as points close to the identity line in

Fig. 7a, b) in these two data sets than in the original data

set, which might be due to lower variance between repli-

cate samples and/or increased accuracy in alignments

due to the use of paired reads. Thus, we expect that

quality-based trimming will alter gene and isoform level

expression estimates across RNA-Seq data sets, though

the extent to which estimates change will depend on

characteristics specific to each data set.

Aggressive trimming decreases concordance with

microarray expression estimates

Given that trimming causes substantial changes in gene

expression estimates across multiple RNA-Seq data sets,

we next investigated whether trimming improved or

reduced the accuracy of expression estimates. As a

Table 1 Differentially expressed genes detected by multiple

analysis pipelines

Mapping tool DE tool DE Genes, Q40 DE Genes, Q40 L36

TopHat2 Cuffdiff2 1829 150

TopHat2/HTSeq DESeq 289 2

STAR DESeq 812 2

RSEM/STAR DESeq 79 53

STAR EdgeR 321 0

The number of significantly differentially expressed genes detected, using 5

different analysis pipelines, when comparing the untrimmed data set to the

same data set trimmed with SolexaQA, using a quality score of 40 (Q40), or

with a quality score of 40 and a minimum length requirement of 36 bases

(Q40 L36). DE Tool, differential expression tool. DE Genes, differentially

expressed genes
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biological standard for gene expression, we used the rat

and yeast data sets described above, in which the same

RNA libraries were subjected to genome-wide gene ex-

pression analysis both by RNA-Seq and by hybridization

to microarrays [30, 31]. Specifically, we reasoned that if

trimming reduced the accuracy of RNA-Seq based ex-

pression estimates, we should observe decreased con-

cordance between the RNA-Seq and microarray

expression values in trimmed RNA-Seq data sets. This is

precisely what we observed (Table 2). In the two inde-

pendent RNA-Seq/microarray data sets, expression esti-

mates from untrimmed RNA-Seq data were most highly

correlated with microarray expression estimates, though

even moderately aggressive trimming, up to Q30, min-

imally reduced these correlations. By contrast, aggressive

trimming led to substantially reduced correlations with

microarray data. Length filtering slightly improved the

correlations with microarray estimates for the heavily

trimmed rat data; however, length filtering of the yeast

data further decreased correlations, suggesting that this

additional filtering may not universally counteract

trimming-induced bias. Thus, by validation with an in-

dependent technique, we conclude that no or low trim-

ming thresholds are most likely to result in the highest

accuracy for RNA-Seq based expression estimates.

Conclusions
The data we present here provide evidence that aggres-

sive quality-based trimming can strongly influence esti-

mation of gene and isoform expression levels, which

subsequently impacts identification of differentially

expressed genes. A considerable source of the observed

differences can be attributed to the alignment of shorter

reads that result from trimming. Imposing minimum

read length requirements reverts gene expression esti-

mates to values closer to estimates produced from un-

trimmed reads, suggesting that untrimmed or trimmed,

length-filtered reads—the latter of which likely represent

the highest quality reads within a data set—may most

accurately reflect the actual library composition.

Because different experiments have different goals, in-

dividual researchers must determine whether or not

trimming will be beneficial for their particular applica-

tion. For example, in genome sequencing or for RNA-

Seq experiments where extremely large numbers of

reads are available, modest trimming may provide bene-

fits. Further, in data sets with low average base calling

quality, or in library preparation protocols that are sus-

ceptible to adapter contamination, trimming may allow

the recovery of reads which would otherwise be detri-

mental to expression estimation. Both of these attributes

were more common in early RNA-Seq studies, so trim-

ming may be particularly useful when re-analyzing such

data. One potential improvement may be to use longer

sequencing reads, such as 100 or 150 bases, so that lon-

ger reads remain after trimming low quality bases from

either end, though our results demonstrate that this

alone will not prevent the introduction of trimming-

induced expression changes. However, we re-iterate pre-

viously voiced concerns [7, 8] that mappability should

not be used as the sole criterion for performance. Fur-

thermore, our results suggest that aggressive trimming

adversely affects the accuracy of expression estimates.

Therefore, if trimming is applied, extreme care should

be used, and other measures such as length filtering

should be considered in the pre-processing pipeline to

minimize the introduction of unwanted bias.

Methods
Fly stocks

The following lines were used in this study: Gal421–7

[32], UAS-RedStinger [33], UAS-mCD8GFP [34].

Flow cytometry

Third instar larvae were filleted by microdissection in

PBS. Internal organs and thoracic segments were re-

moved, and the remaining body walls were digested in

500 μl 0.9 mg/ml (200 U/ml) collagenase in PBS for

18 min at 37 °C with mechanical agitation (1000 rpm on

a 3 mm orbit diameter shaker, with trituration every

6 min). Debris was removed by filtering cell suspensions

through a 70 μm nylon filter, and cells were isolated to

high purity using two successive rounds of sorting on a

FACSAria II (BD Biosciences, San Jose, CA). Four sam-

ples of 100 cells each were captured into 2 μl of SMAR-

Ter lysis mix (described below) and were immediately

processed for RNA-Seq.

RNA-Seq

Total RNA from lysed cells was converted to pre-

amplified cDNA libraries using template-switching re-

verse transcription [35, 36] as implemented in the

SMARTer Ultra-low input kit (Clontech, Mountain

View, CA), but with modified procedures for low cell

number analysis (Fluidigm, South San Francisco, CA).

Pre-amplified cDNA libraries were diluted to 0.25 ng/ul.

Fragmentation was performed enzymatically using a

Nextera XT DNA kit (Illumina, San Diego, CA), and

Table 2 Correlations between RNA-Seq gene expression

estimates and microarray intensities

Data set Untrimmed Q10 Q20 Q30 Q40 Q40 L36

Rat 0.855 0.853 0.851 0.848 0.744 0.751

Yeast 0.891 0.891 0.889 0.887 0.863 0.785

Values represent correlation coefficients between gene expression values

determined by microarray data sets and RNA-Seq data sets that were trimmed

with SolexaQA with quality scores as indicated, followed by mapping and

modeling with TopHat2 and Cuffdiff2

Williams et al. BMC Bioinformatics  (2016) 17:103 Page 10 of 13



barcoded samples were multiplexed, pooled, purified

using Agencourt AMPure XP beads (Beckman Coulter

Genomics, Danvers, MA), and quality controlled on a

Bioanalyzer 2100 using a high sensitivity dsDNA assay

(Agilent Technologies, Santa Clara, CA). Quality-

controlled libraries were sequenced as 51 base single

end reads on a HiSeq 2500 running in high-output mode

at the UCSF Center for Advanced Technology (San

Francisco, CA). Reads were demultiplexed with

CASAVA (Illumina), and read quality was assessed using

FastQC (http://www.bioinformatics.babraham.ac.uk/pro-

jects/fastqc/). One library was sequenced twice in order

to increase sequencing depth. In total, the four replicate

samples were comprised of 7, 13, 14, and 21 million

reads passing sequencing filters.

Trimming with SolexaQA

Trimming was performed with SolexaQA version 3.1.2

[14], which scans for the longest contiguous run in the

sequence with quality scores at or above the user-

provided value. To perform filtering on read lengths, the

lengthsort command was run following the initial trim-

ming command. Example commands for these and all

other tools can be found in Additional file 7.

Trimming with Trimmommatic

Trimming was performed with Trimmomatic version

0.33 [15]. We used the quality filtering functionality of

this tool with a sliding window, which scans through

reads from the 5′ end, and removes following bases

from the 3′ end once the average quality score within

the window drops below a user-specified value.

Trimming with ConDeTri

Trimming was performed with ConDeTri version 2.2

[16]. For each instance, both a high quality and a low

quality score were provided as parameters; the low qual-

ity scores were held either five or ten below the high

quality scores for all combinations tested. Briefly, Con-

DeTri removes bases from the 3′ end of reads that are

below the high quality score. Once a base is encountered

that surpasses the high quality score, bases are retained

so long as the bases between the low quality score and

high quality score, as a fraction of total bases, does not

rise above a default threshold of 0.2. All bases distal to a

base below the low quality threshold are discarded.

Aside from the quality scores, the only other parameter

that was altered from the defaults was the minimum

length, which was removed rather than using the default

value of 50 to accommodate the 51 base sequencing

reads used in this study.

Alignment to the transcriptome

After trimming, reads were aligned to the D. melanoga-

ster genome, FlyBase genome release 6.04, to the Rattus

norvegicus genome, Ensembl release 5.0, or to the Sac-

charomyces cerevisiae genome, Ensembl release R64-1-1.

TopHat2 version 2.0.14 [17] and Bowtie2 version 2.2.3

[17, 37] were used for alignment using two threads, but

otherwise with all default parameters. The aligned reads,

alignment summary, and junction alignment files were

used in further analysis. In addition to the above, several

other alignment/expression estimation approaches were

employed. In one case, gene-level counts from the

TopHat2 output were determined using HTSeq version

0.6.0 [38]. All standard parameters were used in the gene

counts mode for the aligner STAR version 2.4.2a [24].

RSEM version 1.2.22 [25] was used in combination with

STAR version 2.4.2a [24].

Gene expression analysis

Differential gene expression analysis was performed

using Cuffdiff2 version 2.2.1 [20]. In each case, the three

(yeast) or four (fly, rat) trimmed samples were compared

to the three or four samples without any trimming. A

reference transcriptome was provided, and as such any

novel junctions detected by TopHat2 were not modeled.

All other parameters were their default. The gene_exp.-

diff and isoform_exp.diff output files were used to deter-

mine the significantly differentially expressed genes and

isoforms as well as expression values in both trimmed

and untrimmed samples. For diverse pipeline analysis,

differential gene expression analysis on counts data was

performed using the R package DESeq2 version 1.10.0

[26] or the R package EdgeR version 3.13.4 [27].

Gene and isoform parameter analysis

Gene and isoform parameters were generated from the

Cuffdiff2 output (gene expression) and the FlyBase re-

lease 6.04 transcriptome (isoform length, number of

exons per isoform). Significance in comparisons of these

parameters was assessed using a Mann–Whitney U test.

The number of genes to which multi-hit reads mapped

was determined by identifying multi-hits using the

TopHat2 output, followed by using these reads as input

to Cufflinks version 2.2.1 [19]. All genes which showed

non-zero expression from any of the four multi-hit sam-

ples were considered to be a target of multi-hit reads.

Significance was assessed using a Poisson test. GC con-

tent and Markov entropy scores were calculated as pre-

viously described [22, 39] using a publicly available Perl

package (https://github.com/caballero/SeqComplex.git).

Significance was assessed using a two-tailed Student t

test assuming unequal variances. An adjusted p-value of

0.05 after Benjamini-Hochberg correction was deemed

significant.
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Correlations with microarray expression data

Microarray intensity values were retrieved from the NCBI

Gene Expression Omnibus (GEO) with the R package

GEOquery version 2.37 (https://github.com/seandavi/

GEOquery). Probes were mapped to the same genome to

which RNA-seq reads were aligned, and any probes map-

ping to more than one gene were discarded. The normal-

ized intensity values were averaged across all samples and

all probes mapping to each gene to calculate gene-level in-

tensity values. Pearson’s correlations were used to measure

the correlation between the average gene expression based

on microarray intensity data and the estimated gene ex-

pression based on RNA-Seq data, after imposing a lower

expression cutoff of 1 FPKM.

Availability of supporting data
The fly data set generated in this article is available in the

NCBI Sequence Read Archive (SRA) and in the Gene Ex-

pression Omnibus (GEO) under accession number

GSE72884. The rat RNA-Seq data sets used were obtained

from the SRA under accession numbers SRR1178065,

SRR1178067, SRR1178068, and SRR1178069 and the corre-

sponding microarray data sets were obtained from GEO

under accession numbers GSM116428, GSM1161435,

GSM1161439, and GSM1161443. The yeast RNA-Seq data

sets used were obtained from the SRA under accession

numbers SRR453569, SRR453570, and SRR453571, and the

corresponding microarray data sets were obtained from

GEO under accession numbers GSM923093, GSM923094,

and GSM923095.

Additional files

Additional file 1: Influence of trimming with Trimmomatic and

ConDeTri on mappability. (a) The total number of input reads (light

bars) and reads aligned to the transcriptome (dark bars) from four RNA-Seq

data sets trimmed at a range of quality scores with Trimmomatic. Q scores

are 5 apart from 5 to 25, and every Q score from 25 to 34 is shown. No

reads survived at or above a Q score of 35. (b) The mappability, or number

of aligned reads per total input reads, per sample trimmed with Trimmo-

matic. (c) The total number of input reads (light bars) and reads aligned to

the transcriptome (dark bars) from four RNA-Seq data sets trimmed with

ConDeTri. The high quality (HQ) score for trimming is indicated under the

first of each pair of bars, and a low quality (LQ) score five (red bars) or ten

(orange bars) below was used. (d) The mappability per sample trimmed

with ConDeTri. Input reads shorter than 12 bases were not included in the

mappability calculations, as these are discarded by TopHat prior to

alignment. Error bars represent standard deviations. (PDF 116 kb)

Additional file 2: Influence of novel junction discovery on isoform

and gene expression levels. Comparison of the expression estimates of

isoforms and genes between the SolexaQA Q40-trimmed and the

untrimmed data set, after aligning reads to the transcriptome using

TopHat2 with novel junction discovery disabled. Red dots represent

statistically significant differential expression between data sets.

(PDF 642 kb)

Additional file 3: Distribution of read lengths after trimming.

Density plots show the distributions of read lengths at multiple Q scores

following trimming with SolexaQA (a), Trimmomatic (b), and ConDeTri (c).

(PDF 156 kb)

Additional file 4: Influence of multi-hits on isoform and gene ex-

pression levels. Comparison of the expression estimates of isoforms and

genes between the SolexaQA Q40-trimmed without (a) or with (b) a

minimum length requirement and the untrimmed data set, after aligning

reads to the transcriptome using TopHat2 with multi-hits excluded. Red

dots represent statistically significant differential expression between data

sets. (PDF 1130 kb)

Additional file 5: Relationship between length-filtering resistant

bias and sequence complexity measures. The distribution of

complexity scores for length filtering-correctable and -resistant isoforms,

assessed with a Markov model for entropy of oligonucleotides of length

one (a), two (b), three (c), four (d), five (e), or six (f). *, p < 0.05 following

Benjamini-Hochberg adjustment. Bars represent the mean. For clarity, not

all data points are depicted. Cor, correctable. Res, resistant. (PDF 152 kb)

Additional file 6: Influence of minimum length requirements on

junction alignment and detection. (a) The average number of reads

aligned to junctions per sample with increasing minimum read length

requirements after trimming with SolexaQA, Q = 40. (b) The average

frequency of reads aligned to junctions (number of reads aligned to

junctions per total reads aligned). (c) The average number of junctions

detected per sample. (d) The average frequency of junction detection

(number of junctions detected per total reads mapped). For all panels,

data were normalized to the Q40 value with no minimum length filter,

on a per sample basis. Error bars represent standard deviations.

(PDF 114 kb)

Additional file 7: Example commands used for analysis tools. Table

showing example commands for all analysis tools used. (PDF 57 kb)
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