EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Trinity algebra and full-decompositions of sequential machines

Citation for published version (APA):
Hou, Y. (1986). Trinity algebra and full-decompositions of sequential machines. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Electrical Engineering]. Technische Hogeschool Eindhoven. https://doi.org/10.6100/IR246474

DOI:
10.6100/IR246474

Document status and date:
Published: 01/01/1986

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.6100/IR246474
https://doi.org/10.6100/IR246474
https://research.tue.nl/en/publications/985b5c66-74d6-4542-9497-efc8dbfee697

TRINITY ALGEBRA
AND
FULL-DECOMPOSITIONS
OF SEQUENTIAL MACHINES

T

HOU Yibin

TRINITY ALGEBRA
AND
FULL-DECOMPOSITIONS
OF SEQUENTIAL MACHINES

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE
TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE
HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR
MAGNIFICUS, PROF,.DR, F.N, HOOGE,VOOR
EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE
VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP
VRIJDAG 30 MEI 1986 TE 14,00 UUR

DOOR

HOU Yibin

GEBOREN TE SHAANXI,CHINA

DIT PROEFSCHRIFT IS GOEDGEKEURD
DOOR DE PROMOTOREN

prof.ir. A. Heetman
en
prof.dr. J.H. van Lint

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Hou Yibin

Trinity algebra and full-decompositions of sequential
machines / Hou Yibin. - [S.1. : s.n.1 . - Fig., tab.-
Proefschrift Eindhoven. - Met. 1it. opg., reg.

ISBN 90-9001285-0

SISO 664.2 UDC 681.325.65:519.6 UGI 650

Trefw.: automatentheorie.

k& 4 B
Voor mijn vaderland

To my mothenland

Ackknowledgements

The investigations described in this thesis were performed at the
Eindhoven University of Technology, in The Netherlands.

I am greatly indebted to the University and the Faculty of
Electrical Engineering for offering me the opportunity to study and to
publish the results of these investigations in their present form.
This reflects a ¥friendship and close cooperation between the
University of Eindhoven and the Xian Jiaotong University, in China. 1
appreciate the contribution of the chairman of Friendship Association
of Holland and China, Prof. dr.ir. P. Eykhoff, for the cooperation
between the two Universities and for his kindnees to me and the other
Chinese scholars and students in Eindhoven.

I wish to express my gratitude toall those who have contributed to
this work in any way.

I indebted to my promotor Prof. ir. A. Heetman and co—promqtur
Prof. dr.ir. S.H. v. Lint for their interest in my work and for making
it possible fur me to present this work as a thesis.

I am grateful to Mr. C.P.J. Schnabel , Mr. M.J.M. van beert and Mr.
P.M.C.M. van den Ei inden for their discussions and suggestions in the
early stages of my work. 1 would like to thank Mr. A.G.F. Geurts for his
advice with respect to my program writing and for his help in the other
aspects.

I would like to thank Dr. P.R. Attwood for reading the manuscript
of this thesis and making ctorrections to the English.

Mr. C.P.G. v. d. Watering made an excellent job of typing the
manuscript and my reports and I would like record my gratitude here.

I wish to thank Mr. I1.V. Bruza who enthusiastically helped me to
find books, papers and to verify the reference list.

Gratitude is also expressed to all members of the EB group wha gave
their support to this work in any way.

I repeat my appreciation of the help from Prof.ir. A. Heetman and
the International Neighbour Group in Eindhoven for making the stay
in Holland of my wife and myself very pleasant.

Finally, I wish to thank my wife, Xiuzhen, for her consistent

encougragement and assistance with this thesis.

Eindhoven, Hay 1786

CONTENTS *

1.

Introduction ...cccrecsnssunasssnunnsssrnnunssssnsansannnnnns

Machines and their Decompositions ...c.eccccncacensasannnss
2.1 MAchinBs .ceeevscnssssasssvsnnsacsnncnnanennmasannsnnsnnnss

2.1.1 Basic Models of Machines ..ceeesccccnnensnasnnssas
2.2 Machine Functions ...eeessccconsnsannunsnaswsonasnonnnne
2.3 Decompasition of Machines (uiueeecvsaveanasnssncasunsnans
2.4 Universal Connection Model and Decompositions cecevsecess

Z2.4.1 Universal Connection Modelcccuveesnssnsnvnsns

2.4.2 Machine DecompositionsS .(.ceaccasssanaanennanssnsa

Partition Trinity and Trinity Algebracccceenssassssrxsa
3.0 Introduction ..e.a... vesssnn senann WesEsemseEssEnnwn e
3.1 Partition Trinity sausascesccnacsnacanacnassassanunnacsan
3.i.1 Partition Pailr ..c.esnenncansnnvvannunsnnnnsnssnsns
3.1.2 Partition Trinity sceccccececananscannsnsanannnsans
3.1.3 Trinity Algebra and Its Basic Properties
3.2 Homomarphism and Quotients cvcsscevnanevnannsnscecnnnnsns
3.3 Computation of Partition Trinity Lattice ... caivvnnvunnn
3.3.1 Compute Nontrivial PT's cu.eccrcnnnnvennnnnoanna

3.3.2 Comprie PT Lattice ...ccccvncncnannccnassnnsnasnssan

Parallel Full-decompositionsc.ccncrvanustnnnccennanann
4.1 Relationships Between MachingS .c.scvwsserevnnsnnannncen

4.2 Parallel Full-decompoSitiOns ...sseescsennsscsssssscennn

Serial Full-decomposSitions ce.sesvensscnvunssannnssnnnnasan
Sl Forced—trinily caececececerernnccansannunsnnennsnnoanssonnsens
S.1.1 Physical Property of a Partition Trinity ...eec.n
H5.1.2 Forced Trinity weecesnevnsssosonasucnunsasannscans
5.2 Berial Full-decomposSition .casscescssnnannvvcnsscsscnnnse
5.2.1 Berial Full—decomposition of a State Machine
5.2.2 The Type 1 of Serial Full-decomposition...:sassne
S.2.3 The Type 11 of Serial Full-decompositiona.

H- and Wreath Decompositions c.evseveceennnncesnenssnnnnnne

&el H-decomposSitions c.essscssssssvnnsnsnnnnssnsrnanssnenas

R O Y

iB
18
19

29
29
30
30
33
37
a7
51
51
53

54
54
58

&8
&8
&9
71
77
77
82
2

97
97

S.1.1 H-conneclions s.iecceesssaancasnanssnnasnnsnacnsannn
B.1.2 HPAlrS ceassccunncnsnansnasssnnnnsnnnransnsnnnnns
G6.1.3 H-decompositions c.eescacnrsonanccscnnssnsmnonns
6.2 Wreath Decompositions ..eecrecccsncanssnvsssnnnvewnsenn
6.2.1 Wreath Conmmection c..ecsmscnrncnsncesnasnnansnne

5.2.2 Wreath Decompositions ceccsesrvssnvancsansnannsenns

7. Full-decompositions of IGBM' S ...cnsecuneccvnacnaanunaanes
7.0 IntroductiOon eceececeserssnsssnnscanmsnnuannenconnnunsnsocnas
7.1 Approach I: WPT cu.ciinucnenoannconunncaccaanananaannes

7.1.1 Weak Partition Pair c..ceeccessnnseiansnannnnnas
7.1.2 Weak Partition Trinity .cieeccennconmevsonannnes
7.1.3 Approach 1 of the Full-decomposition of I1885M's .
7.2 Approach Iz EPT c.uienvaccassnsnnncannnssnnsnnnanamans
7.2.1 Entended Partition Paireecesscscnncunnvssna
7.2.2 Extended Partition Trinity c.ceccacinecncrcrnvcnns
7.2.3 The Full-Decomposition of ISBSM' s By EPT's w.eaun

8. Computer Aided Decompositionscevvvcnncennccnsnonn
8.1 Data Structure c..icnuunssrnsevsnvsvnvnsasnsnnvsoncnna
8.2 Algorithms of Basic Operationscveseevcncansnncanna

8.2.1 Partition FUnction v.euesswcssnsscnsnsssunnnnnns
B.2.2 Partition Addition ..eceiveccsvvnnveosnunsnscunnasns
8.2.2.1 A Method for A;+7, by Hand ...cvvunucnn.
8.2.2.2 Partition Bum P +P, suiveevnvnsnnnansnnne
8.2.3 Partition Product P +P,; crcecrivnnnsscnennnsncnes
8.2.4 ny

P

E AR R EARAEAREE RN DT AR DR SRR A ERAR R R R R R R R R RS W

B.2.5 MIA) s uuwmeesnecunnonnnannsnnnnncsnanansnnnssnsns
Bi2.6 MIA) wneenwmorcnunnsnnssnansssnnnasnmomnnnanansn
8.2.7 Relation Operatiinsceescerennnsanwvsncannvns
B.2.8 m () and M ()} .uueeeusnnussnnnnsnnsnnsrecnnnans

Do EPLlOQUE L. ucrconssnnronrnuvsnsassnsnsnunsnanmsunnssnnesnns

Appendix DABM wueosssonsnnssnansnscnnnassnsomnavsnanunssnnn
REfErErnCeS woirunccrscasnssnnosnnrssssvnnnsnsnmunssnnsnnanmeonnnn
Samenvatlting sccccnenacersnncrnscnsssansosnsssannsannnaasssnnns
Curriculum Vitae ...cuevessansnssnanonncsnssnsssnansssnamanss

Acknowledgmentccsssnanxansnasnsnvssaasrsnsnnmwnnnnnansnnna

98
101
102
108
109
110

11é
114
116
117
118
122
125
125
127
128

133
133
137
137
144
144
144
148
150

152
155
157
158

160

162
1464
166
167

i

CHAFTER 1

INTRODUCTION

In the past decade, digital J{(circuit and system) design has
undergone dramatic changes. Today, digital designers rérely build any
components or devices that are available in integrated circuit forms.
This is because digital integrated circuits are not only convenient
and easy to use but also cost less. One type of integrated circuits,
which has become very popular indigital design in recent vears, is the
array logic. Array logic is defined as the use of memory-like
structures for performing combinational logic and sequential logic.
Corresponding to the combinational logic the integrated circuit is
called a programmable logic array (PLAY, ﬁhen corresponding to the
sequential logic, it is called a programmable logic sequencer (PLS). A
FLA comprises both an AND array and an OR array, normally. If we put
some clocked putput flip~flops and appropriate feedback in a PLA then
aPLE is built. The PLE is a fully implemented Mealy machine on a chip
{171. Theoretically speaking, any logic design can be implemented by a
logic array if we neglect the practical size of the integrated
circuit. However, unfortunately, as we know, an integrated circuit
chip is limited not only with the size of the circuit but also
especially with the pins of integrated circuits, while the number of
pins is related to the nuombers of inputs and outputs of the logical
system to be implemented. To implement a practical logical system by
the integrated circuits available, such as PLA and PLS, leads to a
practical problem — how to decompose a large logic system into several
smaller logic sys‘tems - gach can be implenented by today s array logic

integrated circuit.

Owing to the fact that there exist two abstract mathematical models
for logic circuits {(one is switching algebra for combinational
circuits, and the other is a sequential machine for seguential
circuits) the research on this probles centers on a theoretical
problem — how to decompose a larger Boolean function into smaller
Boolean functions ~ each can be implemented by a PLA, or how to
deconpose a larger sequential machine into the interconnection of
some smaller sequential machines — each can be implemented by a FLE.

This theory is referred to the decomposition theorvy.

The decomposition theory for Boolean functions has been well-
developed in much literature, such as [1,2,18,25,281. The theory and
methods have been applied to the PLA implementation of Boolean
functions [26,271. Hence, the theoretical problem for PLA
implementation has been largely solved due to the simplicity of

Boolean functions.

Historically, a decomposition theory for seguential machines
means an organized body of technigues and results dealing with the
problems of how sequential machines can be realized from sets of
smaller component machines, how these component machines have to be
interconnected, and how “information” flows in and between these
machines when they are in operation. The research on the theory was
started in the early 1960’ s. For the technologies during that period,
the relevant problems were primarily concerned with component
reduction. In sequential circuits, a component reduction is mainly
assnciated with reducing the set of states of the sequential machines
in question. Therefore, a “smaller”, or “simpler”, component machine
was defined as a component machine with fewer states than the original
machine [12,15]1. The definition has been applied and has served as a
standard for a decomposition whether it is trivial or not by most of
the literature and books about the decomposition of sequential
machines [9,16]1. With the development of integrated circuit
technology and the advent of large scale integration (LSI1) and very
large scale integration ((VLBI) in digital systems design, the
problems concerned with fewer components have become less relevant
[81. Consequently, in the view of PLS implementation of sequential
machines, the definition does not meet the requirements for
sequential circuit design using today’s PLS packages. A “smaller”

component machine must require fewer pins of PLS package than the

3

original machine in order to implement it. In other words, this means
that a smaller component machine must have fewer states, inputs and
outputs than the machine to be decomposed. It will be apparent that,
when we consider this kind of decomposition, we have to deal not only
with the number of states but also with the number of inputs and
outputs too. We refer to the decomposition as a full-decomposition. We
should develop the decomposition theory or look for some new way for
this purpose. This thesis arose from this need. The work discussed in
this thesis is one approach to the subject. In it we shall propose a
method for decomposing a sequential machine into interconnection of
conponent machines, 1+ they exist, sach of them has less states, less
inputs and less outputs. The method is primarily based on the concepts
of partition trinity and forced-trinity which will be discussed

later.

The problem of PLS implementation of a sequential machine serves as
a wedge to the full —decomposition theory. In this thesis we aremainly
concerned with the problem only at the abstract algebra level. The
study and results are significant, not only in the sense of developing
decomposition theory, but also in any other area of applying machine

theory with similar requirements.

This thesis contains nine chapters. A brief description of each

chapter follows:-—

Chapter 1 describes and expands the full-decomposition problem.

Some general concepts on machines are described in Chapter 2. We
discuss the different types of decompositions and make a

classification of them by introducing a universal connection model.

Chapter 3 describes the partition trinity, trinity algebra and its
properties. It provides the mathematical foundation of full-

decomposition theory.

In Chapters 4 and S we apply the concepts of partition trinity and
forced trinity to parallel full-decomposition and serial full-~
decomposition of seguential machines. A H-decomposition is defined
and presented in Chapter 6. It resembles a parallel Ffull-

decomposition and is a supplement to the full-decomposition theory. A

4

wreath decomposition is also discussed in this chapter by partition

trinities.

Chapter 7 extends the theory from compl etely specified machines to
incompletely specified machines, It is shown that most of the results

can be used for incompletely specified machines.

In Chapter B we discuss how to use computers +for machine

decompositions. Many algorithms for them are presented.

The final chapter is devoted to a discussion of further topics
which are worthwhile studying for the development of the full-

decomposition theory of machines.

CHAPTER 2

MACHINES AND THEIR DECOMPOSITIONS

In this chapter, we are going to discuss the general concepts on
basic models for sequential machines and on types of decompositions of
them. Three basic models of machines are defined in section 2.1.
Section 2.2 gives some notations and machine functions which makes it
easier to discuss and deal with the topics in this thesis. In section
2.3, a brief introduction to the decomposition theory of sequential
machines is given. In the last section a universal connection of two
machines is presented and many decompositions derived from it are
defined and analvsed with the main techniques which are available or

are developed in this thesis.
2.1 Machiness

in practice, many complex processes, not only in the area of
computer systems and their associated languages and software, but
aisp in the areas of biology, psychology, bipchemistry etec., can be
regarded as behaving rather like machines. Any given system or design
problem can kba described by a sequential machine as defined below. The
terms sequential machine, finite-state machine, finite automaton,
and simply machine are synonyms. In essencé, sequential machines are:
mathematical models which describe sequential systems, such as
sequential circuits. Since a sequential machine is merely an abstract
model, it may be used to decribe the operational behaviour of systems
other than sequential circuits. Indeed, the term “machine” used here
does not imply that a sequential machine has to be real physical
machine or machine-like object. On the contrary, it does not even have
to be tangible; any physical or abstract phenomenon may be called a

sequential machiné as long as it satisfies the avioms of this model.

2.1.1 Basic Models of Machines

The theory of machines is concerned with mathematical models for
discrete, deterministic information—-processing devices and systems,
such as digital computers, digital control units, electronic circuits
with synchronized delay elements, and so on. All these devices and
systems have the following common properties, which are abstracted in

the definition of a sequential machine.

DEFINITION 2.1

A sequential machine or Healy machine is a system which can be

characterized by a quintuple,

M= (I, S, O, 5, &)

-

where is a finite nonempty set of input symbols,

S ig a finite nonempty set of internal states,

0 is a finite set of ouwtput symbols,

§ is a next—state vunction, which maps Sx1 to S,
N is an output tunctron, which maps SxI to O.

tEnd of De¥inition 2.1)

NerefaFtnthenext—statefunctibnandoutputfunctionasmachine
functions throughout this thesis.

A machine may be presented in the form of a table or a diagram. The
table and the diagram in question are called the transition table and
the transition diagram of the machine, respectively. The table, or
the diagram, is defined by the next-state function and output
function. In this thesis, mainly, the form of the table will be used.

From the definition of machines, if for any pair of inputs, x; and
Kie in I, the output function satisfies, for all s in 8§, there will

exist an output value, say yel, such that
As,) = %(s,xj) =y

then, the mapping A becomes independent of inputs, i.e.,
A 2 8 2 0.

In this case, the machine is called a Hoore machine and is defined by:

DEFINITION 2.2

A sequential machine is said to be of the Moore type (Hoore machine)

1t its output function is function of its states only:
At 8 =+ 0.

(End of Befinition 2.2}

Therefore, a Moore machine is a special case of Mealy machines. It
can be converted into Mealy machine and vice versa. A state-—
dependent machine is an alternate name for Moore machine, in some
books. In this thesis, we are mainly concerned with Mealy machines.

In some situations we are only interested in the internal states
and not in the outputs of a system. This leads to a machine without
outputs, which is a special case of the Mealy machines when the output
tunction is a null relation or the output set is an empty set. These
machines are called state machines and a precise definition is given

as follows.

DEFINITION 2.3

& state machine is a triple :1-
M= (I, 5, &
where: [and § are input set and state set, respectively and § is a
transition function.

(End of De¥finition 2.3

In some books, a state machine is also referred to as a sems
automaton.

In the definitions given above, the next—-state function was a
mapping from S5xI + 5, which means, for any seb and xel, §{(s,x)e5. This
kind of machine is called deterministic machines. In contrast to this,
there is another function which maps 5x1I to some subset of 8, that is,
§i{s,x) € B. This kind of machine is said to be rondeterministic. In
this thesis, we are concerned only with deterministic machines.

Broadly speaking, the relation 8: Sx1I 2+ 5 or A: SxI =+ 0O may be a
partial function, which implies that, for some se5 and xel, &is,n) is
probably not specified. The machines with undefined next—states or
Dutputs are referred to as incompletely specitied machines, while
the machines without undefined next-states and outputs are referred
to as completely specitied machines. In most of the chapters of this

thesis, the discussions relate to completely specified machines.

Machine theory is the study of abstract computing devices, their
organization, their structure and computational power. In the thesis
we are mainiy concerned with the structural aspect of it, which is
referred to as algebraic structure theory of machines. In
particular, by the theory, we learn how a guite large machine can be
partitioned into a set of smaller component machines, each of which
can be realized by the currentliy available L8581 and VLSI circuits, also

fiow these component machines have to be interconnected.

In this thesis, a rather informal notation for logical deductions
in the proots of propositions and theorems i1s used, as explained here.

Let Fy, & be two statements. Then the notation -

P
=2 @ {R}

means that P implies 8 under the reason R.

Simiiarly we have -

P
= 0 R,

A statement may be of the form -
D: E

where D is a domain and E is a predicate or a logical statement
expression, stating that E holds in D. When more than one variable
egxists in D, each domain is separated by a space. In sone cases, domain

D may be omitted if D is clear from the context.

An expression may include not only the logical conjunctions A or v,
but also those on sets such as €, e. For example,”B € B e AT € C’ ef”
means that “both that B is a subset of some B’ in & and that € is a subset

of C in AY are true.

The hint (R} sometimes may be in a form {calculus?y which indicates
that an appeal to everyday mathematics, like arithmetic or predicate

calculus, is meant.

2.2 Machine functions

By the definition of machines, generally speaking, we shall
present the machine M= (I, 5, U, §, &) with an input symbol ®xel while it
is in some state, say se8. The machine then outputs Ails,») while it
moves to state §i{s,x). This notion is somewhat cumbersome and we shall

introduce the idea of mappings {or functions) induced by the input.

From the viewpoint of inputs, the machine functions, § and A, can be

considered as sets of functions induced by all inputs -

&

£8,| 8,2 5 = 8 and xel}

and *

| M2 S 2 5 and xel?
where &, 6§ + 8 is defined by

ks

YseS Yxel : 5,(=s) = E(s,%)

Ay (8) = Als,x).

The &, and A, are called the rnexi-state Tunction and output
function, respectively, with respect to input x. For the sake of
convenience of operations on the machine functions with respect to

different inputs, we write -
8,(s) as =8, and A,(s) as sh,.

Finally, we make

Notation 2.1

[}
[}

s8y, = &y, (s)

Ay (=)

Ei{s, %}

Als,n)

it
it

Shy

for all s¢8 and xel.
(End of Notation 2.1)

From the notation introduced above, we have the +Following

convenient rules for the operstions on different input sequences.

Froperty 2.1
et x,vel. Then, for any se5
=& {SSK)Sy = SSXEy;

iy =
Bh, LELIvS B S8, A

®y

ft
[l

y3

10

Froof. ssxy= Els ony) Shy ™ Als,xny)
= S{E{s,x),y} = A{8(m,n) 4y)
= (a6 8, = (880N,
= =88, = ssxky

(End of Property 2.1}

it shows the convenience that the notation gives namely natuwral

operational order from left to right.

Property 2.2
et I* denote the set of all finite—l ength sequences of elements of

I.
= . # .
Then, for = = X XgeawXy, in IT, w,el, 1Zi5k,
Ssx = ssxlxﬁ...xk = Ssxisxg"’sx”
sA,. = 5k . = (58, ...8 A
M L R Wy My g TRy

Proof. Repeatedly apply Property Z.1.
(End of Property 2.2}

o

o, &y and », are functions with respect to an input word x in it
B, :+ § =+ g,
Ay = B - 0O,

Property 2.3

If v = gei®

y then for all se8,

=%, =

2
=

it

and Shy = ce0®
where £ is a null word.
FProof. 8is,z) = s and XAi{s.) = &.

{End of Property 2.3}

Let Abe a set, The power set of 4 is defined as set {2]|a€A? and is
denoted by 2% because it has an interesting property: |28 =2'01,
Therefore, in other words, 2% j= the set of all subsets of A, Let Sand 0
be sets of states and outputs of a machine. For power sets 2% and 2°, we

have the following functions defined in Notation 2.2.

Notation 2.2

Two partial functions,
3 5 s

£,z 27 2+ 2

are defined by 0F, =

h, =

and X, : 2% 2 2°
{qs, |qgeq €
igx, lgen €
where xel.
ifx €I,

then K, and %, are defined hy

Of, =

E

of, =

a8, lged A x;ex?

98, |qe@ A x, ex2

(End of Notation 2.2)

By the definition the

following results are apparent.

Froperty 2.4

11

fet B,,0, €8 and x,,x,; € I.
iy e, 8, = stxi € @2651 A aixxig azaxi
11y x, € ny, = stxl < Q:ng A kaxag aimxz
iii)y %y € ug B, & &y
=¢'@isgig @25x2 A Qihxlg QQAKQ
Proo¥. The properties (i) and {(ii) follow directly from the

(End of

definition of §, and Xk. The property (iii) is evident

because
B, €8, = V¥ €I : 3,5, € 8,5, {413 (1)
x, S x, => ¥R €8 : 8, € B, {4113 2)

Substituting % by %, in (1) and B by 8, in (2}
we have
Q‘8“1 < stxx and Q38“1 < stxg

By the transitivity of set inclusion we know

Q& € B85, .
1%, 2%,

X, € BN, ,

Foar 8_ A,
13-51 * o

the procedure of proof is exactly the same as above.

Property 2.4)

12

Property 2.5
It B,,B, € 5, xel, then

<

2,8,
o, %,

ke

U R 8, =8, U @,3E,
U B R, =B, U B,

#

Proof. Let O, Dy aPgser»aPyt and

By = €0;:055---38,%s mEIS], nz|s].
Then,
2.5, ue,E,
= ApyE PP U {08,058, - - q,87
Rl PE VR <P VL PR TR P
= {?15-=‘3?a3qis=~-1qn}§§
= (2,U8,;) 5,

(End of Property 2.3)

Property 2.6
If B & 8, %,4%a
gE, U g, = B
Ry Ry

€ I, then
F)
(% UK)

X, u gE, = gk

Proof. Suppose B = {Qis0ps=+=slnry
#y = Ll adlpeuangipgy and

%o = L33;dps---353;%5 k2JI], 15]1].

z
¥y] ¥
B5, U OF,

= {QISit,...,qisig} Uy cauy U {qnsii""’qnsik}

U €a,8; aeees@y8; 3 Uy oony U a8, 500o5a,8;

= {qisii‘!"'lqisik‘! qn'&ji""’!qns‘il}

Us 20uy U {qnsii*"'*qnsi“’ qnsjia'--s = Ejl}

= { . LY . . .
q1"' 1G9, Chggreandyy jyreanyig?

= QS{}{ ux

e
1 2’

With similar argument we can prove that

Ok, U 8K, = 8K, uu -

{(End of Property 2.6)

Froperty 2.7

Let B,,B E 85 4, xely x,,%5 & I. Then

w0 0,08, € @, 5,n 8,.8,,

& 2.8 N Q.5 3
i (X, fix 1 My, i ng
n eox, € 8,50 03,
0,5 c g% nax .
i (2 A%, i Hy i R

ProoT.
i} For all g in @,NB,;, gel, and gel,
imply nE, ¢ 0,5, and gf, C 0,§,.

That is, qgf, C 0,8, 0 2,8,.

Therefore, (2,000 F, C 0,8, 0 0.5,.
ii) If @, = By, B, N @, = 0, = B,, then
@, ne 8, = a,F n ,f,

Hence, (Q,NR,08, ¢ 2,8, n 0,5,.
in the same way., we have other three relations.

{End of Property 2.7}

Property 2.8

Let B, .8, € G, ;.45 € I. Then

(e ueF LJux) U e85,
2 Pgjmt,8 i
mua X Lux U B, %, -
2 Ly i, 2 +
Proof.
(0. ue 1§
i & (}tiu)ﬁzl
= miatxlux9, y st,xluxq, {Prop. 2.5
= F uvof ueF uoF IProp. 2.6
4 1
= U Q.85 . {calculus?
iy j=1,2 3
Similarly we have (R UR X Juxgy = U a8, X, .

iy j=i,2 i

{End of Property 2.8)

14

From Property 2.8 it is easy to see that
2.8 uBE @,y 235
19 2%x, 7 1 2" Fex Ut

e v szxg # (@,U mzlﬁtxiuxgx’

For the sake of convenience we make

Notation 2.3

£
il
]
L
2}
n}

{End of Notation 2.3)
Notation 2.4
Let & = xixz...xkel*, s€8. Then, functions
gx : 5 » g¥

5 » of

e
"

and %€

are defined by

& 8
s = g
b Hyeoady
= (s&xi)(saxlxg)...(sﬁx)
and
» X
s = g
X Hyer ¥y
== (slxl)(sxxlxz)...(skx).

{End of Notation 2.4

Obviously, sgx and axx record the tracks of a machine under input

sEOgUENTE K.

Property 2.9
et wy,x,el. Then, for seb

}

= (a8,)(s&
Ky My RyHg

)

He
sA,, = {mhk,) (=i
2 Xy Ka¥o

Proof. Take k=2 in Notation 2.4.
CEnd of Property 2.2

15

Property 2.10
Let xi,xzel*. Then

s, = (s§,)(s8, &
2 Ry Xy

)

Ko

x (sk,) (=&, X)
=5 e }=3 -3
1¥g Hy Ky %g

Proof. Take x = xyx, in Notation 2Z.4.
{(End of Property 2.10)

Notation 2.5
lLet A be a collection of n—arrangements of the state set, and
let B be a collection of n—arrangements of the output set,
and xel.
Then vector functions,
B, : A A M ¢ A3 B
are defined for any arrangement in A

a = (a,85.«.4ap)

aB, = (a,6,) (aghy) ... (a,)
—h
aky = (a A0 (@ghy) ... (a hy)
fEnd of Wotatiom 2.5}

1t is obvious that § keeps n endpoints of n tracks of a machine
under input x. From the definition in Notation 2.%, it is easy to

induce the following properties.

Property 2.11
If x,vel and aed, then

it

% 2,3
abd, . (a5, ,

akxy (a&x)xy.
(End of Property 2.11)

FProperty 2.12

If » = xi...xnel* and ash, then
ab, = (...((a&xi)ﬁxz}...sxn)
= anxsxz...an
ar, = asxi...xn_1 Axn'
If x = zel”, then agg = a aig = £

{End of Property 2.12)

16

Summary
i. &.,: B - O3 ez 8 2 O3
se5, xel¥: s8,e8; sh,el.
2. B 2% 4 25;
B €8, x €It 0f, © 5; 0F,e2%; 0%, € 05 0%, 2%,
. &, : 5 = 5%; Rt 5 o 0%
a) =e5, xel¥: =8, e5%; =X, e0%;
by wel: nges*; sixsﬂ*.
-k -kt
4. Byt A 2 Aj Ayt A 2 Bj
uel®, aen:
a§xea, aiasBz
aga - aiz = £

2.3 Decomposition of machines

The decomposition theory of machines states that, for a given
finite state machine M, the theory finds some “simpler” machines
MyaMyseaasMy, in some sense and constructs them so that the
connections of M, Mg,... .M, can realize the machine M. That is, we

axpect statements of the form -~
M= Mo Moy ey M,

where MM, ...,M, are the machines and W, ,W;4-..y1, 43 are the
connections defined in suitable ways.

When we say “simpler” machines, there are different meanings for
the word “simpler”. During the 1940‘s, it meant that the number of
states in the component machines was less than in the original
machine, hecause 1t was associated with the number of memory
components for the physical implementation of machines.

To cut down the cost of implementation, we must reduce the number of
states in the mathematical models. With the development of LSI and
VILEI techniques, the problem of reducing the components becomes less
important. But the number of pins of an IC still is a serious
limitation. FPresently, the “simpler” means less pins, which appears
mathematically as fewer inputs and outputs, as well as states of the
machines. In this thesis, we shall consider decompositions based on

the latter meaning of “simpler”.

17

Decompositions can be classified in different ways. According to
the number of component machines, there are two types of
decompositions: the simple decowmposition and the complex de—

composition. b simple decomposition is necessarily of the form -
M= M, w My,

that is, it contains only two component machines M, and M,. If it
contains more than two component machines, the decomposition is said
to be complex. A state decomposition is characterized by the mapping

on sets of statesy for instance, for simple decomposition,
® : 5+ 85,;x 8,

which means that the component machines have common inputs.
Afull-decomposition is characterized not only by the state mapping @,

but also, by mappings on input sets and output sets :-
¥+ I+ 1, % I, 2 00, » O,

with some restrictions: |8, <|s], |1, <1} ana o] <o}, i=1,2. 1t

is apparent that state decomposition is just a special case of full-

decomposition.

Also, the decompositions can be classified according to the
relationships existing between the component machines. If one
component machine takes some messaqges, such as states or outputs, from
another component machine, the decomposition is said to be a serfal
decomposition. Otherwise, the decomposition is a parallel
decomposition. For complex decompositions, there also exist series
paralled decompositions, in which some machines are comnnected in

parallel and some in series.

Due to the different approaches to decompositions there are
different theories which are used in the books and literature about
decompositions. One of them is algebraic theory. It involves
semigroups [5,6,9,163 and partition [11-15] theories. But most of
them are concerned with the partition concept [5,6,2,11-161. In this
thesis, we are going to study the simple full-—-decompositions of Mealy

machines using the trinity theory based on the partition concept.

18

2.4 A Universal Comnmnnection Model
and Decompositions

In this section a universal connection model is introduced. A
number types of decompositions are derived from the model and

discussed.
2.4.1 A Universal Connection Model

Consider how to connect two machines, M, and Mg,

M, =(I,,5,,0;,8 ,x, i=1,2.
We take @ as a variable to denote a set of §,,0, or an empty set
@ and I, as a middle variable to hold a projection from an input
set I to M,. If we make three relations %,,%, and %, by

#,¢ from I teo I, and 15:
Ry from @ and I, to I3

Bz: from O, and 0, to O,
then M, and M, have been connected by %;,%, and %; and a machine
with input and output sets T and 80 has been realized by the
connection. Since { and I are variable, the connection includes
many different connections by assigning & and I,. Thus, the
connection is called an umiversal comnection precisely defined by
Definition 2.4.

DEFINITION 2.4
A universal connection of two machines My and M; is the machine

M, ¢ M, described by

M, £ M, = (I,5,x5,,0,8%,2%
where I and 0 are defined by a;’ and %33
§° and A% are defined by

c 1
(5, ,5,08, = (S*Sﬂl"x”szs

1 2
35,0y caxa 1522y cw, g, 000

2 3
Bplwsfyix-11"7

(s,,5,02] Yy

for all (s,,5,)e5;x8,, xel and wel.
{End of Definition 2.4)

19

A universal connection model is illustrated by Fig. 2.1.

Fig. 2.1 Universal Connection

Mote that %, {-i) denotes the first component of f,(i) and %, (i«
the second component of #,(i). In the figure, a trilateral sign
represents a relation and the direction of a sign indicates the
direction of a mapping. We will apply these notations throughout the
thesis.

A universal connection model presents just a general connection of
two machines. When the relations and variables #,, %, and 4, are
specified, it will give a practical connection. In other words, a
universal model includes all the simple connections. Since a great
number of simple connections can be derived in this way, we are going
to derive some of the decompositions which are available or have been

developed in this thesis.

2.4.2 Machins decompositions

In this section, some serial and parallel decomposition types are
introduced that are based on different assignments of the guadruple
(RN sNasN3)- AN assignment represents a set of concrete definitions
af § and the relations.

From the model , we know that a parallel connection can be obtained
if we make Q@ = @. Otherwise, the model is connected in series.
Furthermore, if f3 is a null relation and O,= O,= 1, the model serves
for connecting states machines.

Let @ # A. Then, many serial decompositions are obtained as

follows, by making particular definitions for the relations.

20
Serial Decompaositions

1. BSerial decompositions with common inputs.
ASSIGNMENT 1.
= 8,/0,3
fyz 14 IyxI, {I=I,=I53 My (x)=(x,n), xells
fa: I -+ I, A{Ip=0OxI; identityl;
Bzt O,x0, = 0.

Substituting them in the model , we get a serial decomposition. The

structure is shown in Fig. 2.2.

OO 02
o X
. M Bz
i 51/01 o
- 0,
1 N Mo

Fig. 2.2 A serial decomposition
Since O, and O, are functions of 8,, S5 and I, the relation
Bz also can be written as follows
Bz ¢ Syx8,xI-» 0

Fig. 2.3 gives the connection under the definitions above.

Blls,,5,) %) = (83(s, 1) ,8%(5,,x))
Al(s;485) 4%) = g8, Byan)
Serial decomposition with output functions.

Fig. 2.3 My My

21

The pattern of decompositions based upon this type of connection
are described in most of the literature about machine decompositions.
Hartmanis gave a detailed discussion on the way how to get a serial
decomposition in [13-151. The decompositione were called serial
decompositions with common inpul and output funciltions. The key for
finding such a serial decompositionis to look for an SF partitionina
given machine. If the partition exists, then the machine can be
decomposed into a network consisting of two component machines M, and
L

Because, for any s€5 there certainly is a corresponding s, and s,
such that §(s,x) can be mapped to (8% (s, ,x) ,8%(s,,x)), the A(s,x) then
can be represented by the combination of s,, s, and x. Hence, N5 is
defined by

Ny (B, 48ae%) = Ais,x)
if 5 = (8,,8,5).
For this type of decomposition, we should note that it only
realizes a state decomposition which means that, for each of the
component machines the number of inputs is larger than or equal to that

of the original machines. Moreover, the outputs of machine M are given

by %5 which is a complicated mapping rather than ﬂ; : 02 O x0;.

A proper input and output decomposition should be of proper mappings

I » Iuxlg, 0 -+ 0,x0, .

2. Complete Serial Decompositions

ASSIGNMENT 2.

Q = DOg3
By I+ I, LI, =@ I, I3;
gz £ 4 I, (I = B3 Ig= @ (identity} or I,# Q3

fgt D7 O {0 = 0,3

Assignment 2 states that if we make some restrictions such as
0,70, omitting output function A and I, then, Fig. 2.3 becomes
either Fig. 2.4(a) or 2.4(b).

22

{aj

(b)

Fig. 2.4 Completely serial decompositions.

The decomposition based on a completely serial connection is
called a completely serial decomposition. The connection shown in

Fig. 2.4(a) appeared in [15,29] and the one shown in Fig. 2.4{b) was
defined in [161.

3. General Serial Decompositions.

ASSIGNMENT 3.

Q= 8, 3
fyd 12 Iyxly {I=I,=I.; identityi;
fat ByxI 4 I, 4{fg= {f,z 8,9 1,3, xell;
fa: O,x0, -+ 0.
Let I = I,= I, and let %, be an identity relation between 1
and (I,,I5), 9, = {f |f,: Sy I, and xel} , @ = 5;.

A general serial connection is formed and shown in Fig. 2.5,

I, ", O,
S"
I 4 - I, Oy
N2 My e

Fig. 2.5 General Serial Decomposition

23

If a machine can be realized by two component machines that are
connected in the way indicated in Fig. 2.5, then, the connection is a
general serial decomposition of a machine. It implies a special case

as Fig. 2.5 where |[I,|=|1|x]|8,].

In[16] it was pointed out that when there are two machines M, and M,
of which the semigroups cover the semigroup of M, then, the general

serial connection of M, and M, covers M.
4. Wreath Decomposition.

ASSIGNMENT 4.

Q= B3

fgr 1 4 I,xI, £I=I,xIL3 ;3

Nat Sgnly @ I, {9,=IZ1 = {f: 8,7 I,3, fely3;
Ha: O,x0, - O.

From a general serial connection, if we give a definition for %, as
fy 2 19 Iyx I

and take an extreme case of f, as
Ny = Igt = {: S I,

then, a wreath connection of M; and M, isdefined and it is illustrated

in Fig. 2.6.

I, a
—.—-b H1 :
Si
I Dd—
z z
I; Nz - Mz

Fig. 2.6 Wreath Connection

A wreath decomposition is discussed with the semigroup theory in

£161. In Chapter & of this thesis, we shall discuss it with partition

trinity theorvy.

24

5. 8Serial Full-decompositions

ASSIGNMENT 5.

Lol
]

8,70,z
Byt I 4 IuxmIf {I=I xIl3;
Rps I + 1, LI =OnIjl};
Bat O,x0, + 0 {0=0,x0,7%
Another important special case of general serial connections
is to make the retraction f; an identity mapping from (w,I;) to
I,y =8, or O,, and %, be an identity mapping from I to

IyxIs.

i, ", 0,
s, 0,
1; My et
L

Fig. 2.7 Berial Full-decomposition

Serial full-decomposition will be defined by this connection in
Chapter S and the methods for these decompositions will be described
too. Since the difference required for the connected information is 5,
or O, , the methods appear to be quite different. The decomposition
reters to state serial full—-decomposition (type II}) for =5, , as well

as, output serial full-decomposition (type I} for O = 0,.

Now, we consider the case of = @ which offers some parallel

decompositions using the different definitions of the relations.

25

Paraliel Decompositions

&. Partial Parallel Decompositions

ASSIGNMENT 6.

G o= 23
Ry T 4 Iyl {I=I,=107%

fpt I, 2 I, {Ip= I,3s
By Oyub, =+ 0 .
We take I = I,= I; and %, as an identity mapping from I
to I,xI, . Moreover, %, is defined as an identity mapping from
1, to I; and 9, as O,;x0,+ O. A parallel connection with common
inputs is obtained. The connection is called a partial parallel

cornection.

Fig. 2.8 Partial Parallel Decomposition.

A machine can be decomposed into a partial parallel connection of
two component machines, if it exists. Such a decomposition is
discussed in most of the books on the subject of machine decomposition
theory. The key for decomposing a given machine is to find two
orthogonal 8P partitions. If there are no such partitions for the
machine, it means that the machine cannot be decomposed in parallel

(8,12,151.

If the SF partitions are output consistent, then, the ocutputs can
be mapped into a proper product of 0, and O,. Otherwise, we have to use
a mapping Ny 3 Syx Sax I+ 0 in order to produce the outputs of the
original machine. When M, and M, are state machines, the

decomposition is discussed in [23,2413.

28

7. Parallel Full-decomposition.

ASSIGNMENT 7.

@ = B3

By 1‘4 LIES {I=I %1553
fgs B 4+ I, {i= IL3;
gt Oyx0; 2 0 {0=0,x0,3.

Now, we will consider a special case of partial lparallel
decomposition. If we make the relation %, a proper direct p;"odut:t of I,

and In, i.e.
fy, 2 I 9 I4xlg o

then, a model of a parallel full-decomposition is obtained. We are
especially interested in this decomposition, because it gives the
exact decomposition of states, inputs and outputs which leads to a
reduction of the number of pins on devices implementing the

decomposition.

Fig. 2.9 Parallel Full-decomposition

In Chapter 4 of this thesis, we shall discuss methods to find such a
full-decomposition, if it exists, for a given machine using the theory

of a partition trinity.

27

8. H-decomposition

ASSIGNMENT B.

Q= 0;
fgs I 9 I,UT5:
fpz I » I, {Ip= 1333

N2 O,UD, 7 O.x0, + O.

Based on the definition for a parallel full-decomposition, we
introduce another decomposition which looks 1like a, full-
decomposition by making the mappings into the wnion of inputs or

outputs of component machines. Particularly,

fy = I 2 1,0 I,
y ¢ O,U 0, » 0o Oy,x O, » 0.

With these definitions the component machine works like:

(8' (s, ,1),8,) if iel,
E((s,,5;),i) =
z : N -
(5,87 (s,,1)) if iel,

Which means, for some input,s one component machine acts and the other

keeps stationary. Therefore, we call it an H-decomposition.

An H-decomposition has the same structure as a parallel full-
decomposition, except for the definition of #,. It is supplementary
to the full—-decomposition theory. A detailed discussionwill be given
in Chapter & later. A similar decomposition only on states is

described in [2,3].
?. The Holonomy Decomposition

In the algebraic decomposition theory of sequential machines, the
first major well—known result was the holonomy decompeosition [&6,161.
It is also called the Krohn—Rhodes decomposition due to Krohn and
Rhodes who gave an algorithmic procedure for such a decomposition
[1?21. The kKrohn—-Rhodes decomposition theorem says that every
semiautomaton can be covered by direct and cascade products of
semiautomata of two kinds: (a) simple grouplike semiautomata, (b)

two-state reset semiautomata [9]. In other words, every finite

28

state machine can be realizred by a series—parallel connection of
permutation machines and two-state reset—-identity machines. The
series—-parallel connection is depicted in Fig. 2.10, which is copied
from [81. The n is the number of states of the machine to be decomposed;
F denotes a permutation machine and R represents a two-state reset—

identity machine.

Fig. 2.10 Canonical Decomposition of

Finite Btate Machine

The theorem is exncellent because it can be adapted to every state
machine unconditionally. Thus, an alternate name for it is the
universal canonical decomposition theorem. However, the reasons for
hesitating to apply it to the full—-decomposition are twofold. One is:
that all component machines, in general, take the same inputs from a
common set I. Another is because: the decomposition is a complex

decomposition and not considered in this thesis.

29

CHAPTER 3

PARTITION TRINITY
AND TRINITY ALGEBRA

In this chapter we will begin by developing some mathematical tools
and theorems which are fundamental to the theory of full-

decomposition of seguential machines.

3.0 Introduction

As we know, the elementary structure theory of serial or parallel
realizations of state behaviours is derived through state partitions
which represent self-dependent information. The concepts of
information and information dependence are very basic and underlie
all the structure results. In this chapter, we wish to consider more
useful mathematical tools for describing the concepts of information

and information dependence in all the aspects of a sequential machine.

From the available theory, we know that, if a partition Zon the set
of states of a sequential machine has the substitution property, then
as long as we know the block of & which contains a given state of the
machine, we can compute the block of & to which that state will be

transformed by any given input sequence.

Furthermore, if partitions # and T form an 5-8 pair (X,7) on the
machine, then, as long as we know the block of ¥ which contains the
state of the machine, we can compute the block of ¥ towhich this state
will be transferred by the machine, for every input. Similarly, if
(£,*) is an I-5 pair, then as long as we only know the block § which

contains the input of the machine, we can compute for every present

30

state the block of ¥ to which this input makes the state transferred by
the machine, and so on. It may be said that a pair gives the information
dependence in the part aspect, such as, present state to next state,
input to next state, and etc. The concept of partition trinity is more
general and is introduced to study how all the information flows

through a sequential machine when it is in operation.

From the discrussion that follows, we will know that, from the
viewpoint of mathematics, the partition trinity is the hard-core of
all concepts of mathematics for a sequential machine, because some
partitions have the PP property, some PP’ s have a 5F and some PP’ s with
8F have partition trinity property. Fig. 3.1 shows the inclusion
relations among the concepts of partitions, partition pairs, SP

partitions, and partition trinities on a machine.
PP
F : Partitions 8P
FF: Partition Pairs
SP: SP partitions

PT: Partition Trinities

Fig. 3.1 Inclusion relation among P,PP,S5P and PT concepts

3.1 Partition Trinity
3.1.1 Partition Pair

The concept of a partition pair (PF) was first introduced for the
study of sequential machines by Hartmanis [10,14]. Here, we will
recall some of its main points and derive some properties of them in
order to develop it to a higher level, as a mathematical tool for the

further study of seguential machines.

3

DEFINITION 3.1
For amachine M= (1,5,0,8,A), let ®#, T, { and w be the partitions on

M and, in particular
Hy T on 53 £ on Iy w on O.

Then, we define

i) (", 1) is an 5-85 pair i¥ and only If
¥Bew, ¥xel : BE, SR &1
ii) (£,7T) is an I-8 pair ¥ and only if
YCet, VseS : =K CR er
iii) (Myw) is an S5-0 pair ¥ and only If
YBem, YWxel : BR,E0 ew
iv) {{,w} is an I-0 pair if and only if
¥Cef, ¥seS 1 sh 60 ew

{End of Definition 3.1}

LEMMA 3.1

If (R, ,%,} and (Hy,T;} are PPF's on a machine M, then
i} (R, Ry, T,-Ty) is an PP on M, and

ii) (A +%,, T,+T5) is an PP on M.

Proof. Buppose (#;,T;) and (H;,7T,) are 5-58 pairs.

i) Bel(m, -®,}

=+ B & B eR; A B & B"eN, {def. of partition product [1513
=+ BE,C 4’ eT, A BRE, € A%eT, LM ,T,), (Hy,Tp)2
=% BE, € & NA" {raloulus)
=% BE,C Ae(T,-T) {def. of partition product?
which shows that (®, «¥,,T,-T;) is an PP.

i1} Be{R, +%,)

=% 1B, ,Bgs--.3B,; B, V B eW,: {def. of partition sum [1533

K
B;NB; . ,#¥B3 A igiBi=B J=1..k~1
=% BE,, {statement?
= (.UiBi)sx {substitution>
i=
k -
= U (B;§) Prop. 2.53

32

= 8§, n B, ,5#0 i=1..k~t {B NB; 202
A (BB CB T, if Bjem L0/, , T2
v BB, CHYET, if Bjeny) L(R, T2
e -
= igxtsisx) £ Belr,+7;) {def. of partition sum?
= EE, € 8e{T,+T;). {substitution’

Therefore, we have that
(A, +R,, T+I5) is an PP
In the other cases of 1-8, 5-0, and I-0 pairs, the proofs
are the same as shown above, and may be omitted.
(End of lLeama 3.1}

It should be noted that in Lemma 3.1, (A, ,T,) and (A,,T,) are

always of the same type of pairs; otherwise, the lemma does not hold.

LEMMA 3.2
If (%, ¥ is an PP, then
i} A< implies that (X ,7) is an PP j
ii) T >F implies that (®,T’) is an PP ;
iii) A <A and T >T imply that
(A ,T') is an PP.
Proof. We consider the case where {(#,T) is as an I-0 pair to
prove.
i) AT A (A, {assume (X, T) is an PP}

=% ¥B‘'en’ IBem: B'C B

A YBer ¥seS: sk cler {definition?
= sy € sXp € Aev {B'C B, Prop. 2.4}
=2 ghy. £ AeT. {calculus?

Hence (¥ ,T) is an I-0 pair.
ii) By a similar argument.
iii) For (' ,%) using Lemma 3.2 (ii) again.
In the same way, we can prove for other cases that
(w,T) is an 5-8, I-8, or S-0 pair.
{End of Lewmwa 3.2

Mow, we wish to develop a theorem on partitions as follows.

33

THEOREM 3.1
Let #,, A; and X3 be partitions on the same set of a machine.
If A, 5 Ry, and Ay,E A, then R, € Aj.

Proof.
F;E M, and AyE My imply
Ty =Py = Hyq NoFg = Mg, 1
MM, = Fgy MptWy = Ay (2}
Then, My Wy = Ty Wy Hy £(1)3
= R M, e
= 3 {{1:
Ty 4Ry = A+, 47, L2
= Ay {(2y3
= Mg {(233
Hence, M= Ay

(Ent of Theorewm 3.1}
3.1.2 Partition Trinity

DEFINITION 3.2

A partition trinity (Ny,A5,%5;} on the machine
M= (I,8,0,8,))

is an ordered triple of partitions on the sets I, 8 and 0O,

respectively, such that
VYeenmg ¥YCemy, ¢+ RS, € B emy and Bh, € BeX,

(End of Detinition 3.2

Thus, (AypRe4Mn) 15 a partition trinity on M If and only iT the
blocks of #, and Ry are mapped into the blocks of ®; and A, by M. That
is, for every block C in #; and a block B in 71, there exist a B in #¢
and a@in My, such that B isinandonly in B’ and BA; is in and only in
.

This definition is suitable, in concept, for all kinds of machines,
completely specified or incompletely specified. InthiscasethatMis
an incompletely specified machine, both BE; and BX; probably contain
“don’t care” conditions. A detailed discussion will be presented in
another chapter.

For completely specified machines, we have the following theorem.

34

THEOREM 3.2
Let M = (1,5,0,8,7) be a completely specified machine and
A7y and A, be three partitions on &, I and 0O, respectively.

Then, (My.Mg,Mp) is a partition trinity ¥ and only if

i} (Hg,%g) is an §-8 pair, and
ii)y Ay Ag) is an I-B pair, and
iii) (Ag.AL) is an 5-0 pair, and

iv) (AL ,AL) is an 1-0 pair.
Proo¥.
Assume that (Ao ALY (W H) (Ao Hp) and (A, are pairs.
(Mo Rg) A (Hp W) A gy Mp) A (Hp)

= Yeem, YCem, YseS Wxel :

BE, ¢ B ey A sb; € Breng T{T g Mg) (M, M) 2
A BR, € D elg A shg € B*en, LTy M) S (M)
=> ¥seB YWxeC : B =B A Q=" LR T 5 (A, M) 2

=2 VBem; YCem,: BE; € B &g A Bhy € B’ ey, {calculus}

= {Hy Mg Ag) is an PT {def. of PT}
Conversely, we assume (N,,%;,M,? is an PT.
(Fp y Mg 3 M)

= YBews YCen,:

BE, € Bemg A BRg €SB en, {def. of PT)
=P Bﬁ‘xz!xz""!*k’ € B eng {calculus by
A LS445py-2235;38p € B’ eflg B={S, sSp,cxx35;}ENg
A Bi‘*z*xz""’xn’ € B eny C={dy sMgpees s Mgt €My
A {51,52,...,sj}§§ € B eng,
e
= _UI(BSx_} € B A, {Prop. Z.4&%
1= i
A U (8B € B ey tProp. 2.57
=
ko :
A 'U*(le_} € O el {Prop. 2Z.&3
b= i

A U (5% € @ eng tProp. 2.53

35

= BE,, € B'en, i=1..k
A s;5, € B eng i=t..3
A Bl € B eRg i=l..k {ralculusl
A s;% € B eng i=1..j

=2 YRen, Vien, YseB Vxel:

n

A BE, € B eng
A sEg € B eng

A Bhy

in

B R, {ealoulusl
A sk € B eN,
=% (Mg4Ag) is an 5-8 pair
A (Hy W) is an I-8 pair
A FgeMy) is an I-8 pair . {Def’'s of pairs}

A () is an I-0 pair

Mence the theorem.
(End of Theorem 3.2)

It should be mentioned again that Theorem 3.2 holds only for
completely specified machines. For incompletely specified machines,
it does not hold because (5,7} and (W ,7:) donot imply BELEB en., if
there is a “don’t care” condition in B§c. The concept of trinity for

incompletely specified machines will be discussed in a later chapter.

In other words, from a partition trinity (A, A5,Hy), if we only
know the block of X, which contains the state of M, then, we can
compute, for every input block the blocks of X and A, to which this

state is transferred and the output is formed by M.

Since, from a FT, we know how “ignorance of all information of
statey input and output spread” or “all information flows” through a
sequential machine when it operates, it is obvious that a PT gives
dependences of all the information of a sequential machine and it
describes an integral characteristic of the machine. Therefore, it is
a more useful tool for studying sequential machines than partition
pairs.

Now, we should study the general properties and definitions of

partition trinities on a sequential machine.

36

DEFINITION S.3
A cardinal trinity (Np Ng,Ng) of PT (A, R, %,) is an ordered
triple of positive integers and it expresses the cardinal properties

of the partition sets of Ay,%; and My, respectively. Symbolically,
(Ny,Ng,Ng) = (|| , [7s]| 4 |7a] 0.

where |x| is the cardinality of set x.
(End of Definition 3.3}

DEFINITION 3.4

Partition trinities (A g .M,) and (T, 4Tg,To! are said to be egqual
it and only I¥ the corresponding components are
identical, that is,

i} g = Tz on §, and

ii) &y = ¥, on I, and

[

iii) 7,
{End of Definition 3.4}

Ty on 5.

DEFINITION .5
For PT's (Hp,Hg,%y) and (Ty,Tg,7g5) on a machine M,
Ty s MesMy) 2 (TraTgeTy?
if and only IFf
i) %g 2 Tg on B, and
ii} #; 2 ¥, on I, and
iii) Wy 2 Ty on O,
(End of Pefinition 3.5}

In the same manner, we can define the relations > and 4 .

DEFINITION 3.6

An identity trinity T; of a machine M is defined as
Ty = (Fp (1) A (1) (1022

where My (1}, (1) and A, (1) are the identity partitionson 1, 8, and 0,
respectively.
A zero trinity Ty, of a machine M is defined as

Tg = (A (0) R (0) Wy (03

where A (0) 7, (0} and ",(0)} are the zero partitions on 85, I and O,
respectively.
(End of Definition 3.8)

37

DEFINITION 3.7
A& partition trinity (A ,Rz,7,) on a machine M is maid to be
nontrivial if and only if
iy Mg #F MLy and Ry £ X (0 , and
ii) wy £ A (D and Ay # AL,(0) , and
iii) ®y # ALt and WG £ A (0) .
(End of Definition 3.7

DEFINITION 3.8
A partition trinity (W;,R;%,) is called

a basic partition trinity §f and only i¥

[}

iy omy
i1y 7

ool mys my) is an PT on M3, and

B oang |, n,, 7)) is an PT on M.

where I and ¥ denote repeated addition and multiplication on
partitions.
(End of Definition 3.8

3.1.3 Trinity Algebra and Its Basic Properties

In this section, we look at the general properties of partition
trinities on a sequential machine and work out some algebraic
relationships that the partition trinities satisfy, such as trinity
poset, trinity lattice and trinity algebra.

et T be a set of all the partition trinities on a machine M.
Considering the relation £ defined in Definition 3.5 for T, then, we

have the next theorem.

THEOREM 3.3

The trinity set T on a machine M is a poset under relation =.

A

Proof. i) For any xeT, x=x implies x%x,
This states that £ is reflexive.
ii) Let x,veT and x={X ,Xg.Xg} and y=(¥,,Yg,¥y)
2y implies that

Xy £ Y1, (1)
and Xg £ Yg, 27
and Xg = Yg-. 3

y=x implies that

Yy & Xy {173}
and Yg £ Xg, {273
and Yg 2 X,. £33

38

Combining (1) and (1°), (2) and (2'), and
(Z) and (3'), we have

X =Y: 5 Xg = ¥g 4 Xg = ¥g

By Definition 3.4 it is true that x=vy.
This shows that £ is antisymmetric.

iii) For any x®,y,zeT, x=y and yZz provide that

X; €Y, and Y; £ Z, (4>
s £ Yg and Yg £ Zg)
Xg £ Yo and Yg £ Zg (&)

Using Theorem 3.1 and Definition 3.5 for (4)
through (6) we obtain
w Xz .
This states that % is transitive.
Hence the theorem.
(End of Theorem 3.3)

We introduce two binary operations © and & on the poset T, which are

defined by the following definition.

DEFINITION 3.9
Let x,y €T and x=(X;,Xg:Xg? and y=(Y;,Yz,Yg).
The trinity multiplication and trinity addition are defined as

follows.

x Oy (Xp~¥yy Xge¥o. Xgo¥yq?
wiy = (X;+¥y, Xgt¥g, Xgp+¥y)
where + and - are partition addition and multiplication.
xQy is called a trinity product,
By is called a trinity sums.

(End of Definition 3.%)

Having cobtained the operations on poset T, a problem naturally
arises, that is, whether the trinity product (or sum) of any two PT’'s
is a PT. The following theorem gives the answer and shows the proof in

detail.

THEOREM 3.4
For any X,y &T,
i) x@®y €T

1)

ii) %Oy eT 3
iii) x®Ty = Ty, xOT;= %

iv) x0Ty = Ty 4x@Tg= x .

39

Proof. Let x = (Kyy3X5.X) and ¥y = (¥ ,¥g,¥,).
i) x,veT implies that
(KgeKg? o (Yg,Yg5) - (1
(XyaXg) 5 (Yyp,Yg) (2)
(KgaXg) & (Yg,¥y) (3
and {(Xy;,Xg) 5 (Yi,¥y) (4}

are FP's. By Lemma 3.1 and (1)
(Kg+¥ey Xg+¥y) is an 58 pair.
Similarly,
(Xy+Y¥yy Xgt¥g) is an I-5 pair.
(Kgt¥gys Xg+Y¥y) is an 5-0 pair.
(Ay+Xyy Xgt¥gs) is an I-0 pair,
From Theorem 3.2, we know
wily = (Lg+Y¥yyKgHtY¥geXpyt¥g) is an FT,
Therefore, x@yeT .
ii) By the same argument as (i).
1ii) BT = (Kp.XgsXg) & (AL (1), A (D) A1)
= AN (1) G X+ (D) G X+ (1))
= A A1) g 1) 4 HG (L)
= Tys
2OT = (X4 XgaXg) O (H (1) A AT LI
2 Ay =R (1) (K "W L) Xy "B (1)
= (XypaAgsXg?
= K.
iv) It is similar to (1ii).

(End of Theorem 3.4}

The definition and the theorem has shown that, for every pair of x
and v in T, %0y and x®y certainly exist. This gives a reminder that,
under the operations of O and &, the poset T forms a lattice like the

definition given below.

DEFINITION 3.10
A trinity latlice L, is a triplet
Ly =(T,0,8)
in which, for any »x,y & T
GLB{x,y) = =0y LUB(x,y) = x@y
where T is a nonempty set of all the partition trinities on a
sequential machine, and © and & are trinity multiplication and
addition.
(End of Definition 3.10}

40

THEOREM 3.5
Any machine M has a finite trinity lattice with the identity

element T, and zero element T,.

FProof. 1) For any xeT, by the Theorem 3.4

i

TO x ¥y T8 % = Ty,
Tol % = Tge Tp® x

e

Hence, Ty is the identity element, and T; is the

zero slement of Ly of a machine.

ii} Any machine has at least two trinities T, and

Tg which can form the simplest lattice:

I ;

Yo
iii) A finite machine implies that the partition sets of I,

8 and 0, are finite. Any machine has a finite
tri—partition set L = {(PuPxPg}, where FPg,F; and P,
are sets of all the partitions on 1,8 and O,
respectively. T is a subset of L;

therefore, Ly is finite.
(End of Theorem 3.5)

EXAMPLE
Mow, we take the machine A shown in Fig. 3.2 as an example to

illustrate the concept of trinity lattice.

1 2 3 4 input
1 I/ 171 272 472
2 4/4 271 174 371 next state / output
3 /4 371 473 2/2
4 271 471 341 1/%

present state

Fig. 3.2 Machine A

By the computation on a computer Machine & has totally 24 PT's as

follows:

Tya™

1,3,2,83,41,4,7,33,41,2,5,40

({1,2,3,83,{1,2,3,82,{1,2,5,41)

(<{1,%,5,83,{1,2,3,43,11,2,%,41)

T

L

33 (1,5,5,83,(1,2,%,41)

(${2,1,3,83,41,2, 5,43, (1,2,5,8)

o I - T N O T SR R O 5 3

$1,2,3,33, 11,25, 5 (05,58

JBY,{T,7,5,83,11,2,5,40

331, 2,35,83,£1,2,3,8%)

-

l

-

L
[Mi

.!a

TS, (1,2, 58, (1,2, 5, 80)

1,3, 2,5 , 41,2, 5.83 , 41,2, 5,8)

(L1,F,0,33 11,2, 5,80 (055730

(1,8,7,33,4{1,2,3,81,(1,2,5,41)

(T2, 5,5 (1,0, 5,87 , {1, 5, 5,4

41

42

The trinity lattice of machine A is depicted in Fig. 3.3
T

w\,&;r
\»‘3«7&,@&

Ty

Fig. 3.3 Trinity lattice of machine A
From the lattice, we know that T, through Tg are nontrivial
trinities, T, and Tg are basic nontrivial partition trinities, and the
rest are trivial trinities. It is easily checked that
TaC Ty = Tyy Ta® Ty = Toys Tgh T, = Tpy Tg® T, = Ta3
and soc on.

{End of Examplel
Theorem 3.4 states that the operations © and & on the set T are
closed, which induces us to consider an important property on T given

by the following definition.

DEFINITION 3.11

& trinity algebra is an algebraic system
< Ty @y, Oy Ty, Tg>
where 7 is the set of all partition trinities;
® and © are trinity addition and multiplication;
Ty and Ty are the identity trinity and zero trinity.
(End of Definition 3.11)

43

Thus, a trinity algebra is a binary relation on T which is closed
under trinity operations of O and & and contains all the elements such
as (My (1) A (1), A5(1)}, and s0 on.

I we say that partition pairs characterize some transformation of
the information that transpires in the operation of a maching, then,
we can say that partition +trinities characterize all the
transformation of information that transpires in the operation of the
machine. The property that %0y is in T can be interpreted as “the
combination of the information in Xg and Y. or in X; and Y, is
sufficient to compute the combined information X and Y or X, and Y,°.
Similarly, x@y states that “the combined ignorance in Xg and Yz, or in
Xy and ¥Y,;, is sufficient to calculate the combined ignorance in X and
Yge OF in Xy and Ygu”.

In view of the application to the full—decomposition of sequential
machines and in view of other possible applications yet undiscovered,
we will extract the common properties of trinity algebraic systems in
order to derive the algebraic relationships in terms of these

properties, in the rest of this section.

THEDOREM 3.6

If (Wy,Wg,Ry) is in T, then

i) Ay £ &, implies that (AL, %) is in T j
ii) @, 2 A, implies that (A W) is in T ;
1ii) ®, 2 R, and WG 2 W, imply that (A, M) is in T ;
Proof.

i} From Theorem 3.2 we know that
(RysMgs®y) is an PT implies that
(Moo Fg) o My Hgd, (Fg,Ry) and (Hy %) are PP/ s,
By Lemma 3.2 #} = ®, implies that
(7L ,M,) and (A ,N;) are PP’ s.
Combining them with {(#;,%;} and (A .7y} gives
that (R{,A_,7%,) is an PT.

Hence, (7,8 ,A,} is in T.
ii}) With the same argument as {i).

iii) For (.7 ,%;) using Theorem 3.6(1) and (ii) again.
(End of Theorewm 3.46)

This theorem is useful for computing partition trinities too,

since it presents another way of doing the computation.

44

NOTATION Let S be a set and X be a partitionon S. For sand t in 5, we
write [slr= {tlxtodenote thatsandt arein the same block of Tin the
following discussions and chapters.

{end of HNotationl

The theorem below shows the connection between relationships £ and

operations © and .

THEOREM 3.7
In algebraic system T, the multiplication and addition of two
elements of T have the following propertys
HEY if and only If xn0Oy = x and x®y = y.
This property is referred to as the consistency property.
Proof. Suppose that x £ y and
%= ANp,XgaXg) and y = (¥, Yg,Y¥,).
Xy implies that
X £ Yo o X3 £ ¥y 4, and X5 £ Y, .

For X £ Yy 4, for any two states s and t in 5,
[slxgz= [LIxg implies [slvg= L[tlrg.

From the definition of partition multiplication and
addition, the following relationships certainly
exist:

Xe-Ye = Xg and Xg+¥y = Ve
Similarly, we have

Xee¥y = Xy and X, 4¥, = Yy,
Yge

Xg*Yg = Kg and Xg+Y,
That is,
®¥Qy = (Kypo¥yy Ao Yo, Xg-¥Yy)
= (XypsXesXy)
= ¥,
uPy = (Xy+¥yy Kgt¥eo, Xg+¥y}
= (Yp,¥g,Yg)
= v.
Conversely, if x0Qy = x and x®y = y
they mean, for any block By in Xg of x, there must
exist a By in Y of y, such that
B, € B,.
It indicates that

Xg £ Yg.

45

With the same argument, we get
Xy £ ¥y and X4 £ Y,
By Definition 3.5 we have
X £ vy
(End of Theorem 3.7}

Finally, some properties on the relationship £ and operations © and

P are derived and given by the‘follawing theorem.

THEOREM 3.8
Iin the algebraic system T, the operations © and & for any two
elements of T satisfy the idempotent, commutative, associative, and

absorptive properties; that is, for any %,y and z in T,

i) Idempotent : wOx = x 3 xR = x
ii) Commutative: x0Oy = yOx 3 x®y = ydu
Axly)Oz j
{x By) Bz
x 3 XPxOy) = % .

i

iii) Associative: zrO{yQz}
B {ydz)
iv) Absorptive 3 x0O(x®Gy)

Proof . The properties (i) and (ii) follow directly from
the definition of @ and &. The property (iii) is
evident since xG{yOz) and (xOyilz are both esqual
to the greatest lower bound of x,y and 7z, while
¥®{ydz) and (x®y)dz are both equal to the least
upper bound of x,y an z.

To prove {(iv}, consider the following three cases:
{1} I1¥ »=y, then, by Theorem 3.7, we have
x D (xBy)

#

x Oy
= X,

and x®{x0y) = xdbx
= K.

(2} If xzy, then, based on Theorem 3.7 again, we have

xDixPy) = xOx
= M3

and x®{xby) = xby
= X.

(3) If x¥y and vy¥x ,
for any x,y €T, it is obvious that
By =T x . {1}

46

By Theorem 3.7, (1) implies

wO{ndy) = un.

Similarly, we have

w3y £ ® . {2)

Theorem 3.7 shows that

(End of Thecorem 3.8)

THEDREM X.9

#BxOy) = n.

In the algebraic system T,

i} All elements
if x £ v,
ii} All eplements

if n = 2z,

satisfy the isotone property; that is,
then x0z £ yOz and x$z £ yiz.

satisfy the msodular inequality, which is,
then «®{yQz) £ (x&y)i=z.

iii) The distributive inequalities are satisfied:

#O{ydz) =
nB®l{yOz) 2

(xGy)B{ntz),
By IOz).

Proof. i} If %%y, then by Theorems 3.7 and 3.8

®Oz

it

(xOy)0(z0z)
(02X 0(yGrl.

Based on Theorem 3.7, it implies that
®Oz £ yOz.

The second inequality may be proved in a similar

WaY.
ii) Since

o

2z and x = xdy,

X
£ (x®y) Oz

and since yOr £ z and yOr £ y £ xy
yOz € (x®y)Oz.

Combining these results and in view of the

definition of ®, we obtain
xE({ylz) £ (By)C=z.
iii) SBince %0y £ %« and x0y X y % y@ez,
xOy £ xO(ydPz).
From the relations x0Oz £ x and x0z = =z & y®z,
w2 = 2O{yd®ez).

Hence,

Again,

xOily®z) = (xOy)B(xbdz).

the second inequality may be proved in

a similar way.

{End of Theoren 3.3}

47

3.2 Homomorphism and Quotients

In this section, we study the relationships between two machines
and those on & machine with respect to different partition trinities,
which is the basic idea behind the full-decompositions which will be

introduced later.

DEFINITION 3.12

Let M = (I,5,0,8,%) and M = (I’,5,07 .8’ ,2°) be machines.
If there exist three onto mappings

B 5 5, ¥ I + I’ and 6: O + O

such that for any se&S and iel,

®(s5;) = D(sIEY,;,
and B(sA;) = B(s)Aj,;,

then the triple ($,¥,0) is called a hamomorpﬁism from M to M and we
write

(D, ¥, 8): M 2 M.
(End of Definition 3.12)

I¥ (9,¥,8) is one-to—one, then, we call it a monosorphism, and if
(D, ¥,8) is onto, then, it is called an epimorphism. An isomorphism of

machines is both & monomorphism and an epimorphism.

Under the mapping #: § 2+ 8 there exists a partition on S, say Rg,

defined by
Esldmg = [tinmg & dis) = &),

For the same reason, we have two partitions, %, and #,, unde&
mappings ¥ and 6. Consequently, we aobtain a tri-partition {(#; . #;,7y)
on M. The tri-partition is called a tri-partition defined by the

homomorphism {($,V,8).

The idea of apartitiontrinity discussed in the last section leads

to aprocedure for constructing quotient systems in the following way.

48

DFEINITION 3.13
Let M= {1,8,0,5,A) be a machine and t = (R, ,A.,A,) be a partition

trinity on M. The guotient machine
M/t = (X B,Y,8 42°)
of M with respect to t is defined by putting

B =2 , X =78, and Y = %,
g’ <> gf, ¢ qfeng
Aolgauy = y' qix € v EN,G-

and & (g,x)

for- all gel and xeX.
(End of Definition 3.13)

These definitions of 8§ and A are well-defined since &t is a
partition trinity which preserves the functions of § and k. From
Definitions 3.12 and 3.13 we easily get the following theorem which

indicates the relationship between M and M/t.

THEOREM 3,10
tet t be a partition trinity on a2 machine M = {I,5,0,8,2). Then

there exists a homomorphism

(P, ¥,8): M =+ M/ .
Proof.

Suppose that @ is defined by that #(s) is the block which
contains s and so is ¥{(i). Since t is a trinity,

for all se8 and i&l,

S5, e®iS) By,

f

€='5,. |s’ e®(s) A i’e¥(i)2

Hence, ®{sE;) wis}8§£i}. With the same argument

we can prove that 8{sh;) = ®#i{sIAy ;.
{End of Theorem 3.10)

The homomorphism (0,¥,8) is also called the natural epimorphism
defined by t, because, for any qell , xeX and veY, there at least exists
a triple of se5 , 1el and ze0 such that ®i{s)=q , ¥{id= x and 8{z)= y.

Some remarks concerning the relationships between two guotient
machines over the same machine M are worth making.

Suppose that t and t' are two partition trinities on machine
M={I,5,0,8,x. If £ % £’ , we can construct an epimorphism from

M/t toM/t’ . This leads us to a homomorphism theorem for the machines.

49

THEOREM 3.11

Let M and M be machines and

(B,¥,0): M - M

be an epimorphism. If £t defined by {(0#,¥,0) isanPTonMand t is an PT

on M satisfying the condition t £t’, then, there exists an epimorphism

(D7, ¥7 ,87): M/t -+ M

such that

(F,¥,8)

H]

(B ¥ ,8°)o (D", ¥ ,0%)

(! op” ¥ 0¥, 0 0B™)

where (® ,¥ ,8°3: M =+ M/t and o denotes function composition.
Furthermore if t = t then (#7,¥7,07) is an isomorphism.
FProof.

Let t = (W, ,g,M5) and 7= (R ,AL,N5).

We define
B7: A, <+ 57 by $7(B) = #(s) where scbBer_,

¥7: % » I7 by ¥V ¥{i} where ieCen,, €13
87 Mg =+ 07 by 87(D) = 8{y) where yeDeX,.

]

These are well--defined for if s’ eB then there

exists a B in ﬂ% such that

s5.,5 6B € B and ®(s) = 6{s’} €t £ 2

and so are L and D.

For any BeXg; and Cen,,

®” (BE])

= ®(s’ eBEY) €1y

= 0(s8;) {seB A ieb)3

= B(s)E” C(0,¥,0)3
Yo

= (B8 Ly

By the similar way we have

50

87 (BAL) = " (BIAY, o,

It is implied that (97 ,¥¥,8%) is an epimorphism.

Secondly, to show communitive homomorphisms,

8tsA;)
= 022G, ;, C(0,¥,003
= 97 (B)Af. (g, IEERR
= 07 (SN (e (1)) 607 ¥ ,0°)3

(D o) (&8I N7

¥ o¥ i {functional compositionl

With the same procedure we have

Bi(uf;) = (¢*o¢”)(s>s§y,ovn,(i,
Hence, the theorem.
Furthermore, if &t = t/, (o ,¥7,68") becomes one-to-one.
Therefore, it is isomorphic.

{End of Theores 3.11)

The theorem is also illustrated by the following diagram which

shows the communitive property of the homomorphisms.

W ¥ ,0°) (0,¥,8)

M/t M
TR 2 - Y

in the theorem, if t 2 t', it is easy to show that (®7,%¥7,0”7) is in
the opposite direction, that is,

{7 ¥”,07): M+ M/E

with the same statements. This is included in the theorem if we

consider M/ as M/t, and therefore, it is omitted.

51

B.3 Computation of Partition
Trinity Lattice

For applications of partition trinity theory, the first thing is te
compute a PT or a PT lattice for a given machine. In this section, we
discuss the ways of computing an PT and an PT lattice using the

properties given in the last section.

3.3.1 Compute Nontrivial PT's

From the definition we know that the direct method for computing
partition trinity is to calculate all the partition pairs of 5-5, 1-0,
5—-0 and I-0 for a machine. Then, compare them and find some partition
trinity. But, experiments show that it takes a very long computation,
because of the very large number of pairs. From the experiments and
examples, we found that the difference between the numbers of
partition pairs of different types of pairs was very great. Usually,
the number of partition pairs of §-5 and 5-0 were great, while the ones
of I-5 and I-0 were small, because of the structural characteristics
of sequential machines. The procedure below gives one of the ways to

compute an FT based on the above consideration.

PROCEDURE 2.1
1. Find a nontrivial I-B pair (H;.%);
2. I¥ (A W) is not an S-8 pair, then go to step 1;
3. Find an ocutput nontrivial partition R, from Rg;
4. IFf (Hg.My) is not an S5-0 pair, go to step 13
S. IFf (M 4Ay) is not an I-0 pair, go to step 1
G. (M Ag4) is a nontrivial PT;
7. Exit.
{End of Procedure 3.12

In Procedure 3.1, because of trial and error, the computation of
one pair may take longer in step 1. An alternative way is given by

Procedure 3.2 helow.

52

FROCEDURE 3.2

i. Compute the set of second components of all the smallest

§-0 pairs 3

2. For any two elements in the set carry out partition addition on
them: the result is a new output partition that can be used to
after this

the second

construct an 50 pair with some state partitionsg

step, a set of all output partitions which are

components of the same S-0 pairsg

A
.

E-

If {A;,A) is not an 5-5 pair,

S. For 7, compute M, {Ag) = X3

6. If (A, is
7o If (My.Hy) is
B, (MyAg,5) is
?. For all 7, in

not an
not an
an PT;

I-8 pair,
I-0 pair,

go to step 33

go to step 3;
go to step 3;

the set, repeat steps 3-8;

1f AG is in the set, compute Mg g{(RG} = Ag;

where My (Rg) and Mg _o{(%,) are two pair operations

and are defined

-
[

et
i

(End af Procedure 3.2

Another way is suggested by Procedure 3.3.
first compute the 5P partitions. This is because we know that GP is the
nearest to PT from the inclusion relation diagram in Fig. 3.1, and it
will take less time to compute. The procedure also gained by the fact

that the number of SF partitions is far smaller than that of all §-8

by

partitions on a machine. Hence, we do not

i, T)} in which ¥ £ T .

FROCEDURE 3.3

need to compute the pairs of

1. Compute all the SF partitions, that is,

{71_|7s is an BP partition?;

2. IFf AgeiTgy, then calculate My = mp g {(Kg):

if mg_g(Mg) = Wg(0) or mg_gi{Rg) =

then go to step 23
3. Calculate I, = My (g,

iF My_g(Mg) = A (0) or My_ (R

then go to step 13

it

My (1,

%y (D)

= % {m, | (%) is an I-5 pair3

I {mp|nL,my) is an I-S pair?

In this procedure, we

¥

4.

5‘

53

If (Ay,My) is an I-0 pair, then
(RyaMg+Mp) is a basic nontrivial PT,
ptherwise, go to step 23

For all A: in {1z}, repeat steps 2-4,

where mg_o{(#;) is a pair operation and is defined by

Mg _oiAg) = H {n3|tx§,n3) is an 5-0 pair.J’

(End of Procedure 3.37

1t should be stated that pair operations M{(Z) and m{%) are done by a

direct method from the transition table on a computer instead of by the

definitions of them.

3.3.2 Compute PT Lattice

iIn this section, we present the general procedure for constructing

an PT lattice of a given sequential machine.

FROCEDURE 3.4

1.
2.

7.

Compute the set {T,> of all basic nontrivial PT' s;
For any ®,ve{T,, perform operations O and ® on them;

if x0Oy or x®y is a nontrivial FT, put it in {Tyl;
Faor ze{Tyl, 2 = (Z;,245,145),

using Theorem 3.6 for Z, and Z,, we get two sets.
€zy 24052, and LZL|Z,SZ.%;
L2 wlZL 35 gives a set of FT's which are derived

from basic éT z3

For all zelTy,} , repeat steps 3 and 4;

Set up a table in which the rows and columns are PT'sj;

for a row x and a column vy, 1f xZy {(or x2y), then

put the sign of = {or 2) on the cross entry of x and vy3
the table is referred to as an "R table”;

Using the R table, join all PT's together in order to draw

a lattice diagram.

{End of Procedure 3.4)

54

CHAPTER 4

PARALLEL FULL-DECOMPOSITIONS

In the preceding chapter the concept of a partition trinity was
presented and trinity algebra was discussed systematically. The
results developed there will be used in this chapter and following
chapters in order to study the full-decompositions of sequential
machines. Before we deal with the parallel {full-decomposition, we
have to make a rule for the relationship between the original machine
and & simple network of component machines, which is described by the

concept of realization.

4.1 Relationships
betwaaern Machines

In this section, we consider the relationship between two
machines, which will serve as a basis for the decompositions

throughout this thesis.

et M= (1,5,0,5,%)
and M= (I’,5,0° ,8 ,A)

be two machines with the same type.

DEFINITION 4.1
Machines M and M’ are isomorphic if and only if there exist
three one—-to—one onto mappings
s 5 + 87
A I -+ I
¥: O+ 0O
such that

55

a{sd,) = ais)&‘k(x}
and Fishe? = alsdhy, -

{End of Definition 4.1)

We refer to the triple (ua,8,7) of mappings as an isomarphism
between M and M’ .

The definition states that two sequential machines are isomorphic
if and only if they are identical except for a renaming of the states,
inputs, and outputs. Machine isomorphism is the most elementary case
of two machines imitating each other through the use of combinational
circuits, in order to perform the three mappings. If we have a machine
M° which is isomorphic to M, then b? just placing a combinational
circuit in front of the machine M mapping inputs, and one at the rear
of the machine for mapping outputs, and/or one to one side of the
machine for mapping states in the case of observing states or of state
machines, we can convert it into a machine which behaves like M. The
schematic representation of this conversion of M into M, using three
combinational circuits, is shown in Fig. 4.1, where, triangles are

combinational circuits and indicate the directions of mappings.

Fig. 4.1

Machine M is simulated by its isomorphic

machine M with combinational circuits.

In the above definition, we defined three one-to-one onto
mappings. If we omit the condition of one-to-one, a more general

concept is obtained, which has been briefly mentioned in Chapter 3.

56

Let g2 825 ,v: 121" andw: 0+ 0" be three onto mappings from M to
M . If they satisfy that,

for all s in 8 and % in I,

ails8y) = wils) b ..,
and wisk,) = aisdh, .,

then, machines M and M' are said to be homomorphic and M’ is said tobe a
howmomor phic image of machine M. By the definition in Chapter 3, it

means
ta v,w) = M > M,

Again, we can simulate a machine, M , by another machine, M, with
some combinational circuits, if M is a homomorphic image of M. The
schematic representation of this simulation is shown in Fig. 4.2, If v
does not have a unique inverse, then v ix) is interpreted as any input
symbol which is mapped ontox’ by v. Intuitively speaking, the machine
M does more than M can, but it can be modified by attaching

combinational circuits in order to imitate its homomorphic image M/ .

[S e e e e T =
1 |
) | I 8] [
M
! !
: 1
¢S |
; I
I I3 |
| i
| Mo
b st o e o o 1 o | oo — o — - o]
g
Fig. 4.2

Simulation of the hcmnmdrphic image M’ of M.

In addition to the isomorphic and homomorphic relations, in
practice, we prefer the case of how a machine M’ can be used to imitate
the behaviour or functions of M. For this, in [22], this was referred
to as realization, and in £15,223 it was defined by the concept of

covering.

57

The former is emphasized by the mappings that make M behave like M,
but the latter concerned M producing the same ocutput sequence as M
did.

in many applications, we are concerned with not only the outputs of
a machine but also with the state changes, of the machine; therefore,
we think that realization is suitable in pur situations.

A realization is defined as follows. M is a realization of M i+
there exist three mappings: ® is a mapping of 5 into nonvoid subsets of
8y ¥is a mapping of I into 1’3 and © is a mapping of O into O, such
that {($,¥,8) preserve the properties and binary operations. This
definition is not too convenient in practice. The reasons for it are
twofold. One is that, in a physical implementation we cannot directly
get the combinational circuit designs for some mappings, such as w. We
must calculate #(~1) first. Another reason is that we cannot make the
definition coincidential with that for state machines. In the

foliowing definition, some improvements will be made.

DEFINITION 4.2
A machine M is said to be a realization of machine
M if and only if there exist three relations
h: 579 8 is a surjective partial function
¥: 1 + I is a function
8: 02 0 is a surjective partial function
such that
Tis 18, = dis’ & 3

YKy
and Bls Ih = (8" Ay .,)
{End of Deftinition 4.2}
We dencte the realization by: M= M and illustrate it

diagramatically in Fig. 4.3.

58

Fig. 4.3 states that if M is arealization of M, then M started in
a state 5° behaves like M under the interpretation of @ and h when
started in ®i{s’ }, if we consider #, ¥ and @ as three interpretors. In
pther words, that ¥ realizes M means that we can put three
combinational circuits of ¥, ® and 8 by which M works exactly like M
under the translations on the inputs, states and outputs of M .

it should be mentioned here that i+ M realizes M, then the two
machines do not necessarily have to be isomorphic or related by
homomorphise. There is though, a homomorphism which relates M to the
reduced machine equivalent to M in the case when ¥ is a one-to—one

mapping, as shown in [13]1.

4.2 Parallel Full—--decompositions

In Chapter 2 we have described some meanings of parallel full-
decompositions for seguential machines. In this section, we are going
to discuss them in detail. A parallel full-—decomposition is such a
decomposition that the original machine M is decomposed into two
component machines ¥ and MY each of them working independently and
having fewer states, inputs and outputs. Before studying this
decomposition, we make a precise definition of the parallel

connection of machines.

DEFINITION 4.3
parallel connection of two machines
M= {I,8 ,D’ W8 A
M= (17,57, 07,87 A7)
is the machine
M= M M7 = (I°%I7,8 x87,0°x07,8%,2%

its transition function &% and oputput function 2* defined by
¥, o~ * - = £ x F
(87,8 18 0wy = (878, 8 8,..}

Ea ” * * - £ ”
(87 45 gktx',x") {2AL. s SR}

where s'eB5 , x’'el’, s"e5” and x"el”.

(End of Definition 4.3)

DEFINITION 4.4
Machines M’ and M” are said to be a parallel full-—decomposition of
M= {1,5,0,8,\} ¥ and only i¥
M M7l M.
{End of Detinition #.4)

THEOREM 4.1

Let M = (I,5,0,8,A) and suppose that t’ and t* are two partition

trinities on M. If both t' and t” are non-trivial and orthogonal,

namely, 0 t“=T,, then,
M=t M/t I M/L”.

Proof.
Let M/t'= M and M/t"= M~
with /= (A7, ,Ag) and t7= (T;,Tg,Ty).
Thus,
M= (Mg 8 A7)
M7= (Tp3TgsTaaE73A"),
where B’Sh.= B’SB. and B'kb.= B'Aﬂ.,
and B”S§"= B"Bﬂ" and B”x§"= B”Aﬂ",

for all B eftg, A €fX;, B elg, A"ET;.

From Definition 4.3,

M7 H M7= g Tq Mgk T, MoX Ty B 3 A*)

where (B’,B”)Gfa,’ﬂn, = (B’ 84 ,B"86%.),
s ” * s i 2y I
and (B BN 4o g, (B Ng. »B“Ng.) ,

for B efigy, B"etg;: 8 ey, A7eT;.
Let ¥: I + A;xT; be defined by
¥({x) = (8 ,4") such that
B ey, BTy, B NB"= x ;
P: Axtyg + 5 be defined by
®{(B’' ,BY) = 5 such that
B’ efgy, BTz, B'NB"= 5 ;
©: AxT, * 0 be defined by
8i{z‘ ,z¥) = z such that
2’ Efgy Z7ETg, 2 N2z"= 2ze0 .
Since t'0 tY= T4, ©® is an injective function.

P and © are two surjective partial functions.

For each (B’ ,BY)efgxiTg, B'N B2 @ and xe&l,

60

D(B' ,B") &,

= =8, {let B‘NB“=s}
= (B’ NB”) &, {calculus?

e B E,NB"E, B NB”203

€ R §,dmN (BB, 17 {calculus}

= B By, B"5G ., M and M~3

= DB By, ., BYEG L, {defination of ®}

= B BBy, {defination of Ml M”23

where ¥({-x) denotes the first component and ¥i{x -) the second one of

¥i{x), namely, ¥{x)=(¥(.x),¥{x-)).

Since there certainly exist an A’ eR: and A”eTI; such that
(B8, 1w, = A and [(B*E,1r; = A" and |A’NAY|= 1 indeed

from He-T=Hz{0), in the sequence, it should be true that

(B NB“)E, = B'E,NB*E, = (B’ E,IngNCB”E, 17,
Thus,

® (B’ ,B”) 6= ®C(B ,B") 6y,)

Similarly,

® (B’ ,BY) A,

= sk, {let ®(B’ ,B”)=s}

= (B’ NBY) K, {B’ iB*=s3

= B A NE7X, {B'NB 20, My Ty= My (M3

€ [B %, ImNIB %, 11, Mg« Tg=Mg (013

= B Aygoxy N B'AG ., M and M73

= OB Ay Ly r BAG(x.,)? {defination of @3

= OB’ By, {defination of M Il M”23
That is,

I ” a— , Ecd *
BB’ B) A= OB’ BNy,)

By Definition 4.3 we know
M= M M” = M/7E | M/t~
(End of Theorem 4.1)

Let us use an example to illustrate this theorem.

EXAMPLE 4.1
With Theorem 4.1 find aparallel full-decomposition, if it exists,

for the machine shown in Fig. 4.4.
1 2 3 4 5 &
1 /4 471 275 1/2 8/5 5/3
2 372 172 &/2 7/2 3/2 7/2
3 - 771 371 171 &71 173
4 B8/4 1/2 &74 772 8/4 B/2
] &7 4 2/5 275 &/4 3/5 1/3
& &/2 471 271 172 371 173
7 S/5 7/1 3/5 171 =/5 S5/3
a &/5 3/5 3/5 &/S &5 1/3
Fig. 4.4 Machine B

Calculating with a computer shows that trinities

t{1.5, 2,4, %, &3,
{1,8,7, 25,5, 5,82,
{1.2,%, 3.8

t{1,4, 2,3, B, &1,
1,5,6, 2,4, %,7,83,
{1,%, 2,4, In

61

are orthogonal. Therefore, we use them to build the guotient machines

B/t and B/
making the

t¥. The guotient machine B/t’

following short notations:

s 238,548 = {8, 485,8,,8,3

is formed in Fig.

129 326,5,87 = {0, 0,05}

B.5 = Ir,,7%

4.% by

In the same way, the quotient machine B/t” is formed in Fig. 4.6 with

the following short notations.

= {144,2,3,5,63 = {y,.:¥3,¥31Ys”

= {1,5

= {

ook
bt

¥

¥

¥

2

»

Z2:4

33,8,77

TiA,3 = Lz ,7,,240

= {XyaMgsKgt

62

4y Ay 83 By Y1 Yz ¥z Ya
Uy UV Oy ¥y Ul Vo Ha/7y Ky Hyl2g Nplzy Halz, Ry/Z4
Uy A /Ty Q. 77, W77, 0, /7 Ko NglZgp /Ty NglZ, Xal2a
B GulVy Gol¥gy Uo/¥y @ /7y Ky NylZy Nalz, Rylz, Ry 2y
Fig. 4.5 Buotient machine B/t Fig. 4.6 Buotient machine B/t”

If we make the following notations between machine B and B/t Il B/t

¥r I = FyxT, B: HexTy 2+ B 8 Muly, + O
are defined by,

for all xel; (B ,BY)elcxTgr (27 4271 eMax Ty

® ¥ix) (B’ ,B") @B B (27 427} 8z’ 42"
i (byayy) (g g4} 1 (Yy424) 1
2 (bayyy) log yxg) 2 (74+245) 2
3 (Bgavy) L PSS 3 (¥y423) 3
4 - FURVIe (ory 43t n) 4 (YpeZap) 4
5 (byeval (ot sy} 5 (Yoezy) S
& (bgs¥a? Corga%y) &
oty 22t 5) 7
(oega3y) 8

It is obvious that ¥ is an injective function and both ® and 8 are

surjective partial functions. By the definition we have
B B/EH B/E”

For example, let (ag,x;) el xTg be a present state in B/t ll B/t”; with
the input 6el, ¥(&6)=(8,,v,), the B/t B/t” goes to

#* = *
(“1t“3)5w(5; = {aa’xa)&tﬂu,ykt

fl

Cagby s%357)

]

Cary 4%y)

Bllag,nz) By, ,,) = Bla,,x,) =1

On the other hand, ®{a,,x3) 8

Dlug,xg)b, = BE, = 1.

Therefore, ®(lag,x3)8y.,,) = Blag,xz)8, = 1.

A schematic representation for the full-decomposition of machine B
is given in Fig. 4.7.
(End of Example 4.1

83

]

l PEE—

I uk? !

| B/L’
1 i

|

|

| & -t p/t"

| 1

Fig. 4.7 B < B/t Il B/t~

From Theorem 4.1, we can obtain a paralliel full-decomposition
Mt It M/7t” which realizes the original a machine M. It should be
noted that sometimes M/t Il M/t” may be isomorphic to M. Here, we will
study this special case of the theorem.

Firstly, we define some partitions and trinities which are

permutable.

DEFINITION 4.5
Let § be a set and # and T be partitions on 5. The partitions T and T

are said to be permutable §F¥ and only Iif
YB' e VYBYeT: |ROBY| = 1

fEnd of Definition 4.5)

Thus, if T and T are permutable, then any elements in a block of #

are one permutation over all blocks of T, and vice versa. For example,

let § = {1,2,3,4,5,6}. @ ={1,3,6, 2,8,57 and T ={1,4,2,3,5,67

are permutatable. Obvious examples of permutable partitions are the
trivial partitions: zero partition and identity partition.

For a pair of permutable partitions, we get the following property.

THEOREM 4.2
If ® and T are permutable partitions on 8, then
iy M T = gl
i) A+ T = B (D)

64

Proof.
i) Since |B'NB”| = 1, any block B in #+T is a singleton. From
the definition, X-¥ is a zero partition.

ii} Because any block B’ in 7 contains exactly an element of
every block B in ¥, the block in ¥ + ¥ contains all
slements of all blocks in T or T.

Hence, @ + T is an identity partition.
(End of Theorem 4.2}

Partitions X and T are called cowmplemeernary, if they satisfy #-T
= A {0} and A+T = A {1). From the theorem, if X and ¥ are permutable,
then, they are complementary. However, conversely, that ® and T are
complementary does not imply that ® and T are necessarily

permutable. For instance, if we change T into

T = ¢{1,4,7,%3,5,63

then, # and T still are complementary, but they are not permutable.
We can extend the concept of ‘permutable’ to partition trinities.

DEFINITION 4.6

Let t/ = (A, A gk and t7 = {T;,T,Ty) be two trinities on machine
M. t° and t” are permutable i and orly if %y and T;, #; and Tz, and A,
and T, are permutable, respectively.
(End of Definition 4.8

In the last part of this section, we will apply the concept of
“permutable partition trinities” to test the isomorphic relation

between a machine and its parallel full-—decomposition.

THEOREM 4.3

A machine M is isomorphic to the parallel connection of two
qQDtient machines M/7t’ and M/7t* iFf £t/ and t* are permutable partition
trinities.

Propof. From Theorems 4.1 and 4.2, we know that M/t I M/t realizes M.
Since t’ and t* are permutable, there is no pair of states B’
in M/t and BY in M/t” which are disjoint. So are the pairs of
inputs and outputs. It implies that the mappings of the triple
(@, ¥,8) are one—to—one. Hence the theorem.

{End of Theorem 4.32

65

Again, we can take an example to interpret this theorem.

EXAMPLE 4.2
For the machine C shown in Fig. 4.8, a computer shows the following

partition trinities.

1 2 3 4
1 1/1 2/8 576 b/3
2 2/2 177 &/5 S/74
3 373 2/2 7/8 &/5
4 4/4 171 8/7 5/6
= S5/6 LY 171 2/8
] &/5 S/4 2/2 177
7 7/8 &5 3/3 272
8 8/7 8/6 a4/4 171

Fig. 4.8 Machine C

t, = ({1,4,7,3,

£1,3;6,842,8,5,7%,

{1,3:5,7+2,8,6,81)

te = ({1,3,2,82,

{1,2,5.6,5,8,7,82,

(1,2,5,6,%,4,7,8)

Inspecting the trinities, by using the definition of permutable,
we get two partition trinities, t, and t,, which are permutable and can

be used for the isomorphic full-decomposition of machine C.

66

Now, we make substituotions on t,; and £, and present the quotient

machines in Fig. 4.9.

ty = ({1353, {883y {yyav¥ad?

by = (d,.da%y {03+05+00+Ha7 s {24202 34243)

{End of Example 4.2)

1, g P} Jg
By S37¥y Bz/Ya 9y q;/%; 4Oz/zZ3
Sg S2/¥2 B17Yy Ga Oz/25 G472,
- 9z QzfZz 0/ Z,
C/t, Qa Qafzgy 9g/2y

C/t,

Fig. 4.9 Guotient machines of €

Generally speaking, if a machine M is fully decomposible, such as M
M/’ I M/t”; then we can encode the input information in a binary code
of N’ +N” digits so that the component machine M/t will operate only
with the first digits and another component machine M/t” will operate

only with the last N” digits. N and N can be calculated as follows

N’

B

[togs|m]]

N [1ogs |ty]

where [x'ldenotes the minimal integer larger than or equal to x. A
similar coding can be obtained for the states and outputs. Iits
importance, in practice, is that combinational circuits for the
mappings can be omitted.

For the machine C we can easily encode the inputs, states and
outputs as follows.

For the inputs,

f1°§2'1‘} = r10924} = 2

N = [logg|mg| 1= [10g,2]=1

N = [1ogy |ty 1= [10g2] =1

N + N” = 2
1 biti bit2 vhere biti=0 denotes i,
1 Q (o] biti=1 denotes i,
2 1 1 bit2=0 denoctes j,
3 1 O bitZ2=1 denotes i,
4 4] i

67

Similariy, for states,

N = [logg|7g| = [10g,2] = 1
[1ogy|Ts| 1=[1ogz4]= 2

N+ N7 =3

it

N

Let bitl denote s, and s, on C/t,, bits 2 and 3 denote g, through g,
on C/ty. The codes for the states of C are naturally formed in the

following list

bitl bit2 bit3 8
Q O O i
1 O i 2
Q 1 Q 3
1 1 i 4
3 0 Q o
0 0 i &
1 1 o 7
O 1 1 a8

And the output codings are the same as listed above.
Finally, a diagram of the realization of machine C is shown in the

following figure.

-] C/t,

L] B
S
w

o

Fig. 4.10 C = C/t,ll crt,

with bit-wires of inputs, states and outputs.

68

CHAPTER S

FORCED-TRINITY
AND SERIAL FULL-DECOMPOSITION

From Chapter 4 we know that the parallel full—decomposition of
sequential machines requires two partition trinities which satisfy
the condition that their trinity product is a zero—trinity. In some
cases this is a rigowous requirement. In this chapter, we will
discuss the serial full-decomposition, that is, how to decompose a
given machine into a network consisting of the serial connection of
two machines with separate states, separate inputs, and separate
outputs. It will be shown that the requirement for serial full-

decomposition is weaker than that for parallel full-decomposition.

5.1 Forced—trinity

In this section, we study the relationship between a partition
trinity and an image machine, which we call the physical property of a
partition trinity. With the same aims, we study some tri-partitiochs
that have a similar character to an PT, if we introduce some external
conditions for them, which is called a forced-trinity. In the next
section, it will be shown that a forced—trinity precisely describes a

tail machine of a serial full-decomposition of a& machine.

69

S5.1.1 Physical Property bf a Partition Trinity

DEFINITION 5.1
f sequential machine
M= (17,8 ,0 ,8 ,0\)
is an fmage wachine of the machine
M= (I, 8, 0, §, N}
if and only Iif there exist three mappings:

i} & is a mapping of 8 onto 57

"

ii) ¥ is a mapping of I onto I’

Y

iii) & is a mapping of 0O onto O
such that (&, ¥, €): M -+ M,
tEnd of Detinition 5.1)

-

THEOREM 5.1
Apartition trinity of a machine Mdetermines an image machine of
M. In other words, a partition trinity of a machine M cuorresponds to an
image machine of M.
Prootf.
Let T= (R, Ry Ay beapartition trinity of the machine M, and
CBsi}v{ij} and {B,, ¥ bhe the sets of A, ,A; and Ay,
respectively. Because of the pair properties of a trinity,
the machine W constructed in the following way certainly
exists:
M = (17,87 ,8 ,8 ,A)

where I'= My, B'= Hg, O'= Ay,

and for s’ & 57 and x'e& I’
s’ 8 . = {s'§g.3ﬂg (1)
s N o = I’ ixx oy (2)

The machine M’ is well-defined because pair properties of &,
Ny and X, guarantee that,
for any q’ ,9” in 8 and z7 ,2% in I,
if g and q” in the same block of #; and
2’ and z” in the same block of #,, then
L8, Ing = [q”8_.1ng (3)
£/, dmg = LQ”a,.dng (4)
Now, we make three mappings:
h: § 9 5 by Pis) = [slng, (%)
¥: I » I by ¥ {x) ExJny, (&)
€: 0 - 0 by e(y) Lylmy. (7}

]

70

Due to the partition property, @, ¥ and 9 are one—to—one ont.
For any s&8, xel, we have

BS)E g x,

= [slneb{,,, {(5) (&2
1
= {£53x5§[x,wx]ng {(113
= 58, 1. U3y (RgyMg) 4 (Ay A3
= B(s8,) £(533

By the same argument, we have

D{s)h;

Yexy = Qshy)

It shows that machine M is an image machine of M.
(End of Theorem 5.1)

We réfer to Theorem 5.1 as the physical property of a partition
trinity. From a partition trinity, we can obtain an image machine of
the given sequential machine. An image machine has two important
properties. Firstly, by using two combinational circuits, an image
machine M’ can be simulated by its original machine M. Secondly, by
using the connection of two or more image machinesy the original
machine M can be realized in the behaviours. From this point, an image
machine is a component machine of the network which realizes the
original machine {see example as follows). In this thesis, we are
sepecially interested in the second property, which will be

illustrated in the following sections.

EXAMPLE 5.1
We take the machines D and E shown in Figs. 5.1 and 5.2 as an

example to illustrate Theorem S.1.

a b Lo d e +
A Ay B/y [/i €73 F/i E/3
B Bfy A% o C/7i D73 E/F F/73
E F7i E/3 D7k C/1
F E/3 Frs3 C/1 D/1
I, = {a,b}
8, = {A.B} 8, = {L,D,E,F}
O, = {u,yY I, = {c,dye,f?

]
L)
ft

i i.kyl?

Fig. 5.1 Machine D Fig. S.2 Machine E

71

For machine E, a partition trinity T = (R ,Rg,%,),

Ay = {e,dye,fl,

7, = {€,0,E,F2,
and R = fkelyigid,

is easily obtained by the trinity computation with machine E.
Furthermore, based on the mappings defined in the proof of Theorem
5.1, we get an image machine M that is isomorphic to D, Therefore, for
machine D we can simulate it by E, if we connect it in the way shown in
Fig. 4.2.

On the other hand, using the method mentioned in Chapter 4 it is
easily checked that image machine D is a component machine of a
parallel decomposition of machine E. The network is shown in Fig. 5.3.
(End of Example 5.1)

! |
i
iii D Dil
! l
1
12 | : DZ
|
1 I oy |
z - z
! i
|
R !

Fig. 5.3 Image machine D as a component machine

of a parallel decomposion of E
5.1.2 Forced Trinity

Now, we turn our attention to some tri—partitions with a similar
characteristic as an PT. If we substitute a tri-partition (T,;,t;,1,)
for its original machine, we get a smaller machine with |Ts] states,
k % |74| inputs and |¥g| outputs, where k is a constant. Because the
smaller machine, in fact, is not an image machine, but it lcoks like an
image machine, and is obtained with some restrictions, such as to k. We
refer to this kind of tri—-partitions as a forced-trinity.

In order to make a precise description of a forced-trinity,
firstly, we will give some definitions about the concept of machine

vectors.

72

DFINITION 5.2

For a machine M = (1,5,0,8,A), the column vectors of its machine
table are called state vectors or output vectors. Symbolically, they
are defined by

Vi = SB; = (5,8, 528,y «evevey 5,50 (5.1.a)

for a state vector and

b

VS = SX; = (5.7, Sphjy seennny Sphj) (S.1.0)

for an output vector, where iel; n=|S|; s,e8; s,.#s, if kil;
and S is considered as an n—arrangement in some order.

(End of Definition 5.2}

Note that a vector is an ordered n—tuple (or m—tuple, min, for a
subvector) and the order is defined by the position of s, In this

Chapter we write a vector by

V instead of & or A
in order to have a easy notation for developing properties of vectors.

If we substitute 5,8; by its block [5,8;1 of a state partition &

and s,A; by its block [s,7;]1 of an output partition T, we have

DEFINITION 5.3

The block vectors of a machine M are defined by

y

1

([5,8;1, [5,8;3, ..., [5,6,1) (5.2.a)

i

and VI = ([s,2;3, Isph;d, .., [5,0;1) (5.2.5)
for state block vector and output block vector with partitions Fand T
are on 8§ and O of M.

fEnd of Definition 5.3)

Let ® be another state partition on 8. Using partition & we can
divide a vector ¥ into |®w] segments, sach of which is called a

subvector of Y. A precise description is given as follows.

73

DEFINITION 5.4

et B be a block of a partition ' on 8. Vector Vf,’i

resp. Vg;’i is referred to as subvector of ?f resp. Y9 if
Vo, i = (548, 5281 500uenn, 5,8;) (5.3.a)
resp. Voo = (59, Sphiaecanns y Sph;) (5.3.h)

where s, eB, k=l...m, m=|B' | and s,#s; if k#l.
{End of Pefinitor 5.4}

Similarly, we can define subvectors of block vectors by

i = (T s T . 5. 1) (5. a
Vi i (C=,5;3, [S,5;3, vevue.y [s 8;1) (5.4.a}

i

resp. VL. (05,23, [sph;l, ceveeny DS 1) (5.4.b)

i
where s,eB, k=l...m, m=|B' |, and s,¥s, if k#l.
Usually, we refer to the state vector and output vector together

in many problems. Therefore, we can make an abridged notation by

combining (S5.4.a) and (5.4.b), such as
VE/T, = ([5,8;3/05,%;1,05,8;1/5,%;1,...,05,8;1/05,7;1) (5.9)
for a convenient expression in the following sections.

DEFINITION 5.5

Two vectors are said to be equal, if and only ¥

Se8; = 5.8 for ¥ = V?
Seh; = Sphj for V9 = V?
[5,8;1n = [s,6;1n for V? = V? and Vf.’i = Vf,’j
[seh;dr = [s,h;17 for Vf = V? and ?f.’i = V§'33

for all s, e5.

{End of Definition 5.5}

For two blocks B’ and B” with different number of elements in %,
we can examine the relationship alsoc with the concept of

compatibility, which is defined by

74
DEFINITION 5.6

Two subvectors, VYT, and Vf",j, are said to be compatible

s i
with respect to a state partition 27, % -7 = A (0), that is,
ﬂ ” It
Vi,ir VR ()

i

if and only If ,for all seB’ and teB”,

if Cslw~ = [tim, then

[ts;1n for a state parttion #j

1}

or -3 W | 4 [thj]ﬂ for an output partition 7,

where i,jel; B ,BYerl .
{End of Definition 5.58)

Under this definition we can consider two vector operations of
two compatible subvectors, which are shown as follows.
£ Vf.,. ™ vgg,. () and X” = {By, Bgpy «..y Bgl,

i 4

7 b
then Vi-,: v Vi,

; (A s Pay ey A2

where Agenr for k = 1...m,

and A, = [s, 81w it s,eB” and s,eB.: or
and A, = [t 8,37 if t,eB” and t eB,; or
B, = "' otherwise;
and Vi, * Vo. ., = (Ag, Ay il ALY

where AgeR, k = 1...m,
and Ay = [s,8;1w = (4, 86;]1n
if s,6B" , €L, ,eB” and s,.t,eB,, or
A, = '~ otherwise.]
When X is an output partition the vector operations are the same as
we defined above and are omitted here.
Now, we are at a position to make a definition for forced-

trinities.

DEFINITION 5.7

Let Tz, Ty and T, be partitions of a machine Mon 8, I and O,
respectively. (T;,Tg5,%T5) is called a forced-trinity (FT), if and only
if either

i} there is an S5-0 pair (Xg,%;) such that

Re+¥Tg = Hg

()

and for all i,jel and B’ ,B7eXg,

Lilyy = [

implies Vs

It; and V:? ™ Vfg o iTg)

s b r i

Ta n YTs/To T
H - P s
3 t By §

75

in this case (T;4T-.Tg) is an FT of type I; or

ii) there is a Mg such that

Rg=Tg = Rg

(O

and for all i,jel; B edg

Ciler, = L3

In this case!

v, implies ¥7s’To » Y¥s'7o
B, 1 By §

(Tg)

(TysTz+Tg) is an FT of type 11;

where %, and Ry are referred to forcing-partition (FF).

{End of Befinition 5.7}

Because g and T, are two distinct types of partitions, we simply
apply “{TysTgs Tl with FP i, or A" to state that (T, ,To.Ty) is a FP of

type 1 or of type Il.

Besed on the definition,

a procedure for determining a given

(Ty3TgyTy? whether or not it is an FT is outlined as follows.

PROCEDURE 5.1

1.
2.

3.
4.

Ha

Find an R such that R - T = AS(0);

Initialize {V:S;TO}, Be®., beX;, into empty vectors;

For all Bentg do
For all iel do

I+ VY¥s‘%To ~ YTsTo
By i £BX ;3

then V¥¥s/To

EBA ;Iqrns Eilyy
otherwise, go to 73
(Ty,Tg+Tg? is an FT
I¥ there is another

1-3 for the new Ag;

(1)
R 5
Ty P37,
= Y¥s/%g L+ Y¥giTg
EBA I, EilTy By i

with Tg; go to 1é;
%y such that A -t =R (0},

otherwise

then repeat

76

8. Find a new Ay such that (A ,7,) is a pair:;

2. Initialize {V:§f:0}, B’ X5, betl;, into empty vectors;
’

10. For all Ben; do
1i. For all iel do

12, I+ Yis/To ~ Y¥s/7g) (Tg)
B,y 1 LB [Imy, [il
then Vis/%a e YIsiTo + YIs/TO
LB [Ims,Lidrg LY [ImgsLily; B, i

otherwise go to 14;
13. (Ty,Tg4Tg) is & FF with #g: go to 16;
14. If there is another A, then repeat 8-12 for the new it;
153, (T14Tg+Ty) is not an FT;
16. Exit.
{End of Procedure 5.1)

With Procedure 5.1 we can obtain an FTwith a FP, if they exist. But
Theorems 5.2 and T.3 present other ways to get an FT and its FP.

THEOREM S.2 .

I¥ (A A5} is an 1-5 pair and (A;,A,) is an I1-0 pair, then
(HyaM54My) is an FT with any FP T5 such that Rg-Tg=mz(0).
proet. The I-8 pair (A;,R;) implies that

[5,8;1n5 = [5,8;1ng

for all s,e5 and i,jel, such that {ilm; = [iln;.

Hence, for any a FP Tg, if B’ etg, then

Vfis = Y®s (1
B, i By §

The I-0 pair (#,;,%;) impies that
[s,A;1m,; = Cskxj]ﬂb

for all s,e5 and i,jel, such that [ilwm;, = [§lm,.

Therefore, for the T;, if B’ eTg, then

By

)
L

Combining (i} and (2), we have

77

Y5 gy = YRg/ Ry (Tg.
B4 i By
This shows that (Hy,M:,%y) is an FT with any FF T..
{End of Theorew 5.2 J}

THEQOREM 5.3
If (Mg, AeyMp) is an FT, then (R ,%,Ap) is also an FT with any FP T,
such that Tg-M; = 7A;(0).

Proof. That (R, ,g,%,} is an PT implies that (#;,%g) is an I-5
pair and (Hp,%,) is an I-0 pair. From Theorem 5.2
(H; s Rus?g) is an FT with any FP Tg.

(End of Theores 5.37

Under Definition S.&6 the

Vigifo y F=Rg oOr W=Ng,
]

constructs a transition table of a machine, if we consider each block
F; of 7y as an input; each block B; of A, as an output, and each block R,
of gz as a state (they are virtually isomorphic mappings). If we refer
to the image machine corresponding to a partition trinity as an
Iindependenl image machine, then, we call the machine constructed by
Y¥:7 %o 3
Ry
corresponding to a forced-trinity a dependent image machine. This
machine can become a component machine of its original machine if some
condition is satisfied, that is, it depends on the existence of some
indepindent image machine. This will be shown in the following

sections.

5.2 Seriamal Full-Decomposition
5.2.1 Serial Full-decomposition of a State Machine

In our first discussion of serial decomposition, we shall not be
derectly concerned with the output of the machine, but are primarily
interested in the problem of serial decomposition only with separate

inputs and separate states.

78

DEFINITION 5.8

The serial connection of two state machines
My, = (I,,5,,8% My, = (I;,5,,8%
for which I, = 8§, % I,
is the state machine M = M+ M, = {I,xl,, S,x8,, &%
where B¥((s,t), (t,,x5)) = (8 (s,%,),8%(t,(s5,%,)2).
(End of Definition 5.8)

A diagram of this connection is shown in Fig. 5.4.

re—_——— - - b]
| f
| =7 i
—ied My n
11, l
|
I,x1, i } Sy%8p
[
'I M Sy |
P2 2 l——-l——
I
) |
U

Fig. S5.4. Serial connection of state machines

M, and M, with separate inputs.

DEFINITION 5.9

The state machine M, M, is a serial full-decomposition of state
machine M if M;» M, realizes M.

(End of Definition S5.%9)

The serial full-decomposition is nontrivial if
Is.l < Isl, ISzl < Is],
j1,1 < 1], and |S,x1,| = |1].
THEOREM 5.4

The state machine M = (5,1,8) has a nontrivial serial full-
decomposition if there exist two partitions #, and %, on S and

two partitions T, and T, on I which satisfy the following conditions:

i) (y 4Ny} is an B8-8 pair, and
ii} (Ty.,) is an I-8 pair, and
iii) (TyaMy) is an I-8 pair, and

iv) M Ma=Rg(O) and T, -T,=A; (0).

Proof.

79

Given {(7,,7;) and (15,75} on M, which satisfy

(g 47y} A (g =ta= my (O] A (my ~m,=wo{0)) 0

Let M; and M; be two machines which are constructed by
My
Mo

where 7,,T;, and n,,7%; are considered as collections of

It

(T 47, 58)

it

(%% 4 7p 4 87)

blocks, each of which acts as an element of the inputs and

outputs of machines My and M; and § and §” are defined by

VB en, Y8 ev,: B8 5 = [B'E,.0m, (1
and YBem, YBYew, ¥8%ev,:
B8 (g, gy = L(B“NB)E4.07,. 2

Let

o

I+ v,%7; be an injective function,
®: myuw, + 8 be a surjectice partial function

defined by

Yiel: ¥(i) = (Lilw,,l[ilry) (3)
and V(B ,B"Yem,xw,, B N BY% (O 0 (B ,B7)=B NB” t4)
Since w, -A,=r (D) |B nB~|=1, that is,

I=e8: ®(B ,B*) = BN B” = s, (4")

Now, by the definitions of ® and ¥ and definition of
realization we have

V(B ,B*)enm nm, Y¥rel:

®{{B ,B")) 5,

= (B'NB”}8&, {442

= =8,Nsd, {calculusl

= {B'NB*)8, N (B OB")E, {4)%

€ B’ E .N(B' NB") 8, {Prop.2.73

¢ B'F AR E ¢ L2.42
B Stfoin(B B)S:x]fz Frop

€ [B’gtxjfllui N [(B'ﬁB”)§rx,lex§ Clrgamy) s (Tne?ady

= Q((CB'E:xlfz3”1! tiB’nB”)§}x1723w2)) L{4)23

= m((Blsl;x2119 B”S"tn‘,txxre))) L01) , (223

= BB B gy .y B“S”tn.’v‘x‘,,)) 3 g7y ~To=r (O) 3

= BB ,B) %y y,) {Def. 5.8

80

It shows that serial connection of M, and M; realizes M by the
definition of realization.

(End of Theorem 5.4)

The procedure for obtaining a serial full-—decomposition of a

given state machine may be explicitly outlined as follows.

PROCEDURE S.2
i. Find an I-85 pair (T,,%,;) such that (#,,#;) is an 5-8 pairj
2« Find an I-8 pair (T,,%;) such that
Wy A= (0) and T,y ~T,=R, (0);
3. Construct the machine M, using the pair (T,,n,)3
4. Construct the machine M; using the pair (T,,%;) and
partition %;, and transfer the inputs into S ;xI,.
{End of Procedure 5.2)

The following example illustrates this procedure.
EXAMPLE 5.2

Find a serial full-decomposition of the state machine shown in
Fig. S5.5.

1 2 3 4 5 b

LR I N N N E N I

L b o
SRS R RE
Bk G
LR -RE R
Bl WD
PR N
& Wb

Fig. 5.5 Machine F.
Step 1. We take the I-8 pair (1,,7,},
T, = {1,2,3,4,5,63 H,={142,3,42

It is easily checked that X, ,7%,) is an S-5 pair.

Step 2. I-8 pair (T,,7%;:},

Ty, = 11,3,5,2;4,67 Ay, = {1,3,2,4%.
is suitable as second pair because it satisfies
Ty = Ta=MHy (O) and My M, = A (0.

Step 3. Let 7, = {1,2,5,4,5,6% = fa,b,c,d? and

n, = ¢{1,2,3,4% = {A,B}.

]

Step 4. Let T,

81

Substitute {A, B> £1,2,3,4,5,6%

£1,2,3,4% in machine F. We get a new transition table shown in

{a,b,ck and foar and

Fig. 9.6 and delete the identical columns and rows. Finally,

the machine F,; is got and shown in Fig. 5.7.

a a b b c c a b ¢
A B BE B B A A A BE B A
A B B B B A A B A B ©
B A A B B B E
B A A B B B B
Fig. 5.6 Substitutions Fig.'s.? Machine F,.

€1,3%,5,2,8,63={e,f} and

tt

n, = {1,3,2,4={C,D3.
By the substitutions (see Fig. 5.8(a)), transfer and deletion
(see Fig. 5.8(b)), we obtain the machine F; shown in Fig.
S.8(c).
e ¥+ e ¥ e F A B h i i k
mewaameasasvesmane n .. e f e f sas e mmme e
A C C D C D C D T C c D D
A D C C C C C C cC €en pec D C € D D
B € b C D C p C b cC PpD
B D D DDUD D D

(a) Substitutions

(c} Transfer
and deletion

{c) Machine Fg

Fig. 5.8 The steps of constructing machine F,.

The following mappings illustrate the isomorphic relation

between machine F and machine F,- Fj,.
S -+ 8,x8, I+ I xI, Iz * 8,xl,
1=+ (A,D 1 9 (a,e) h 2 (A,e)
22 (A,D) 2 4 {a,f) i 2 (A, F)
3 2 (B,D) 3 2 {h,e} i = (B,e)
4 + (B, 4 4+ (b,f) k 3 (B,f)
5 2 (c,e)
&b 2 (c,f)

(End of Example 5.22

82

S5.2.2 The Type I of Serial Full-Decomposition

We now begin by caonsidering the problem of serial full-—
decomposition of a Mealy machine. Firstly, we develop the serial
full~decomposition of type I where the outputs of the first machine
are fed into the second machine as a part of inputs of it.

Furthermore, a systematic method for calculating the forced-—
trinities used in this type of serial full-decompositions will be

discussed.

DIFINITION 5.10

The serial cornnection of type I of twn machines

My = (I,,8,,0,,8%,2%

My = (1,,5,,0,,8%,2%)
for which I; = 01“12
is the machine M = M, M, = (I,x1,,5,%5,,0,x0,,58%,2%
wharea B¥Cls,b), 00, 4x5)) = (81 (8,5t,) 8%k, (A (m,y%,) yxg))

il

s,), ey)
(End of Definition 5.10)

O sy 1,22k, (AT (s,%,) yxp))

DEFINITION 5.11

The machine My~ M; is & serial full-decomposition of type I of
machine M if the serial connection of type 1 of M, and M, realizes M.
(End of Definition 5.11)

THEOREM 5.5
A machine M has a nontrivial serial full-decomposition of type I
if there exists a partition trinity (7,7, and a forced-trinity
(Ty4TgsTyt with forcing-partition T which satisfy:
i} T = #A,, and
11} Mg=Tg=Mg 0y Ay »Ty=Me Q) and Ry -Tu=H,i0).
Proof.
We show that when tp = (g ¢FRg Mgl and Ly = (T ,TgsTy) satisfy
the above conditions the serial connection of machines M’
constituted by tp and M constituted by t; realize M.
Let M and M"Y be
M =y A s W8 A7)
M7= n Ty s Ty Tpa 57 4 A7)

83

where for B eX; 4 eX,

B’S;, = [B’SA,Jﬂg B’kk, = (B'1£,3ﬂh {1}

and for BYely AYel; vel,

BB, a1 = [{s&, |s5eB” ,xe8” 57 ey3lrg,)
B”%fy'an, = [L8A, 'EEB”,XEﬂ”,sﬁéey}]qa_ s

Bince t, is a PT, (1) is well-defined, It means that
B'E4 is located on one and only one block of #;. SoisB A, .
Far (2) and (3} they are well-defined too, because £, is a FT

which implies, for s,tebS, x;.uy6l, if

[slrg = [tdrg, [xgd7; = Ixgalry and [skxijnh = Ethi3nb,
then £ssx13¢5 = Etsxzits and Eﬁ*xxjfo = [tlxalfo.

Thus, BY8" resp. BYA"

Ty, 8 are indeed on one and only

{ys 873

ene block of Tg resp. Ty
Let ¥: I 4 Ryxt; be an injective function
Bz FgxTg 2 5 be a surjective partial function

9 ATy - 0 be a surjective partial function,

where ¥i(x) = ([xln,,Ixlred, (4)
®{{B’ ,B*)) = B'AN B” if B'N B*Z@ , {5}
and Bltly’ ,¥y”)) = y'fi yv* if y'0 v*280 {4}

Due to the fact that t; and t, are orthogonal we know
that ¥, ©® and & are one—to-one and that

D({B",B*)) & 5 and 8ily’ ,¥vy")) e O. 7
Therefore, for (B’ ;B")e Anig, BN B0 , xel

P (B ,B"))E,

= (B’ BY) 8y (52

= g8, {7, (B O B= 5653
= =8, 0l s8, {fealoculus?

= (B’ B")E, N (B'N BYE, {calculus}

€ B8, n (BN BB, {B‘N BYCR’ 3}

€ B Biyip, N B"s”(B.XQxI”I,,KJTI, £|B’n B”|=1,(2)3
= B8y BT ey vk €48, (D)3
= OB By .xyr B76" y w1 €05) BN gy, = YERQY

= 0B, B8y, {Def. 5.10%

84
Similarly,
DB (BN,
= (B0t B") N, {503
= {B'N B")h, N (BN B, {calculus’

€ B Nyo.uh B”X”(B’kkg Wi e {14y, (3), |B NB” |=12

¥t
= OB My .xrr BN (40 yixana {(&) 3

= 0B, BNy), {Def. 5.10}

From the definition of realization we can conclude that
M % M" realizes M.
(End of Theorew 5.5)

PROCEDURE 5.3
1. Find a partition trinity (R % ,%,);
2. Find a forced-trinity (Ty,T5,¥5} with forcing-partition T
such that
i) ¢ = Fg, and
i | x] = |15
3. Construct the machine M, based on partition trinity
(Hy 454 My)e In other words, construct the image machine
corresponding to (F;,g,%,);
4. GConstruct the machine M, based on forced-trinity
(TyyTgatTp)e with FP #g;
5. EConnect machines M; and M; by the Definition 5.10.
(End of Procedure 5.37

EXAMPLE 5.3

Consider the machine G given by the transition table in Fig. 5.9,

Fig. 5.9 Machine &

85

Step 1. It is easily checked that (B, Ryl
£1,2,3,43,

1,%,%3,4,5,6,7,83,

Hy = {1,%,2,43

‘ﬁ
i

A
™
i

is a partition trinity of machine G.

Step 2. We take tri-partition (T;,Tc,Tgl,
Tg = €1,3,2,%2
Ty = £1333%,;7,25,8,6,82,
T - (1,4,2,3,

as a candidate of forced-trinity with forcing-prtition
r, = €1,3,2,42

Here, |fy|x|Tyl= 222 = 4 < 1] = 8.

The thing left is to check (T;,7T:,7%T;) whether or not it

is a forced—-trinity.

Firstly, we substitute {A,B}, {e,f3, and {x,v} for
TgsTys and Ty in machine B, respectively. A set of block
vectafs for machine G is aobtained as fllows:

V, = (A/y,A/%,B/x ,B/y)

Vo = (B/y AZy ,A/x,B/x)

Vo = (R/y, 8/ ,8/yB/%)

Vo = (B/y A/y,B/y,B/y)

Vg = (B/n,B/fy,Aly,A/x)

Vo = (B7% B/0,B/y,A/y)

V, = (B/x,B/y,B/%,B/y)

Vo = (A/x B/, A/xB/%)
wWhere V¥ denotes Vis/%o.

Secondly, we substitute A = {1,2,3,47 with {a,4} to
partition of states in machine G. We can divide the

vectors above into the following subvectors:

Vg, 1= (B/x,B/y)
Vg, 2= (A%, B/%)
Vg, a=(A7y,A/x)
Vg, a=(B/y,Aly)
Vg, 5= A7y, A0
Vs’azﬁﬁfy,ﬁfy)
Vg, 2=(B/x,B/y)
Vg, 8= (A% B/x)

Vo, 1=(A7y,A/%)
Va'2=€B!y,A!y}
Va'3=(éfy,afx}
Ve, a=(B/y,Aly)
Ya’s=(81x,31y)
Vg, 8= A% BI%)
Vi, 7= (B/%,B/y)
Vg, e= (A%, B/3%)

where ¥V denotes ¥¥s/%o for short.

86

It is obvious that

Ty ~ Yo o~ Yo o~ YRg (1) implies
Vayi 8y 2 V A8 vﬂlS s P

VTS/TD ~ stffo "~ VTS/TG ~ vfﬁéfo (TS);

oy 1 + 3 @2y 3
Y ~ Yo ~ Y% o~ Y®o (1) implies
By Qs & Be? v“!’ s P

Vts’fc ™ stgfo ~ stifn ~ ?:s;Tc (75?3
’ @y l ¥

f3V203 V% = VT x YT (1) implies
13] 3 ’

Vis/Ta ~ YTs/Ta n YTs/Tg ~ V;s:fo (T5)3
¥

[T%] By a @y 8
V™o ?“o » Y™~ V%o (1.} implies
A'z !6 &,3 6,8 b p

st;fo ~ stifo ~ V:s;To x> V;SQTO (Tg) -
] ’ y

Hence, we get

Yis/Toy = {YTs/To |, YIs/Tp | stffo « Vis’Toy,
WeXTy ay i Byl 'TE A, 2
This indicates that (T;,%Tg,%Ty? is a forced-trinity with

forcing-partition M.

Step 3. Substitute n; = {1,2,3,43, Hy = (1,2,5,8,5,0,7,8%,
and 7, = {1,% 2,4 by {a,8}, {a,b,c,d* and <{(C,D3.
fAn image machine 6, of machine G is obtained and shown
in Fig. S5.10.

Step 4. Listing the vectors in { V;F;:“} into a table with the
5 I

title in columns by the following way

titli of Vis'To = (B %;1m, CLilry)
BT, i*%o, I

and with titles in rows by the order
By, +Boyuaey B,y B,eTg, k=l..m.
The table reprents dependent image machine (tail machine)

in a serial full-decomposition of the machine G, which is

shown in Fig. 5.11.

87

Step 5. The serial connection of 6, and G, is the same as Fig.2.7

except for changing M; and M; into G; and G,;.

a b C d (C,2) (D,f) (Dye) (D,F)
a ofD 8/D A/C «/C A B/x Al Aly By
A& «/C o/D 8/D &/C B B/y B/x Aln Aly
Fig. 5.10 Machine G, Fig. S.11 Machine G,

From the partition trinity and forced-trinity that we
apply here, we gbtain the following isomorphic mappings

between machine 6 and machine G,+ G,.

®: 8 4 8,x5, ¥: I 4+ I,xlIg a: 0O - O,x0,
1 4 {x,A) 1 =+ (a,e) 1 2 (C,x)
2 4 (a,B) Z o {ayf) 2 3 (D,x)
3 2 (4,A) 3 4 (b,e) 3 3 (C,y)
4 9 (A,B) 4 4 (b,¥) 4 9 (D,y)
5 4 (c,e)
6 2 (o)
7 + (d,e}
8 =+ (d,f)
For example, for 3 in 8 and 6 in I,
©(3) = (A,A), ¥(a) = (c,f),
5(3,46) = 4, A (3,6) = 4,
D4 = (4,B), 8(4) = (D,y),
st(8,cy = 4, r* (4,00 = D,
52(a,(D,¥)) = B, A2(A, (D) = vy,
Therefore,
BE(3,4) = (8 (8,0, %A, 2 Y (8,00 ,F20),

8N (3,4)) = (Ara, 0, 2% At 8,00 830,
{End of Example 5.3)

From Definition 5.4, vwe know what a forced-trinity means and how
to check a tri—-partition to see whether or not it is a forced-trinity
and what type of forced-trinity it is, if it is a forced-trinity. But
it does not tell us howto find an FT easily. That is, tofindan FT, if
it exists, from the definition we have to take all the possible tri-
partitions and check them against the definition. Does a way exist by
which we can find all FT's directly, or by which we can see easily that

no FT exists for the machine under the forcing of some given trinity?

88

In the last part of this section, we are going todiscuss the problem.
For the sakese of convenience, we recall the definition of a
forced—-trinity of type I here again.
For a given trinity (R, ,R;,Rpl}, tri-partition (T;,75,%T3) is a
forced—-trinity under the force of the trinity if and onily ¥ for all
i, jel and B’ ,B“eN.,

Cilr,= [jlr; and ¥ ~ YT (1)
B 40 BY,
imply V¥s'%o =~ YTs'%o (1)
BT 41 B4 §
Firstly, we analyse the condition Y:? o Vfﬂ (Tl
s i “y 4
We know the following relationships hold for the Definition 5.5:
pr o Vfa (Tg) & [sdtg =[tlrg A [sX;Ime= [t Img. (D)
y 1 “ed

Similarly, for V¥%s
B 4 i

~ Y¥'s (1g), we have:
Bvy

Vis
B" 41

x V:f . (Tg) & Cslrg= [tlrg A [sh; Jrg=LtA;l7g 2)
s d
Therefore, Definition 5.46(i) becomes that (Ty,Tg.Tp) is a FT iT and

only i¥ for all i,jel and s,teS,
Lilry= Lilry A [slrg= Ltlrg A rsmilnb=ttx33ﬂb

imply
[slrg = [tlrg A [s8;1v, = [tE;3rg. (3)
By the predicate calculus [191
A AB =8 A0 < {6 AB=C),
the (3) becomes
Lilry=Lilty A Uslrg=[tlitg A [sk;Im=0[tX;in,
imply LsB; Jr=018 ;Jvg. (3}
Again, based on
(A AB=0C) & (A= (B~0C)),
{3’) becomes
Lsx; Ing, =[tAjJﬂo
implies that
Lildey, =Lilry A [slt.= [tlrg
imply [ef;drg ={t&;1rg. 4)

89

The equation (4) indicates that, for all yel which belong to the
samg block in ®,, we should check the corresponding entries to see
whether they satisfy that,
for any BeTg, AeT;: BE, € B e7.. 3)

Before we discuss the procedure, we should make a precise
definition on the partial machines produced by a given output

partition %,.

DEFINITION S.12
et Ty be a partition on output set of amachine M and y be any block
in ®,. Then,
M, = (I,S,Gy)
is called as a partial state machine with respect to vy,

for which, for any se&85 and iel,

don’t care if MNs,i) ¢ v
Syts,i) = (&)

5is,i) if As,i) £y

{End of Pefinition 5.12)

From the definition, we see that My is an incompletely specified
machine and is part of the machine M. Thus, all of the partial machines
produced by the blocks of Ay form the original machine Mby piling them
up together, if we see them transparently. Fig. 5.12 illustrates this

idea.

!
i
|
|
|
|
)
I
'
'
|
|
I
I
I
|
i
|
[
E

x4
B3
g

Yoz

¥

"_"“"——" ————————n

M= (1,5,0,8,0), Ry = {y¥ss VYpsreece-s¥pl

M

y,= (18,8, 0, i=l...m,

Fig. S.12 Machine M and its partial machines

90

The following procedure describes the method for calculating FT's

from partial machines.

PROCEDURE 5.4

1. For given g = {y .¥Yasessees¥y} separate M into {Myi:.
2. From each My, calculate partition pairs
1

P, = {(Tg,T) |¥B;eT; A ¥B e & [(Bg,Br)EBl eTs3.
1

Y
3. Calculate

4. I+ P=f, return
“there is no FT with respect to #; for M7, exit.
5. Calculate the set of FT's based on P
FT's = {(TI,TS,TB)I(TS,TI)EP A R = Ta=Ra{0) .
6. Exit.
(End of Procedure 5.4)

We should explain the step 2 more fully. When we do 8), {(Bg,Bg}, ye?!’ol we
must omit some seBg, x&l, such that Sy(s,x) is undefined. After
Chapter 7 we will see that (T;,T3) is a weak partition pair with some
special features.

In this section, we considered two different ways of calculating a
forced-trinity: one by vectors of a machine and the other by partial
machines of the machine. With the former we can check given tri-
partitions and build a tail machine easily, but it is not so easy to get
all the FT's. In contrast, from the latter, we can simply calculate all
the FT's, but it takes a very long time, due to the incompletely
specified partial machines. In practice, we choose one, or both, of
them to reach owr goal.

To end this section, we give an example to explain the method

mentioned above.

EXAMPLE 5.4
Using Procedure 5.3 calcultate FT's for the machine shown in Fig.

5.13 under the force of trinity

t = (ny, Agy AG) with

i 2 3 4 s & 7 8
R ={1,2,3,8,5,6,7,8% e e emarecasmeanaaanann e eeeanacenan
1 1/2 2/2 3/2 4/2 4/1 2/1 3/1 1/1

Re=(1,2,3,43 2 1/3 1/2 3/3 3/2 4/4 2/74 471 2/1
3 2/4 171 1/2 2/2 3/2 4/1 4/2 3/1
q

Ao={1,4,2,3% 2/1 271 /3 1/2 3/3 474 3/2 471

Fig. S.13 Machine H

Step 1. Given Ay = {1,4,2,33, the partial machines are H,7,3,
and H,z735, shown in Fig. 5.14 respectively.
Step 2. For machine H,y 7, we obtain ¥ = {1,3,2,4}
D = {{1,5:7+2s028:3:8%,
{1,5,732:6,0,3,4%,
L1 ,3:0,7:2:8,6,833
such that TxDEP(zT;,.
For machine H 33, it is obious that
T = {1,3,2,4} and
D' = T B, 0,208, 6,7 483 31185, 5, 742, 8,b,833
such that T’ =D’ &P 377,
i 2 3 4 5 &6 7 8 1 2 3 4 5 & 7 8B
1 - - - 4 3 2 1 1 1 2 3 4 - -
2 - - - 4 4 2 2 2 i1 3 3 - -
z 9 - - - - &4 3 I - - 1 2 3 &
4 2 - - - - 4 4 4 - - 1 1 3 3
(a) Hegyom b} Higrs,
Fig. S.14 FPartial machines of H
Step 3. TRD N T xD’
= {{{1,3,2,8,3,{1,3,5,7,2,8,6,B3)3
= PFon,n Pogrs,
Step 4. P,y7E,0 P(§T§)¢B go to step 5.
Step S. For g = {1,4,2,3} there are two partitions
Ta = €1,3,2,42
Ty = €1,2,3,47

which are orthogonal to X,.

Therefore, tri-partitions

T, = {1,3,5,7,2,8,6,8>

Tg = {153,2,4F
Ty = €1,3,2,42
and
Ty = L14,3,0,75254,6,8%
Tg = £1,3,2,43
Ty = €1,2,3,4%

are forced-trinities with respect to ®;.

(End of Example 5.4)

91

92

5.2.3 The Type 11 of Serial Full-Decomposition

In type I of the serial full-decomposition, it should be noted
that there is a problem of time delay. By the way of type I connection
the first component machine has to compute its next state and output
before the second component machine can compute its next state and
output. Thus, if we assume that each machine computation requires a
certain time interval, the output of the serial connection appears
aftter two time intervals. This time delay increases with the number of
serially connected machines and may be undesirable practical
applications. Dn the other hand, the time delay requires the lasting
time of input signals to be long enough for all machines to finish
their operations correctly. In other words, the time delay limits the
frequency of the input signals. For the reasons above, we must develop

another type of serial full-decaomposition for seqgential machines.

DEINITION S5.13
The serial connection of type II of two machines
M, = (I,,5,,0,,8%,2"
My = (15,5;,0,,8%,2%)

for which I; = Sixlz

(I,%I5,5,%5,,0,x0,,8%,2%
(B (s,%,,8%(t, (5,%,)))
(s, 2% (t, (8,10 0) .

is the machina M = M, M,

where ¥ ((s,t), (x, %))
A (s, 1), ey yn))

(End of Defimition 5.132

A schematic representation of type II serial connection is shown in
Fig. S.15.

o T T e e e e ——— -
l l
1 8,1
| 41
——yd Mi ;
i
i | i)
I ']
21
Iy M 3
| = -— 2
I |
| i
b o e o - M __ |

Fig. S5.15 SBerial Connection of type II.

93
DEFINITION S5.14

The machine M+ M, under the connection of type Il is a serial full-
decomposition of type Il of machine M if M,» M, realizes M.
{End of Definition S.14)

THEOREM D.6
The machine M has a nontrivial serial full -decomposition of type II
if there exist a partition trinity (%, ,%.,%;) and a forced-trinity
(Ty,TgaTy) with forcing partition T which statisfy:
i) T = Ag:
ii) Tri-partitions (W ,Mz,R,) and (T;,Tg,T,} are orthogoal.
fraoef. Let tP = My Mg 4My) and
ty = (TraTssTp? with 7.
By the definition of FT t, satisfies
Fe+Tg = A0 and for all i,jel; B eRc

[ilr.=Cilr, = ¥¥s'To =~ V¥¥s/'Ta (1) (1)
I x BT g i By § s

By the definition of compatible we have

Ciley=03de, =%

(Islrg=Ctlrg =% [88;lv,~0t8 Ity A [sk;lvg=ltk, Ir,) (2}
Based on the rule of predicate calculus, (2) becomes
Lildre=Lidry A [slrg=ltlzg =

([s8;lvg =0t8;1vg A Esd;lvg=[th;lvg). (3
However, since Rg-Tg = A (D) if s.teB’ eng
fslrg=Ltlrg if and only if s=t. {4)
Sa, (3) is replaced by
Lilre=Ljlr; =% ([s&;lvg=0s8;]lr; A [sh;lrg=[sh;l7y) (5)
which indicates that

(f:’fs) is an I-5 pair, (&)

and {(¥;,Tg) is an I-0 pair. (67

Now, let M/

My yTgs Mg 8 427

and M” = (Mgx Ty, Tgs87yA%)

where B 8 g = [B' By Ing (7
B A g = [B g 1w, (7

for B efg and & efly;

and BYE” 5., gy = L(B'N BIE . d7g 8)
BN g, g1 = L(B' N BA,. 07, |

for B eflgy, B"eTg, 47Ty,

94

tF guarantees that (7)) and (77} are well-defined. And so
do (&) and (&) to (8) and (87).
Let ®: R.xT; <+ S defined by

(B ,B¥)) = BN B¥ (%)
¥: I 2 Ryxt; defined by

Wix) = (Dulmp,Ixlryd, (10}
8: Agnty 0O defined by

By’ yy")) = yv' (Y yv”. (1L

Then, for (B ,BY)efionTg, BN B"#@ ; xel,

DB’ ,B”)) By

= (BN B”) 8, IR

= (BNt B“) 8, N1 (B0 B”)E, {calculus?

c B8, n (B0 BDE, {B'N BYCB’}

€ LB By 175 N L(B'N BB, 17 {calculus}

=B 8yl B8 50 yix.n £(7),(8) , (1033
= OB 8 yo.xrs BYE" (50 yixara) N

= @B, B) 8%y 5.)3 fDef. 5.143

and by the same argument we have
PR LB Iy,

= (B’ B")A, L3

= (BN BY)A, N (BN BY)A, {calculus?

€ B R, N (BN B, {B’ NB“ER’ 3

£ EB'iixiﬂllﬁé n LRN B“3itx:rIJTa {calculus?

= B Ao 0BG yixen L(79) (B), (1072

= 0B Ap.xyr B"Myp gixars? €13

— v] *
= 8UB, BN ., ? {Def. 5.14}

Hencey, machine M’ 9 M” realizes M.

(End of Theorem 5.5

Comparing Theorem 5.5 with Theorem 5.3, we see that serial full-
decomposition of state machine is only a special case of the type 11 of
serial full decomposition omitting the outputs of a sequential
machine.

We now oputline the procedure of Ffinding a serial full-

decomposition of type 11 of a given machine as follows.

95

PROCEDURE 5.5
1. Find a partition trinity (W JHc.7%)s
2. Find a forced-trinity (T;,T:;,Ty) with forcing-partition 7;

which satisfy:

i) T = mg
i) (W T,y Tg) O (TyTasTp) = (A (0) (D), My(O1);
iiiy] ox g = |1

3+ Bet up component machine My based on (A AWl
4. Set up component machine M; based on (T;,Tg,Ty} and T;
S. Connect My and M; by the way given in Fig. 5.15.

(End of Procedure 5.5)

EXAMPLE 5.5
Find a serial full-decomposition of type II of machine J shown in
Fig. 5.16.

1 2 3 4 o b
1 1/8 3711 374 7/3 972 1177
2 1/11 2/8 &/3 &b/ 4 RI7 10/2
3 2/6 1711 &/12 /3 10710 Q@77
4 3/5 476 771 8/12 i1/9 12710
5 12710 10/9 4712 271 8/6 &/o
b 11/7 11710 3/3 3712 7711 776
7 1072 9/7 274 173 &/8 G711
8 ?/9 1272 171 4/4 S5/5 a8/8
9 574 574 2/8 9/8 1/2 172
10 8r12 8/3 1276 12711 4/10 477
i1 T/12 8/3 1176 12511 3/10 477
12 &/3 &/12 10/11 1076 277 2710

Fig. S.146 Machine J.
The caomputation of partition trinity shows that (¥; ., is a
partition trinity of machine J, where
Rz = {1,2,3,8y 5,6,7,8, 9,10,11,12%,
n, = {1,2, 3,4, 5,63,
e = {1,3,8,12, 5,6,8,11, 2,7,7;10}.
The image machine J, corresponding to (%, ,R.,R;) is shown in Fig. 5.17

with the substitutions of

Ay={I,J,K>, I J K
He={MN,F>, M M/F N/e P/g

N P/g M/e N/f

and Ho=ile,f,ar. P N/e P/f M/g

Fig. 5.17 Machine J,

96

We choose the tri-partition (T;,TcsTnlts
Ty = £1,5,9, 2,b,10, %,7,11, 4,8,123,
Ty = {1,3,5, 2,476, and
T, = {1,5,9, 6,10,12, 3,7,11, Z,4,87
and T = {1,3,4,12, 5,6,8,11, 2,7,9,10> as the candidate of

forced-trinity. It is obvious that T=%g and (T;,Tg} is an I-8 pair and

{TysTy) is an I-0 pair.

(M,a) (M,b) (N,a} (N,b) (P,a) (P,b)

I R R I I I T I I R e A N I A R]

A Alw Ciz D/y B/ Alw Al
B Alz B/w C/z Cly Dly D/z
(> B/y Alz B/w fAlz Cry D/=z
D Cru D7y A/ D/w B/z B/y

Fig. 5.18 Machine J,.

In the following substitutions of

Tg = {A,B,E,D>,

Ty = {fa,bl,

Ty = In,ys2.wk, amd

T = {MN,P}
and comparing of vectors, we obhtain a dependent image machine J, (see
Fig. 5.18). It can be shown that (T;,T4,Tp) with Tis a forced-trinity.
Therefore, the machine J, is a component machine of J, + Jy which is a
serial full-—decomposition of type 11 of machine J. The mappings are

listed as follows:

8 -+ 5,x8, I+ I,xl, 0 =+ 0O,x0;
1+ (M,/A) 1+ (I,a) 1 4+ (e,x)
2 M,B) 24 (I, 2 4+ (guw
30 (M,D) FT 2 d,a) 3 2 (e,z)
4 4+ (M, 4 2 (d,b) 4 2 {e,w
5 2 (N,A) oo iK,a) 5 2 {(f,%)
& 4+ (NGB) & 2 (K,b) & 2 {f,y)
7 o+ (MO 7 4 (g,z}
8 -+ (N, 8+ (f,w)
? 4+ (P,8) F 4 (g,x}
10 » (P,B) 10 4+ {g,¥y)
11 =+ (P,C} 11 =+ (f,x}
12 » (P,D) 12 » {e,y)

(End of Example 5.5)

a7

CHAPTER &

H— AND WREATH DECOMPOSITIONS

In this chapter, we shall discuss some special decompaositions
which are supplementary to the full-decomposition theory introduced

in the previous chapters.

€. 1 Hdecompositions

From chapters 4 and 5 we know that for a given machine M, if its
full-decomposition exists, there are then two machines, M; and My,
which are constructed by two partition trinities (for a parallel full-
decomposition) or one partition trinity and one forced trinity (for a
serial full-decomposition). Hence,

M= Ml M, or M M, M,
and there are three mappings:

P: 5 4+ SyxBp3 ¥i I 9 I,xlg; 8: 0 -+ Oyx0,
where the mappings satisfy,

for i=1,2,
Is; l<isfs f1il<|1]s Jo;|<]o].

However, we note that for some machines that are not fully
decomposible, but there are some SP partitions on them. We are
interested in looking for some decomposition for them. As a result, we
found a type of decompositions that looked exactly like the full-—
decomposition introduced by Chapter 4.

98

For the new type of decompositions, we must introduce new mappings

on input and output sets as follows
¥z I+1I, U1, o : 0+ 0, U O,

where I, N I =@ and O, N 0, =80 . From the mappings, we know for sach
iely either ¥ (i)el, or ¥ (i)el,, which means the component machines
M, and M, only can recognize parts of the inputs of the original
machine M via the mapping, but together they can recognize all the
inputs of M. In this way the two component machines work in a mutually
exclusive way, such that for any an input i in I, only one component
machineg is in active state, if ¥ (i) in the input set of the component
machine and another is in an inactive state. Therefore, the
decomposition is called an H-decomposi tion due to its feature of half

warking.

6.1.1 H-connections

There are three main ways of connecting two machines to meet the
above mappings corresponding to three modes of machines: state
machines, Moore machines and Mealy machines. The connections are

called H~connections and defined as follows.

DEFINITION 4.1
Let #; = (Ii,Si,ai), i=1,2, be two state machines. The H-

connection of the two machines is defined by
Myv My = (I,UI,, 5,x8, ,8§)
where

- (8*(s,,1), s,) if iel,
((Sy,85), i} =

(s,, §%(s,,i)) if iel,

for all (s,,s,)e5,x5, and iel,UI,, I,NI,= @.
(End of Definition &.1)

We write Myv M, for the H-connected machine.

I+ M; is a Mealy machine we have the following definition.

99
DEFINITION &.2

The H-connection of two Mealy machines M; and Mg,
M; =(I,,5;,0,;,80,ah, i=1,2,
is defined as follows
Myv My, = (I,UI,, S,x8,, 0,U0;, 8, A"}

where

(8% (s,,i), s5) if iel,
8Y ({5, ,5,), i) =
(54, 8%(s,,1)) if iel,

fl

(A'is,,i), 550 if iel,
AVils,,8,), 1)

{5y, 2 (s,,i)) if iel,

for all {(s,,5;1€5,x8, and iel Ul,, I,0NI,=0.
(End of Definition 6.2)

The Definition 6.2 can also be used for Moore machines. However,
we would like to introduce ancother definition for them due to the fact
that each state in a Moore machine accompanies an output so that we can

achieve greater output messages from the connected Moore machines.

DEFINITION 6.3
Let M; = (I;,5;,0;,8,2"), i=1,2, be Moore machines. The H-

connection of them is defined by

MgV My = (I,UI,, B,x8;, D,;x0,, 8, AV}
where &Y is the same as that in Definition 6.1 and

A (s 45,0 = Atis), A%is,)
for all (s,,5;) & G,x5,.
(Erd of Definition &.3)

From the definition, we know that M, v M, presents a new and special
work mechanism which shows the characteristics of parallel and
mutually exclusive action states. We say it is working parallely since
any one of the H-connected machines works independently, that is, its
next states and outputs only depend on its present states, not on the
states or outputs of another machine, in addition to inputs of the
machine. The mutually exclusive is due to the fact that for any input
inI,UI,; only one of the H-connected machines can recognize it, so that
it is enabled by the input and another one certainly does not know it so

that it appears dummy to the input.

100

Figure 6.1 shows the structure of a H-connection Myv M, . It 1ooks

exartly like a parallel full-decomposition in Chapter 4 except

indicating I,UI,.

}Sixsg

I,UI,

} o,un,

r........-_._...__...__
et
]

Fig &.1 Structure of Mgv M.

In the last part of this section, we are going to discuss soma of

the properties of H-connections of state machines.

THEOREM &.1

I¥+ both M; and M,, ﬁiz(Ii,Si,si), i=1,2, are permutation

machines, then Mv M, is a permutation machine.
Proof. We know that in general M is a permutation i¥ and only
for any s,teS
s # t = s8, # 85,
for all xel of M.
Let (s,,s55) and (t;,t,) be any pair of present states
in MgV Ma. If (5,,85) # {(ty,te), it implies
neither sy = by,
nor Sa = La.

Therefore, for any xel Ul,,

. v 1

if xnely, (8,,8,)8,; = (5,8, 85},
(by,to) By = (L85, to).

From (1) we know that if s,#t,, =,8, # t,55

results in (s,,55)8y; # (t,,t)8y,
Otherwise, s, # L, results in the same situation. With
same reason (4) also is true for xel,.
Hence, M,v M; is a permutation machine.
(End of Theorem &6.1)

if

(1)

(2}

(3}

(43>
the

101
THEDREM &.2

For any M;= (I,;,5; ,Si) » i=1,2, the H-connection M,V M, never be a

reset machine with a constant input mapping. V

Proof. SinceforanyaninputxinlI,Ul,, it maps the preset states to
the next states and keeps one machine inactive, this means the
first (or second) components of the next states are the same
as the components of the present states. The number of
distinct elements in the compomemts are at least | B; | next
states are distinct. Hence, machine F; Vv M; has not a column in
the transition table with a constant next state.

{End of Theorew &.2)

6.1.2 H-PAIRS
In order to analyse the condition of H-decompositions of a

machine, we introduce a special partition pair — H-pair as follows.

DEFINITION &.4
Let %, be an input partition with two blocks on & machine M, that

is:
Ay = {Bg, B3

and Az a partition on state set of M. (X, ,7g) is aH-pair if and only if

either for any x eB; and xzeB,,

Bﬁ%is B and s&ggg B’ eng ¢}
for all BeXg: or for any x,6& By, and x,¢ B,.
Bﬁgis B’ ey and sﬁgzg B, 2)

for all Ben:.
(End of Definition &.4)

Because of the arbitrary of assumptions for the input blocks By
and B, , (1) is sufficient for the definition of H-pairs. We call input
block By in ®, as keeping block and By as acting block.

A H-pair of a machine dedicates the feature of half working of the
machine. For the inputs in block B, they retain the next states
unchanged with respect to partition A5, but for others in B, they make
the machine work as usual with respect to 7. In other words, the
feature obviously appears on the factor machine M/%; of machine M.

A property on H-pairs is given in the following theorem.

102

THEOREM 6.3
If (R is & H-pair, (Hg,Rg) then is an 5-5 pair.
Froof. Following the (1) we know for any s,teS, [slx =[tlx,
implies Ls&,lng= [t&,In:, for all xel.
{End of Theorem &§.3)

In other words, Theorem 4.3 states: if (Ay,A.) is a H-pair, #g is an
8F partition. We should mention it here that ,in general, a H-pair is
not an I-85 pair defined by Hartmanis although we have concerned the
pair on the sets of inputs and states. If it is an I-5 pair, we know the
machine is possibly fully decomposible as a state machine and we can
solve it with the concept in the previous reports. On the other hand,
we should note thai: an I-5 pair is not normally a H-pair. It means that
H-pairs give completely a new concept induced by the new problem of
decompositions of sequential machines.

Finally, a definition on H-pairs is given to end this section,

which will be used in later sections.

DEFINITION 6.5
Two H-pairs, (Hy,Rg) and (T;,¥g) are mutually complement if
i} By = A,; and B, =R, ,
ii) A » Tg = AL Q)
where X, = {Ba,B;> and T; = {A,A;).
We call (T,,7g) a complement of H-pair (X;.7:) and vice versa.
(End of Definition 6.3)

It is obvious that, for an H-pair, its complement is not unigque. In
the definition, it is true that ®;=%;, but they appear to be
different functions in the H-pairs. We shall use one input partition
to dencte the complement H-pairs and indicate one block of it an
acting block in a H-pairs and anéther block as an acting block in

another H-pair.
6.1.3 H-decompositions

In this section we start by considering how to evaluate a given
machine if it is H-decomposible or not and how to do the H-
decomposition if it exists.

Firstly, we consider a state machine of which the H-decomposition

is described by the following theorem.

103

THEOREM &6.4

State machine M = {1,5,8) is H-decomposible if there are two

complement H-pairs (Hy,Rg) and (Ay,Tg).

Proot.

Suppose (A7) and (A;,T:) are complement H-pairs on M
and Xy={Bg ,B;}, By is the acting block of ?I’s and By the one of
Tge To construct My and Mz, we take

My = (By %g,8") and M, = (B, 7.,8%)
where a block of %; is as a state on M; and the same on My,
and 1 -

s8, = Us8 Img (1)
for all sef; and xeBg;
and 2 -

t8, = L[t8 Irg (2)
for all tetg and xeB,.
Since Mg and Tz are SFP partitions (from Theorem 6.3) the
definitions for §' and 5% are well-defined.
Next, we should check whether the H-connection of My and M,

realizes M. For any se8 and x&l we have the partial functions:

B: AgxTg 4 S {3}
by ®{A,B) = s if ANB = s
and ¥: I - ByUB, (4)
by ¥ix) = »

where Aelly Belg;
since JAg-Tg = Agi0), ® is surjective.

By Definition &.1 and ® we have

BClA, BB,

= (anm &, L33

= (ANBYE, N (ANEHE,, . f{caleulus?

t AE, n BE, {Prop. 2.7}

€ a8, 17, 0 [BE d7g CAM o) g (T gy Tyl

il

(af, dng = M 0 (BB drg xeB; {(A;,A0%
tAB, Img N (IBB,dvg = B) xeBy, {(T; T}
an BE,lr, xeBy

A%, Ing N B xeB, {substitutions?}

1
AL N B xeB, £01), (233
@ (A, BEL) x€B,
®(AS,, B) xeB, 4333

{ A N BSZ x€B,

104

- v
= mcta,s:sv(x)) {{(4),Def. A.1}
It shows that M,v M, is a realization of M.
(End of Theorem &.4)

We take an example to illustrate Theorem 6.4

EXAMPLE &.1
For the machine K shown in Fig. 6.2 find a H-decomposition for it

if it exists.

a b
i 3 2
2 4 i
3 1 4
4 2 3

Fig. 6.2 Machine K.

For the machine
%y = {1,2,3,8
and 1y = (1,3%,7,%3
are two SP partitions such that #;-T5 = Ag(0).
Since I={a,b} has two elements, the only partition is zero—Wartition
A0 = {a,bl
that can be used here.
For (#;¢(0), %:) we have
{1,238, = (3,4} {3,438, 1,23
and £1,238, = {1,23 {3,478 {3,43
It means that {a) is an acting block and {b} is a keeping block for

it

[

A.. In the same way we know that (#,(0),Tg) is a H-pair too, and
(B, (02) and (A (0) ,Tg) are complementary.
Thusy Machine K is H~decomposible and the component machines are

shown in Fig. &.3.

a b

1 2 1 2

2 1 2 1
Machine K, Machine K,

Fig. 6.3 Component machines of K,v K,

105

Machine K, is constructed from {(#;,%;) and K; from (T;,T:).
{End of Example 4.1}

In the example, the machine K has only twag inputs. It is said that
the machine is not fully decomposible. But we have obtained a H-
decomposition with two same component machines. Therefore, under the
concept of H—-decompositions, azero—partitionisnolonger atrivial
partition, which differs from full-decomposition analysis in the
previous chapters.

Now we present a theorem and an example to show the H-decomposition

of Mealy machines.

THEOREM &.5
A Mealy machine M = (1,5,0,8,A) has a H-decomposition if there
exist two complements H-pairs (A;,Ag) and (A;,Tg) such that

(Mo, (0)) is arestricted 5-0 pair with regpect to one input block of

Ay and (Tg,AG(0)) is a restricted 5-0 pair with respect to ancther

input block of n,.

Proof. The concept of a restricted pair comes from Haring. A
restricted pair with respect to some inputs means that the
pair is defined only on the columns of those inputs of the
transition table. A detailed description can be seen in £101.
By the conditions above, if we omit the outputs, M is H-
decomposible, which is proved by Theorem &.4. Here it is
necessary only to consider how to keep a correct
decomposition for the outputs of M.

Let 4, denote the set of outputs which appear in the columns of
inputs in block B, of #; , and 8; the set of ocutputs in the
column of inputs in block By of ;. Then, 4, VU4, =0 and #A,=
{85,4,7. HWe construct the component machines of the H-

decomposition
_ . 1,1
by M= (BgyMg,8,:8 ,A7)
Ma= (B, ,Tg.8,,82,2%)

where 5! and §% are the same as those in the proof of Theorem

&.4, and
sA] = [sX;In, (1)
A% = [tx.17 ()
i< FRET

where seR;, tels, ieB,, jeB;.

106

Since Ay and Tg are output—consistent from that (Ag,%,(0))
and (T4, {0} are S-0 pairs, (1) and (2} are well-defined.
Let o: 8,U8; 2 0 by 9(y) = y. It is an one-to-one onto
mapping. Both ¢ and ¥ are the same as ones in Theorem 46.4.
Thus, for all =zebS and 1cl, Pi{s;,8,5) = &, S,E0g, SyETg,
and ¥{i} = i, 8{hi{s,i}) = A(s,i)

On the other hand

Q(Si,aa)?\i

= {5, N 524 £{3) in Theo. A.4%
515:A
= . Prop. 2.7%
Szh;
Ls,5; dmg
c _ {calculus?
[szX; 17,
5112
= = {01y (23
Sph;
i
r e(sxkxy‘i’)
=1 2 LD
\ 9(52?\‘1(1))
= B((S, 450 My¢;y!? {Def. &6.23

Hence, M,;v M, is a H-decomposition of Mealy machine M.

(End of Theorem 4.5}

EXAMPLE 6.2
Find a H-decomposition for Mealy machine L shown in Fig. 6.4, 1f it

is H-decomposible.

i 3 k
i 3/2 2/ 1/
2 G/a 4/c 2/b
3 1/7b S/e 1/a
4 &/a i/d 4/b
= 2/b &/ 2/a
& 4/b I/d 4/a

Fig é6.4 Machine L.

By the careful examination of the machine table, we notice that,

107

there are two 5P partitions
ns = {1,2,%,3,5,6
and Tg = {1,3,2,5,8,63
which can form two H-pairs with input partition
wp = {i,k,3?
together. That is, (A;,%3;) and (R;,T;) are complementary H-pairs.
Furthermore, we see that (Ag,R,(0)) is a restricted 5-0 pair with
respect to the input set {i,j} and (T;,A{(0)} is arestricted 5-0 pair
with respect to {j’. Therefore, according to Theorem 6.5 there are
(BysMgady) and (B, Tg,.4,),
to form machines

Lo = (Bg,Mgs8,4,8%,2%

and L, = (B, ,Tg,8,,8%,2h
where B, = {i,k? B, = {3i%
and Ay, = {a,bl} 8, = {c,d,e’

ng, = 1,2y = (1,7,4,3,5,&62
Ty = {1,2,3} = {1,%,2,5,3,62
The 8% and 8’, 2% and A' are shown by the machine tables in
Fig. 6.5.

i k 3
1 2/a i/b i 2/e
2 1/b i/a 2 3/c
3 i/d
Machine L, Machine L,

Fig. 6.5 Component machines

(End of Example &5.2)

The following theorem states the conditions for evaluating the H-
decomposition of a Moore machine. The proof is the same as that in

Theorem &.5

THEOREM 6.6
For a Moore machine M,
M= M;v M;
if there are two complement H—-pairs (%;,%;) and (A; 15} which meet,
there are two partitions ®; and Ty on output of M
i) (W) is an 5-0 pair
and iil (TgyTg) is an 5-0 pair

and iii) g - Ty = AO).

108

Froo¥. With the same argument as that in the proof of Theorem 6.5

{End of Theorem 6.6}

To end this section, we give a simple way to discover i+ a given

machine is not H-decomposible by Theorem 6.7.

THEOREM &.7
Machine M is not H—decomposible i f there is an input which maps all
the present states into one state.

Proof. 1If thereis aconsistent input mapping on a machine M, from the
definition of H-pairs, we know that there is no H-pair which
considers the input as a keeping input. This implies that
there are not two complementary H-pairs because one of them
requires the input as a keeping input.

(End of Theorem &6.7)

This section is only an introduction to the H-decompositions of
sequential machines. This work on the decompositions is just a
beginning of the complete theory. GSome problems remained that are
worth Ffurther study, such as the H-decomposition of multi-
submachines, and a systematic method to find H-pairs for a given

machine.

6. 2 Wreath Decompositions

Wreath product and decomposition of machines were presented and
discussed by Holcombe [163. The method of wreath decomposition was
descibed by the semigroup theory. The decomposition theorem says
that, if the transformation semigroup of a machine is decomposible
wreathly, then the machine is decomposible too (Theorem 3.1.2 in
£1631y. Thus, the attention was paid to the study of semigroups of
machines.

Since the wreath decomposition presents one part of the serial
decomposition method, we do wish to take it as one part of full-
decomposition theory. In this section, we will study the wreath
decompositions of machines based on a partition pair and a partition
trinity, which clearly shows the details of judgement and
determinations of the inputs, states and outputs of component

machines.

109

&6.2.1 Wreath Connections

DEFINITION 6.6
Let My = (I,,5,,0,,8%,2")
and My = (I,,5,,0,,8%,2%)

be Mealy machines. The wreath connection of M; and M; is

i

MyoMy, = (Tyx15,8,%8,;,0,%0,,8%,2%)

where for (s,t) e 8,x58,, (x,f) € Iixlzi
o — i z
(B)t)stx,fz = (=8, t8.,,,)
and (=,)2° = (A}, tAZ)
= (Xy €3 % £1%3
where

f e IZ1 = {f: 8, » I,3

The definition can be depicted in Fig. 6.6.

lelgi B, x0,

Fig. 6.6 Myo M,

From the definition, we know that, on one hand, a wreath
connection is greatly characterized by the mapping between two
component machines. On the other hand, it describes one type of
serial full-decompositions. The mapping to the tail machine is a set
of all the functions from states of the front machine to inputs of the
tail machine. A wreath connection looks very much like a serial full-
connection of type 11 represented in Chapter 5, But, the difference
appears in input assignment for the tail machine. In a serial
connection, an input is mapped by anly one element in the domain, while
in a wreath connection, more than one are mapped. From the viewpoint
of decomposition, the number of inputs on the tail machine by a wreath
decomposition is less than that by avaeri al full—decomposition for the

same machine.

110

&6.2.2 Wreath Decompositions

We start with a definition and notation of compatible classes of
machines before we deal with the description of wreath decomposotion.
iet M = (1,5,0,8,\) be a machine with distinct inputs. What

distinct means is:

for any i,jel, ¥¥s'%To = Y¥s'To implies i = j.
3 4

For the sake of simplicity, we will make this restriction, but it can
be easily removed when applying the results of this section. Assume
that Vis a set of all the block vectors, Y ;, where BeA; and iel. Then
arelation Ron VxV is defined by (v, ,vz)1eVxV v, ;Rv, 1¢f v v, (T,
The relation R obviously is reflexive, symmetric, and transitive.
Therefore, R is an equivalence relation on 8. By the relation R, vector
set V¥ can be divided into eqguivalence cl asses,each of which is defined
by

vl = &{v’ | vRv'3 £1)
Naturally, all of esquivalence classes form a set

W= {[vl | Iv] is an equivalence class over M} 2)
and we write an equivalence class (vl as

L(B,x)1 = (B ,x’) | ¥¥s’To » YTs/Ta

‘To (Tg)3 (3
(B, %} {B° X1

The equivalence classes are also called compatible classes for an
explicit meaning.
For any a machine M with distinct inputs, we can check whether or

not it is wreath decomposible with the following theorem.

THEOREM 6.8
Machine M can be realized by some smaller machines M; and M, in
wreath connection, if there exist an PT tg = {fy Mg Ag) and an FT £, =

(TrTgaTy? with Ry which satisfy
i) t, and t, are orthogonal, and

iiy |w]'®s! =|v,.],

where W is a compatible class set.

Proof. Since the conditions for a wreath decomposition are wvery
similar to those for a serial full-decomposition of type 11
except the extra condition (ii), mast of steps followed are
the same as those in the proof of Theorem 5.5. We simply state

the procedure again here with some differences in the tail

111

machine and in condition only {ii).

Suppose M, = <n1,xg,xb,si,a‘)

and Mp = (W ,Tg,Tgs8%,2%

where W is the set of all compatible classes over M and its
blocks are elements of the input symbols of tail machine M,.
The definitions for §* and A" are the same as (7) and (7°) in
Theorem 3.5, while ones for 5% and »* are given as follows.

For B"el; and vel
g ¢ Yy E
B“82 = [(B'NB“)E,11g (8)
I fFAGTY Y
B“A2 = [(B'NB"IX,17, (9)

where v = Vfgftg’ and B’ effg and fet,.
)

With the (@) and {(?) in mind we can naturally make the
definitions on ¥ in T; by
for any fetTy, and BeA

£{B) = v if and only if v = Y¥=/%g, (10)
(B, £}

Let FIA) = (F(B,) F{BL) yuuuua o F B}
where fg = {By,Bgy-.-...B,k.
For £ and ' in 1T,,
fiRg) = £ (Ag)
if and only if for all B;enf;
f(B;) = £7(B;)

Pecause of distinct inputs on M
and for any i,jel ¥7s'%o and V¥s’%o
i i

are compatible if [ilzy= {jlr;, we have that,
for any f,¥' et;,
Fi{ng) = £ (Ag) if and only if +f = ¥.
This states that by (10)
Ty = £ F| F2 ;g 4+ W3
is equal to W“S, all the mappings from A; to W, due to the
condition {(ii).

Now, let us make some relations ®, ¥ and © by

B: A x Tg * 8 by @¢(B',B“)) = RB'NR"; (11)
¥: I + Ay x T; by ¥{{x) = (48" ,8") (123
such that AN B = K3

8: Wy % T 2 0 by @((y’,¥y")) = y fiy*. (13)

112
Because of condition (i) both® and 8 are surjective partial
functions and ¥ is an injective function.
For any (B ,B"} € AguTgy B'NBYZ O; xel,
(B ,B")) 8,
= (BN BY)&, fe113
= {B'QH BY)&, N (BN B8, {calculus?

€ (B0 BBy N (BN BE ., (Prop. 2.7}

c B'§{x,”1n (B’ N B“3§(X,TI {Prop. 2.73

= B'&L N (BN B":E:x}TI {8’ =[x1m;,(7) in Theo. 5.5}
€ B 8L N BYE4. 4., {8"=Tx17;,(8),|B'Nn B*| = 13
= OC(R 8. 4 B 64, 5.,)) i1y

= @B ,BE] g gy {Def. 6.67

= OC(E BBy)} {4122

With the same argument we have

BB LB Ay = O((B ,BIAG,)

S(Bt)\&(“¥3? a”)'”‘ftx-) (8)}

Hence, M oM* realizes M correctly.
(End of Theorem 5.8)

In the above theorem, condition (ii) is a key for keeping the
decomposition as a wreath decomposition. Since the inputs are not
relevant to their syﬁbol names, a mapping f3 HgoW is in the same
situation as AgxT,*¥. Thus, a weath decomposition is just a special
case of serial full-decompositions, where |T;]| = |W|'%s!,

The steps for a wreath decomposition are implicitly stated in the
proof of the theorem. Here we list a procedure for applying the theorem

to a wreath decomposition.

PROCEDURE 6.1
i. Find an PT tp = (g, Hg Bnt. If there is no, go to (9);
2. Find a tri-partition t; = (T;,7T5,Ty} such that

t, @ty = Ta- If there is no, go to (1);
3. Calculate compatible classes
W = {L{B,f)1}

to partition Tg4;

113

4. If t, is an FT with %z and |W|'™s! =|v,.|,
then (S5); otherwise go to (2);

5. Construct M; by tys

6. Construct M, by putting W in columns

with the title v on the top of Vfg’f? if
t

v = [Y¥¥s'To3,
{B,F}

The collection of v's is the input set of machine M¥;

7. The mappings of f's is listed by

£ (B) = v if ¥¥s'To in [Y¥s/To3
(B 4 F (B

H s £1

8. MM oM¥; exit.
9. There do not exist M’ and M” such that M eM” realizes My exit.

{End of Procedure &6.11

In the case of a computer aided decomposition, we can take
steps (27—{5) in Procedure 5.1 instead of step (3) here. If
meeting an input j of which Vfg’?? is not compatible with the

tJd
vectar Vfi':$, jefet;, we stop the search immediately and go to
¥

step (2). In order to make the reader familiar with the theorem

and the procedure, we give the following example.

EXAMPLE 6.3

et us apply the procedure to machine N shown in Fig. &6.7

2 3/3 271 271 353 1/3 471 471 1/3
3 274 4/%1 371 1/4 371 1/4 274 471
4 1/2 3/3 471 2/4 4/1 2/4 4/4 3/3

Fig. 6.7 Machine N

Step 1. Consider tp = (g Hgsfg)
({1,8,6,7, 2,3,5,8},
{1,2,3,%
{1,3,2,4m

which is a partition trinity.

114

Step 2. Take tey = (TyaTgsTy)
¢{1.8,
11,%,5,43
£{1,4,2,30)
It is apparent that t,0t, = T,

.6,58,5,7,73

i

M

™

Step 3. Substitute the blocks of partitions by symbols:
11,12 =({T1,8,8,7, 2,5.:5,8F = A,
{A1,AZ3 1,2,5,8 = ng
{C1,C23 {1,5,273 = m,
£31,32,33,34 =({1,8,3,5,4,5,2,7} = 7;
{B1,B23 1,3,578 = 24
{D1,D2} 1,83,7,3r = 1,

fl

M

it

It

In the following discussion,

Y denoctes VY¥s’Te, for short.
Calculating the block vectors we have
Vcn1,11 = y(ﬁi,ﬂ) = v(n:,ax:
= V(A2,i) = V(AQ,S} V(ﬁi,:i;

vtnx,a; = V(ni,S) V(az,aa)
ann,a; = Viﬁi,?) = Vtaa,aa)
= (B2/D1,B1/D2) {12

viAi,ﬁ) = Y(Ai,?) = Vta1,34)

[

= vtaz,a: = thz,s; tha,Je:
= V:az,a: = v&Az,S) = V(az,Js:
= Vcni,a; = V(Ai,b) = v(ﬁi,Jﬂ)
= (B1/D1, B2/D1) {2)

The compatible classes are

L(Al,d1)] = { V(Ai,Jii! V:a2,31xs Yiﬁi,JSl* viaz,aa)}i
LA, g4 = £ V&az,aa:! V{nx;;i}: V(nz,Jaxs anz,az;}'
Step 4. From (1) and (2) we know, for all AeR; and i,jel
Vis,io= Yis, iy if Lidry= Lil7;g
Hence t, is an FT with #;.
On the other hand,
W= {ECAL,J1)3,0{A1,J4) 1%
Wj st = 2% = 4 = |y

Step 3. The machine Ny can be formed by tp, which is drawn in Fig. 6.8

I1 12
Al AzZ/CL Al/C1
Az AL/C2 AzZ/C1

Fig. 6.8 N,

115

Step 4. Columning the vectors, from compatible classes,
Y,ﬁi,ai, = (B2/D1, B1/D2)
and VY, a4, 54y = (B1/D1, B2/DD)
and assigning the title v, and v, respectively,we construct

the tail machine N; shown in Fig. 6.9.

vi v2
Bi BZ/D3Y Bi/D1
B2 B1/7D2 B2/D1

Fig. 6.9 Nj

The input set of N, is {viavald = W
Step 7. The mapping set
WRs = £J1,J2,J3,J41 = T,

is defined as the following table

a J1A) J2C(A) J3 (W J4 (M)

Al vi vz vi vZ2
AZ 21 vz vz vi

Step 8. A careful checkness on NjoN, and N shows that
N =t N, oN,
Note that machines N, and N, are isomorphic.
(End of Exawple &.3)

In the above theorem, if we omit the ocuput partitions, we can

easily get a theorem for the wreath decomposition of state machines.

THEOREM 6.9
State machine M= (1,5,8) can be decomposible in wreath connection
if there exist two I-5 pairs, (W;,R8g) and (T;,Tg) which satisfy
i) Ry s A3 =Ty Tg) = (AL {0) (AZ(OY),

ii) (He o) is an 58 pair, and
iii) jw] s = .|
where W= <fV¥¥s 13
tR, £

Proo¥f. The proof is exactly the same as that for Theorem 6.8 without
considering the output partitions and vectors.
{End of Theorem 6.7}

118

CHAPTER 7

FULL-DECOMFPFOSITION OF ISSM’ =

7T .0 Introduction

In many practical design problems, the design specifications
require only that a part of the transition table be specified; the rest
is left blank or unspecified which is called a don't care {(d for
short), Moreover, even for a given completely speci fied machine, the
first step in realizing it using digital components is to code the
states in binary codes and also the input and output symbols, if they
are not binary. In this case, some new blank or unspecified entries
might be yielded i+ the number of symbols is not an integral power of 2.
This generally results in an incompletely specified seguential
machine {(IS8M). Hence, we need to consider the problem of full-

decomposition of this type of machines.

Based upon the concepts of weak partition pairs and extended
partition pairs presented by Hartmanis for the purpose of state
assignments of I85M s, in this chapter, we will develop the concepts
of weak partition trinities and extended partition trinities and use
them to solve the problem of full-decomposition of I1S8M 8. In section
7.1, the definition and properties of weak partition trinities are
presented and used for one approach for fully decomposing an I85M. In
section 7.2 we outline the main concepts of extended partition pairs
and propose the extended partition trinities as another approach for
the full-decomposition of I88M' s, Because of the similarity of
discussions to that of partition trinities, we only give some general

results here, without a detailed description.

117

7.1 APPROACH 1I-: WE'T
7.1.1 Weak Partition Pair (WPP)
Here, we simply outline the main concepts of weak partition pairs.

DEFINITION 7.1
LetM=(1,8, Oy 8§, A} be a machine with d conditions and ¥ and
be partitionson 8, f on I, and ©w on 0. Then, the aeak partition pairs on

M are defined by:

i’ (¥, T) is a weak 5-85 pair, if and only if,
for all s,.teS and all xel,
[sln=Ltiw =+ [s8, Jr=0t8, 17

whenever s8, and t§, are both specified.

ii) (£, T) is a weak I-8 pair, If and only i¥f,
for all a,bel and all se8,
Lali=Iblf = [s8 Jr=Is,lT

whenever &8, and =85, are both specified.

iii) My, w) is a weak 5-0 pair, ¥ and only if,
for all s,teB and all xel,
Calr=L{tlin =% L[siy,dw=lik,Jw

whenever sk, and ti, are both specified.

iv) (¢, w) is a weak I-0 pair, if and only if,
for all seS and all a,bel,
Lal{=Lbl{ = [ak,lu=lsi,lu
whenever s, and s, are specified.
CEnd of Definition 7.1)

Fromthe definition it is obvious that the following theorem holds,

THEOREM 7.1
If W is the set of all the WPP's on M with d conditions, then
i) (H,HI)) and (A(O) , M) are in W.
i1) My ,7,) and (R,,T,) are in W imply (A, -y, T,-T,) in W.
iii) (A ,7T,) in W implies (®,, T,+R,) in W.
(End of Theorem 7.1}

118

It states that the WFP' s satisfy all except but the “+” postulate
of a pair algebra, which is replaced by a weak form. It can be
generalized in order to cover weak pairs. Although some properties are
lost in a weak pair algebra, there is still a good possibility of
developing the concept of PT-like based upon four WPP's which have
some special characters, that is, the weak partition trinities to be

discussed below.
7.1.2 Weak Partition Trinity

In the case of an IS88M, there certainly exist some unspecified
entries in a machine table. Normally, we denote the entries by dashes.

that is, for some =eS5 and iel,
s8;='~" or sk;="'-',

if sA; or s§; is unspecified. This causes a little changes for some
operation results, such as

{~3 € BE, or <{-3 £ Bi,

N

where BCS and AC I. During the discussions in this section, we keep

this in mind.
DEFINITION 7.2
Let M= (1,5,0,8,7) be amachine withdconditions and g, %; and ®,
be partitions, separately, on 8, I, and 0. Then, tri-partition
(H; %, My) is called a weak partition trinity (WPT), if and only i+,
for all Aellg there exist a B’ eRg and a YeR,, such that
BE, € B UL~} and BX, € YU{-I.

{End of Definition 7.2)

The definition naturally hints some connections between a WFT and

WFPP’ s, which are stated in theorems 7.2 and 7.3.

119

THEOREM 7.2
If (A Rea?y) is an WPT on an I88M, then (M J2) , (A 45,0 4 (He, Ag)
and (Mg ,A,) are WPF' s on the I55M.

Proo¥f.

(Ry Mg 47y
<> Yhen; YBeng
I8 e Iven,: {def. of WPT}
BELEB' UL~} A BAREYU{-}
=+ V¥s,,s5,eB Vxi,xzeh: {calculus?}
(5:8,4# ~"#u,8,5, = 5,8,,6eB" A 5,8,,6B')
A S Ay F "8 Ay TF B30 BY A S.h,8Y)
A (58, # ~fs,Byy; =P 5,8,,8B A s5,8,,€B)
A S R F T ES Ay T Sahe Y A 550 6Y)
=> Vs, speS V¥xi,xzel: fcalculus?
CEX1dm,=Eu2Iw; A 5,8,,8 ~"#s,8,, = [8,8,,Ing=ls,8,,1ng)
A DRI =0R2]o, A Byhy 7 — #S,hep =P I[85,y Ing=le, A 17,
A lsydn=la,dng A 85,8, #F —"#s,8,, = (8,8, ,lng=[s,8,,1n:)
A s, dng=leadng A S 8,2 =" #Fsady, = (8,0, Ing=Esah, ; I0g)

=3 (Mp,Ag) A (My,Mg) A (MgeMg) A (Mg My) {def. of WPPI.

(End of Theores 7.2)

THEOREM 7.3
Let (Hp Mgl (M ,Hg) s (Hg %) and (A5 ,7,) be WPP’ s on an I88M. Then,
(A Rg) is an WPT on the ISEM it
Vs,,5,658 Vxi1,xzel:
(s, Ing=Isydmg A [Xida =Ex2lny,
=% (8,8, Ing=Is,8,,1m; A E5,8,Ins=[s5,8,,1ng {1y
A Ls Ry Imy=Isahadmy A [sadgadmg=le,dh, 17, (2}

where 518x3 and sikxj, i,i=1,2, are specified.

120

Proof. (M Mg) 4 (My,Mp) 4 (Mg M) and (Mg ,Rg)
imply that Vs, ,s,e8 Yxi,x2el:
(Ex1dw,=Ix2dnw; = (8,8, In.=[s,8,,1n.)

A (Ixidwy=[x2lxy = [s,hy, I7g=[s,Ay,1ng)

A (Isyluc=ls,In. => (5, 8y, In.~(s5,8,,1n:)

A ([s,Img=ls,1ny =3 [5,hy, Ing=[s5h,,1m,)
whenever s;8, . and s;%, ., i,3i=1,2, are specified.
Combining {1} ,(3} and {5}, we have

¥s,,s,€8 Vi, xzel:
[s,ln.=[s,3mg A [%1lmy=[x2]n,
=% [, 8, Ine=la, B, o dne=0(5,8,,In=~[8,8,,3Ing
whenever 5i8xj, i,di=1,2, are specified.
Combining (2},(4) and (&), we obtain
¥s,,5,65 Wei,x2el:
[s, Ing=ls,dmg A [Xtdw,y=Ix2do,
=2 LE, Ry IMg=08, M o A= ls,0, Ing=laak, 10,
whenever ;A ., i,i=1,2, are specified.
Moreover , (7) énd 8y meaﬁ that
Yoaen, VYBen, 3IB eng Iven,:
BE, € B'U{~-3 A BX,C YU{-}

Namely, (H,Ag,Ry) is an WPT_
fEnd of Theorem 7.3)

(3}

{4)

(5

(&)

£7)

(8}

Like a partition trinity, a weak partition trinity gives the

dependences of all information flows on an I88M. Many properties of

partition trinities remain in WPT’'s except the trinity operation &

rules out because of the limited properties of WPP' s. Therefores, we

study here some simple properties that are used in the study of full-

decomposition of an ISBM.

THEOREM 7.4

If My Az,M,) is an WPT on a machine M with d conditions,?; on I

and Ty £ My, and T, aon O and T, = G, then
il {Ty Mgl i an WPT on M,

121

i1} (A%, Tg) is an WPT on M, and
ii1i) (T, Wg,Ty) is an WPT on M.
Proof. (My 2 W5.7y) is an WPT

&> VYaen; VBern, 3B eng Ivenm,:
BE,EB UL-3 A BRLEYU{-3. (1
i) Ty § Ay
= VYa‘er; 3JAem;: &€ A {def. of <3
=5 WA eT,:
BE,. ¢ BE, A BX,.- € BX, {Prop. Z2.43
=% ¥Ya’'er, VYBens 1B en, IYen,:

BE,. €B'U{-} A BX,. CYU{-3}. <{calculus,(1)3

= ATy 4Rg,Mg) is an WPT. {def. of WPT}
ii) The same as (i).
iii) TyERy A T2,
=2 Ty 4Hg;My? is an WPT £¢iy, (133
A TRER,
=3 (Ty,MgyTp) is an WPT. £{iid

(End of Theorem 7.4)

Theorem 7.4 provides one way of computing WPT's. Also, the WPT
from which we can get a set of WPT s is called a basic WPT ' s. It is
better to calculate basic WPT's first, than use the theorem to produce
all other WFPFT's. Usually, it is faster and simpler than one by one

computation according to the definition of WPT s.

THEOREM 7.5
A WPT of a machine with d conditions corresponds to an image
machine of the machine.

Proof. Using the same procedure as in the proof of Theorem 5.2 in
Chapter 5, besides doing all argumentation under the
condition that =8, or sky is specified.

{End of Theorem 7.5}

Similarly to partition trinities, we refer to the theorem as a
physical property of the WPT, because it presents a component machine

in parallel or series decomposition of an ISSM.

122

When dealing with serial full-decompositions in chapter 5y we
presented the concept of forced—-trinity. Similarly, we must consider
that concept here again in order to obtain the serial full-
decompositions of IS5 s. Because of d conditions, we refer to it as a
forced weak trinity (WPT) with some restraints below for the
definitions and operations from ones of FT.

i) 1f s8;, seb and iel, is not specified, a dash '~' is put in a
vector or a block vector instead of s6; or Is8;1, such as in Def. 5.4.

ii) uWhenever we deal with s6; and t8;, s,te8 and i,3el, we must
make sure that both s85; and t8; are specified, as in Defs. 5.5, 5.6 and
vector operations on compatible subvectors.

The above restraints also apply to the output vectors and
operations. With this in mind, we can consider Ffull-
decompositions of ISSM' s by directly applying similar methods to
those Chapters 4 and 5.

7.1.3 Approach I of the full-Decomposition of IBBM's

Now we start by considering the problem of full-decomposition of
an incompletely specified sequential machine.

Because of its similarity of discussions with the full-
decompositions of completely specified sequential machines, we only
need give here the decomposition theorems without proof since they are

the same as those for partition trinities.

THEOREM 7.6
A machine M = (1,5,0,8,2) with d conditions has a nontrivial
parallel full-decomposition if there are two WPT s, (.7 5,%,) and
(T, TgaTgls such that
(HypsMasMgl © (Tp,TgseTy) = (H (0, A (0) A0,
(End of Theorem 7.6}

THEOREM 7.7
Amachine M= {I,5,0,8,7) with d conditions can be decomposed into a

serial connection formof type I, if there exist one WPT (8, 5,7, sas
well as, a forced-WT (T;,Tg.Tq} with a forcing-Aartition T which
satisfy

i) T = A, and

1id) (W, Mg aTg) © (Ty,TeaTg) = (AL (0) 7S (0), W 0))
{End of Theorem 7.7}

123
THEQREM 7.8

Amachine M= (I,8,0,8,A) with d conditions can be decomposed into
a serial connection form of type I1 if there exist one WPT (X, %, 7,5},
as well as, a forced-WT (Tp,Tg5¢Tg) with T which satisfy
i) T = Rps
ii) (Ty,Tg) and (Tg,7T5) are WPP/ 53
111) (WypHgyWg) O {Tr,TgaTa? = (H(0) A0 (AL (D))
(End of Theores 7.8)

An example is given below ih order to illustrate the procedures

for decomposing an I88M using these theorems.

EXAMPLE 7.1
Find a full-decomposition of the machine P shown in Fig. 7.1 in

which a don’t care condition is denoted by a dash.

Fig. 7.1 Machine F

Step 1. For Machine P, camputation shows that there are more than two
WPT's which satisfy the conditions of parallel full-
decompasition given in the Theorem 7.46. Therefore, we choose

the largest WPT1 and WPT2 for two component machines.

WPTL= (R 4 Mg 4 Rg)

=T, 25,578,873 3013876, 7229595341, 2,5, 743, 8,63)

WPT2= (T ,TssTg)

=T, 8,506, 705:712%1,5,27,8,5,7,63,(1,8,7,3,5,6,71

Step 2. Construct an image machine corresponding to WPTL.
Generally speaking, an image machine corresponding to an WPT

can be constructed in two steps:

124

Step 3.

i) Symbol assignments.

To assign the symbols for the blocks of WPT1l, we take

WPTL = ({a,b,c,d},{R,B},{a,487

Hence, the component machine At has the input, state,

and

output sets I,, §; and 0, as the assignment for WPTL.

ii) Determine the machine functions 8 and a'.

For all x in Iy and s in 8y,

either
s8; = [s§, - -3img if s, # -3
and sA; = [sX, - {-31Im, if sk, # -3
or
s8) = ‘- if s§, = (-3
and shy = ‘-’ if sk, = (-3

In this way, all entries for Machine P, are defined and shown

in Fig. 7.2

a b c d
A B/8 Al B/a A8
B B/a A8 A/A B/c

Fig. 7.2 Machine P,

Construct an image machine corresponding to WPTZ2.
With the same procedure, we can easily obtain the
machine F, based on WPT2 shown in Fig. 7.3,

where

c=1,5,
D= 2,4, e £

E = 3,7, cxesssseunnusununsEEan
F = &3 C C/w E/x

e = 1,8,5,6, D Fr/z Fly

f = 2,35,7, E D/y C/z

¥ = 1,4, F E/x D/w

Yy = 293y

2 = 5,6, Fig. 7.3 Machine F,
w = 73

image

1256

Step 4. The mapping between machines P and Pyl P,.

8 4 5,u8, I+ I,x1, 0 =+ 0O,x0,
1+ (A,DQ) i+ (a,e) 1 2 {;yx)}
2 < (B,D) 2 4 (b.#) 2 4 {a,y)
3 » {(B,E} I 3 {c,¥) 3 4 (d,y)
4 4 {(A,D) 4 4 (d,e) 4 2 (A,x)
G -+ (B,0) g 4+ (b,e) 5+ (ay,z)
& 2 (AF) & + (c,e) b 4 {(8,2)
7 4 (AE) 7 4 {d,f> 7 2 {a,w)

(End of Example 7.1)

In this example, we show the decomposi tion procedure in detail for
a good understanding of the properties of WPT’ 5. However, in practice,
it can bedone in a simple way instead of calculating all sets of s"s'x ar
sfx. After giving the block symbols, we can 1ist the table of an image
machine for the new inputs with the input block symbols and for the
present state with the state block symbols. The next states and
outputs can be filled by finding a state in the corresponding present
state block and one input in the corresponding input block. The blocks
of the next state and output of the state and input in the original
machine table should be the entries in the image machine table. In
+act, this just is the computation of & and A on the blocks. For

example, for the machine P,

2z _ =
cs, = [18,17g; = ¢

!
£

2
A2 = (52,17 =

Correctness is ensured by examming the properties of the weak

partition trinities.

T .2 Approach II1I: EPT
7.2.1 Extended Partition Pair (EPF)

In the concept of WPT's, we ignored the occurences of d
conditions. In that situation, trinity operation ® is ruled out, so
that one operation is lost in the WPT algebra. In approach 11, we give
each d condition a separate name, and then keep a careful record of it.
A machine with labelled d conditions is given by a machine table where
values of § may be from a set C of labels and some values of A may be from
a set D of labels. Under this consideration, the concept of an

extended partition pair is naturally obtained.

128

DEFINITION 7.3
let M= {(1,5,0,8,A) be a machinewith labelledd conditionsCand D

and % be partition on 5, T on SUC, § on I, and w on OUD. Then, the
extended partition pairs (EPF's) on M are defined by
i} (A, T} is an 5-8UC pair ¥ and only If,
for all s,teB and all xel,
Lsin=Ltln = (a8, lv=LL8,]T;
ii} {(, %) is an I-8UC pair if arnd only I¥
for all a,bel and all =eB,
Ea]g=£b]£ =% (a8, Jr=0[u8,11;
iii) (W, w) is an S5-0UD pair ¥ and only I¥
for all s,teS and all =el,
[sln={tlm =% [sh, Ju=Lth, Jus
vi) ($, w) is an I-0UD pair ¥ and only Iif
for all a,bel and all seS,

£a3£=EbJ£ =2 [ad,lo=lak, Jus

(End of Pefinition 7.31

Now, we take the machine @ shown in Fig. 7.4 as an example to

illustrate the concept of EPP.

1 z 3 a 5 &

1 7/1 S/6 2/5 772 3/1 0 372
7/4 A/3 dgp/3 7/5 &/4 &/5
9/d, S5/2 2/1 &/4 4/1 8/2
&74° 2/3 5/3 &/5 B/dg, A4/3
2/5 3/2 3/1 S5/6 9/5 1/6
2/1 7/4 2/4 S/2 4/1 8/2
2/4 B/2 &4/1 7/4 9/4 &/4
da/5 7/2 d,/1 1/6 3I/1 3/2
5/3 7/5 7/4 2/3 8/3 4/3

S ONOU SR

Fig. 7.4 Machine &

In the machine
o {di,dz,da} SUC
D {d; .dg aun

]
[

£152,3,4,5,6,7,8,9,d, ,d;,d53
£1,2,3,4,5,6,d, 4dy?

127

Observe that,

tmy,T,0=¢¢1,2,7,%,4,5,6,7,8,93,¢1,5,7,4d, ,%,8.8 d3,5 b,F,d,3)

and

Mgy Tg) =T, 7,23 558,5,6,7 48,93 341,2,8,7305,3,6,F,0,45,8,d53)

are EPP’ s. The partition operations of multiplication and addition

hold on the set of all EFF's such as

= (¢1,%2,%,%,5,8,7,8,52,(1,5,7,0, ,3,8,5,6,9,0;,8,d53)

and
(R 4Ry, Ty+Ty)

(LT,2, 7548, 5,8,8,51 ,{1,2,8,5,7,8,0, 105, 5:6,9,2,0,})

are also EPP's. More generally we have the next lemma.

LEMMA 7.1
The set of all extended partition pairs on a machine with labelled
d conditions is a pair algebra.
Proof. The proof for PP algebra carries over word +tor word except
that set SUC or OUD is used instead of 5 or O.
{End of Lemma 7.1)

Now we have the m operator and M operator with all pair algebra
results at our disposal. That is, on the algebra of extended pairs, we
have m and M operations on the pairs of S-5UC, I-5UC,8-0UD and I-0OUD.

In the following discussions, when we refer to T as the
restriction of T to 85, we mean
for all s, teS, T on 8, and 7 on SUC,

[sl? = [t1T < [slt = [tlr

In the same way, we have the restriction o of o to O defined by

for all a,8e0, @ on O, and w on OUD,
[alw = [AJw <> (alw = [81w,
7.2.2 Extended Partition Trinity
Under the definition of extended partition pairs, the concept of
an extended partition trinity is naturally obtained and is simply

described here. It is another useful tool for studying the full-

decomposition of ISSM s.

128

DEFINITION 7.4
Let M= (1,5,0,8,A) be a machine with labeled d conditions C and D
and %, be a partition on SUC, &, on I, and N, on OUD. Then, tri-

partition (R, ,f75,%,} is called an extended partition trinity (EPT),
if and only if,; for all BeX, and Aef; , there exist a B’ ef; and a YeX,
such that

BE, € B and BA, £ Y
where #; is the restriction of gz to S
(End of Definition 7.4}

Like Theorem 3.2, we have a similar result for ISSM's.

THEOREM 7.8
A tri-partition {(H;,%g,%z} on a machine with labelled d
conditions is an EPT if and only if (A%}, cnx,x0>,(ﬁs,7rs), and
(fg,My) are EPP’s,
Proof. The proof is exactly the same as that in Theorem 3.2 except we
have to pay attention to restricted partitions sometines. So,
we omit it here.

(End of Theorem 7.8}

With the definition and the theorem in mind, we can prove that the
trinity operations of O and @ are closed within the set of all EPFT’' s of
an ISGM. This just is the advantage of EPT's over WFT's because the
operation & holds., Therefore, we can study the EPT's by a similar
manner as that on PT algebra. All of these will be referred to in later

discussions without writing out their formal forms.

7.2.3 The Full-Decomposition of ISSM's By EPT's

The concept of EFT algebra presents another approach for the full—~
decomposition of an 185M. Similarly, we can develop some
decomposition theorems on the parallel full—-decomposition and serial
full~decomposition of IS5M' s by applying EPT’'s.

Here, we give the decomposition theorems without detailed
description or proof which can be easily derived in a similar way to
those in the previous chapters. Finally, an example of serial full-
decomposition of type I of an IB88M is given to illustrate the special

characteristics of decomposition of I85M's in this approach.

129

THEDOREM 7.9
let M= (1,5,0,8,Xx) be a machine with labelled d conditions C and
PB. Then,

a) Mhas a nontrivial parallel full-decomposition if there exist

two EFT's
(Hyp o My) and (Ty,Ts,Ty) such that

(My Ty Tg) O (TyaTgslng) = (Hp(0) A (0) , W0V}

b) M has a nontrivial serial full-decomposition of type 1 if
there are an EPT (N ,/;, ;) and a forced-EPT (T, ,Tg Ty} with T
which satisfy

i) T = Wy and
i1) Ry Tga) O UTpaTg,Tg) = (A (01 M LO) 47,0 T

) M has a nontrivial serial full-decomposition of type II if
there exist an EPT (;,A5,5) and a forced-EPT {T;,T5,%,)
with T which satisfy

i) T o= Mg o _
ii) (T;,Tg) and (T;,%T,) are EPP's, and
1113 (A, Tl Tp) O (Ty,TgeTg) = (M (0, A0}, Ma(00),

where

el
1]

the restriction of 7z to S5;

the restriction of %, to D;

éﬂ
o et el
[

the restriction of T to 93

a
W

o is the restriction of 7, to O.

{End of Theorem 7.%)

EXAMPLE 7.2
Consider the incompletely specified sequential machine B shown in

Fig. 7.4 and find a full-decomposition of it.
In this example an ¥ represents an V¥='%s for short.

Step 1. Compute the EFT's.
By the computation of EPT's on a computer, the machine has

totally seven nontrivial EPT’'s listed below:

130

Step 2.

EFT1

EFTZ

EFT3

EPT4

EFTS

EFTA

EPT7

Unfortunately, within this set there do not exist two
EPT' s such that their trinity product is a zero trinity. This
means that we cannot find a parallel full-decomposition of
But,

possible to find a serial full-decomposition. We now try to do

the machine.

50,

We take the largest EPT in qusetion, EPTI=(M;,Rg,Mg),

berause a larger EPT usually gives us a simpler image machine.

(¢1,%4,7,%,5,63,
€136, F4tps 215,740y 95,8,8,057,
{1,2,3,d,,4,5,6,d,1);

1,4,2,3,5,67,
£1,6,9,0,,2,9,74035,4,8,033,
£ I Y O D D U 3 B

«<1,%,7,%,5,563,
(T,6,F90542,5,7,0, 33,848,053,
€1,2,3,0,,8,5,6,d,3)3

£1,6,9,05,2,5,7:0; 15,8,8,053,
(1,2,3,0,,8,5,6,d,3)3

({1,%,2,%5,5,862,
(138,940,924 ,740, 3348,8,057,
11,2,3,d,,4,5,6,d,3);

(T1,5,5,0,42,5,7 403 33,8,8,0,3,
E1,2,3,0548,5,6,0,3)3

1,4,7,%5,8,4y,
1,58, F,0, 52,547 90, y5,8,8,053,
11,2,3,d,,8,5,6,d,3);

Find a forced-EFT.

We take tri-partition

for the existence of EPT's, it may be

131
(T13Tg,Tg) = ({1,3,5, 2,4,63
(1,5,8,05:2,8,9,05,3,6,7,d,7
(1,8,d,,2,5,3,6,d,3)

as a candidate and examine if it is a forced—-EPT under the

forcing—partition

fg = (1,6,9,2,5,7,5,4,83.

Let Tg = {1,9,8,05,2,8,7,0,y596,7,0d,3 = {A,B,C}
To = 11,8,0,32,5,3,68,0,3) = {x,y,z}
T, = ({1,3,5,7,4,53 = {a,b?

He = {1,60,9,2,0,748,8,8% = {M,N,P}

T o= My = {1,2,3:0,58,0,8.08,% = Lot 482

Substituting them into the transition table of machine B, we
have
V“,,=V“,Bwvﬂ,3=Y9,3avp,5={Cix,sz,A/x)
Vu, 2=Yn, a=Vu, s=¥p, 4= (A/2,C/y,C/%)
V",1=V“’3=Y",Q=Vp,1= (B/yCrx B/x)
Vu, 2=V, a=Yu, s=Vp, 2=V, o= (C/y,B/z,A7y)

which satisfy
i) Ty »Te=Rg {0)
ii) for any i,jel, B’ (BeA.,

Cily_=Cilr_ A V% =~ V%o 1)
I I B BV, 3

g i

= Vg-,: = Vgu,; (15
where

vwsxa = {vu,i’vﬂ,i}

¥n§xh = {vu,zvvn,z}.

It is said that (T,,T:,Tg} is a forced-EPT under the forcing-

partition T=R;,.

Step 3. Det up image machine O,.
By the substitution of

2
i

= {1,6,F40,42,5,7,0,,3,4,8,d33 = {M,N,P}
{1,8,2,3,8,63 = {myn,p} and
= {1,2,3,d;:4,5,6,d,2 = {a,82

A
H
I

St
1

132

and the computation of 5! and A* on the blocks, such as

1 _ Y3 =
ME_ = [ME_lmg = N,
1 _ -y =
MAL = EMA Jwy = a,
and so on, the image machine @, is obtained is shown
in Fig. 7.5.
m n p
M N/a N/& FP/a
N N/8 Fla M/78
F M/ A N/a Pra

Fig. 7.3 Machine 8,
Step 4. Set up image machine .
The four vectors obtained in step 2 will construct the image
machine of the forced-EFT with the following output

assignments in the inputs:

Vu,2 ? (@,8) because MA, € « and lea
Yusz * (4,b) because MA, € & and Zeb
Vu,1 * (4,a) because NA, € 4 and lea
Vu,2 2 (e,b) because NMA, € « and 2eb
the image machine @, is shown in Fig. 7.6.

(o, a) (a,b) {(8,a) (A,b)

A C/x Crly B/vy H“lz

B /2 B/z £/x cly

c B/x aly B/ C/x

Fig. 7.6 Machine &,

Step 5. The mappings between machine B and machine 3,9 @, are listed as

fallows.

8 4 B,x5, I» I,xI, 0+ O,x0,
1 2 (M,A 1 4 im,a) 1 4 {a,x)
2 = {N,B) 2 4 i{n.b) 2 4 {a.y)
3 4 (P,0) 3 4+ {n,a) 3 3+ {a,z)
4 -+ (FP,B} 4 3 {m.b) 4 4 (Byx)
5 -+ (N,A) 5 3 (p,a) 5 4+ (8,y)
6 =+ (M, & 4 (p,b) &+ (d.2)
7 3 (N,

8 =2 (P,M

? 2 M,B)

(End of Example 7.2)

133

CHAFTER 8

COMPUTER AJTDED
DECOMPOSOTIONS

During the study of the decomposition of sequential machines there
was an extensive support of a computer. This helped the rapid progress
of this study. In this chapter, we will discuss a series of algorithms
for the decompositions of sequential machines. The algorithms are
applied in a program package in which we can calculate most of the
functions and properties, such as partitions, partition pairs,
partition trinities, and full-decompasitions of seqguential machines

{(see Appendix).

In Section 8.1, we will describe the data structure used. SBection
8.2 discusses the algorithms for basic operations in the

decomposition theory.

8.1 Data Structure

In the study of machine decompositions, the only input data was a
table which described the state transitions and outputs of a machine.

For the table, we made the following stipulations for the programming.

134

Expressing Form

For the s=ake of simplifying the program design and management , we
defined the data of state, input and output with an expression form as

follows:

State set: §
Input set: I
Output set: O

il

£0,1,2,... NS}
£1,2,...,NI}
€0,1,2,...,NO}

it

where NS is the number of states;
NI is the number of inputss

NO is the number of ocutputs.

The element O denoted a “don’t care” condition. Also, NS, NI and NO
ware used as global variables to express the numbers of states, inputs
and outputs for different sizes of machines within whole descriptions

of algorithms and all programs.
Storage Form

We arranged two arrays §01 and ALJ, with sizes NSxNI, to record the
next states and outputs of any machine to be studied. The arrays were
set up by a special procedure in one of two ways, one from a keyboard
input and ancther from a floppy disk input. In the mode of keyboard
input, the procedure accepted the data and wrote it on the disk and in
arrays of memory. In the mode of a floppy disk input, the procedure
read the data from floppy disk into the arrays of memory. The data on
floppy disk was also written in the Editor mode and was of the

following format:

machine type

basic parameters

{next state, output)

135

where the machine type was a number expressing Moore machine with O or
Mealy machine with 1; basic parameters were composed of three integer
numbers NS, NI and NO in order; the last part (2)x)NExNI numbers of the
next states and outputs separated by a space and positioned according
to the original machine table. The advantage of the design was that we

could make use of Editor mode to input the data off-line.

Dynamic storage form

Based on the arrays a running program produced derived data or
results, such as partitions, partition pairs, or partition trinities.
And some of these data might be used as input data for another program
with other functions. Therefore, a dynamic data structure should be
arranged for this kind of requirement. For simplicity we chose
partitions as the cells of the dynamic data structure. Dther forms of
data could be obtained by combining cells in a particular program. For
instance, two cells consisted of a partition pair and three cells for
partition trinity. In practice, we used the following two types of

structures.

&. Ordered linked list.

RANK P

[

W N

Pionter -+ 4

It this type of structuwre, each item consists of two parts. Une part
was P, which was an integral array to express a partition Z. Ancther
part was RANK, which gave the number of blocks in the partitions.
Because there were many comparison operations of partitions in a
program and because of the property that two partitions with
unidentical RANK numbers were certainly not equivalent, it was shown

that the arrangement of RANK made a large benefit in simplifying

136

programming and fast computation. There was a pointer to keep the

position of the last used item.

B. Classed linked list.

In saome programs, we used another type of structure while the
number of items was very large so that the computation was time-
consuming. We noted that, for any given machine, the number of
different ranks was equal to NS {(for state partition’, NO (for output
partition) or NI {(for input partition}). In order to speed up the
procedure of searching partitions for the same rank, we made a classed

link instead of RANK, which was shown as follows:

RANK 1 2 3 farea
CLASSHEAD

In the structure, part P is the same as in A. But part of RANK
recorded the next position of partition in the class (RANK £ 0) or the
end of link of the class (RANK = Q). CLASSHEAD gave the first item in a
class (by the content) and the number of blocks in the class {(by
index). There was also a pointer to indicate the next cell available
for storing a new partition, partition pair, or PT. The description of
data structure on P will be given in a sperial section later (see
Section 8.2.1).

137

8.2 Algorithms of Basic Operations

Like in any mathematical system, there are also some basic

operations in the algebraic theory of machine decompositions. They

are partition addition, partition multiplication,
e m({m), M{mM, etc. All the other operations,

z,t?

such as partition pair operations and partition trinity operations
are built by the basic operations. In this section, we give a general
description of the basic operations and discuss their computer

algorithms.

8.2.1 Partition Function

In the study aided by a computer, we must loock for a better form of
storage and representation of the data (here, partitions) because it
effects the computation complexity directly (space and time).

A direct way is to use a set to represent the partition, since the
partition is a set of blocks each of which is a subset. In this way, for
a partition on a set 5 which has N distinct elements, we define the

following types:

block

set of 1..N
partition = array [1..N] of block

Since a partition may contain Nblocks (zero partition) and a block
may contain N elements (identity partition) we have to define it with
N. Thus, a partition takes NxN=N? bits if we use one bit to represent
one element in 5. It is obvious that a partition needs too much space to
do computations when set 8§ is larger.

On the other hand, we consider an operation of partitions, say
partition addition, under the above representation to examine the

time complexity.
Let w, = {Bi'i, B1,2 ,....,Bi'n};

My = By, 4s By oz 3---21Bz ali

Firstly, we should do set addition on any two blocks in the two
partition if they have at least one common element, Symbolically it is

inductively described as follows:

138

Let B, o =B, ;

and for any j, 0<jim, let

Bi, ¥ Bayy 1P B N B, #0
B, .= (1.1)
iy jt1 A i ‘£ =
B, if B} ,NB, ;=0

Since it is possible that there will be common elements in two
different B! and B?, of {Bg,

kym 3y we have to do a check and
additions on {Bg' ¥ again, as in the above procedure, that is,

s

let Bi”0 = Bi,u
and for any 0<ji%n ,
Bi:ju BJ':" if Bi!J'n Bis';t @
BY .. .= (1.2)
1 +1 > : o ’ _
rd Bi,j if Bi,jn Bj,_— B

The similar procedure of {(1.2) on the set {Bf’n} must be repeated

until one of the following conditions is satisfied:

i) By N By =0 (1.3
ii) Bk,n n BZ,N = B:,n A B;,nn B:,n = B?,n

for any k,1 {(k#l), 1=k,1Zn .
Then, for any 1, Bf,n is a block of R,+R,;, that is,

My + Ry = {BY 3}

n

Here, to get {B;’_ 3 we have to do more than nxm times of set
operations, and for {Bg’n} more than nxn times of set operations.

Totally, to get ®, + A, it takes
nxm+ksxnxnx kN®

times set operations where k represents the times we repeat the

procedure on {B"i”n } for satistying (1.3).

It is obvious that, as M becomes larger, the computation timewill
be so long that it is unacceptable in the cases when we must do a 1ot of
partition additions on a larger set of partitions. The conclusion is
that a better representation of the partitions is requred.

In the following discussion, we first study the mechanism of the
structure of a partition and finally derive the general definition of

a partition function.

139

Let T; , =1{1;2;....,1375.2:-5N} be a minimal partition on which
only elements i and j belong to the same block. Then, for any a

partition ¥ on 8, we have
T = ¥ {Ti’ji[i3r=tjif} {1.4)

where J§ denotes repeated partition additions.
In (1.4}, there are totally N+C§ T, ; we have to examine.But

if a check is made on {Ti,j[[ilr=tj31}, we know, for any i,ieb,

Lile={idr implies

i T, i € 17, ;[Lile=Cil2,

ii) T;,; € €1, ;| rile=Cile3,
iii) Ty, ; € T, ;|Lilr=0il13, (1.5
vi) T, i € {7, [pide=0i372.

¥ ¥

But, for any 1,3e5 and for any ¥ on 8,

A+ T
T

2”*1313‘:”’

AT . (1.6)

H
It is true that some of them are redundant. They are Ti,i2 T;,;» oONe
In this case, we see that the additions, ﬂ%Ti’i are trivial.

and Ti: ; and one of Ti, i “ti,u and 7; , tocalculate T hy (1.4).

Therefore, we need to make some restrictions to (1.4) in order to

reduce the redundant information units. It is obvious that the

restriction
i #£ 13
can cut down (i) and (ii). And because 5§ is defined as a set of
integers, the restriction
iz 3
can cut down (iv). Thus, (1.4) becomes
T =5 &¥; ;li*i A Lilr=Cilr}. (1.7

In prder to ensure the minimum amount of numbers of T far

iy §

building a partition, we consider the following lemma first.

140

LEMMA B.1
Let Bbe a block of Ton 8 and let B have m distinct elements, 1.e.

[B|=m. Then, we need at least m-1 7; ; to build B. In other words,

Ty = €1,2,.0..4By0..,N3
®-1
=X €1;, ;1i>i A i,jeB? (1.8
m--1

where ¥ means m-1 partitian additions have to be done nontrivially.

Proof.
1) It is obvious that when n=1, Tg=A(0), we need nothing to do
ity

2) For n=2, n—1i=1, since

Tg = (1,2 iyl gdgunun i = Ti, 5o

{1.8) holds.
3} Assume when n=m-1 (1.8) holds, that is

Ty = {1,2,...,F,...,

1

me 4 -
I &7, ;li»i A i,jeB}.

Then, for n=m—1, suppose

B-B' ={k}, i.e. B=RB‘U{kJ}. .
We know that one more minimal partition is enough to build

Gy form T; since, for some ieB’,

T, = Ty *+ Ti,k if i>kj; -
Ty = T + Tu,i if iLk.
Thus,
w1
Tg = L {1i’j|i>j A1, deB)

(End of lLemma 8.12

Based upon the Lemma, we have

141

THEOREM 8.1

Let 7 be a partition on S, then there are at least N-|7| T; ; to
build T that is,
n-lxl
T =X €, ;183 A [ilr=Cjlc3. (1.9
proof:
Case 1: T = %(0), N~|7| = 0, we need not do anything for T;
Case 2: ¥ = A(I), N-|T| = N-1, following Lemma 8.1

Case 3: ¥ # #{0), and T#A{(I). From Lemma 8.1, +for each block

B, in 7, we need |B,|-1 of T; ;. Thus, for 7 we need

lel gl
L (B| - 1) =% [B | — |7| = n-|7]
=4 =4

pieces of T;
(End of Theorem 8.1)

vi”

If we consider each T; yi

j as an information unit, from the theorem a

corollary is obtained.

COROLLARY 8.1
To represent any a partition ¥ on § by T, ; we need at least N
information units.
Proofs
From Theorem 8. 1 , we know that, for any non—zero partition, we
need at least N-|T| information units. But for the zero
partition (),
mO = ¥ {1

which needs N information units to represent it.

|i=37

Thus, in order to represent any partitionon 8 by T} , it ve have
to have at least N information wnits.
(End of Corollary 8.1)

Now, we should consider how to select N-[T| ¥; ; which perfectly

i
construct 7. Firstly, examining (1.8) we know in {Ti'j[i>j M1y ieBY

there are

»
Z (k-1)

k=1

142

distinct T; .. But for some i,j,keB, iZjZk, there exists certainly an
L]

order on i,3 and k. Suppose the order is

irivk.
Then, clearly,
Ti,is Tiyus Tj,e € €75, ;1i>5 A i,jeB3.
Bince
-tis.f * Ti)k * T.is" = Ti!j * Tisk’
or Tivs P Tige F T = Ty % TiLer
or fi,j + Ti,u + Tj,n = T},n + Ti,x'

This means that one information unit is redundant. In order to remove
the redundant one we must introduce the restriction “only take one 1 in

{7;,;li>ini,ieB3”, which is realized by

N
Tg = ¥ {’fi,j!i,jeB M i=3t.
im4

Recause blocks of T are disicinted (1.7) beconmes
M
T =X £%; ;|i*i A tile=0ilad.

This states that we only take the ¥; . with different i to build T.

With the N information units for any non—zero partition T, there
are |7T| redundant information units. For them, we only take those
Ti,; =uchthati is the minimum element in the block which contains i
in order to make it coincident on both non—-zero and zero partitions.

Therefore, any partition can be built by

l(i}j) ALidr=Lilr v {(i=]) A (1=min(B{i)))3 (1.10)

N
T = X 5, ;
where i=min(B{i)) means that i is the smallest element in the block
containing i. Although we have |T]| redundant units for the
representation of non-zero partitions, we will see later that it is
very convenient for the operations of partitions.

8o far, we have divided any partition on § into N information units

each of them meets i2j. SBince, in each fi, only two parameters, i and

i
is are involved, we can use a very simple form of representation to

indicate the character of T;

i,; ? only i and

143

Jin a block. An obvious way to do this is to use an array in which the
index is i and the value of index i1 is j. Consequently, a function is

defined as follows:

DEFINITION 8.1
Let A be a partition on 8. P is a p~functionof #if Pymaps S into§
by the following rule:

Pyis)=s If and only if YteS: [sln=[tlw = t2=;
Pyist#s if and only if 3P,n,is) eS: [sIn=[P,{(s)1x =% =s2P_(s).

(End of Definition 8.1}

If we make a comparison on a partition of a set and an undirected
graph, we know fortunately that the p~function is equivalent to the f—
function invented by Rem[4}. This is because, if we consider the
elements of a set of a sequential machine as the vertices of an
undirected graph, a block of the partition just is a connected
subgraph. Therefore, the Rem algorithm can be directly used later in
the discussions of algorithms of basic operations in machine

decomposition theory.

By definition, a p—function of a partition X portraies vividly the

block characters of the partition with the following properties:

1) for any se8, 18P (s)=sg
2) any block has one and only one identifying element s with
Py (s)=s5;
) for any s,teS
[slw = [tIw If and only if id(s)=id(t}{P,) j
4} 7 is zero partition Jif arnd only if id(P")“ = N

-y

3) ¥ is identity partition J7¥f and only Iif id(P”)#

]
ot
-

&Y for any %, T on S
T = id (P % 2 idP)%

7) % has more than one different p~function 7i¥ and only if
max |B;| >2, B en;

144

where i) an identifying element is an element s such that

Fyis)=s;

ii) idi(s) denotes the identifying element which comes
from that there is a finite sequence of 1..1,

1gig]s]|,

. e R i
idi{s)= PW(P“ (....(P” (s5))...))

— i+i g b .
such that Px (s}-Pﬂ(s),

iii) id(Pﬂ)“ denotes the number of distinct identifying

elements in PW'

From the definition, we know that a partition function takes Nxi
bits, where L is the length of words in a camputer, and that where N>L,
a partition Ffunction gives a great advantage for the space
requirement. We should also note that in the case of using packed
array, a partition function only takes NxloggN bits for its storage.
Aan implementation of partiton functions is defined with the following
two types:

STYPE
FTYFE

1..N0
arrayfll..N3 of STYPE.

]

i

8.2.2 Partition Addition
B.2.2.1 A Method for m +xn, by Hand

A method for calculating the partition sum A, +X, by hand, like
normal form on conpact computation on decimal numbers, is presented
here. In this method, firstly, we draw a table in which each column
denotes an element of the set and each line denotes a block of A, or of
M. Secondly, we fill entries in the table in this way: if element j
belongs to some block iy then we put a x in column j on the row in which
the block is located. Thirdly, we calculate the partition sum by the

following procedure:

145

PROCEDURE 8.1
1. Take a column i without any symbol of its head;
put a line on column i and a new symbol on the head of
column i
2. I¥ row j has a ¥ on column i, put a line on row i;
3e If column k (k#i) has a x on row j, put the same symbol
on the head of column k3
4. For all rows with a x on column i, repeat 2 and 3 againg
5. For all columns with a x on row j, repeat 3 and 4 againg
6. Repeat 1-5 until the heads of all columns have symbols;
7. The elements with the same symbols form a block of A +X,;
(End of Procedure 8.1)

To illustrate the procedure an example is given as follows:

EXAMPLE B.1

Let n, = {1,5,2,7,%,3,8}
n, = {1,5,%,3,8,5,7?

be two partitions on the set
S = {1,2,3:4,5,6,7%

By Procedure 8.1, a compact form for calculating partition #;+%, is
given in Fig. 8.1.
{(End of Example 8.1)

~
-

-
o

3
o
W N
-
~N
*
|
|
i
|
!
|
|
!
P
1

I 4
-
b

-
-
o

|

b
.
d
R e
N

-
A

N B

R AR, = {1,8,5,6,2,3,7

Fig. 8.1 7+,

146

In the table, each vertical line indicates the blocks with common
elements and each horizontal line indicates a subset of block of
R, +W,. Since we check all subsets of the block, a correct result is
pbtained. Because we do poassibly many partition additions on a small
set during a study, the method mentioned above presents a convenient
and reliable way to do them by hand on paper.

Alittle more should be added when we calculate the partition sum
of more than two partitions the procedure shows a big advantage for a

convenient computation.

8.2.2.2 Partition Sum P +P,

Now, we consider how to do partition addition based on two P—
functions. This means that from F, and P, of &, and %, respectively,

how to do we can get a P, which is a p-function of Iz = &, + #A,.

By the concept of information units we know, for any #, ¥ on 8

]
M+E = W + § {Ti,jlii}j) A Lide=0317) v {i=3) A (i=min{B{i)))3}
i=1

Since R+THX = A+T, we alsc know

™
#+T = X {R’+Ti'j|(i}j) A (Lilr=Lidx) v {i=j) A (i=min(B(i))1}

i=1

This states that we merge continually two blocks B{i) and B{j) in &
if i1 and j are in the same block of T¥. Comparing with an undirected
graph G, 7t+*ri,j, here, is egquivalent ta “wmaking a nea edge between
vertices i and j to the graph 67. For this, Rem presented a beautiful
algorithm {41 based on f-function representation of a graph, which can

be directly used in our problem and is described as follows:

Algorithm NEWEDGE (var P:PTYPE; s,t:5TYPE);
input: p-function P of # and elements s and &t of Ts’t;
outputs p—function P of A+T; .3
procedure?
begin var s,,t,,s,.t,: STYPE;
Saat,y 1= s,t:
Sy.0, 1= Pig) Pit);
do s,<t, = Pt} 3= s,3 taaby 2= t,,P{t;)g
I ty<my * Pisy) 2= t,35 S5+8; 1= 5;.,FP(s5,7;
od

end

Tae honour the inventor, we give the name NEWEDGE for

147

its

application in our problem. NEWEDGE realizes the merge of two blocks

which contain elements s and t respectively by reassigning the values

of p—function of elements from s to id(s}) and t to id{(t) and finally

meeting

id(s} = id{f) = min{id(s),id(t)} .

Secondly, we consider how to use NEWEDGE to calculate #+7.
For Py = P;+P, we initialize it into P;, that is
Pa= P,

realized by

1

1;

iEN 4+ i,Pg (i) 1= i+1,P(i) od.

B

In order to do X + T;

j e call the procedure NEWEDGE by

NEWEDBE (P ,i,F5(i)).

But, because there is some redundant Ti,j

trivial, we should give up the operation on Ts,j-

This is done by
if i# Pa{i) + NEWEDGE(F5,1i,FP5(i)} f£i.
The procedure has to be repeated for all
Ti,je{fi’j[ii>j) A Eile=Ciled,

which is realized by examining all P,(i) in P,;, that is,

do ISN + if i#P,(i) + NEWEDGE(P,i,P,(i}) fi od.

in P; on which A+T;

|

]

is

Finally, a completed algorithm for calculating P,+FP, is obtained as

follows:

148

Algorithm BUMP(var P, ,P,,P3: PTYPE; N: STYPE);
input 3 Partition functions P, and P,, partition N;
output: Partition sum Pa= P,+P,;
procedure:
begin
beqin var i : integer;
i= 13 '
do 1SN + i, Py(i) s= i+l, PGi) od
end

begin var i integers;

1
do i$N + if i#P,(i) - NEWEDBE(P5,i,Pa(i)); i z=i+i;
P i=Pyti) + i 1= i+l

fi

end

In the algorithm a variable N is arranged by making it suitable to
any type of partitions, such as state partitions, input partition or

output partition, on which N=NS, N=NI or N=N{.
8.2.3 Partition Product P, -P,

Let #, T be partitions on 8. then, based on the definition of

partition product, we have

L N
n-T = E fmy oG A Lide=Cilny - X 7 ;|35 A (Lilr=0il73
i=1 » i=1

[(ix3) A (Lilm=Lilm) A (Cilr=[jlt}3

iy

N
= F {®
It tells us the main thing to do in the operation is to judge each
X

Ly
function to do this.

if there is a Ti, in ¥. Consequently, we should develop a

J
As we know, for any i,jeb,
Cidw = [ilw it and only If id(i}=id{j) (P

in P. Therefore, a function IJLINKED is written easily as follows:

Algorithm IJLINKED(var P: PTYPE; 1,JdJ: STYPE) : Booleang

input @ p—function P; elements I and J ,

cutput: Boolean function IJLINKED = true if id{(I)=id(I)

else IJLINKED = false
procedure:
begin var I;.J, & STYPE;
Iaedy 2= 1,Jd3
do I.# P{I,) » I, 1= P(I,) pd
do Ja# PUIg) + J, = P(J,) od
IJLINKED 1= (Iz=d,)

end

a¥

an

Now, using the Ffunction we can write down the procedure

calculating P, -P,.

Algorithm XF{var P, ,F;,P3: PTYPE; N: STYPE);
input @ p—functions P; and P,z partition type Nj
outputy Pa=P, -F,
procedure:
begin
beqgin var i: integer;
i = 13
do iEN 3 i,P,(i) = i+i,i pd
ends

begin var i,j: integerg

io= 1y
do iEN-1 -+ 3§ 2= i+1;
do J=N -+
if idDI=id(i) Py A idGi)=id (i) (Py) -
NEWEDGE (Pg,iu i)y i = i+l
f id{Fid (I (P v idd£Fid i) (Py) = §
£i
od; i = i+l
od
end

end

The relation idGi)=idi{P,(i)) (P;) is done by

IJLINKED (P ,i,P, (i)).

= 3+l

149

for

150

To understand the algorithm conveniently we write
IJLINKED(P,,1,FP (i)} by the form of id{ii=id(P {i))(Pg).

8.2.4 n7

Tyt

DEFINITION 8.2
State pair (s’ ,t’) is a relative state pair of state pair (s,t) ¥

and only if there exists a xeI* such that
3
(s,)8, = {(s°,t). (4,1}

(End of Definition 8.2)

For any pair (s,t), its relative pairs form a set Rs’t,
R e = {(s’,t‘}iis’,t') is a relative pair of (s,t)3. (4.2)
The pair (s,t), obviously, is in R,,t since for an empty input ¢
(s,£)8, = (s,b).

by Property 2.11.
Then, for any s,teS, their smallest SP partition x:'t is
calculated by

e, o= K Omy i, a0eR, 3. 4.3

Mow, The things to do are to find (g’ ,t°) and to record it in Rs’t. We

define a p-function P to record R, , with the initial value
P = a p—function of X, ..
When a (s’ ,t’) is ochtained, it is recorded by
NEWEDGE (P,s5" ,t" 1.
Once we get all (5’,t’)eR,’t, the final wvalue of F just is a
p—function of xi’t, that is,
F = a p~function of ﬂf,t

To find a (5’,t’)eRz’t, we start from (s,t), for all iel, the

next states

)
(s,8)8; & Ry -

Generally speaking, if (s’,t’)ER,’t, for all iel, (s’,t‘)EiER,’t

151

and for any Cs’,t’)ﬁi we must record it in P by
NEWEDGE{(P,8L=’ ,i],8[t/ ,i3

where 8§01 denotes the array for transition table of a machineg
another thing to do is to find continuely that for all jel,
F k4 _" b3
(s ,t)518"5 Ri, "
The procedure should be repeated until all (s’ ,t’) are checked on all

jel. Conseguently, a recursive procedure is yielded as follows.

Algorithm HNEWPAIR{(var P: PTYPE; s,,t,: BTYPE);
input : states s and t; array 53

output : p—function P of R, .

Procedure :

begin var i: integer;

i oz= 1j
da is=NI -
if Blog,il#8lt,,id A id(Els,,iDFidELL, i (P) -
NEWEDGE (P, 8ls,,i 3,80t ,,id);
MEWPAIR(P 8ls,,i1,80t,,10);
ioe= i+lg
| 805,,i1=80t,,1i]1 v id(8ls,,i1)=id(80t,,iN (P) -
i = i+l;
£i
od
end

Here the restriction 8lsg.,i1#80[t,,i] is presented from

?!‘+"€'i, i = b

and id(8ls,,i DI#id(8§[L,,iT) (F) from

T ' 3+T.§ * =TT] 3+TJ' ' ety s

which guarantee that for any s,teS8, the NEWPAIR is called
NS -~ |a7]

times. Thus, the maximum number of calling NEWPAIR is N5-~1 only

when 77 . = m(I).

So far, an algorithm for n:!tis written easily based on the

152

procedure NEWPAIR.

Algorithm ﬂ:,t(var P: PTYPE; s,t: STYFE);
input: states s and t; array 8§[1;
output: a p—function P of ﬂ:,t;
procedure:

begin var i: integerg

z=13

B

iENS = i,P(i) r=i+1,i odj
if s>t 2 P(s) = &g
I tis 2 PLE) 2= 8
fis
NEWPAIR(P,s,t?
end

8.2.5 m{n)

To compute m(R) we consider first

N
=3 {n

i=1

ti}j A Lildo=L3dnd (5.1}

iy

By Theorem 3.1 in [15],

M +R,) = m{A,) +mlAy)

We have
N
m(my=m¢ T 7; ;|i>i A [idn=Lilan)
i=1
]
=T tmtn;) |i>i A [idw=L[ilm? (5.2)
i=d
Now, the problem is how to do for min; J.) after easily getting w;,in

p~function of #. In ®;,; there are only two elements,i and j, that

should be considered. According to the definition of moperation it is
obvipus that

m{n

iy

mA;) = § {Tg
3

iy 3

LYE. PSR i < AN
ts

iy

mi{n

iy

for 5-85, I-S,

NS

i=1

MI

i=1

NI

i=1

NS

} o= E {Tisk’jsk’fﬂr
,Raj[fnr

,kx_tfar
i

y = {r, . for
i§1 et g |

all

all

all

all

kell}

keS2

k53

kell

i-g0, or 50 respectively.

153

(5.3.a)

(5.3.b)

{(5.3.c}

{5.3.d}

Let Fy be a p~function of % and F, be a p-function of m{a.

Then, for (5.3) we can realize them by

"
[}
-

v 7
R
m

-8

I 1-5

i 1-0

i

pair

pair

pair

pair

do kNI

do ksNI

do ksSNS

NEWEDBE (P4, 60i ,k1,80F, (i) ,k1);

k =

NEWEDBE (P, ,8[k,i1,80k,P, (i) 1)

k =

= j+i

NEWEDBE (P, ,ALi,k1,ACP, (i) ,k1);

k =

= k+1

NEWEDGE (P4 ,ALk,i1,ALk,P, (i)1);

k =

= k+1

where ALl expresses the array for ocutput table of a machine.

If the computations are repeated for all i in P;, a p~function P, of

mi{X)} is obtained finally,

algorithm:

which

is described by the following

154

Algorithm m{A) (var F,,P,: PTYPE; PT: stringl;
ipput: p-function of A; pair type PT; arraies &L1 an AL3]
outputs p—function of mg (M, my Ry mg_p M), or my_g(N)
procedure:
begin var i,i,k,n;,na,ny: integer;
if PT='5-5"4 n ,fNig,nNgs = NB,NI,NS

| PT="I-8"4 n,,ng,ng, 3= NI,NS5,NS

P PT="8-0'9 n,,ng ,ng, = NS,NI,ND

| PT=1I-0"7 n, 4 Naang, = NI,NS,NO

i

In, [l ln_ L I*Ia
(o] [a} o
[=
1A
[B
N e
4
-

L
Y
]

-

-

H
-

+
-

.

"3
2]

o
-

[

-

1S, =
if i#P (i) 4 k = g
do k=n, -+

if PT = ’§-5'

if &Ci,kI#FSLP,(i),k] -+ NEWEDGE (P,,&0i,k1,80P, (i),k1)

I 8Ci,kI=8LP,(i),k] - skip
£i
P PT = “1-87

if S[k,il#86Lk,P,(i)] + NEWEDBE (P,,5Lk,i1,8L0k,P, (i) 1)

i 80k,il=5§Ck,P,(i)] » skip

i PT = '5-0"

if AL kIENP, (i) 4 k] = NEWEDGE(F, ALl kI, AEP, (i) k1)
i

ALL,kI=ALP, (i) ,k] = skip

I PT = f1-0°=

if ALk,iJZALKk,P, (1)1 + NEWEDGE (P,Ak,il,Alk,P, (i)1)

| ALk,il=ALk,F,(i}] = skip

oy I-h
Jod
L]

s= k¥l
od

I i=P, (i) 3 skip

iz

g= i+l

Lo Y
s

L
= 10
Eg

155
8.2.6 M{m

To compute M{X) means that for a given partition X to make sure

each Ti,; such that
N
T = M{ny = TLT

izt

iy 3 1123 A Lidy =il ? (5.1)

Under the case of using p~function it is for every i in P, of MO
to find one and only one j such that

ird and CiJygp = Dilyemy -

For the restriction i>j it is guaranteed by searching some j less
than i. But, for Lily 4y=0ily,y, + by the definition of M}, it means
for all keNI, Li&, In=L[i8, 1w, (for Mg _.z). That is

Eidygy=Lily gy 1FF Li8,dw=L[i8, 1w
for all keNI, which is translated by

Pa(i) = 3 iff 1d{BLi kD =id (LI, k1) (P,)
for all keNI.

Similarly, we can establish the judgements for other types of M
operations as follows:

For My (%)

Pati) = 3 iff id(Blk,i D =id(§[k,31) (Py)
for all keNSj;
far Mg om0

Pati) = 3 iff id{ALi,kI)=id (ALJ, k1) (P,)
for all keNIjz
for My_5(m

FPatiy = j if¥ id(Alk,iD=id{klk,i1) (P

for all keNS.

When a k is found, so that id{(6Li,kD)Fid(SLi,kI} (P
the checks for other k’'s should be stopped. We give a controlling
boolean variable Ef to record it provided EQ is false we can stop the
checking immediately.

Also because only one j is needed for the F,{(i) we give another
controlling boolean variable FIND to indicate if or if not
filw=Ljilw. Once FIND is true we can stop the searching for other
smaller j immediately.

With the considerations above an algorithm is natwally yielded

as follows:

156

Algorithm M{X) (var P,,P,: PTYPE; PT: stringl;
fnputsz p—function P, of T, pair type PT; EL] or ALl
output: p-function Py of Mg (M) My (W), Mg () or My_o ()
procefures
beqin var i,isk,n;,ngnztinteger; FIND,EQ: boolean;
if PT = "5-8' = njunzyng :=N5,NI,NS

P PT = “I-8° 4 ny,ng,ng :=NI,NS,NS

P PT = “8-0° 4 ng,ng,ny :=NS,NI,NO
TI-IF 4 nyang.ng 2=NILNS,NOD

u
-]
[

i*1 A not FIND <
3= j-13
k,E8 3= O,trues
do k<n, A EE -
k == k+1j
if PT=/'5-8'
if 5Ci,k1IZBLI,k] » ERQ:=id(&Li kD =id(5Li,k1) (P,)
&Ci k1=8Li,k] » skip

e

i
P PT= I-8° =

if S5Ck,ilZ56Lk,31 -+ E@:=id(§Lk,i) =id{(8Lk,3i1) (P,)
Elk,il1=8Lk,3j1 » skip '

by
[V —

] .

I P

-}

= G- -
if ALQi,kIZALG, kI - EB:=id(ALi, k1) =id (AL, k1) (P,)
I ACi,kI=ALj, k1

+

skip

£i
i PT= 10" =

if Alk,iJ#n0k,33 = E@:=id{(Alk,iD=id{ALlk,il) (P,
Ak,i1=Alk,J1 » skip

h
CLLR—

-
3

e (ol
e

FT="5-8° - E@ = id{(&li,kIi=id{&Li,k]) (FP))
PT=I-8' - EQ = id(§Lk,iJi=id(&0k,31)(P,)

ww ‘

157

| PT="8-0' 4+ EQ = id(ALi,kDI=id (AL, k1) (P
I PT="1~0" =+ EB := id{(ALk,iD=id{Alk,3i1) (F)

a

iz

if k=n, A E@ =+ Py{i) = jy FIND := TRUE

k#n, Vv not EG - skip

l-h
(M-

8.2.7 Relation Operations

Since many comparisons may be made for two partitions, two pairs,
or two trinities, it is essential to establish some algorithms for
them.

Because the comparisons of pairs or trinities are, in the final
analysis, built up by those of partitions, we only consider here the
algorithms for partitions. relations on the representation of p-
functions.

Let o and T are partitions on set 8, and

[i>3 A [idw=L3idn3

N
7{=E{7ti"-

L.
¥ =X {1 |23 A Cidr=Cilad

iy

Then, it is ovbvious to know that, for relation wst,

et

"5 iFF MG M =T

for all ”i,;* i?i A Lilde=Lilw, in 7.
With p-functions it is established by

P, P, iFF Py UG£ =2 id(i)=id (P, (i)) (Py)

for all ieS.
Thus, the algorithm for Py & P; is shown below.

158

Algorithm PILTP2(var P,.P,: PTYPE; N: integer): boolean
input ¢ p-~functions P, and Py; partition type N;
output: PILTP2 3= 1,true;
procedures
begin var i: integers
i,PILTP2 = 1l,true;
do isN A PILTP2 -+
if i#FP, (i) » PLLTPR = id1)=id(P,{i)) (Py}
I i=P, (i) -+ skip

i
i oz= i+l
od
end

Having the algorithm P1LTP2, other algorithoes of relation operations

are easily written down as follows:

Algorithm PILEP2(var P, ,F,: PTYPE; N: integer): boolean;
input: p-function P; and P,; partition type N;
outputs: PILEP2=true if P <P,
procedures
begin
PILEPZ == PLLTPZ(P,,P;,N} A not(PILTP2(P,,P, N))

end

Algorithm PlEQPL(var P, ,P,: PTYPE; N: integer): booleang
input: p—fuction P, and P,;; partition type Nj
cutput: PIEGP2=true if P;=P,
procedures
begin
PLEBP2 = FPILTP2(P,P5,N) A PILTPZ(P,,P; N)

end

8.2.8 m’ (X)) and M’ (7O

Because of the existence of “don‘t care” conditions, the
algorithms for computing m and M operations on an incompletely
specified machine are ruled out. Here we consider the algorithms on
weak pairs.

Let m’ denote the weak n—operation and M the weak M-operation.

159

Then for a partition P, there are four m' {(7) and four M (N as follows:

m_ o (7 my_c (0 mg o (R my_ . (7
ML 5 (20 M. gtm Mg _ g (70 Mi_g)

According to the definition of sets on a machine mentioned before, the
anly difference between incompletely specified and completely
specified machines is that there are some zero entries in the 8 and X
tables. Therefore, we should have a special treatment to the zero
entries, just like

m’ in

f Wi,y =K {Tisk,jsnliskﬁjsk, for all kel

for weak m-operation, and
£ily,. = Lily- iff i85, ,£3i8, 70 = BLik, Im=L3i5, 1w Ykel
Plug_gom Ay _om pFIi8, % " 38

for weak M—operation.

With the representations of p~functions the treatments above are
easily to do in Algorithms minY and M{A) by simply changing the
restrictions such as 15,#38&,#0, which are shown below.

For M’ (), in Algorithm M),

if 5[i,kI#£8Li,k] becomes

if BLi kIFSLI.kI A EBLi,kIF0O A BL5,kIZ0;
8Lk,i1#26Lk,1] becomes

if 8Lk,id#fBEk, 33 A 8Lk,13£0 A 8Lk, jl#0;
if ALik1I#EALIi k]I becomes

if ALi kIZALG kI A AL kIFO A KL3,k1203
Ak,i3#ALlk, il becomes

if ALk iJ#EALK, 33 A ALk,13#0 A Ak, i31#03
and for m' (X}, in Algorithm m{A),

[

i
by

r‘-

if 8Ci,kI#Z5Li,k] becomes
if BLi kIABIP, (i) k] A BLi,kIZO A B[P, (i) ,k1F0;
if BLk,i1#8Lk,Ji] becames
if BLk,iJZBLk,P (i3] A 8Lk,iJ20 A BLk,P, (i) 1£0;
if ALi,kIZALj, k] becomes '
if AL KIZXIPL (1) 4 kT A ALi,kIFO A AP, (i) k103
if ALk,id#ALk,i] becomes
if ALk,ilZALk,P (i)] A ALk,il#0 A ALk,P, (i) 3#£0;
Thus, the complete descriptions of the Algorithms m* (X} and M7 (M)

are omitted here.

160

CHAFTER 9

EFPILOGUE

We conclude this thesis with a short summary of the results
cbtained in preceding chapters and some opinion on further study of

the full-decomposition theorvy.

Up to now, the discussions in this thesis are mainly located on the

following aspects:
. Partition trinities which present a suitable representation
for the information between input and ocutput, and between
present state and next state simultaneously (Chapters 3-7).
. Trinity algebra of a machine, such that we candirectly apply
many of the abstract tools that have been developed in algebra
theory {(Chapter 3).

«» Parallel full-decompositions examed by FPT's (Chapter 4)

- Serial full-decompositions detected by a PT and a FT
(Chapter 5.

» H-decompositions based on so-called H-pairs (Chapter 6).

. Wreath decompositions set up by partition trinities
{Chapter &).

. Basic algorithms for doing decompositions and analyses with a

computer {(Chapter 8).

i81

Moreover, we think the work appeared in this thesis is only an
introduction to the trinity algebtra and full—decomposition theory of
machines. We still have some motivation on this subject with the

following aspects:

- Specified decompositions. Let Mg be a machine and M be any
machine to decompose. The decomposition to make, for some

machine M’ amd some connection w,
M o<1 Mg w M

is called a specified decomposition. In other words, we
specify a machine that should be a component machine of a
decomposition. The decomposition is very significant in a
situation where the specified machine M; is corresponding to

an avilable IC.

« The primary package DASM, Decompositions and Analyses of
Sequential Machines, served as a tool for our study on machine
decompositions and runs on ALTOS in the level of experiments.
To develop a large package from it running on a large machine,
say VAX, for a general application is necessary and possible.
Of course, there will be some techniques to be considered for

gaining speed and managements.

. Although having paid certain attention to mathematical
description on trinity algevra we are still not satisfied
with the description on it. Mavhe it will be done by a

mathematician who is interested in the trinity algebra.

. To expand the trinity algebra based on a set system is useful

and possible.

» To develop the application of trinity algebra to complex
decompositions in order to set up a more complete full—

decomposition theory of machines.

182

APPENDIX

DASM

The programme package DASM
Sequential Machines) was primaryly designed and used as a valuable
toal during the study of the subject of this thesis. Here, we gave a

brief summary of DASM functions and the environment in which DASM was

used.

LANGUAGE

: PASCAL;

OPERATING SYSTEM: UCSD;

COMPUTER
FUNCTIONS:
i)

2)
9
%)

o
&)
7}
)
2

RUNNING:

Once the diskette DASM wasaput in drive A of ALTOS, the system
automaticly went to DASHM state. The functions mentioned above could be

recalled under the guidance of the menu display along the top line of

the screen.

: ALTOS:

Basic operations:

partition: R:,t, My m Mgy Myt Toi

pair s mim), Mim), Py¥ Py, P+ P,

trinity : t£,0 t,, t,® t,;
SF partitionsg
Partition pairs: §-5, 5-40, I-8, I-0;
State decomposition of machines:

parallel or serialg

Partition trinities;
Full-decompositions of machines;
Assignment of states of machinesg

Simulation of machines;

Analyses and decomposition of IGEM =.

{Decompositions and Analyses of

-
3

163

The main command line on such a guide line was like like

*#DASM(1984) : Dlecomp. F{ull-decomp. I(56M Tirinity 7[HYB 84.01].

Typing a guestion mark "7 would cause a display of the rest function

commands:

*#DASM{(1984): Plair S{P-partition A{ssignment Fisinulation Hielp
B(uit tHYR B4.011]

In this situation, typing any capital letter in the command line can
get a certain function while DASM goes to a sublevel. For example,

typing ‘D’ change the guide line into

*Decaomp: Plarallel, S(erial, B{uit THYEB B4.011].

Furthermore, pressing ‘P’ causes DASM to make a parallel
decomposition of a machine. In this way, we can enter or leave any
level. The parameters needed for a particular calculation are input
entered as an interactive mode. Also, the resulis can be put into a
device, such as a printer, a screen, or a diskette according to the
instruction from a user. An “H command in main level represents some

explanation for using this package.

A detailed description of DASM will be presented in a seperate

documentation accompanying the final version of DASM later.

164

REFERENCES

[1]

[2]

[31

[4]

5]

[6]

[71

(8]

fo1

f10]

[11]

[12]

[13]

[14]

Abdullaev, D.A. and D. Yunusov

COJ TION OF SYMMETRICAL BOOLEAN FUNCTIONS.
Autom. Control & Comput. Sci., Vol. 9, No. 2(1975), p. ll~-l2.
Transl. of: Avtom. & Vychisl, Tekh., Vol. 9, No. 2(1975), p. 12-13.

Cioffi, G. and E., Costantini, S. de Jiu
& NEW APPROACH TO THE DECOMPOSI EK‘GF‘SEQUENTIAL SYSTEMS.
Digital Processes, Vol. 3(1977), p. 35-48.

Cioffi, G. and 3. De Julieo, M. Lucertini

OPTIMAL DECOMPOSITION OF SEQUENTIAL MACHINES VIA INTEGER NON-LINEAR
PROGRAMMING: A computational algorithm.

Digital Processes, Vol. 5(1979), p. 27-41.

RBTSCIPLINE ¢

PLINE OF PROGRAMMING.

Englewood Cliffs, N.J.: Prentice~Hall, 1976.
Prentice~Hall series in automatic computation

Eilenberq, S.
AUTOMATA, LANGUAGES, AND MACHINES. Volume A,
New York: Academic Press, 1974.

Pure and applied mathematics: A series of monographs and textbooks

Eilenberg, S.

AUTOMATA, LANGUAGES, AND MACHINES. Volume B.

New York: Academic Press, 1976.

Pure and applied mathematics: A series of monographs and textbooks

Enin, 8.V. and P.N. Bibilo

JOINT DECOMPOSITION OF A SYSTEM OF VECTOR BOOLEAN FUNCTIONS.

Autom. Comtrel & Comput. Sci., Vol. 13, No. 1(1979}, p. 14-20.
Transl. of: Avtom. & Vychisl, Tekh., Vol. 13, No. 1(197%), p. 16~22.

Friedman, A.D. and P.R. Menon

THEORY & DESIGN OF SWITCHING CIRCUITS.

Woodland Hills, Cal.: Computer Science Press, 1975.
Digital system design series

Ginzburg, A.

C THEORY OF AUTOMATA.
New York: Academic Press, 1968.
ACM monograph series

Haring, D.R.

BEQUENTIAL-CIRCUIT SYNTHESIS: State assignment aspects.
Cambridge, Mass.: MIT Press, 1966.

Research monograph, No., 31.

Hartmanis, J.
ON THE STATE ASSIGNMENT PROBLEM FOR SEQUENTIAL MACHINES I.
IRE Trans. Electron. Comput., Vol. EC-10(1861}), p. 157-165.

Hartmanis, J.
P STRUCTURE OF SEQUENTIAL MACHINES,
Inf. & Control, Vol. 5(1962}, p. 25-43,

Hartmanis, J.
TURTHER RESULTS ON THE STRUCTURE OF SEQUENTIAL MACHINES.
J. Assoc. Comput. Mach., Vol. 10(1963), p. 78-88.

Hartmanis, J. and R,E, Stearns
PAIR AND ITS APPLICATION TO AUTOMATA THEORY.
Inf, & Control, Vol. 7(1984}, p. 485~507.

f1s]

[16]

[17]

f18]

[19]

{20]

[21]

[22]

[23]

f24]

{251

[26]

[27]

[28]

[29]

165

Hartmanis, J. and R.E, Stearns

ALGEBRRIC STRUCTURE THEORY OF SEQUENTIAL MACHINES.
Englewood Cliffs, N.J.: Prentice-Hall, 1966,
Prentice~Hall international series on applied mathematics

Holcombe, W.M.L.
ALGEBRAIC AUTOMATA THEORY. Cambridge University Press, 1982.
Cambridge studies in advanced mathematics, Veol. 1.

INTEGRATED CIRCUITS. Part 10: Signetics Integrated Fuse Logic {IFL}.
Eindhoven: Philips Electronic Components and Materials Division
(ELCOMA} , May 1983,

Philips data handbook, IC 10.

Kammozev, N.F. and A.N. Sychev

SPECTRAL METHOD OF DECOMPOSITION OF BOOLEAN FUNCTIONS.

Autom, Control & Comput. Sci., Vol. 13, No. 2(1979), p. 46~50.
Transl. of: Avtom. & Vychisl. Tekh., Vol. 13, No., 2(1979}, p. 54-58.

Krohn, K. and J. Rhodes

ALGEBRAIC THEORY OF MACHINES I: Prime decomposition theorem for finite
semigroups and machines.

Trans. Amer. Math. Soc., Vol. 116(1965), p. 450-464,

Lew, A.

TOMPUTER SCIENCE: A mathematical introduction.
Fnglewood Cliffs, N.J.: Prentice~Hall, 1985.
Prentice-Hall international series in computer science

ly, G.H.
X_ﬁf%éOD FOR SYNTHESIZING SEQUENTIAL CIRCUITS.
Bell Syst. Tech. J., Vol. 34(1955}, p. 1045-1079.

Moore, E.F.

GEDANKEN~EXPERIMENTS ON SEQUENTIAL MACHINES,

In: Automata Studies. Ed. by C.E. Shannon and J. McCarthy.
Princeton University Press, 1956.

Annals of mathematical studies, Vol, 34. P. 129-153,

Pottosin, Yu.V. and E.A. Shestakov

TMATE ALGORITHMS FOR PARALLEL DECOMPOSITION OF AUTOMATA.
Autom. Control & Comput. Sci., Vol. 15, No. 2{1981}, p. 24-31.
Transl. of: Aviom. & VYychisl. Tekh., Vol. 15, No. 2{1981}), p. 31-38.

Pottosin, Yu.V. and E.A. Shestakov

DECOMPOSITION OF AN AUTOMATION INTO A TWO~COMPONENT NETWORK WITH
CONSTRAINTS ON INTERNAL CONNECTIONS.

Autom. Control & Comput. Sci., Vol. 16, No. 6{1982), p. 24-31.
Transl. of: Avtom. & Vychisl. Tekh., Vol. 16, No. 6{(1982), p. 25-32.

Shen, V.Y. and A.C. McKellar
AN ALGORITHM FOR THE DISJUNCTIVE DECOMPOSITION OF SWITCHING FUNCTIONS,
IEEE Trans. Comput., Vol. C-19{1970), p. 239-248.

Shvartsman, M.I.

OUTPUT DECOMPOSITION FOR COMBINATIONAL PLA-STRUCTURES.

Autom. Control & Comput. Sci., Vol. 15, No. 6(1981), p. 9~14,
Transl., of: Avtom. & Vychisl. Tekh., Vol, 15, No. 6{1981}, p. 12-17.

Sorokin, B.L,

ITION METHOD OF SYNTHESIZING CIRCUITS BASED ON PROGRAMMARLE
LOGIC ARRAYS.
Autom. Control & Comput. Sci., Vol. 16, No. 4{1982), p. 47-52.
Transl. of: Avtom. & Vychisl. Tekh., Vol. 18, No. 4{1982), p. 50-35.

Thayse, A.
F ’ALGORITHH FOR THE PROPER DECOMPOSITION OF BOOLEAN FUNCTIONS.
Philips Res., Rep., Vol. 27(1972}, p. 140~1%0.

Yoeli, M.
THE CASCADE DECOMPOSITION OF SEQUENTIAL MACHINES,
IRE TRans. Electron. Comput., Vol. EC~10(1961), p. 587-592.

166

Samenvatting.

Het proefschrift behandelt het decomponeren van segquentiéle
machines in kleinere machines. Traditioneel 2iin deze
decomposities gericht op het minimaliseren van het aantal
toestanden. In de hier behandelde theorie minimaliseren we ook
het aantal inputs en outputs {verbindingsdraden) in de
decompositie. We spreken dan van een totale decompositie ("full-

decamposition").

Totale decomposities ontlenen hun belang aan de komst van
complexe gefntegreard& schakelingen (VLSI1), waarin het aantal

verbindingsdraden een belangri jke beperkende factor vormt.

De theorie wvan totale decomposities 1is gebaseerd op de
wiskundige begrippen partitie-triniteit en triniteits—algebra,
welke in dit proefschrift worden gefntroduceerd. Evenals in de
traditionele decompositie—~theorie onderscheiden we parallelle en
seridle decomposities. Voor de laatstgenocemde decomposities
wordt het begrip geforceerde triniteit (“"forced-trinity*)
ingevoerd. De therorie wordt verder uitgebreid met H-decomposities
- een variaﬁt van de parallelile decompositie - en
kransdecomposities. We laten zien dat het merendesl van de
theorie ook kan worden toegepast op onvolledig gespecificeerde

machines.

Tenslotte presenteren we een aantal algoritmen, die gebruikt
kunnen worden bij het analyseren van machines en het berekenen

van decomposities van machines.

167

CURRICULUM VITAE

De schri jver van dit proefschritt werd op 12 april 1952 te Bhaanxi

in de Volksrepubliek China geboren.

Hij beéindigde de Wugong Middelbare School met een eindexamen in
1968. In 1972 begon hyij zijn universitaire studie in de afdeling
elektronica van de Xian Jiaotong Universiteit. Deze studie werd in
1975 afgesloten. In de daarop volgende jaren werkte hij op het
Instituut der Shaanxi Dynamic. Hij hervatte zijn studie op de Xian
Jiacotong Universiteit in 1978, waar hij in 1981 de M.5c. graad onder
leiding van Prof. Zheng Shoungi verkreeq. Tot 1982 werkte hij als
docent op dezelfde universiteit. Sinds 1983 is hij research fellow in
de afdeling der Elektrotechniek van de Technische Hogeschool te
Eindhoven in de Yakgroep Digitale Systemen {(voorzitter Prof.ir. A.

Heetman) .

[1]

{21

£33

[4]

[51

(61

STELLINGEN

With the development of Integrated circuit technology, the
decomposition theory of machines must include decomposition
related to pins of IC’s, in addition to internal components
(Chapters 1,2).

For any sequential machine, there is a8 trinity lattice and a
trinity algebra for it(Chapter 3).

If there are two orthogonal partition trinities for a
machine, then, that machine can be decomposed into the
interconnection of two smaller machines which can work
independently or in paraliel with separate inputs and
outputs(Chapter 4).

A partition trinity and a forced-trinity 1n which the trinity
product is zero trinity show that the machine is of a serial
full-decomposition. That 1s, there are two smalier machines
with distinct inputs and outputs and one of them takes a
message from the other (Chapter 5).

The minterm-vector method provides an approach to prepare a
numerical algorithm for fault diagnosis and a new way of

calculating Boolean differences on a computer.

Hou Yibin & Zheng Shougi: A Minterm-vector Method
for Diagnosting Faults in Combinational Networks,
Journal of Xian Jiaotong Univ. Selected Paper of
Scientific Research (in English), pp. 157-161, 1981

During the next ten years, computer security will be one of
the most important subjects.

Harold Lorin: Emerging Security Requirments, Computer
Communications, pp. 293-298, Vol.8, No.8, December, 1985,

{71

[al

[91

(10]

[11]

"Structured programming” 1s the Iinevitable outcome of
"structured design thought” that exists in all englneering
design areas.

1. 0,J. Dahl, E.W. Dijkstra and C.A.R. Hoare:
Structured Programming, Academic Press, London, 1972.

2. V.R. Basili & T. Baker: Structured Programming, IEEE
Computer Society, IEEE catalog No. 75ch1049-6, 1975.

Unlike society, science has no national boundaries; it is a
bridge for friendship while friendship 12 a wing of sclence.

1. Claude Bernard: “Art is I, science is we.”

2. THE: Statement of Intent between the Eindhoven
University and the Xian Jiaotong University,
TH Berichten, Nr.14, p.5, 16 november, 1984.

The number of operational symbols in discrete mathematica 13
insufficient for describing complex systems. Thus, it never
ends to create new symbols.

1. J.P. Tremblay & R. Manchar: Discrete Mathematical
Structures with Applications to Computer Scilence,
McGraw-Hill, 1975.

2. A. Lew: Computer Science: A Mathematical Introduction,
Englewood Cliffs, N.J.: Prentice-~Hall, 1985.

Language problems consume much time, bubt, in the Tomorrow of
Mankind, all the people will speak the same language.

A personal computer is not only an interesting asset, but it
can also be tiring to use.

