
Provided by the author(s) and University College Dublin Library in accordance with publisher

policies. Please cite the published version when available.

Title TRINI: an adaptive load balancing strategy based on garbage collection for clustered Java

systems

Authors(s) Portillo Dominguez, Andres Omar; Perry, Philip; Magoni, Damien; Wang, Miao; Murphy,

John

Publication date 2016-12

Publication information Journal of Software: Practice and Experience, 46 (12): 1705-1733

Publisher Wiley

Item record/more information http://hdl.handle.net/10197/9056

Publisher's statement This is the pre-peer reviewed version of the following article:Omar Portillo-Dominguez,

Philip Perry, Damien Magoni (2016) "TRINI: an adaptive load balancing strategy based on

garbage collection for clustered Java systems" Journal of Software: Practice and

Experience doi: 10.1002/spe.2391 which has been published in final form

at
http://http://onlinelibrary.wiley.com/doi/10.1002/spe.2391/abstract

Publisher's version (DOI) 10.1002/spe.2391

Downloaded 2022-08-24T12:38:05Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1002%2Fspe.2391&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F9056

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1–25
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

TRINI: An Adaptive Load Balancing Strategy Based on Garbage
Collection for Clustered Java Systems

A. Omar Portillo-Dominguez1,∗, Philip Perry1, Damien Magoni2,
Miao Wang1 and John Murphy1

1Lero, School of Computer Science and Informatics, University College Dublin, Ireland
2LaBRI, University of Bordeaux, France

SUMMARY

Nowadays, clustered environments are commonly used in high-performance computing and enterprise-
level applications to achieve faster response time and higher throughput than single machine environments.
Nevertheless, how to effectively manage the workloads in these clusters has become a new challenge. As
a load balancer is typically used to distribute the workload among the cluster’s nodes, multiple research
efforts have concentrated on enhancing the capabilities of load balancers. Our previous work presented
a novel adaptive load balancing strategy (TRINI) which improves the performance of a clustered Java
system by avoiding the performance impacts of Major Garbage Collection, which is an important cause
of performance degradation in Java. The aim of this paper is to strengthen the validation of TRINI by
extending its experimental evaluation in terms of generality, scalability and reliability. Our results have
shown that TRINI can achieve significant performance improvements, as well as a consistent behaviour,
when it is applied to a set of commonly used load balancing algorithms, demonstrating its generality. TRINI
also proved to be scalable across different cluster sizes, as its performance improvements did not noticeably
degrade when increasing the cluster size. Finally, TRINI exhibited reliable behaviour over extended time
periods, introducing only a small overhead to the cluster in such conditions. These results offer practitioners
a valuable reference regarding the benefits that a load balancing strategy, based on garbage collection, can
bring to a clustered Java system.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Load Balancing; Cluster Computing; Garbage Collection; Java; System Performance

1. INTRODUCTION

In recent years, cluster computing has gained popularity as a powerful and cost-effective solution for

parallel and distributed processing [1]. Thus, the usage of clusters is becoming ubiquitous: Modern

high-assurance systems and enterprise-level applications, which usually require both fast response

time and high throughput on a constant basis, are commonly deployed in clustered instances to fulfil

such stringent performance requirements.

One of the most important challenges in cluster computing is how to effectively distribute

the workload among the available clustered instances (as load imbalance can lead to processing

inefficiencies [2]). To address this challenge, multiple research efforts have aimed to develop more

effective load balancing algorithms and strategies, based on different criteria and heuristics [3–5].

∗Correspondence to: A. Omar Portillo-Dominguez, School of Computer Science and Informatics, University College
Dublin, Belfield, D4, Ireland. E-mail: andres.portillo-dominguez@ucdconnect.ie

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using speauth.cls [Version: 2010/05/13 v3.00]

 This is the pre-peer reviewed version of the following article: [Portillo-Dominguez, A. O., Perry, P., Magoni,
 D., Wang, M., and Murphy, J. (2016) TRINI: an adaptive load balancing strategy based on garbage collection
 for clustered Java systems. Softw. Pract. Exper., doi: 10.1002/spe.2391], which has been published in final
 form at [http://dx.doi.org/10.1002/spe.2391]. This article may be used for non-commercial purposes in
 accordance with Wiley Terms and Conditions for Self-Archiving.

2 A.O. PORTILLO-DOMINGUEZ ET AL

With an estimated business impact of a hundred billion dollars yearly, Java is a predominant

player at enterprise level [6, 7]. Therefore, this technology is commonly used to build clustered

systems. A particular area of performance concern in Java is the Garbage Collection (GC) [8]. Even

though it is a key feature of Java which automates most of the tasks related to memory management,

GC also comes with a cost: Whenever it is triggered, GC has an impact on the system performance

by pausing the involved programs. Although pauses of milliseconds are normally not a problem,

longer GC pauses can severely impact the system performance, affecting the involved business

functions and the overall user experience. This is particularly true for applications requiring fast

response time or high throughput. Furthermore, this issue is more likely to occur with the Major

Garbage Collection (MaGC), which usually causes the longest type of GC pauses [8].

Multiple research works have given evidence of the GC performance costs. For instance, the

authors of [9] identified the GC as a major factor degrading the behaviour of Java Application

Servers (a classic Java business niche) due to the sensitivity of the GC to the workload. In their

experiments, the GC took up to 50% of the total Java Virtual Machine (JVM) execution time

(involving pauses as high as 300 seconds). The MaGC represented more than 95% of those pauses

on the heaviest workload. Likewise, a survey conducted among Java practitioners and experts [10]

identified the GC as a typical area of performance problems experienced in the industry.

Research studies have also shown that it is not possible to have a single “best-fit-for-all”

GC strategy because the GC behaviour is dependent on the application inputs and the system

configuration [11–15]. For example, the authors of [16] showed that the GC is particularly sensitive

to the heap size and even small changes, which might appear trivial, could affect its behaviour. Due

to the multiple factors (e.g., increases in workload, usage of huge heaps or non-ideal settings) which

can provoke long MaGC pauses (probably of hundreds of milliseconds or longer), it is commonly

agreed that the GC plays an important role in the performance of Java systems.

This discussion motivates the core research question here: “What techniques can be deployed

so that the occurrence of MaGC events in the application nodes does not affect the performance

of the cluster?”. To address this challenge, our work has centred on enhancing a load balancer

so that it selects the nodes which are not expected to have a MaGC event in the immediate

future. This strategy can therefore help to avoid impacts in the cluster’s performance due to MaGC

events. In our previous work [17], we presented TRINI (shown in Figure 1), an adaptive GC-aware

load balancing strategy which automatically self-configures based on the GC characteristics of a

clustered application (typically located within a data centre). Internally, TRINI leverages on MaGC

forecasts to decide on the best way to balance the workload among the application nodes.

Figure 1. TRINI: A GC-Aware Load Balancing Strategy

The behaviour of a load balancing strategy is heavily influenced by the accuracy of its balancing

decisions and the amount of resources it uses [18]. A deep understanding of these factors is

key to comprehend the practicability of any load balancing strategy. Therefore, the aim of this

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

TRINI 3

paper is to perform an exhaustive assessment of TRINI in terms of generality, scalability and

reliability. For this purpose, three experiments were performed: Firstly, TRINI was applied to four

load balancing algorithms to assess its generality (as it had previously been applied to only one).

Secondly, TRINI was tested in ten cluster sizes to assess how scalable it is (as it had previously

been tested in only one). Thirdly, TRINI was evaluated in 24-hour test runs to assess its reliability

(as it had previously been tested in 1-hour runs). The obtained results showed that TRINI can offer

significant performance gains under the above conditions, while only introducing a small overhead

to the cluster.

The contributions of this paper are:

1. An extended description of our adaptive GC-aware load balancing strategy (TRINI), whose

goal is to improve the performance of clustered Java systems.

2. A comprehensive practical evaluation of TRINI, consisting of a prototype and three

experiments to assess TRINI in terms of generality, reliability and scalability. These

experiments demonstrate the performance benefits and overhead costs of using TRINI under

those scenarios.

3. Four GC-aware load balancing algorithms which were modified to use MaGC forecast

information for improving their workload distribution.

4. Key findings that could serve as guidelines for practitioners to integrate GC-awareness to a

load balancing algorithm, as well as the conditions under which a GC-aware load balancing

strategy can be useful.

The remainder of the paper is organized as follows: Sections 2 and 3 present the relevant

background and related work, respectively. Section 4 explains the internal workings of TRINI;

while Section 5 discusses the performed experiments and their results. Finally, Section 6 draws

the conclusions of this work and provides pointers to our future work.

2. BACKGROUND

This section recalls the main features and characteristics of the GC process in Java, as well as a

typical load balancing process, which are necessary to understand the rest of the paper.

GC. This form of automatic memory management offers significant software engineering benefits

over explicit memory management. For example, it frees developers from the burden of manual

memory management, avoiding the most common sources of memory overwrites and leaks [19], as

well as increasing the developers’ productivity [20]. Despite these advantages, it is widely accepted

that the GC comes with a performance cost (as discussed in Section 1).

Additionally, it is not possible to programmatically force the execution of the GC [21]. The closest

action a developer can do is to call the method Runtime.getRuntime().gc() (or its equivalent method

System.gc()) to suggest the JVM to execute a MaGC. Nevertheless, the JVM is not forced to fulfil

this request and may choose to ignore it. The usage of these methods is also discouraged by the

JVM vendors [22] because the JVM usually does a better job on deciding when to do GC.

Generational Heap. The memory area in Java is known as the heap. Nowadays, one of the most

commonly used heap types is the generational heap [23], where objects are segregated by age into

memory regions known as generations. New objects are created in the youngest generation because

the survival rates of younger generations are usually lower than those of older generations. That

is, younger generations are more likely to contain garbage and can be collected more frequently

than older ones. The GC in the younger generations is known as Minor GC (MiGC). It is usually

inexpensive and rarely causes a performance concern. MiGC is also in charge of moving the live

objects, which are old enough, to the older generations. This means that the MiGC plays a key role

in the memory allocation of older generations. The GC in the older generations is known as MaGC

and it is commonly accepted as the most expensive GC type due to its performance impact [8].

Finally, running out of free memory in a generation triggers its respective type of GC event.

GC Strategies. The heap is managed by the GC strategy selected at JVM start-up. Their

availability is usually tied to the heap type. For instance, three of the most widely-used GC strategies

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

4 A.O. PORTILLO-DOMINGUEZ ET AL

in the industry [24] work exclusively on generational heaps: The Serial GC (which performs all its

work using a single thread and it is preferable for client JVMs), the Parallel GC (which uses multiple

threads and it is preferable for server JVMs when throughput is more important than response time),

and the Concurrent GC (which does most of its work concurrently with the application threads and

it is preferable for server JVMs when response time is more important than throughput).

Load Balancing. The objective of a load balancing strategy is to optimise the performance of an

application running in a cluster composed of a set of nodes, each one having an identical code image

of the application. The application must be also partitionable into smaller grain-sized tasks (e.g., a

web application, which is normally composed of atomic operations such as login, search, etc.).

The range of existing load balancing algorithms is broad [25, 26]. Nowadays, four algorithms

frequently used in the industry are: round robin, random, weighted round-robin and weighted

random. Round robin selects the nodes iteratively, eventually distributing the workload evenly

across the nodes. In the case of the random, each node is selected at random among the available

ones. Finally, in the weighted versions of these algorithms, the number of times a node would be

selected (as per their respective decision logic) is adjusted using a weight defined per node.

3. RELATED WORK

In this section, we first expand on the recent work in GC optimisation. Then, we discuss the related

work in the area of memory forecasting. Next, we review the state-of-the art work in distributed

systems optimisation, with a special emphasis on load balancing.

GC Optimisation. Multiple research efforts have focused on improving the GC performance. For

example, several works have proposed new concurrent [27, 28] and parallel algorithms [29, 30] that

have smaller impacts on the performance of the applications. Other works have aimed to develop

algorithms that might have predictable GC performance [31,32]. However this predictability comes

in terms of soft-requirements, meaning that the GC might still take more time than expected.

Another explored approach has been to develop algorithms for specific usage scenarios. For

instance, [33] describes an algorithm suitable to Java Application Servers which exploits the

different natures of the local and remote objects. Even though all these works have helped to reduce

the frequency and impact of the GC, it remains a major performance concern due to the diverse

factors that affect its performance (as discussed in Section 1).

Memory Forecasting. This is another active research area which focuses on the self-

improvement of the JVM, looking for ways to invoke a GC when it is worthwhile. For example, the

work presented in [34] exploits the observation that dead objects tend to group together to estimate

how much space would be reclaimable for a MaGC to avoid low-yield GCs. Meanwhile, the authors

of [35] present an approach to estimate the number of dead objects at any time, information that a

JVM could use to decide when to trigger a MaGC. In all these cases, the memory forecasts help to

determine if it is a good time (in terms of memory gains) to execute a GC. However, they do not

provide enough information to know when the next MaGC would occur. In contrast, our work aims

to forecast the MaGC events, also making this information available outside the JVM so that other

actors (such as a load balancer) could leverage it and take more informed decisions.

Distributed Systems Optimisation. Research has also focused on the optimisation of distributed

architectures, improving them from various viewpoints. For example, the authors of [36] presented

a method to facilitate the migration of a monolithic Java application to a distributed architecture

through the automated dependency injection of source code. In the case of [37], this work described

a mechanism to achieve high reliability in clustered web services, which was based on its capability

of offering transparent fault-tolerance to different types of transactions. Furthermore, the work

on [38] proposed a resource management solution for distributed systems, offering capabilities such

as the automatic detection of overloaded resources.

Due to its importance, load balancing is a well-studied problem in the areas of parallel and

distributed systems, where a significant body of literature exists [39–49]. For example, the authors

of [4] proposed a technique to estimate the total workload of a load balancer to utilise this

information in the balancing of new workload. Meanwhile, the work on [43] proposed an adaptive

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

TRINI 5

load balancing strategy which aims to fulfil service level agreements based on a set of customer

priorities. Likewise, the authors of [50] presented an agent-based solution to provide dynamic load

balancing capabilities to cloud-based services and resources. Finally, other research efforts have

focused on Java technologies: The authors of [3] developed a load balancing algorithm for Java

web applications which considers the utilisation of the JVM heap, threads and CPU to decide

how to distribute the load. Similarly, the work presented in [5] proposes a function to calculate the

utilisation of an Enterprise JavaBean (EJB) and then uses this information to distribute the incoming

load among the available EJB instances.

In contrast to all the previously discussed works, our research work has enhanced a load balancer

by considering the MaGC forecasts in its decision layer. In such a case, the load balancer can get

additional knowledge about the JVM in order to control the workload of the system, in addition to

other existing load balancing policies that might be applicable.

4. TRINI: AN ADAPTIVE GC-AWARE LOAD BALANCING STRATEGY

In this section, we describe TRINI. First, we provide the context of our solution. Next, we describe

the internal workings of TRINI. Finally, we conclude the section with a discussion of the proposed

algorithms and policies.

4.1. TRINI Overview

The objective of our research work was to define a GC-aware load balancing strategy (TRINI) which

is able to dynamically adjust to the specific GC characteristics of the underlying application. This

strategy would allow the load balancer to forecast the occurrence of the MaGC events with enough

accuracy to exploit that information for improving the performance of a cluster.

In Figure 2, we depict the conceptual view of our solution. TRINI periodically retrieves

information from the application nodes in order to characterise it. Then, it identifies the most suitable

policy based on the GC characteristics of the application running on each node (termed as program

family). Finally, the chosen policy is used to forecast the MaGC events and balance the incoming

workload among the available application nodes.

Figure 2. TRINI Conceptual View

As defined by multiple authors [51, 52], self-adaptation provides a system with the capability of

adapting itself autonomously to changes in its environment to achieve particular quality goals in the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

6 A.O. PORTILLO-DOMINGUEZ ET AL

face of uncertainty. In our context, it means minimising the performance impacts of the GC within

the cluster. To incorporate self-adaptation to TRINI, we have followed the well-known MAPE-K

adaptive model [53]. It is composed of the following elements (shown in Figure 2): A Monitoring

element to obtain information from the managed systems; an Analysis element to evaluate if any

adaptation is required; an element to Plan the adaptation, and an element to Execute it.

The fifth element of the MAPE-K model is the Knowledge element, which is responsible of

supporting the other elements in their respective tasks. In TRINI, this role is fulfilled by the set

of identified program families. The encapsulation of the knowledge into families allows TRINI to

be easily extensible and capable of incorporating multiple load-balancing policies, which might

be suitable to different scenarios and application behaviours. In this context, a program family

encompasses a set of programs which can be treated similarly because they share some common GC

characteristics. For example, a set of program families might be defined according to the duration

of the MaGCs. One family can be defined for those programs which tend to suffer MaGCs of small

duration (e.g. a few hundreds milliseconds). This is because these MaGCs do not normally represent

a major performance issue. On the contrary, another family can be defined for those programs which

tend to suffer MaGCs of longer duration.

Each program family has two properties: (1) An evaluation criteria to determine if the GC

behaviour of an application qualifies for that family. In our previous example, a possible evaluation

criterion might be the comparison of the MaGC duration of the monitored application against the

duration ranges of each defined program family. (2) A policy which specifies the rules to perform

the MaGC forecasting and load balancing. Following our previous example, a possible policy might

be the selection of different ranges of historical data (per family) to be considered in the forecast of

MaGCs. These policies also make use of the set of available forecast and load balancing algorithms.

These algorithms are discussed in Sections 4.3 and 4.4, respectively.

Figure 3. TRINI - Core Process

4.2. TRINI Core Process

TRINI has a core process which coordinates its MAPE-K elements. This process (depicted in

Figure 3) is triggered when the load balancer starts. As an initial step, it uses a default policy

(e.g., all the available MiGC history might be used to forecast the MaGCs). This initial policy

considers any additional configuration provided at start-up time (e.g., information base such as

the load balancing algorithm to use) and it is utilised for all the application nodes. Next, the loop

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

TRINI 7

specified in the monitor and analyse phases starts for all the application nodes (in parallel), until

the load balancing finishes: A new set of data samples is collected, based on the program GC

characteristics used to define the set of available program families (e.g., GC and memory snapshots).

After the collection occurs, the analyser process checks if the current program family suits the GC

characteristics of the underlying program. If it is not the case, the evaluation criteria of the other

program families are assessed to identify the new program family, which is then used until the next

evaluation phase occurs. These actions retrieve their configurations from the database of program

families (represented as dashed arrows in Figure 3). Furthermore, any exceptions are internally

handled and reported.

4.3. MaGA: A MaGC Forecast Algorithm

A fundamental capability required by TRINI is the ability of accurately predicting when the MaGCs

will occur. To fulfil this need, in [54] we presented MaGA, which is an algorithm to forecast MaGC

events in generational heaps. It works by periodically retrieving GC and memory samples from a

monitored JVM (as per a configurable sample interval) to build the history of memory allocations

(MemAlloc) that occur in the Young and Old Generations through time. Then, the algorithm uses

the most recent historical data, as delimited by a configurable Forecast Windows Size (FWS), to

forecast the next MaGC event. This is done in two steps. Firstly, the algorithm forecasts how

much memory allocation needs to occur in the Young Generation (YoungGen) before the memory

in the Old Generation (OldGen) gets exhausted (hence triggering a MaGC). An example of this

process is shown in Figure 4. Firstly, the algorithm uses the OldGen historical data within the FWS

(represented as a rectangle) to feed a linear regression model (LRM). This is done to predict the

rate of increase in the YoungGen, as a function of the OldGen, and thus extrapolate the data to the

point where the OldGen will exceed its maximum threshold (90 MB in our example) and trigger

a MaGC. This yields a prediction that the next MaGC will occur when the YoungGen reaches

225 MB in our example. Secondly, the algorithm feeds this YoungGen threshold to another LRM

which extrapolates the time series of the YoungGen memory and predicts that a new MaGC event

will occur at a time of 600 ms (as shown in Figure 5). This forecast process continues iteratively

until the monitored application finishes or the forecast is no longer needed.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100T
o
ta

l
Y

o
u
n
g
G

e
n
 M

e
m

A
llo

c
 (

M
B

)

Total OldGen MemAlloc (MB)
Figure 4. Forecast of Young MemAlloc

 0

 200

 400

 600

 0 50 100 150 200 250

T
o
ta

l
T

im
e
 (

m
s
)

Total YoungGen MemAlloc (MB)
Figure 5. Forecast of MaGC Event

4.4. GC-Aware Load Balancing Algorithms

To evaluate the performance gains that can be achieved by adapting the load balancing based on the

MaGC forecast information, we have modified four well-known load balancing algorithms. Among

the range of available algorithms, we selected the four described in Section 2: Round-robin (RR),

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

8 A.O. PORTILLO-DOMINGUEZ ET AL

random (RAN), weighted round-robin (WRR) and weighted random (WRAN). As the experimental

results will show, the achieved performance improvements are evident for the four algorithms and so

it is expected that TRINI can yield similar results when applied to other load balancing algorithms.

Algorithm 1: GC-WRR

Input: D = {d1, d2, . . . , dn}, set of application nodes

W = {w1, w2, . . . , wn}, set of weights per application node

T ∈ {N}, MaGC threshold

Output: di ∈ D

1 i := 0

2 while load balancing is needed do

3 fTries := 0
4 found := false

5 if isRuntimeWeightsZeroed() then

6 resetRuntimeWeights(W)
7 i := 0

8 while found = false do

9 if i ≥ n then

10 i := 0

11 if wi > 0 then

12 wi := wi − 1
13 found := true

14 if fTries < n then

15 fT ime := getForecast(di)
16 cT ime := getCurrentT ime()
17 if (fT ime− cT ime) ≤ T then

18 found := false

19 wi := wi + 1
20 i := i+ 1
21 fTries := fTries+ 1

22 else

23 i := i+ 1

24 use di for the next workload

The main difference of our algorithms (compared against their original counterparts) is that they

perform an additional check in the selection of the next node. That is, if the pre-selected node (as per

their original selection criteria) is about to suffer a MaGC within a specified threshold (time when a

node stops being considered a feasible candidate because the next MaGC is too close), that node is

skipped and the next node is evaluated. Once the MaGC is over, the affected node is again available

for selection. For example, if the time threshold is 5 seconds and the current time is 5:00:00PM, any

nodes that have a MaGC predicted to occur between 5:00:00PM and 5:00:05PM will be skipped

in the load balancing iteration as their forecasts fall within the specified threshold. An additional

change made to the GC-aware algorithms was the inclusion of an escape condition to prevent an

infinite loop in the case that all nodes were about to suffer a MaGC within the defined threshold. If

this occurs, the GC-aware algorithms would behave as their original counterparts.

An example of our proposed algorithms is presented in Algorithm 1, which shows the GC-aware

weighted round robin (GC-WRR). When compared against the original WRR, one can notice the

two applied changes (lines 14 to 21): An additional check to consider the closeness of a MaGC

in the node selection, and an escape condition (the fTries variable) which keeps the count of the

evaluated nodes to prevent the previously discussed infinite loop.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

TRINI 9

While integrating GC-awareness to the four chosen algorithms, we identified certain similarities

across the performed changes. This allowed us to abstract the changes into a generic version of a

GC-aware load balancing algorithm, as shown in Algorithm 2. There, it can be noticed how, after

the original load balancing selection occurs (represented by the function originalSelection), the

algorithm performs additional steps to select the next node to be used. This new logic is encapsulated

in the functions IsMaGcClose, getForecast, markAsEval, AreNodesToEval and resetNodesToEval.

The function IsMaGcClose (shown in Algorithm 3) is responsible of checking if the next MaGC

is “too close” for the tentatively selected node. If it is the case, another node must be selected.

Internally, this function uses getForecast (which is a wrapper of the MaGA algorithm discussed in

Section 4.3), and markAsEval (which is responsible of marking, probably through a data structure

like a hash table [55] or a vector [56], the nodes after they have been evaluated for the current

balancing decision). Meanwhile, the responsibility of AreNodesToEval is to check if all nodes

have been evaluated for the current balancing decision (to avoid a potential never-ending loop).

Finally, the function resetNodesToEval is responsible of clearing the marks after the decision has

been taken. Due to the relative low complexity (and broad spectrum of possible implementations)

of the functions markAsEval, AreNodesToEval and resetNodesToEval, we only describe their

responsibilities, instead of specific implementations.

Algorithm 2: Abstract GC Load Balancing

Input: D = {d1, d2, . . . , dn}, set of application nodes

T ∈ {N}, MaGC threshold

Output: di ∈ D

1 i := 0

2 while load balance is needed do

3 found := false

4 while found = false do

5 i := originalSelection()
6 found := true

7 if IsMaGcClose(di, T) & AreNodesToEval() then

8 found := false

9 use di for the next workload

10 resetNodesToEval()

Algorithm 3: Evaluate Closeness of the MaGC

Input: di ∈ D, tentatively selected node

T ∈ {N}, MaGC threshold

Output: bMaGcCloseness

1 fT ime := getForecast(di)
2 cT ime := getCurrentT ime()
3 if (fT ime− cT ime) ≤ T then

4 bMaGcCloseness := true

5 markAsEval(di)

6 else

7 bMaGcCloseness := false

8 return bMaGcCloseness

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

10 A.O. PORTILLO-DOMINGUEZ ET AL

4.5. MiGC-CV Program Families

Among the alternative strategies to develop policies for TRINI, we initially concentrated on

automating the selection of the FWS. This is because our work at [54] showed that the accuracy of

the MaGA algorithm is particularly sensitive to this configuration. This sensitivity occurs because

the FWS delimits the degree of knowledge (in terms of historical memory data) which is used

to forecast the MaGCs (as explained in Section 4.3). Also, in those experiments no single FWS

achieved the lowest forecast error in all the cases, showing that there is no “best-fit-for-all” FWS.

Meanwhile, the results of our work at [17] showed that the MaGA algorithm tends to benefit

from having more historical data available. However, this growth is usually not monotonic. On the

contrary, the optimal FWS might experience troughs. This behaviour is captured by the MiGCCV

metric [54] (which measures the coefficient of variation in terms of the number of MiGCs which

occur between MaGCs). This approach makes the MiGCCV metric an appropriate criterion to

classify the different program behaviours into families. For example, whenever there is a large

variation in the number of MiGCs that occur between MaGCs (reflected in a high value of

MiGCCV), using more historical data is not useful because that history does not properly capture

the dramatic (several orders of magnitude) changes in memory behaviour. On the contrary, if only

the most recent history is used in this scenario (implicitly meaning the usage of a smaller FWS), the

forecast accuracy is significantly improved.

Based on the observed behaviours, three MiGCCV program families were experimentally

identified [17]: Low (MiGCCV ≤0.1), medium (0.1<MiGCCV <1.0), and high (MiGCCV ≥1.0).

For each family, a FWS trending function was derived, focusing on those MaGCs that benefit from

using the increments in MiGC history (while leaving the outliers out of the trend). The validity of

the derived models was reflected in their calculated coefficient of determination [57] values, which

were above 0.9 (a threshold commonly accepted in statistics as the minimum value to consider a

trending function representative of the modelled data). These function-based policies then allowed

us to automate the selection of an appropriate FWS on a case by case basis. The results obtained

in [17] demonstrated that these functions were able to accurately predict a good percentage of the

MaGC events. Those results also showed that the number of outliers tend to decrease in larger

(e.g. gigabytes) heap sizes. This behaviour supported our decision of ignoring the outliers from the

derived functions.

5. EXPERIMENTAL EVALUATION

This section presents the three experiments performed to assess the benefits and costs of using

TRINI. Firstly, we evaluated the generality of TRINI’s behaviour across a set of different load

balancing algorithms. Secondly, we evaluated the scalability of TRINI’s behaviour across a range

of different cluster sizes. Thirdly, we evaluated the reliability of TRINI’s behaviour over extended

time periods. The section concludes with a discussion for practitioners where we summarise our key

findings and observations.

5.1. Experiment #1: Generality Assessment

The objective of this experiment was to evaluate the generality of the benefits and costs of using

TRINI. To achieve this, we compared the behaviour of TRINI applied to four commonly used load

balancing algorithms. The following sections describe this experiment and its results.

5.1.1. Experimental Set-up. In the following paragraphs we present the developed prototype, the

test environment and the parameters that defined the evaluated experimental configurations: The

selected load balancing algorithms, Java benchmarks, and GC strategies. We also describe the

evaluation criteria used in this experiment.

Prototype. It was built on top of the Apache Camel [58], which is a popular light-weight load

balancer. This solution was chosen because it is open source and developed in Java, characteristics

which facilitated its integration with the MaGC forecast logic. Additionally, the architecture of this

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

TRINI 11

load balancer offers well defined extension points. This characteristic facilitated the implementation

of our GC-aware load balancing algorithms.

Inspired by other works [59] that have aimed to minimize the potential impacts on the monitored

environment, the forecast logic was implemented external (non-intrusive) to the JVM. For this

purpose, we used the Java Management Extension (JMX) [60] to interact with the monitored JVM.

JMX was chosen because it is a standard Java technology which can retrieve all the information

needed for predicting the MaGC events (e.g., memory usages or GC snapshots).

Environment. All the experiments were performed in an isolated test environment, so that the

entire load was controlled. This environment was composed of seven virtual machines (VM): A

cluster of five application nodes with one load balancer, and one load tester node (as shown in

Figure 6). All the VMs had the following characteristics: 4 virtual CPUs at 2.20GHz, 3GB of

RAM, and 50GB of HD; running Linux Ubuntu 12.04L, and OpenJDK JVM 7u25-2.3.10 with a

1.6GB heap. Each JVM was configured to initialise its heap to its maximum size, and the calls to

programmatically request a MaGC were disabled. The load tester node also used an Apache JMeter

2.9 [61] (a leading open source tool used for application performance testing), and the application

nodes ran an Apache Tomcat 6.0.35 [62] (a popular open source Web Application Server for Java).

Figure 6. Test Environment

Load Balancing Algorithms. The four algorithms discussed in Section 2 were tested: Round

robin (RR), random (RAN), weighted round robin (WRR) and weighted random (WRAN); as

well as their developed GC-aware counterparts (GC-RR, GC-RAN, GC-WRR, GC-WRAN). Two

types of runs were performed: The first type used the original version of each algorithm and was

considered the baseline in the analysis of the results. The second type of run used the GC-aware

version of each algorithm. Regarding the MaGC forecast algorithm (which is internally used by

the GC-aware algorithms, as explained in Section 4.4), the FWS was automatically selected by the

function-based policies described in Section 4.5. Additionally, a value of 100 ms was selected as

the sampling interval, assuming that no more than one MiGC would occur within that timeframe

(hence not missing any MiGC).

Benchmarks. Two of the Java benchmarks most widely used in the literature (DaCapo 9.12 [63]

and SPECJVM 2008 [64]) were chosen because they offer a wide range of 23 different programs

to test. Unlike other benchmarks (which are synthetically generated), these are real-life programs

from different business domains and which are widely used in the industry.

In order to be able to call a program from within a JMeter HTTP test script (so that multiple

concurrent calls could be invoked per application node), a wrapper JSP was developed and installed

in the Tomcat instance of each application node. For each program, a JMeter test script was

created, adding some controlled diversity to the workload. For the DaCapo programs, it involved

varying the workload size between program calls (using the available pre-defined workload sizes of

DaCapo [65]). In the case of the SPECJVM programs, the controlled diversity involved varying the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

12 A.O. PORTILLO-DOMINGUEZ ET AL

execution time (in the range of 30 to 90 seconds). Each JMeter test run lasted 60 minutes and used

50 concurrent users. Finally, each individual program call was considered a transaction.

GC Strategies. The three strategies discussed in Section 2 were used: Serial GC (sGC), Parallel

GC (pGC), and Concurrent GC (cGC). This was done with the aim of diversifying more the

evaluated GC behaviours (as the GC strategy is a major factor affecting the GC behaviour [16]).

Evaluation Criteria. In terms of performance, our main metrics were throughput per second (tps)

and response time (ms). Concerning response time, lower values are better; while for throughput,

higher values are better. These metrics were collected with JMeter. In terms of overhead, our main

metrics were CPU (%) and memory (MB) utilisations. In both cases, lower values are better. These

metrics were collected with the top command [66].

Regarding the forecast accuracy, the following three metrics were calculated:

1. The forecast error (FE) [54]. This metric is the ratio of the absolute forecasting error (the

difference between the forecast time and the time of the real MaGC event) as a proportion

of the time elapsed since the previous MaGC. It is usually expressed as a percentage to be

comparable among different programs, where lower values are better. Alternatively, the FE

can be expressed as forecast accuracy (FA), which is the difference between the maximum

possible accuracy (100%) and the FE. In terms of FA, higher values are better.

2. The average number of MiGCs that occurred between two MaGC events (MiGCAVG) [54].

This metric captures the relationship between the heap size and the memory allocation

required by an application (major factors influencing the GC, as proved in [67] and [12],

respectively). The smaller the MiGCAVG is, the more MaGCs are triggered, in which case

the application more frequently exhausts its old generation memory. If the value is close to

zero (e.g., 5 or lower), the application is close to an out-of-memory exception. On the contrary,

a value far from zero (e.g., 1000 or higher) indicates that the old generation is infrequently

exhausted.

3. The coefficient of variation (MiGCCV) [54]. This metric is the standard deviation of the

MiGCAVG expressed as a percentage of the average, and allows the comparison of different

applications in terms of their variability in memory usage.

5.1.2. Experimental Results. In this section we present the results obtained from this experiment in

terms of the relevant performance and overhead metrics.

Performance Improvements. As an initial step to understand the behaviour of TRINI across

the evaluated experimental configurations, we focused our analysis on assessing the performance

improvements that TRINI achieved. In this context, a performance improvement for a particular

metric (e.g., response time) is the difference between an experimental configuration using a GC-

aware load balancing algorithm (e.g., GC-WRR) and its counterpart using the corresponding

original algorithm (e.g., WRR). In terms of throughput, a performance improvement implies a

positive difference (as higher throughput is better) and has a value greater than 0%. In terms of

response time, a performance improvement implies a negative difference (as lower response time is

better) and has a value in the range between 0% and 100%.

The overall results showed that TRINI worked well, as all the GC-aware experimental

configurations achieved performance improvements. More importantly, the behaviours of the four

tested GC-aware load balancing algorithms were similar, as they achieved comparable performance

improvements. Figure 7 shows the results in terms of average response time (RTAVG). There, it can

be observed the achieved average performance improvements, which ranged between 27% and 31%.

It should be noted that these results are aggregated across the full set of benchmark applications,

which have a wide range of memory behaviours, so that the observed standard deviations ranged

between 20% and 23%. Figures 8 and 9 depict the obtained results in terms of maximum response

time (RTMAX) and average throughput (TAVG). There, it can be noticed that both metrics also

experienced behaviours which were similar across all the tested load balancing algorithms.

The next round of our analysis focused on evaluating the sensitivity of TRINI with respect to

the different GC strategies used. These results are presented in Figures 10 (RTAVG), 11 (RTMAX)

and 12 (TAVG). There, it can be seen that the average performance improvements achieved by TRINI

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

TRINI 13

0%

10%

20%

30%

40%

GC-RAN
GC-RR

GC-WRAN

GC-WRR

P
e
rf

.
Im

p
ro

v
e
m

e
n
t
(%

)

LB Algorithm
Figure 7. RTAVG - Perf. Improv. per LB

0%

10%

20%

30%

40%

GC-RAN
GC-RR

GC-WRAN

GC-WRR

P
e
rf

.
Im

p
ro

v
e
m

e
n
t
(%

)

LB Algorithm
Figure 8. RTMAX - Perf. Improv. per LB

0%

10%

20%

30%

40%

50%

60%

70%

80%

GC-RAN
GC-RR

GC-WRAN

GC-WRR

P
e
rf

.
Im

p
ro

v
e
m

e
n
t
(%

)

LB Algorithm
Figure 9. TAVG - Perf. Improv. per LB

0%

10%

20%

30%

40%

cGC pGC sGC

P
e
rf

.
Im

p
ro

v
e
m

e
n
t
(%

)

GC Strategy

Figure 10. RTAVG - Perf. Improv. per GC

0%

10%

20%

30%

40%

cGC pGC sGC

P
e
rf

.
Im

p
ro

v
e
m

e
n
t
(%

)

GC Strategy

Figure 11. RTMAX -Perf. Improv. per GC

0%

20%

40%

60%

80%

100%

120%

140%

cGC pGC sGC

P
e
rf

.
Im

p
ro

v
e
m

e
n
t
(%

)

GC Strategy

Figure 12. TAVG - Perf. Improv. per GC

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

14 A.O. PORTILLO-DOMINGUEZ ET AL

40%

50%

60%

70%

80%

90%

100%

 0.001 0.01 0.1 1 10

F
o
re

c
a
s
t
A

c
c
u
ra

c
y
 (

%
)

MiGCCV
Figure 13. Forecast Accuracy vs. MiGCCV

were relatively close across the three GC strategies, meaning that TRINI worked well irrespectively

of the GC strategy. The biggest gains occurred when using the sGC as this GC strategy experienced

the most time-consuming MaGC events (hence having the largest potential gain to exploit).

The previous two analyses were useful to obtain a high-level view of the achieved performance

improvements. However, these analyses did not capture the differences in memory behaviours

across the tested applications (reflected in the relatively high standard deviations obtained after

consolidating the results). Therefore, additional investigation, from a more memory/GC-oriented

perspective, was required.

As a next step, we focused on understanding the reasons behind the achieved performance gains.

For this purpose, we analysed the results in terms of MiGCCV behaviour, as illustrated in Figure 13.

There, a clear relationship can be observed between the forecast accuracy achieved by TRINI and

the MiGCCV of the different application behaviours. In general, the lower the variability, the

more accurate TRINI is. More importantly, the forecast accuracy reaches practically 100% when

the variability is below 0.1. This behaviour persisted irrespective of the chosen load balancing

algorithm or GC strategy. These results show how MiGCCV is an appropriate metric to characterise

the program behaviours into families.

In our experiments, we also identified that the performance improvements yielded by TRINI are

mainly driven by two factors:

1. The total time spent on MaGC in all the application nodes (MaGCD), as it captures the

amount of potential gain that can be obtained.

2. The forecast accuracy (FA) of TRINI, which is the actual enabler that allows the potential

gains to be converted into actual gains (by diverting the workload from any node which is

suffering a MaGC).

In general terms, the performance improvements tend to be bigger when the MaGCD is long

(as there is more potential gain to exploit). However, the actual benefits depend on the amount of

MaGCD that is actually addressed (A-MaGCD). This behaviour is depicted in Figure 14, which

shows the achieved performance improvements (in terms of RTAVG) with respect to the A-MaGCD

and the FA. The A-MaGCD is expressed as a percentage of the total execution time. The FA is

grouped in three levels: Low (30%≤FA≤50%), medium (50%<FA≤80%), and high (FA>80%). In

Figure 14, it can be seen how the improvements for a particular level of FA (e.g., high), tend to be

bigger when the A-MaGCD is longer. It can also be noticed how the A-MaGCD highly influences

the achieved performance improvements. For example, the biggest improvements were achieved by

those configurations which experienced the longest A-MaGCD, even though they only achieved a

medium level of FA.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

TRINI 15

0%

10%

20%

30%

40%

Low Medium High

P
e
rf

.
Im

p
ro

v
e
m

e
n
t
(%

)

Forecast Accuracy Levels

A-MaGCD

 [0-5%]

 (5-10%]

(10-15%]

(15-20%]

(20-25%]

(25-30%]

(35-40%]

(50-55%]

Figure 14. RTAVG - Perf. Improvements per FA and A-MaGCD

0%

20%

40%

60%

80%

100%

40% 50% 60% 70% 80% 90% 100%

A
-M

a
G

C
D

 (
%

)

Forecast Accuracy (%)
Figure 15. A-MaGCD per Forecast Accuracy Level

In this context, a MaGC was considered addressed if it was forecasted accurately enough that

it was possible to prevent sending transactions to the affected node during the MaGC occurrence.

Under these conditions, the only transactions affected by the MaGC event were those in the pipeline

to be processed by a node which suffered the MaGC.

This behaviour is further explained by Figure 15, which shows how the FA translates into A-

MaGCD. In general terms, the higher the FA, the bigger the amount of A-MaGCD. However, the

relationship is not entirely linear. This is because the amount of A-MaGCD depends not only on the

number of MaGCs which were not addressed (as measured by the FA), but also on the durations of

those MaGCs. For instance, it is not the same performance impact to inaccurately forecast a MaGC

that lasts two minutes, than a MaGC that lasts two seconds (even though both MaGC events are

equally captured by the FA metric).

Overhead. We also studied the costs of using TRINI. For this analysis, we categorised the

possible overhead in two types: The overhead introduced in the application nodes, and the overhead

in the load balancer node.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

16 A.O. PORTILLO-DOMINGUEZ ET AL

0%

1%

2%

3%

4%

GC−RAN
GC−RR

GC−WRAN

GC−WRR

Δ

 C

P
U

A
V

G
 (

%
)

LB Algorithm
Figure 16. App.nodes - ∆CPUAVG

0.0%

0.5%

1.0%

1.5%

2.0%

GC−RAN
GC−RR

GC−WRAN

GC−WRR

Δ

 M

E
M

A
V

G
 (

%
)

LB Algorithm
Figure 17. App.nodes - ∆MEMAVG

0%

2%

4%

6%

8%

10%

GC−RAN
GC−RR

GC−WRAN

GC−WRR

Δ

 C

P
U

A
V

G
 (

%
)

LB Algorithm
Figure 18. LB node - ∆CPUAVG

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

GC−RAN
GC−RR

GC−WRAN

GC−WRR

Δ

 M

E
M

A
V

G
 (

%
)

LB Algorithm
Figure 19. LB node - ∆MEMAVG

In the application nodes, TRINI proved to be light-weight in terms of CPU and memory across

all the load balancing algorithms. The increment in average CPU usage (∆CPUAVG) across all

tested applications was 1.59%, with a standard deviation of 0.55%; while the increment in average

memory usage (∆MEMAVG) was 0.55%, with a standard deviation of 0.34%. These increments

were caused by the data gathering process, which collects information from the different application

nodes (performed through JMX, as explained in Section 5.1.1). These results are presented in

Figures 16 and 17, which show the ∆CPUAVG and ∆MEMAVG, respectively.

In the load balancer node, the introduced overhead was slightly higher (compared to the

application nodes), but still low and within a reasonable level. The ∆CPUAVG was 7.42%, with

a standard deviation of 1.18%; while the ∆MEMAVG was 4.79%, with a standard deviation

of 0.63%. Additionally, the four load balancing algorithms performed similarly, suggesting that

the level of introduced overhead was independent of the algorithm. These results are presented

in Figures 18 (∆CPUAVG) and 19 (∆MEMAVG). The ∆CPUAVG was mainly caused by the

forecast algorithm, as it continuously generates an updated MaGC forecast for each application

node. Regarding the memory consumption, approximately 4% of the ∆MEMAVG was caused by

the initialisation of TRINI. The remaining increment was due to the historical data that was kept for

forecasting purposes.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

TRINI 17

Summary. This experiment demonstrated the performance gains that TRINI can bring to a

cluster. By avoiding the impact of most of the MaGC events in the individual nodes, the performance

of the clustered applications was significantly improved. More importantly, the improvements were

achieved irrespectively of the used load balancing algorithm or GC strategy, proving the generality

of TRINI. Regarding the overhead, the increments in CPU and memory usage in the application

nodes were minimal, hence not affecting their normal operation. Even though the level of tolerable

overhead in the load balancer node would depend on the particular usage scenario, the obtained

increments were considered acceptable because the load balancer node was far from exhausting

its resources (especially considering the relative modest characteristics of the load balancer node,

described in Section 5.1.1).

5.2. Experiment #2: Scalability Assessment

Here the objective was to evaluate the scalability of TRINI by assessing its behaviour in bigger (and

different sizes of) clusters. The following sections describe this experiment and its results.

5.2.1. Experimental Set-up. The set-up was similar to that used in experiment #1 (presented in

Section 5.1.1), with the following differences: The cluster size was variable, covering the range of

[5..50] application nodes in increments of 5. The minimum value was the size used in experiment #1,

while the maximum value was constrained by our available computational resources. The number of

concurrent users was increased proportionally to the cluster size (e.g., as the 5-node cluster used 50

users, the 10-node cluster used 100 users, and so on) so that the workload was increased accordingly.

As experiment #1 proved that TRINI works well irrespective of the load balancing algorithm, we

centred on the WRR because it is currently the most widely-used load balancing algorithm [43].

Likewise, we concentrated on the Serial GC strategy because it tends to suffer the longest pauses [8],

hence benefiting more from our work. Finally, we focused on 5 programs which were representative

of the program classification that we presented in our previous work [17]. This configuration allowed

us to test a diverse set of GC behaviours with a smaller set of experimental configurations. That

classification (shown in Table I) grouped the programs of the DaCapo and SPECJVM benchmarks

according to their GC characteristics (the MaGCD and the MiGCCV). In Table I, the programs

underlined are the ones used in this experiment.

Table I. DaCapo/SPEC Program Classification per GC behaviours

MiGCCV

MaGCD

Short Medium Long

Low
compiler,

jython

avrora, compress,

fop, luindex, lusearch,

mpegaudio, tomcat,

startup, sunflow, xalan

Medium
batik, crypto, eclipse,

pmd, tradebeans

h2, scimark,

tradesoap, xml

High derby, serial

5.2.2. Experimental Results. In this experiment, our analysis focused on two main aspects:

Evaluating if the performance improvements yielded by TRINI are still evident in larger clusters;

and assessing the behaviour of the overhead in such clusters.

Performance Improvements. Our hypothesis was that the performance improvements should

not degrade when the cluster size increases, as each forecast process is independent of each other

(hence not affected by the number of monitored application nodes). This was confirmed by the

results of the experiment. Even though there were some minor variances in the percentage of

performance improvements that TRINI achieved, the improvements were closely similar, across the

different cluster sizes, per tested program. Figure 20 shows the obtained performance improvements

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

18 A.O. PORTILLO-DOMINGUEZ ET AL

0%

20%

40%

60%

80%

100%

 5 10 15 20 25 30 35 40 45 50

P
e
rf

.
Im

p
ro

v
e
m

e
n
t
(%

)

Cluster Size

derby
eclipse

sunflow
scimark

jython

Figure 20. RTAVG - Performance Improvements per cluster size

in RTAVG. There, it can be noticed how the improvements were relatively constant, per program,

through the different cluster sizes. Furthermore, the differences in improvements among the tested

programs were due to their diversities in memory/GC behaviour. For example, the scimark program

obtained the biggest improvements because it experienced the longest MaGCD and also achieved

a high forecast accuracy (above 90%). On the contrary, the jython program obtained the smallest

improvements because it suffered the shortest MaGCD (meaning it had the smallest potential

gains). For the sake of brevity, we only present the improvements in RTAVG. However, similar

trends were observed in terms of RTMAX and TAVG.

Overhead. Two main findings were identified in terms of overhead. First, the cost in the

application nodes of using TRINI was minimal and relatively constant and independent of the cluster

size. As previously explained, the forecast process for each application node is independent of each

other. Thus, the same principle applies to the data gathering that occurs in the nodes. This can be

noticed in the results of the analysis of the ∆CPUAVG and ∆MEMAVG in the application nodes

per cluster size (shown in Figures 21 and 22, respectively). There, it can be observed how the

increments in utilisation of both resources were very low. Additionally, they presented a relatively

uniform distribution across all the tested cluster sizes.

Second, the overhead in the load balancer node was dependent of the cluster size, following a

relatively smooth growth trend. In the case of the ∆CPUAVG, these increments were mainly caused

by the increase in the number of concurrent forecast processes (as there was one forecast process per

monitored application node). This explains the relatively linear nature of the growth. These trends

are shown in Figure 23. In the case of the ∆MEMAVG, the observed increments were mainly

caused by the amount of data that was gathered from the application nodes for forecasting purposes.

Under these circumstances, if the application triggers a considerably high number of MaGCs and/or

MiGCs, the amount of memory required to keep this historical data might become significant. This

behaviour can be observed in Figure 24, which presents the ∆MEMAVG trending per application.

There, it can be noticed how the derby program presented a relatively higher slope (compared to

the other programs). This is because derby generated not only the largest amount of GC historical

data, but it was also considerably bigger (several orders of magnitude) than the other programs. It is

worth mentioning that, despite the relatively high slope, the amount of memory required by TRINI

to support derby was still below 10% of the total available memory (on the load balancer node), even

with 50 application nodes. This level of utilisation leaves a considerable amount of idle resources to

support many more application nodes.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

TRINI 19

0%

1%

2%

3%

4%

5 10 15 20 25 30 35 40 45 50

Δ

 C

P
U

A
V

G
 (

%
)

Cluster Size
Figure 21. App.nodes - ∆CPUAVG per size

0.0%

0.5%

1.0%

1.5%

2.0%

5 10 15 20 25 30 35 40 45 50

Δ

 M

E
M

A
V

G
 (

%
)

Cluster Size
Figure 22. App.nodes - ∆MEMAVG per size

0%

10%

20%

30%

 5 10 15 20 25 30 35 40 45 50

Δ

 C

P
U

A
V

G
 (

%
)

Cluster Size

derby
eclipse
jython

scimark
sunflow

Figure 23. LB node - ∆CPUAVG per size

0%

2%

4%

6%

8%

10%

 5 10 15 20 25 30 35 40 45 50

Δ

 M

E
M

A
V

G
 (

%
)

Cluster Size

derby
eclipse
jython

scimark
sunflow

Figure 24. LB node - ∆MEMAVG per size

Summary. In conclusion, the results of this experiment showed how TRINI can scale gracefully

for larger clusters. The achieved performance improvements did not degrade when increasing the

size of the cluster, while also the computational resources used by TRINI did not significantly

increase.

5.3. Experiment #3: Reliability Assessment

Here the objective was to evaluate the reliability of TRINI by assessing its behaviour in longer

(24-hour) experimental test runs. The following sections describe this experiment and its results.

5.3.1. Experimental Set-up. The set-up was similar to that used in the experiment #2 (presented

in Section 5.2.1), with two differences: First, the evaluated cluster was composed of 5 application

nodes (same size as experiment #1, described in Section 5.1.1). Second, the duration of the test runs

was increased from 1 to 24 hours to evaluate TRINI on a longer, more realistic duration.

5.3.2. Experimental Results. In this section we present the results obtained from this experiment in

terms of the relevant evaluated metrics.

Performance Improvements. To understand the performance improvements achieved by TRINI

through the experiment, we carried out a breakdown of the behaviour of each experimental

configuration on an hourly basis. The results of this analysis showed no serious degradation in the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

20 A.O. PORTILLO-DOMINGUEZ ET AL

0%

20%

40%

60%

80%

100%

jython
sunflow

eclipse
derby

scimark

P
e
rf

.
Im

p
ro

v
e
m

e
n
ts

 (
%

)

Programs

Figure 25. RTAVG - Perf. Improv. on 24-hr runs

0%

20%

40%

60%

80%

100%

jython
sunflow

derby
eclipse

scimark

P
e
rf

.
Im

p
ro

v
e
m

e
n
ts

 (
%

)

Programs

Figure 26. RTMAX - Perf. Improv. on 24-hr runs

0%

20%

40%

60%

80%

100%

sunflow
jython

eclipse
derby

scimark

P
e
rf

.
Im

p
ro

v
e
m

e
n
ts

 (
%

)

Programs

Figure 27. TAVG - Perf. Improv. on 24-hr runs

obtained improvements during the 24-hr test runs, proving that the behaviour of TRINI (in terms

of performance improvements) remains stable through time (reflected in a low standard deviation).

Among the tested programs, the largest standard deviation occurred in the scimark program. This

behaviour was compensated by the performance improvements achieved (e.g., an average of 67% in

terms of RTAVG), which were the highest among the tested programs. Figure 25 shows the results

in terms of RTAVG. Similar results were obtained in terms of RTMAX and TAVG (as shown in

Figures 26 and 27, respectively).

Overhead. The results of our analysis showed that TRINI does not degrade the behaviour of

the application nodes through time. This is because TRINI only causes a minimal (and relatively

constant) overhead to them. The ∆CPUAVG across all tested applications was 1.01%, with a

standard deviation of 0.55%; while the ∆MEMAVG across all tested applications was 0.36%, with

a standard deviation of 0.15%.

In the load balancer node, the results of our analysis showed that the ∆CPUAVG caused by

TRINI remained quite steady during the whole experimental test runs (6.05% with a standard

deviation of 2.85%). This is because the main contribution to this increase is the number of forecast

processes, which is not influenced by time but by the size of the cluster. In terms of memory, the

∆MEMAVG across all tested applications was 4.97%, with a standard deviation of 0.87%. This

increment remained within a well-defined band during the 24-hour test runs. This stability in the

memory footprint of TRINI is the result of an efficient management of the historical data (e.g.,

MiGC events) which is temporarily stored by TRINI. This data is closely monitored and controlled,

so that whenever it becomes older than the required FWS (which delimits the history that is used

for forecasting), the data is automatically purged.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

TRINI 21

Summary. The results of this experiment demonstrated the reliability of TRINI through time, as

TRINI was capable of improving the performance of a clustered system without suffering from

a degradation in its behaviour. In terms of overhead, TRINI experienced a relatively uniform

∆CPUAVG during the whole test runs. Similar behaviour was observed in terms of ∆MEMAVG

in the application nodes. Finally, TRINI experienced a minimum increase in terms of ∆MEMAVG

in the load balancer node. This was due to the historical data that TRINI temporarily preserved for

forecasting purposes.

5.4. Final Discussion for Practitioners

The presented experimental results have demonstrated how adding GC-awareness to a load

balancing strategy can significantly improve the performance of a cluster. In the following

paragraphs we provide guidelines for practitioners to indicate the conditions under which TRINI

can yield improvements and discuss the wider applicability of the technique.

• To estimate the forecast accuracy that TRINI can achieve in a particular usage scenario, the

MiGCCV has proven to be a useful metric. In general terms, the lower the GC variability, the

more accurate TRINI can be. Specifically, the highest forecast accuracy is obtained when the

GC variability is very low (MiGCCV ≤0.1). Under these conditions, the forecast accuracy

reaches practically 100%. This means that basically all the MaGC events are forecasted

accurately enough that it is possible to prevent sending transactions to the affected nodes

during the occurrence of the MaGC events. Thus, minimising the impact that the GC has

on the overall cluster performance. In cases of higher GC variability, the accuracy tends to

decrease. However, it remains within reasonable levels. For instance, in our experiments,

the programs which experienced the highest variability (MiGCCV ≥1.0) obtained an average

forecast accuracy around 56%. This means that even in such volatile conditions, more than

half of the MaGCs were accurately forecasted.

• In terms of potential performance improvements, more GC intensive applications (in terms

of the amount of time the application spends doing MaGC - MaGCD -), can benefit most

from TRINI. Even though the level of forecast accuracy is important to estimate the amount

of MaGC which is actually addressed, our results have shown that even a medium level of

forecast accuracy (50%<FA≤80%) can offer significant performance improvements in cases

where the MaGCD is long (MaGCD≥25%). This scenario is more likely to occur when

using huge (e.g., gigabytes) heaps because they tend to experience longer MaGC pauses, in

comparison to smaller heaps (e.g., megabytes or lower). Additionally, the biggest performance

improvements are obtained when an application experiences a long MaGCD as well as a low

GC variability. Under these conditions, TRINI is able to mitigate most of the performance

costs caused by the GC. As these costs are also considerable (hence offering a lot of potential

gains), TRINI can convert them into actual performance gains. It is also worth mentioning

that performance improvements can usually be expected, regardless of the exact amount of

MaGCD. This is because the GC is a fundamental feature of Java and, given enough time,

any Java application will eventually experience one or more MaGC events (as part of its

automatic memory cleaning process).

• In our experimental evaluation, we selected three of the most widely-used GC strategies in

the industry. As our results have shown, the achieved performance improvements are evident

for all three GC strategies, and so it is expected that TRINI can yield similar results when

using other GC strategies. Likewise, it is expected that TRINI should be applicable to other

object-oriented languages which rely on GC principles and strategies similar to those used by

Java (e.g., Python or C#).

• In our experimental evaluation, we selected four of the most frequently used load

balancing algorithms in the industry. As our results have shown, the achieved performance

improvements are similar across all the tested load balancing algorithms. Therefore, it is

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

22 A.O. PORTILLO-DOMINGUEZ ET AL

expected that TRINI can yield similar results when using other GC-aware load balancing

algorithms. To support practitioners in the task of adding GC-awareness to other algorithms,

we have discussed (in Section 4.4) the changes required to make a load balancing algorithm

GC-aware, as well as presented an abstract version of a GC-aware load balancing algorithm.

• In terms of the overhead introduced by TRINI to the application nodes, our results have

shown that the increments in CPU and memory utilisations are minimal, hence not affecting

the normal operation of the application nodes. Nonetheless, if this level of overhead is

not tolerable for a particular usage scenario, the overhead can be decreased. This can be

done by adjusting the sampling interval to a higher value (e.g., in our experiments we used

100ms). This change would have the effect of decreasing the frequency of the sampling in

the application nodes (hence decreasing the amount of resources used), at the expense of

increasing the probability of missing to sample a MiGC event. For this reason, we recommend

that the sampling interval should not be higher than the average time elapsed between

MiGC events.

• In terms of the overhead introduced by TRINI to the load balancer node, our results have

shown that the overhead usually follows a relatively linear growth with respect to the

cluster size. For this reason, our results can be used as a valuable input information for a

capacity planning process. This would allow practitioners to estimate the CPU and memory

characteristics required by a load balancer node to support a particular cluster size.

• Based on the previously discussed points, we conclude that a GC-aware load balancing

strategy can offer significant benefits to a clustered system. Given the broad spectrum

of GC behaviours that an application might experience, such GC-aware load balancing

strategy should not rely on a static configuration. On the contrary, it should use an adaptive

configuration which can self-adjust based on the GC characteristics of the underlying

application (as TRINI does). Moreover, there are similarities in the GC behaviours that

certain applications share (e.g., the identified MiGCCV program families) and which can

be leveraged to make a more robust GC-aware load balancing solution.

6. CONCLUSIONS AND FUTURE WORK

One of the most important challenges in cluster computing is how to efficiently distribute the

workload among the cluster’s nodes. To address this challenge, in our previous work we presented

TRINI, a novel adaptive GC-aware load balancing strategy which enhances the performance of

clustered Java systems by avoiding the performance impacts of the MaGC (which is a common

cause of performance degradation in Java systems). The aim of this paper was to comprehensively

evaluate TRINI in terms of generality, scalability and reliability in order to offer practitioners a

valuable reference regarding the behaviour of TRINI in such circumstances. For this purpose, three

experiments were performed. Firstly, TRINI was applied to four commonly used load balancing

algorithms to assess the generality of its performance improvements and overheads. Secondly,

TRINI was evaluated in different sizes of clusters to assess how scalable our solution was. Thirdly,

TRINI was evaluated in 24-hour test runs to assess its reliability over extended time periods.

Our experimental results have demonstrated that TRINI can significantly improve the response

time and throughput of a cluster. These performance improvements were achieved independent

of the used load balancing algorithm, proving the generality of TRINI. The results also showed

that TRINI is scalable across different cluster sizes, and reliable through time, as the obtained

performance improvements did not noticeably degrade when either the cluster size or the length of

the test run increased. In terms of overhead, TRINI introduced a minimal overhead to the application

nodes of the cluster. Additionally, the overhead in the load balancer was low, especially considering

the modest characteristics of the used load balancer node. From the above results, we conclude that

a GC-aware load balance strategy can bring significant benefits to a clustered Java system.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

TRINI 23

In our future work, we will continue investigating which other GC characteristics might be

suitable in order to deepen our classification of program behaviours into families. We plan to use

this additional knowledge to develop more portable load balancing policies. We will also explore

how to extend TRINI to address other types of performance issues and build a more sophisticated

load balancing solution. As a first step in that direction, we plan to explore the feasibility of using

the outputs of performance diagnosis tools (e.g., the IBM WAIT [68]) to monitor the health of the

application nodes. Then, leverage that information (in addition to the MaGC forecasts), to decide

how best to balance the workload distribution within a cluster.

ACKNOWLEDGEMENTS

This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855 to Lero - the Irish
Software Engineering Research Centre (www.lero.ie).

REFERENCES

1. Lee WY, Hong SJ, Kim J, Lee S. Dynamic load balancing for switch-based networks. Journal of Parallel and
Distributed Computing 2003; 63(3):286–298.

2. Bahi J, Couturier R, Vernier F. Synchronous distributed load balancing on dynamic networks. Journal of Parallel
and Distributed Computing 2005; 65(11):1397–1405.

3. Carmona AB, Roca-piera J, Capel CH, Álvarez bermejo JA. Adaptive Load Balancing between Static and Dynamic
Layers in J2EE Applications. Next Generation Web Services Practices 2011; :61–66.

4. Rupprecht L, Reiser A, Kemper A. Dynamic load balancing in data grids by global load estimation. International
Symposium on Parallel and Distributed Computing 2012; :243–250.

5. Liu Y, Wang L, Li S. Research on self-adaptive load balancing in EJB clustering system. Intelligent System and
Knowledge Engineering 2008; :1388–1392.

6. Java: 2.5 Years After the Acquisition. International Data Corporation (2012) 2012; .
7. TIOBE Programming Index. URL http://www.tiobe.com/index.php/content/paperinfo/

tpci/index.html, accessed: 2015-05-27.
8. Memory Management in the Java HotSpot Virtual Machine. Sun Microsystems (2006) 2006; .
9. Xian F, Srisa-an W, Jiang H, Hall A. Garbage Collection : Java Application Servers’ Achilles Heel. Science of

Computer Programming Feb 2008; 70(2):89–110.
10. Snatzke RG. Performance survey. Codecentric AG (2009) 2009; .
11. Jeremy Singer, Gavin Brown, Ian Watson JC. Intelligent Selection of Application-Specific Garbage Collectors.

International Symposium on Memory Management, 2007; 91–102.
12. Mao F, Zhang EZ, Shen X. Influence of program inputs on the selection of garbage collectors. SIGPLAN Virtual

Execution Environments 2009; :91–100.
13. Lengauer P, Mössenböck H. The taming of the shrew: increasing performance by automatic parameter tuning for

java garbage collectors. International Conference on Performance Engineering 2014; :111–122.
14. Andreasson E, Hoffmann F, Lindholm O. To collect or not to collect? machine learning for memory management.

JVM Research and Technology Symposium, 2002; 27–39.
15. Soman S, Krintz C, Bacon DF. Dynamic selection of application-specific Garbage Collection. International

Symposium of Memory Management, 2004.
16. Blackburn SM, Cheng P, Mckinley KS. Myths and Realities: The Performance Impact of Garbage Collection.

SIGMETRICS Performance Evaluation Review 2004; 32(1):25–36.
17. Portillo-Dominguez AO, Wang M, Murphy J, Magoni D. Adaptive gc-aware load balancing strategy for high-

assurance java distributed systems. International Symposium on High Assurance Systems Engineering, IEEE, 2015;
68–75.

18. Willebeek-LeMair MH, Reeves AP. Strategies for dynamic load balancing on highly parallel computers. IEEE
Transactions on Parallel and Distributed Systems 1993; 4(9):979–993.

19. Wilson PR. Uniprocessor Garbage Collection Techniques. International Workshop of Memory Management, 1992;
1–42.

20. Phipps G. Comparing Observed Bug and Productivity Rates for Java and C++. Software Practice and Experience
1999; 29(4):345–358.

21. Manning W. Scjp sun certified programmer for java 6 exam. Emereo Pty Ltd, London 2009; .
22. Developing Java Applications. URL http://docs.oracle.com/cd/E13150_01/jrockit_jvm/

jrockit/geninfo/devapps/codeprac.html, accessed: 2015-05-21.
23. Memory Management in the Java HotSpot Virtual Machine. URL http://www.oracle.com/

technetwork/java/javase/memorymanagement-whitepaper-150215.pdf, accessed: 2015-05-
21.

24. Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning. URL http://www.oracle.com/
technetwork/java/javase/gc-tuning-6-140523.html, accessed: 2015-05-21.

25. Beniwal P, Garg A. A comparative study of static and dynamic load balancing algorithms. International Journal of
Advance Research in Computer Science and Management Studies 2014; 2(12):1–7.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/devapps/codeprac.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/devapps/codeprac.html
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

24 A.O. PORTILLO-DOMINGUEZ ET AL

26. Jiang Y. A survey of task allocation and load balancing in distributed systems. Transactions on Parallel and
Distributed Systems. To be published.

27. Pizlo F, Petrank E, Steensgaard B. A study of concurrent real-time garbage collectors. ACM SIGPLAN Notices
2008; 43(6):33–44.

28. Vechev MT, Yahav E, Bacon DF. Correctness-preserving derivation of concurrent garbage collection algorithms.
ACM SIGPLAN Notices 2006; 41(6):341–353.

29. Barabash K, Ben-yitzhak ORI, Goft I, Kolod EK, Leikehman V, Ossia Y, Owshanko AVI. A Parallel, Incremental,
Mostly Concurrent Garbage Collection for Servers. ACM Transactions on Programming Languages and Systems
2005; 27(6):1097–1146.

30. Siebert F. Limits of parallel Garbage Collection. International Symposium of Memory Management 2008; :21–29.
31. Kalibera T. Replicating real-time Garbage Collection for Java. International Workshop on Java Technologies for

Real-Time and Embedded Systems 2009; :100–109.
32. Cho H, Na C, Ravindran B, Jensen ED. On scheduling Garbage Collection in dynamic Real-Time systems with

statistical timing assurances. Real-Time Systems April 2007; 36(1-2):23–46.
33. Xian F, Srisa-an W, Jia C, Jiang H. AS-GC : An Efficient Generational Garbage Collector for Java Application

Servers. European Conference on Object-Oriented Programming, 2007.
34. Wegiel M, Krintz C. Dynamic prediction of collection yield for managed runtimes. SIGPLAN Notices Feb 2009;

44(3):289–300.
35. Xian F, Srisa-an W, Jiang H. Fortune Teller: Improving Garbage Collection Performance in Server Environment

using Live Objects Prediction. Object-Oriented Programming, Systems, Languages, and Applications 2005; :246–
248.

36. Mateos C, Zunino A, Campo M. m-jgrim: a novel middleware for gridifying java applications into mobile grid
services. Software: Practice and Experience 2010; 40(4):331–362.

37. Aghdaie N, Tamir Y. Coral: A transparent fault-tolerant web service. Journal of Systems and Software 2009;
82(1):131–143.

38. Kalogeraki V, Melliar-Smith P, Moser LE, Drougas Y. Resource management using multiple feedback loops in soft
real-time distributed object systems. Journal of Systems and Software 2008; 81(7):1144–1162.

39. Laskowski E, Tudruj M, Olejnik R. Dynamic load balancing based on applications global states monitoring.
International Symposium on Parallel and Distributed Computing 2013; :11–18.

40. Di Stefano A, Bello LL, Tramontana E. Factors affecting the design of load balancing algorithms in distributed
systems. Journal of Systems and Software 1999; 48(2):105–117.

41. Tiemeyer MP, Wong JS. A task migration algorithm for heterogeneous distributed computing systems. Journal of
Systems and Software 1998; 41(3):175–188.

42. Atif Y. System software support for distributed real-time systems. Journal of Systems and Software 2000;
53(3):245–264.

43. Boone B, Van Hoecke S, Van Seghbroeck G, Joncheere N, Jonckers V, De Turck F, Develder C, Dhoedt B. Salsa:
Qos-aware load balancing for autonomous service brokering. Journal of Systems and Software 2010; 83(3):446–
456.

44. Van Do T, Rotter C. Comparison of scheduling schemes for on-demand iaas requests. Journal of Systems and
Software 2012; 85(6):1400–1408.

45. Bozyigit M. History-driven dynamic load balancing for recurring applications on networks of workstations. Journal
of Systems and Software 2000; 51(1):61–72.

46. Hui CC, Chanson ST. Flexible and extensible load balancing. Software: Practice and Experience 1997;
27(11):1283–1306.

47. Ho KS, Leong HV. Improving the scalability of the corba event service with a multi-agent load balancing algorithm.
Software: Practice and Experience 2002; 32(5):417–441.

48. Sanghi D, Jalote P, Agarwal P, Jain N, Bose S. A testbed for performance evaluation of load-balancing strategies
for web server systems. Software: Practice and Experience 2004; 34(4):339–353.

49. Chae HS, Park JG, Cui JF, Lee JS. An adaptive load balancing management technique for rfid middleware systems.
Software: Practice and Experience 2010; 40(6):485–506.

50. Mohamed N, Al-Jaroodi J. Midcloud: an agent-based middleware for effective utilization of replicated cloud
services. Software: Practice and Experience 2015; 45(3):343–363.

51. Weyns, Danny J M Usman Iftikhar. Do external feedback loops improve the design of self-adaptive systems? a
controlled experiment. International Symposium on Software Engineering for Adaptive and Self-Managing Systems,
2013; 3–12.

52. Robertson P, Laddaga R, Shrobe H. Introduction: the first international workshop on self-adaptive software. Self-
Adaptive Software, 2001; 1–10.

53. Kephart JO, Chess DM. The vision of autonomic computing. Computer 2003; 36(1):41–50.
54. Portillo-Dominguez AO, Wang M, Magoni D, Perry P, Murphy J. Load balancing of java applications by forecasting

garbage collections. International Symposium on Parallel and Distributed Computing, 2014; 127–134.
55. Class Hashtable. URL http://docs.oracle.com/javase/7/docs/api/java/util/Hashtable.

html, accessed: 2015-05-21.
56. Class Vector. URL http://docs.oracle.com/javase/7/docs/api/java/util/Vector.html,

accessed: 2015-05-21.
57. Coefficient of Determination (R2). URL http://www.businessdictionary.com/definition/

coefficient-of-determination-r2.html, accessed: 2015-05-21.
58. Apache Camel. URL http://camel.apache.org/, accessed: 2015-05-21.
59. Altman E, Arnold M, Fink S, Mitchell N. Performance analysis of idle programs. SIGPLAN Notices 2010;

45(10):739–753.
60. Java Management Extensions (JMX) Technology. URL http://www.oracle.com/technetwork/java/

javase/tech/javamanagement-140525.html, accessed: 2015-05-21.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

http://docs.oracle.com/javase/7/docs/api/java/util/Hashtable.html
http://docs.oracle.com/javase/7/docs/api/java/util/Hashtable.html
http://docs.oracle.com/javase/7/docs/api/java/util/Vector.html
http://www.businessdictionary.com/definition/coefficient-of-determination-r2.html
http://www.businessdictionary.com/definition/coefficient-of-determination-r2.html
http://camel.apache.org/
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

TRINI 25

61. Apache JMeter. URL http://jmeter.apache.org/, accessed: 2015-05-21.
62. Apache Tomcat. URL http://tomcat.apache.org/, accessed: 2015-05-21.
63. The DaCapo Benchmark Suite. URL http://dacapobench.org/, accessed: 2015-05-21.
64. SPECjvm 2008. URL http://www.spec.org/jvm2008/, accessed: 2015-05-21.
65. DaCapo Benchmark Suite - Programs and Sample Sizes. URL http://www.dacapobench.org/

benchmarks.html, accessed: 2015-05-21.
66. Linux Ubuntu Manual - Top Command. URL http://manpages.ubuntu.com/manpages/oneiric/

man1/top.1.html, accessed: 2015-05-27.
67. Singer J, Jones RE, Brown G, Luján M. The economics of garbage collection. International Symposium on Memory

Management, 2010; 103–112.
68. IBM WAIT Tool. URL https://wait.ibm.com/, accessed: 2015-05-21.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

http://jmeter.apache.org/
http://tomcat.apache.org/
http://dacapobench.org/
http://www.spec.org/jvm2008/
http://www.dacapobench.org/benchmarks.html
http://www.dacapobench.org/benchmarks.html
http://manpages.ubuntu.com/manpages/oneiric/man1/top.1.html
http://manpages.ubuntu.com/manpages/oneiric/man1/top.1.html
https://wait.ibm.com/

