

Trinity algebra and full-decompositions of sequential machines

Citation for published version (APA):
Hou, Y. (1986). Trinity algebra and full-decompositions of sequential machines. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Electrical Engineering]. Technische Hogeschool Eindhoven. https://doi.org/10.6100/IR246474

DOI:
10.6100/IR246474

Document status and date:
Published: 01/01/1986

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.6100/IR246474
https://doi.org/10.6100/IR246474
https://research.tue.nl/en/publications/985b5c66-74d6-4542-9497-efc8dbfee697

TRINITY ALGEBRA
AND

FULL-DECOMPOSITIONS
OF SEQUENTIAL MACHINES

HOU Yibin

TRINITY ALGEBRA
AND

FULL-DECOMPOSITIONS
OF SEQUENTIAL MACHINES

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE
TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE

HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR
MAGNIFICUS, PROF.DR, F,N, HOOGE,VOOR

EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE
VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP

VRIJDAG 30 MEI 1986 TE 14,00 UUR

DOOR

HOU Yibin
GEBOREN TE SHAANXI,CHINA

DIT PROEFSCHRIFT IS GOEDGEKEURD
DOOR DE PROMOTOREN

prof.ir. A. Heetman
en

prof.dr. J.H. van Lint

CJP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Hou Yibin

Trinity algebra and full-decompositions of sequential
machines I Hou Yibin.- [S.l. : s.n.J.- Fig .• tab.
Proefschrift Eindhoven. -Met. lit. opg .• reg.
ISBN 90-9001285-0
SISO 664.2 UDC 681.325.65:519.6 UGI 650
Trefw.: automatentheorie.

Voo~ mijn vade~and

To my mo~he~and

The investigations described in this thesis were performed at the

Eindhoven Univarsity of Technology, in The Netherlands.

I am greatly indebted to the Univarsity and the Faculty of

Electr-ical Engineering for offering me the opportunity to study and to

publish the results of these investigations in their present ferm.

This reflects a friendship and close cooperation between the

Univarsity of Eindhoven and the Xian Jiaotong University, in China. I

appreciate the contribution of the chairman of Friendship Association

of Holland and China, Prof. dr.ir. P. Eykhoff, for the cocper-ation

between the two Universities and for his kindnees te me and theether

Chinese scholars and students in Eindhoven.

I wish te express my gratitude te all thesewhohave contributed te

this werk in any way.

I indebted te my promotor Prof. ir. A. Heetman and co-promotor

Prof. dr.ir. S.H. v. Lintfortheir interest in my work and for making

it possible for me to present this work as a thesis.

I am grateful to Mr. C.P.J. Schnabel, Mr. M.J.M. van Weertand Mr.

P.M.C.M. van den Eijnden fortheir discussions and suggestions in the

early stages of my werk. I would like te thank Mr. A.G.M. Geurts for his

advice with respect to my program writing and for his help in the other

aspects.

I would like to thank Dr. P.R. Attwood for reading the manuscript

of this thesis and making corrections te the English.

Mr. C.P.G. v. d. Watering made an excellent job of typing the

manuscript and my reports and I would like record my gratitude here.

I wish to thank Mr. I.V. Bruza who enthusiastically helped me to

find books, papers and to verify the reference list.

Gratitude is also expressed to all membars of the EB group whogave

their support to this work in any way.

I repeat my apprec:iation of the help from Prof. ir. A. Heetman and

the International Neighbour Group in Eindhoven for making the stay

in Holland of my wife and myself very pleasant.

Finally, I wish to thank my wife, Xiuzhen, for her consistent

encougragement and assistance with this thesis.

Eindhoven, Hay 1986

CONTENTS

1. Introduetion • • • • • 1

2. Machines and their Deccmpositions ••••••••••••••••••••••••• 5

2. 1 Mach i nes . • • • • • . • 5

2.1.1 BasicModelsof Machines •••••••••••••••••••••••• 6

2.2 Machine Functions ••••••••••••••••••••••••••••••••••••• 9

2.3 Decomposition of Machines ••••••••••••••••••••••••••••• 16

2.4 Universa! Conneetion Model and Decompositions •••••·••• 18

2.4.1 Universa! Conneetion Model •••••••••••••••••••••• 18

2.4.2 Machine Decompositions •••••••••••••••••••••••••• 19

3. Partition Trinity and Trinity Algebra ••••••••••••••••••••• 29

3.0 Introduetion 29

3.1 Partition Trinity ••••••••••••••••••••••••••••••••••••• 30

3.1.1 Partition Pair •••••••••••••••••••••••••••••••••• 30

3.1.2 Partition Trinity ••••••••••••••••••••••••••••••• 33

3.1.3 Trinity Algebra and Its Basic Properties •••••••• 37

3.2 Homomorphism and Quotients •••••••••••••••••••••••••••• 47

3.3 Computation of Partition Trinity Lattice •••••••••••••• 51

3.3.1 Compute Nontrivial PT's •••••••••••••••••••••••• 51

3.3.2 Comprte PT Lattice •••••••••••••••••••••••••••••• 53

4. Parallel Full-decompositions •••••••••••••••••••••••••••••• 54

4.1 Relationships Between Machines •••••••••••••••••••••••• 54

4.2 Parallel Full-decompositions •••••••••••••••••••••••••• 58

5. Serial Full-decompositions •••••••••••••••••••••••••••••••• 68

5.1 Forced-trinity •• 68

5.1.1 Physical Property of a Partition Trinity •••••••• 69

5.1.2 Forced Trinity •..••••••••••••..••••••.••••••••.• 71

5.2 Serial Full-decomposition ••••••••••••••••••••••••••••• 77

5.2.1 Serial Full-decomposition of a State Machine •••• 77

5.2.2 The Type I of Serial Full-decomposition •••••••••• 82

5.2.3 The Type II of Serial Full-decomposition •••••••• 92

6. H-and Wreath Decompositions ••••••••••••••••••••••••••••• 97

6.1 H-decompositions •••••••••••••••••••••••••••••••••••• 97

6.1.1 H-connections •••••••••••••••••••••••••••••••••• 98

6.1.2 H-pairs •• 101

6.1.3 H-decompositions ••••••••••••••••••••••••••••••• 102

6.2 Wreath Decompositions •••••••••••••••••••••••••••••··· 108

6.2.1 Wreath Conneetion

6.2.2 Wreath Decompositions ••••••••••••••••••••••••••

109

110

7. Full-decompositions of ISSH's •••••••••••••••••••••••••••• 116

7.0 Introduetion 116

7. 1 Approach I: WPT • 116

7.1.1 Weak Partit.ion Pair ••••••••••••••• ~: ••••••••••• 117

7.1.2 Weak Partit.ion Trinity ••••••••••••••••••••••••• 118

7.1.3 Approach I of the Full-decomposition of ISSH's •

7. 2 Approach I I: EPT •••••••••••••••••••••••••••••••••••••

122

125

7.2.1 Extended Partit.ion Pair •••••••••••••••••••••••• 125

7.2.2 Extended Partit.ion Trinity ••••••••••••••••••••• 127

7.2.3 The Full-Decomposition of ISSM's By EPT's •••••• 128

8. Computer Aided Decompositions •••••••••••••••••••••••••••• 133

8.1 Data Structure ...•.••••••••••••••••••••.••••••••.•••• 133

8.2 Algorit.hms of Basic Operatiens ••••••••••••••••••••••• 137

8.2.1 Partit.ion Function

8.2.2 Partit.ion Addition

8.2.2.1 A Method for ~ 1 +~ 2 by Hand •••••••••••••

8.2.2.2 Partit.ion Sum P 1 +P2 ••••••••••••••••••••

8.2.3 Partit.ion Product P 1 •P2 ••••••••••••••••••••••••

B.2.4~,t •••••••••••••••••••••••••••••••••••••·••···

8.2.5 m <m
8.2.6 M(~)

••••••• á • ••••••••••••••••••••••••••••••••••

137

144

144

146

148

150

152

155

8.2.7 Relation Operatiens •••••••••••••••••••••••••••• 157

8.2.8 m' (~) and M' (~) 158

9. Epi 1 ogue • • • . . • . • . . • • . . • • . . . • . . • • • . . • 160

Appendix

References

DASM ••• 162

164

Samenvatting • • . . • • • . . • • . • • • . • • • • • • • • . • . . . 166

Curriculum Vitae • . . • • . . . • • • • • . . • • . • • . 167

Acknowl edgment • i

1

CHAPTER 1

INTRODUCTION

In the past decade, digital (circuit and system) design ha:s

undergone dramatic changes. Today, digita:l designers rarely build any

components er devices that are availa:ble in integrated circuit forms.

This is because digital integrated circuits are net only convenient

and ea:sy te use but also eest less. One type of integrated circuits,

which ha:s become very popula:r in digital design in recent years, is the

array logic. Array logic is defined as the use of memory-like

structures for performing combinational logic and sequentia! logic.

Corresponding te the combinational logic: the integrated circuit is

called a programmabie logic array <PLA>, when corresponding to the

sequentia! logic, it is called a programmabie logic sequenc:er <PLS>. A

PLA comprises both an AND array and an OR array, normally. If we put

some cloc:ked output flip-flops and appropriate feedback in a PLAthen

a PLS is built. The PLS is a fully implemented Mealy machine on a: chip

[17]. Theoreticall y speaking, any logic: design can be implemented by a

logic array if we neglect the practical size of the integrated

circuit. However, unfortunately, as we know, an integrated circuit

eh i p is 1 i mi ted net onl y wi th the si ze of the ei rcui t but al se

especially with the pinsof integrated circuits, while the number of

pins is related te the numbers of inputs and outputs of the logica!

system te be implemented. To implament a practical logica:! system by

the integrated circuits available, suc:h as PLA and PLS, leads te a

practical problem- how te decompose a large logic system into several

smaller logic systems- each can be implemented by today·s array logic

integrated circuit.

2

Dwing tothefact that there ex i st two abstract mathematica! models

for logic circuits (one is switching algebra for combinational

circuits, and the ether is a sequenti al machine for sequenti al

circuits) the research on this problem centers on a theoretica!

problem how to decompose a larger Boolean function into smaller

Boolean functions - each can be implemented by a PLA, or how to

decompose a larger sequentia! machine into the interconnection of

some smaller sequentia! machines-each can be implemented by a PLS.

fhis theory is referred to the decomposition theory.

fhe decomposition theory for Boolean functions has been well

developed in much li terature, such as 1:1,2, 18,25,28]. The theory and

methods have been applied to the PLA implementation of Boolean

functions 1:26,27]. Hence, the theoretica! problem for PLA

implementation has been largely solved due to the simplicity of

Boolean functions.

Historically, a decomposition theory for sequentia! machines

means an organized body of techniques and results dealing with the

problems of how sequentia! machines can be realized from sets of

smaller component machines, how these component machines have to be

interconnected, and how ninformationn flows in and between these

machines when they are in operation. The research on the theory was

started in the early 1960' s. For the technologies during that period,

the relevant problems were primarily concerned wi th component

reduction. In sequentia! circuits, a component reduction is mainly

associated with reducing thesetof statesof the sequentia! machines

in question. Therefore, a "smaller", or "simpler", component machine

was defined as a component machine with fewer states than the original

machine [12,15]. The definition has been applied and has servedas a

standard for a decomposition whether it is trivia! or nat by most of

the literature and books about the decomposition of sequentia!

machines [9,16]. With the development of integrated circuit

technology and the advent of large scale integration <LSI> and very

large scale integration <VLSI> in digital systems design, the

problems concerned with fewer components have become less relevant

[8]. Consequently, in the view of PLS implementation of sequentia!

machines, the definition does nat meet the requirements for

sequential circuit design using today's PLS packages. A 6 Smaller"

component machine must require fewer pins of PLS package than the

3

original machine in order to implement it. In other words, thïs means

that a smaller. component machine must have fewer stat es, inputs and

outputs than the machine to be decomposed. It wi 11 be apparent that,

when we consider this kind of decomposition, we have to deal not only

wi th the number of stat es but al so wi th the number of i np1..1t s and

outputs too. We refer to the decomposition as a full-decomposition. We

should develop the decomposi ti on theory or look for some new way for

this purpose. This thesis arose from this need. The work discussed in

thi s thesis is one approach to the subject. In i t we shall propose a

method for decomposing a sequentia! machine into inter-conneetion of

component machines, if they exist, each of them has less states, less

inputs and less outputs. The method is primarily basedon the concepts

of partition trinity and forced-trinity which will be discussed

later.

The problem of PLS implementation of a sequentia! machine serves as

a wedge tothe full-decomposition theory. In this thesis we are mainly

conc:erned with the problem only at the abstract algebra level. fhe

study and results are significant, not only in the sense of developing

decomposition theory, but also in any other area of applying machine

theory with similar requirements.

This thesis contains nine chapters. A brief description of each

chapter fellows:-

Chapter 1 describes and expands the full-dec:ompositïon problem.

Some general concepts on machines are described in Chapter 2. We

discuss the different types of decompositions and make a

classification of them by introducing a universa! conneetion model.

Chapter 3 describes the partition trinity, trinity algebra and its

properties. !t provides the mathematica! foundation of full

decomposition theory.

In Chapters 4 and 5 we apply the com:epts of partition trinity and

forced trinity to parallel full-decomposition and serial full

decomposition of sequentia! machines. A H-decomposition is defined

and presented in Chapter 6. It resembles a parallel full

decomposition and is a supplement to the full-decomposition theory. A

4

wreath decomposition is also discussed in this chapter by partition

trinities.

Chapter 7 extends the theory from completely specified machines to

incompletely specified machines. It is shown that most of the results

can be used for incompletely specified machines.

In Chapter 8 we discuss how to use computers for machine

decompositions. Many algorithms for them are presented.

The final chapter is devoted to a discussion of further topics

which are worthwhi le studying for the development of the full

decomposition theory of machines.

I I I

5

CHAPTER 2

MACHINES AND THEIR DECOMPOSITIONS

In this chapter, we are going to discuss the general concepts on

basic: models for sequentia! machines and on types of dec:ompositions of

them. Three basic: modelsof machines are defined in sectien 2.1.

Sectien 2.2 gives some notations and machine functions which makes it

ea.sier to discuss and deal with the topics in this thesis. In sectien

2.3, a brief introduetion to the decomposition theory of sequentia!

machines is given. Inthelast sectien a universa! conneetion of two

machines is presented and many decompositions derived from it are

defined and analysed with the main techniques which are available or

are developed in this thesis.

2.1 Ma.Clh.i:n.E3S

In practice, many complex processes, not only in the area of

computer systems and their associated languages and software, but

also in the areasof biology, psychology, biochemistry etc., can be

regardedas behaving rather like machines. Any given system or design

problem can bedescribed by a sequentia! machine as defined below. The

terms sequentia! machine, finite-state machine, finite automaten,

and simply machine are synonyms. In essence, sequentia! machines are

mathematica! models which describe sequentia! systems, such as

sequentia! circuits. Sinc:e a sequentia! machine is merel y an abstract

model, i t may be used to dec:ribe the operational behaviour of systems

other than sequentia! c:irc:ui ts. Indeed, the term "machine" used here

does not imply that a sequentia! machine has to be real physical

machine or machine-like object. On the contrary, it doesnoteven have

to be tangible; any physical or abstract phenomenon may be called a

sequentia! machine as long as i t satisfies the axioms of this model.

6

2.1.1 BasicModelsof Machines

fhe theory of machines is concerned with mathematica! models for

discrete, deterministic information-processing devices and systems,

such as di gi tal computers, di gi tal control units, el ectroni c ei re ui ts

with synchronized delay elements, and so on. All these devices and

systems have the following common properties, which are abstracted in

the definition of a sequentia! machine.

DEFINITION 2.1

A sequentia! machine or Healy aachine is a system which can be

characterized by a quintuple,

M = < I ' s, o, s,]..)

where I is a fini te nonempty set of input symbols,

s is a fini te nonempty set of internal states,

0 is a fini te set of output symbols,

s is a next-state function, which maps Sxi to s.
>. is an output ·fur.ction, which maps Sxl to 0.

eEnd of Definition 2.1)

We refer to the next-state function and output function as machine

functzons throughout this thesis.

A machine may be presented inthefarm of a table or a diagram. The

table and the diagram in question are called the transit ion table and

the transition diagra111 of the machine, respectively. The table, or

the diagram, is defined by the next-state function and output

function. In this thesis, main1 y, the farm of the tab1e wi 11 be used.

From the definition of machines, if for any pair of inputs, x i and

xj, in I, the output function satisfies, for allsin s, there wi11

exist an output value, say yeO, such that

then, the mapping].. becomes independent of inputs, i.e.,

A : S -+ 0.

In this case, the machine is called a Hoore machine and is defined by:

'1

DEFINITION 2. 2

A sequentia! machine is said to be of the Moore type <Hoore lltachir.e>

1f its output function is function of its states only:

Î\ : s -; 0.

tEnd of Definition 2.2)

Therefore, a Moore machine is a special case of Mealy machines. It

can be converted into Meal y machine and vice versa. A state

dependent machine is an alternate name for Moore machine, in some

books. In this thesis, we are mainly concerned with Mealy machines.

In some situations we are only interested in the internal states

and not in the outputs of a system. This leads toa machine without

outputs, which is a special case of the Mealy machines when the output

function is a null relation or the output set is an empty set. These

machines are called state lltachines and a precise defini ti on is gi ven

as tollows.

DEFINITION 2. 3

A state machine is a triple •

M <I,S,B>

where: I and S are input set and state set, respectively and S is a

transition function.

IEnd of Definition 2.3)

In some books, a state machine is also referred to as a semi

auto11taton.

In the definitions given above, the next-state function was a

mapping from Sxi-; S, which means, for any seS and xei, S<s,x>eS. This

kind of machine is called determinist ie machines. In contrast to this,

there is another function which maps Sx I tosome subset of S, that is,

S<s,x> ~ S. This kind of machine is said to be nondeterlltinistic. In

this thesis, we are concerned only with deterministic machines.

Broadly speaking, the relation S: Sxl -; S or A: Sxl -; 0 may be a

partial function, which implies that, forsome seS and xel, S<s,>:) is

probably not specified. The machines with undefined next-states or

outputs are referred to as incompletely specified machines, while

the machines without undefined next-states and outputs are referred

to as coapletely spec ified machines. In most of the chapters of this

thesis, the discussions relate to completely specified machines.

a

Machine theory is the study of abstract computing devices, their

organization, their structure and computational power. In the thesis

we are mainly concerned with the structural aspect of it, which is

referred to as algebraic structure theory of •achines. In

particular, by the theory, we learn how a quite large machine can be

partitioned intoasetof smaller component machines, each of which

can be realized by the currently available LSI and VLSI circuits, also

how these component machines have to be interconnected.

In this thesis, a rather informal notatien for logica! deductions

in the proofs of propositions and theorems is used, as explained here.

Let F', Q be two statements. Then the notatien :-

p

~ Q {R}

means that P implies Q under the reason R.

Similarly we have :-

p

#Q {R}.

A statement may be of the form •

D : E

where D is a domain and E is a predicate or a logica! statement

expression, stating that E holds in D. When more than one variabie

exists in D, each domain is separated by a space. Insome cases, domain

D may be omitted if D is clear from the context.

An expression may include not onl y the logica! conjunctions A or v,

but also those on sets such as ç, e. For example, "B ç B' eA AC Ç C' eA"

means that "both that B is a subset of some B' in A and that C is a subset

of C' in A" are true.

The hint {R} sametimes may be in a form {calculus} which indicates

that an appeal to everyday mathematics, like arithmetic or predicate

calculus, is meant.

9

By the defini ti on of machines, generally speaking, we shall

present the machine M = <I, S, 0, 8, ?.> wi th an input symbol x eI whi 1 e i t

is insome state, say seS. The machine then outputs À(s,xi while it

moves to state 6 <s,x >. Th is notion is somewhat cumhersome and we shall

introduce the idea of mappings \or functions) induced by the input.

From the viewpoint of inputs, the machine functions, 8 and À, can be

considered as sets of functions induced by all inputs :-

8 <Sx I Sx; s ... s and x ei}

and " o,x I "-x: s ... s and x ei}

where Bx: s ... s is defined by

'lfseS 'tfx ei s,{(s} S<s,x)

Àx (s} À(s,x>.

The Bx and are called the next-stat:e funct ion and output

function, respectively, with respect to input x. For the sake of

convenience of operations on the machine func:tions with respect to

different inputs, we write :-

Finally, we make

Notatien 2.1

sSx Bx <s>

SAx = Ax (s)

for all seS and xel.

(End of Notation 2.1)

S<s,x>

À(s,x)

From the notatien introduced above, we have the following

convenient rules for the operations on different input sequences.

Property 2. 1

Let x,yei. Then, for any seS

(sSx>8y

(s8x>Ay

sSxSy;

s8xAy;

10

Proof. sBxy"' B<s,xy)

B<SCs,x> ,y>

<sS:<> By

sSxBy

(End of Property 2.tJ

s'Àxy= 'À(s,xy>

'À(B<s,x>,y>

= <sBx>'Ày

sSx'Ày

lt shows the convenianee that the notatien gives namely natural

operational order from left to right.

Property 2.2

Let I • denote thesetof all fini te-length sequences of elementsof

I.

Then, for x= x 1 x 2 ••• xk in I*, x 1ei, 1~i~k.

SAv u X
A 1n2• • • lt:

Proof. Repeatedly apply Property 2.1.

tEnd of Property 2.2)

So, Sx and Ax are functions with respect to an input word x in I*

Bx S --* S,

Ax S --* 0.

Property 2.3

If x = then for all seS,

sfi!{ = s and

where L is a null word.

Proof. B<s, L) [..
lEnd of Property 2.3)

Let A be a set. The power set of A is defined as set {ala~A} and is

denoted by 2A because i t has an interesting proper-ty: I2AI =2 1A 1 •

Theref ore, in ether words, 2A is the set of all subsets of A. Let S and 0

besets of states and outputs of a machine. For power sets 2 5 and 2°, we

have the following functions defined in Notatien 2.2.

Notation 2.2

Two partial functions,

"ii •
~x • ..., 2s and);x : 2s ...,

are defined by QSx {qSx lqeQ ç 8}

Q;::-x {qÀxlqeQ ç 8}

where x ei.

If x ç I, then Bx and ;::x are defined by

QSx {qSx i lqeQ A x i ex}

QSx {qSx i lqeQ A x i ex}

CEnd oT Hotation 2.2)

...,o
L.

By the definition the following results are apparent.

Proeert~ 2.4

Let Q1 ,Q2 ç 8 and x 1 ,x2 ç I.

i) Q1 E Q2 ~ QïSx E Q28 .. A Q1 ;::x ç Q2;::-X
1 "1 1 1

ii) x1 ç X' ~ G!1Sx ç Q1 A Qi ;::x ç Q1 ;::x 2 :!. 2 :!. 2

iii) x 1 E x 2 A Q1 !:: Q2

~ Qi S .. E G!2Sx 1\ Qi ;::x E Q2~x
"1 2 1 2

ProoT. The properties (i) and (ii) fellow directly from the

definition of Bx and ~x• The property (iii) is evident

because

Q1 E Q2 =? Vx E I

x 1 E x 2 ~ VG! E S

G!:~,Bx E Q2Sx

QSx E QSx
1 2

{(i)}

{(i i)}

Substituting x by x 1 in (1) and Q by Q1 in (2)

we have

By the transitivity of set inclusion we know

Q1Sx E Q2Sx •
1 2

For Qi~X E Q2~X i
1 2

the procedure of proef is exactly the same as above.

(End oT Property 2.4)

(1)

(2)

11

12

Proeerty 2.5

If Q 1 ~Q 2 Ç s, xei, then

Prooi'. Let G! 1 {p 1 ,p 2 , ••• ,p.} and

= {q1,q2, ••• ,qn}• m~lsJ, n~1s1.

Then,

(Ertd of Proper ty 2. 5)

Property 2.6

If Q Ç S, x 1 ,x 2 Ç I, then

QSX u QS = QS(X ux I'
1 x2 1 2

QÏ.x
1

U QSx
2

= QÏ.1x
1

ux
2

1•

Prooi'. Suppose G! = {q 1 ,q2, ••• ,qn}•

x 1 {i 1 ,i 2 , ••• ,ik} and

x2 = {J1.J2., •••• Jl.}, ~<~Pl. l~III.

With similar argument we can prove that

(End of Property 2.6)

Property 2.7

Proof.

Q1Blx 1ox
2

lç Q1Bx
1
n Q1Bx

2
;

(Qin Q2>~x ç Q1~xn Q2~x•

1mply

That is, qBx C Q1 Bx 0 Q2Bx·

Therefore,<Q 1 0Q2 >Bx C Q1 Bx 0 Q2Bx·

(Q10Q2>Bx = Q1Bx 0 Q2Bx•

Hence, (Q10Q2)Bx ç Q1Bx n Q2Bx·

In the same way, we have other three relations.

(End of Property 2.7)

Property 2.8

Proof.

(Qi UQ2) 6, x ux I
:!. 2

U Qi Bx. •
i,j=1;2 J

U Qi ~x.·
i,j=i,2 J

Q1Bix u- 1 U 9 2B1x ux 1
1 "'2 1 2

U Qi Bx. •
i,j=1,2 J

(End of Property 2.8)

{Prop. 2.5}

{Prop. 2.6}

{calculus}

U Qi~x. •
i 1 J=i,2 I

13

14

From Property 2.8 it is easy to see that

Q:tSx U Q2Sx ~ (Q1U Q2)61x ux 1'
1 2 1 2

For the sake of convenience we make

Notatien 2.3

Q1.SX x Q2Bx m 1 u Q:2) SIX UX I;
1 2 1 2

Qi~X x Q:2~X = m:tu Q2)~1X UX 1•
1 2 1 2

(End OT Hotation 2.3)

Notatien 2.4

Let x = x 1 x 2 ••• xkei*, seS. Then, functions

and s -t o*

are defined by

and

(End OT Hotation 2.4)

Obviously, sSx and s~x record the tracks of a machine under input

sequence x.

Property 2.9

Let x 1 ,x 2 ei. Then, for seS

sSx x = (söx) <söx x)
1 2 1 1 2

s~x x = (SAx) (sAX x)
1 2 1 1 :2

ProoT. Take k=2 in Notatien 2.4.

(End OT Property 2.9)

Property 2.10

Let x 1 ,x 2 ei*. Then

ProoT. Take x = x 1 x 2 in Notation 2.4.

(End OT Property 2.10J

Notation 2.5

15

Let A be a collection of n-arrangements of the state set, and

let B be a collection of n-arrangements of the output set,

and x ei.

Th en vector functions,
....

~x 6x : A -t A : A -t B

are defined for any arrangement in A

a (a1a2 ••• an)

as x

a~x (a1Àx><a2Àx) ••• <anÀx>

(End OT Hotation 2.5}

It is obvious that S keeps n endpoints of n tracks of a machine

under input x. From the definition in Notation 2.5, it is easy to

induce the following properties.

Property 2. 11

If x,yei and aeA, then

a~xy <aSx> ~y•

fEnd OT Property 2.1tJ

Property 2. 12

If x = x 1 ••• xnei* and aeA, then

...
aS

...
aÀx = Àx • x i. • .xn-1 n

If x = ~:ei*, then
....

a8r, = a

(End OT Property 2.12)

16

Summary

1. Bx: s -+ S; J..x: s -+ 0;

seS, x ei*: s8xeS; SAx EO.

2. Bx: 25 -+ ..,s. - ,
Q ç s, ç I: QSx ç S; QSxe25

; Q~x ç 0• - 0 :x
' Q"'xe2 •

"' s*· ix: o*; 8x : s -+ s -+ , 3.

a> seS, x ei*: .. * s8:xeS ; sixeO*;

b) x ei: SB es*· ... *
x ' s"'xeO •

...
4. : A -+ A· • Àx: A -+ B;

xe!*, aeA:

aS :x eA, a~x eB;

aSs = a, a~s = s.

2.3

The decomposition theory o+ machines states that, for a given

finite state machine M, the theory finds some "simpler" machines

M1 ,M 2 , ••• ,M0 , in some sense and constructs them so that the

connections of M1 ,M2 , ••• ,M0 can realize the machine M. That is, we

expect statements of the form :-

where M,M 1 ,. •• ,M0 are the machines and c.J 1 ,w2 , ••• ,ldn 1 are the

connections defined in suitable ways.

When we say "simpler" machines, there are different meanings for

the word nsimpler". During the 1960's, it meant that the number of

states in the component machines was less than in the original

machine, bec:ause i t was associated wi th the number of memory

components for the physic:al implementation of machines.

To cut downtheeest of implementation, we must reduce the number of

statas in the mathematica! models. With the development of LSI and

VLSI tet:hniques, the problem of reducing the components bacomes less

important. But the number of pi ns of an IC st i 11 is a ser i ous

limitation. Presently, the "simpler" means less pins, which appears

mathematically as fewer inputs and outputs, as well as statas of the

machines. In this thesis, we shall consider decompositions based on

the latter meaning of "simpler".

1'7

Decompositions can be classified in different ways. According to

the number of component machines, there are two types of

decompositions: the simple deco•position and the complex de

composition. A simple decomposition is necessarily of the form :

that is, it contains only two component machines M1 and M2 • If it

contains more than two component machines, the decomposition is said

to be complex. A state decomposition is characterized by the mapping

on sets of states; for instance, for simple decomposition,

which means that the component machines have common inputs.

A 'full-decolllposit ion is characterized not onl y by the state mapping Cl!,

but also, by mappings on input sets and output sets :-

withsomerestrictions: ISïl<lsl, IId<III~ and !Dd<IDI, i=1,2. It

is apparent that state decomposition is just a special case of full

decomposition.

Al so, the decomposi ti ons ca.n be c 1 as si f i ed a.ccord i ng to the

relationships existing between the component machines. If one

component machine takes some messages, such as states or outputs, from

another component machine, the decomposition is said te be aserial

decomposition. Otherwise, the decomposition is a parallel

decomposition. For complex decompositions, there also exist series

paralied decompositions, in which some machines are connected in

parallel and some in series.

Due te ~the different approaches te decompositions there are

different theories which are used in the books and literature about

decompositions. One of them is algebraic theory. It involves

semigroups E5,6,9,16l and partition [11-15] theories. But most of

them are concerned with the partition concept [5,6,9,11-16]. In this

thesis, we are going te study the simple full-decompositions of Mealy

machines using the trinity theory based on the partition concept.

18

2.4 A U~i~ers~l Co~~e~tio~ Model

~nd De~ompositio~s

In this sectien a universal conneetion model is introduced. A

number types of decompositions are derived from the model and

discussed.

2.4.1 A Universa! Conneetion Model

Consider how to conneet two machines, M1 and M2 ,

M -ti "' 0 .,.i "'i' 1--1.., i -, i•~i• it 0 tft 't - t4•

We take Q as a variabie to denote a set of 8 1 ,0 1 or an empty set

0 and t; as a middle variable to hold a projection from an input

set I to M2 • lf we make three relations ~ 1 .~ 2 and ~ 3 by

~ 1 : from I to I 1 and I;;

~ 3 : from 0 1 and 0 2 to 0,

then M1 and M2 have been connected by ~ 1 ,~ 2 and ~~ and a machine

with input and output sets I and 0 has been realized by the

connection. Since Q and I~ are variable, the conneetion includes

many different connections by assigning Q and 1;. Thus, the

conneetion is called an universal conneetion precisely defined by

Definition 2.4.

DEFINITION 2.4

A universa! conneetion of two machines M1 and M2 is the machine

M1 c M2 described by

M1 c M2 = <I,S 1 xS2 ,o,sc,Àc)

where I and 0 are defined by ~~ 1 and ~ 3 ;

8° and Àc are defined by

for all <s 1 ,s2 >eS 1 xS 2 , xei and wen.

(End OT DeTinition 2.4)

19

A universa! conneetion model is illustrated by Fig. 2.1.

0

Fig. 2.1 Universa! Conneetion

Note that ~ 1 <·i> denotes the first component of ~ 1 <i> and ~ 1 <i·>

the secend component of ~ 1 <i>. In the figure, a trilateral sign

represents a relation and the direction of a sign indicates the

direction of a mapping. We will apply these notations throughout the

thesis.

A uni versal conneetion model presents just a general conneetion of

two machines. When the relations and variables ~ 1 , ~ 2 and ~a are

specified, it wil! give a practical connection. In ether words, a

universa! model includes all the simple connections. Since a great

number of simple c:onnec:tions can be derived in this way, we are going

to derive some of the decompositions which are available ar have been

developed in this thesis.

2.4.2 Machine dec:ompositions

In this sec:tion, some serial and parallel decomposition types are

introduc:ed that are based on different assignments of the quadruple

<n.~ 1 ,~ 2 .~ 3). An assignment represents a set of concrete definitions

of n and the relations.

From the model, we know that a parallel connec:tion can be obtained

if we make n 0. Otherwise, the model is connected in series.

Furthermore, if ~ 3 is a null relation and 0 1 = 0 2 = 0, the model serves

for connecting states machines.

Let n # 0. Then, many serial decompositions are obtained as

fellows, by making partic:ular definitions for the relations.

20

Serial Decompositions

1. Serial decompositions with common inputs.

AS8 I GNMENT 1 •

Q = 81/01;

~ 1 : I~ I 1 xl~ {I=I 1 =I~; ~ 1 <x>=<x,x>, xel};

~ 2 : Qxl ~ 12 {I 2 =Qxi; identity};

~ 3 : 0 1 x0 2 ~ 0.

Substituting them in the model, we get aserial decomposition. The

structure is shown in Fig. 2.2.

0

Fig. 2.2 A serial decomposition

8ince 0 1 and 0 2 are functions of 8 1 , 8 2 and I, the relation

~ 3 also can be written as fellows

Fig. 2.3 gives the conneetion under the definitions above.

0

I

8erial decomposition with output functions.

Fig. 2.3 M 1 ~ M2

21

The pattern of decompositions based upon this type of conneetion

are described in most of the 1 i terature about machine decomposi ti ons.

Hartmanis gave a detailed discussion on the way how to get a serial

decomposition in [13-15]. The decompositions were called serial

deco•positions ~ith coaaon input and output functions. The key for

finding such aserial decomposi ti on is tolook for an SP parti ti on in a

given machine. If the partition exists, then the machine can be

decomposed into a netwerk consisting of two component machines Mi and

M2.

Because, for any seS there certainly is a con··esponding si and s 2

such that B<s,x> c:an bemapped to (8 1 <s 1 ,x> ,82 <s 2 ,x)), the1-.(s,xl then

can be represented by the combination of s 1 , s 2 and x. Hence, ~ 3 is

defined by

1-.<s,x>

For this type of decomposition, we should note that it only

realizes a state decomposition which means that, for each of the

component machines the number of inputs is larger than or equal to that

of the original machines. Moreover, the outputs of machine 1'1 are gi ven

by ~ 3 which is a complicated mapping rather than ~~ : o~ 0 1 x02 •

A proper input and output decomposition should be of proper mappings

2. Complete Serial Decompositions

ASSISNMENT 2.

Q = Di;

'i) i: I ~ 11 {I~ 0; 11= D;

~2: Q ~ 12 {l~ 0; I2= Q (identity> or Lz;:é Q};

~a= 02~ 0 {Q = 02}

Assignment 2 states that if we make some restrictions such as

0 1 ;!0, omitting output function 1-. and I~, then, Fig. 2.3 becomes

either Fig. 2.4(a) or 2.4(b).

22

---~-1------··~I. __ M_i_..__o __ 1 __________ ~_2-4·~1 "'I ·----0~2~----
<a>

I I 11.
Mt

01 [3> 12
M2

02 • • • •

(b)

Fig. 2 .. 4 Completely sari al dec:ompositions.

The dec:omposition based on a completely serial conneetion is

called a completely sertal decoaposition. The conneetion shown in

Fig. 2.4(a) appeared in [15,29] and the one shown in Fig. 2.4 was

defined in [lál.

3. General Serial Decompositions.

ASSIGNMENT 3.

n =
~ 1 : I ~ I 1 xi~ {I=I 1 =I;; identity};

~ 2 : I ~ 1 2 {~ 2 = {fx: S 1 ~ 1 2 }, xei};

~ 3 : 01 x02 ~ 0.
Let I = 1 1 = I~ and let ~ 1 be an identity relation between I

and <I 1 ,I;>, ~ 2 = {fxlfx: S 1 ~ 12 and xei} , n = S 1 •

A general serial conneetion is formed and shown in Fig. 2.5.

11
Mt 01

81
12 02 I I ,

M2 2

Fig. 2.5 General Serial Decomposition

23

If a machine can be realized by two component machines that are

connected in the way indicated in Fig. 2.5, then, the conneetion is a

general serial decomposition of a machine. It implies a special case

as Fig. 2. 5 where I I 2 1 =I I I x IS 1 j •

In [16J it was pointed out that when there are two machines Mi and M2

of which the semigroups cover the semigroup of M, then, the general

serial conneetion of Mi and M2 covers M.

4. Wreath Decomposition.

ASS IGNMENT 4.

1hl I -t I 1 xi~ U=Iixl~}

~2= S 1xi; -t 12 {~ 2 =!~1 = {f: Si-t 12}' fel2};

~;'!= Oix02 -t o.

From a general serial connection, if we give a definition for ~ 1 as

and take an extreme case of ~ 2 as

then, a wreath conneetion of M1 and M2 is defined and it is illustrated

in Fig. 2.6.

I i
Mi

01

I ~
si

I2 02 I. M2 2

/

Fig. 2.6 Wreath Conneetion

A wreath decomposition is discussed with the semigroup theory in

[16J. In Chapter 6 of this thesis, we shall discuss it with partition

trinity theory.

24

5. Serial Full-decompositions

ASSIGNMENT 5.

Q = Si/Od

1h: I -+ I 1 xi; {I=I 1 xi;};

112= fix I; -+ I2 <I 2=Qxi;};

113= 0 1 x02 -+ 0 {0=01 x02 }

Another important special case of general serial connections

is to make the retraction 11 2 an identity mapping from <w,I;) to

12 , Q S 1 or 0 1 , and 11 1 be an identity mapping from I to

I 1 xi;.

I i
Mi.

01

I s1
02 I.

M2 2

Fig. 2.7 Serial Full-decomposition

Serial full-decomposition will be defined by this conneetion in

Chapter 5 and the methods f or these decomposi ti ons wi 11 be descri bed

too. Si nee the difference required for the connected information is S 1

or 0 1 , the methods appear to be quite different. The decomposition

refers to state serialt'ull-deco•positior. (type liJ for Q = S 1 , as well

as, output serial t'ull-decompositior. (type IJ for Q = 0 1 •

Now, we consider the case of Q = 0 which offers some parallel

decompositions using the different definitions of the relations.

25

Parallel Decompositions

6. Partial Parallel Decompositions

ASSIGNMENT 6.

Q = 0;

1h: I -+ I 1 xi~ U=I 1 =I~};

'ih: I' 2
-+ I2 {12= I~};

oq3: 0 1 x02 -+ 0 .
We take I = It= I' 2

!1
Mi

01

I

I . 02 2
M2

Fig. 2.8 Partial Parallel Decomposition.

A machine can be decomposed into a partial parallel conneetion of

two component machines, if it exists. Such a decomposition is

disc:ussed in most of the books on the subject of machine decomposi ti on

theory. The key for decomposing a given machine is to find two

orthogonal SP partitions. If there are no such partitions for the

machine, it means that the machine cannot be decomposed in parallel

[8,12,15].

If the SP partitions are output consistent, then, the outputscan

be mapped into a proper product of 0 1 and 0 2 • Otherwise, we have to use

a mapping oq3 : S 1 x S 2 x I-+ 0 in order to produce the outputs of the

original machine. When Mi and M2 are state machines, the

decomposition is discussed in [23,24J.

26

7. Parallel Full-decomposition.

ASS IGNMENT 7.

n = 0;

1h: I -+ I 1 x12

112= 12 -+ 12

113 : 0 1 x02 -+ 0

U=I 1 x1~};

{!2= 1 2};

{0=01 x02 }.

Now, we will consider a special case of partial parallel

decomposi ti on. If we make the rel at ion 11 1 a proper direct product of I 1

and I 2 , i.e.

then, a model of a parallel full-decomposition is obtained. We are

especially interestad in this decomposition, because it gives the

exact decomposition of states, inputs and outputs which leads toa

reduc:tion of the number of pins on devices implamenting the

dec:omposition.

11 01

1 {

• M1 ..
}a

I 12
M2

02 • .,

Fig. 2.9 Parallel Full-dec:omposition

In Chapter 4 of this thesis, we shall disc:uss methods to find suc:h a

full-dec:omposition, if it exists, fora given machine using the theory

of a partition trinity.

27

8. H-decomposition

ASSIGNMENT 8.

G = 0;

1)1: I -t I 1 UI~;

1)2: I' 2 -t I2 {I2= I~};

1)3: 0 1U02 I 0 1x02 -t o.

Based on the definition for a parallel full-decompositi9n• we

introduce another decomposition which looks like a, full-

decomposition by making the mappings into the union of inputs or

outputs of component machines. Particularly,

1) 1 I -t I 1 U I 2

1)3 0 1 U 0 2 -t 0 or 0 1 x 0 2 -t 0.

With these definitions the component machine works like:

Which means, forsome input,s one component machine acts and the other

keeps stationary. Therefore, we call it an H-deco•position.

An H-decomposition has the same structure as a parallel full

decomposition, except for the definition of 1)1 • It is supplementary

to the full-decomposition theory. A detailed discussion will be given

in Chapter 6 later. A similar decomposition only on states is

described in [2,3].

9• The Holonomy Decomposition

In the al gebr ai c decomposi ti on theory of sequent i al mach i nes, the

first major well-known result was the holonomy decomposition [6,16].

It is also called the Krohn-Rhodes decomposition due to Krohn and

Rhodes who gave an algorithmic procedure for such a decomposition

[19]. The Krohn-Rhodes decomposi ti on theerem says that every

semiautomaten can be covered by direct and cascade products of

semiautomata of two kinds: (a) simple grouplike semiautomata,

two-state reset semiautomata [9]. In other words, every finite

28

state machine can be realized by a series-parallel conneetion of

permutation machines and tlr.~o-state reset-identi ty machines. The

series-parallel conneetion is depicted in Fig. 2.10, which is copied

from ral. The nis the number of statesof the machine to be decomposed;

P deno.tes a permutation machine and R represents a two-state reset

identity machine.

I
• • •

• • •

Fig. 2.10 Canonical Decomposition of

Finite State Machine

The theerem is excellent because i t can be adapted to every state

machine unconditionally. Thus, an alternate name for it is the

universa! canonical decomposition theorem. However, the reasans for

hesitating to apply it to the full-decomposition are twofold. One is:

that all component machines, in gener-al, take the sameinputs from a

common set I. Another is because: the decomposition is a complex

decomposition and not considered in this thesis.

CHAPTER 3

FARTITION TRINITY
AND TRINITY ALGEBRA

29

In this chapter we will begin by developing some mathematica! tools

and theorems whic:h are fundamental to the theory of full

decomposition of sequentia! machines.

3.0 Introdu.ct:i.on

As we know, the elementary structure theory of serial or parallel

realizations of state behaviours is derived through state partitions

which represent self-dependent information. The concepts of

information and information dependenee are very basic and underlie

all the structure results. In this chapter, we wish to consider more

useful mathematica! tools for desc:ribing the conceptsof information

and information dependenee in all the aspectsof a sequentia! machine.

Fr om the avai 1 abl e theory, we know that, i f a part i ti on 1t on the set

of statesof a sequentia! machine has the substitution property, then

as long as we know the block of 1t which conta'ins a given state of the

machine, we can compute the bleek of 1t to which that state will be

transformed by any given input sequence.

Furthermore, if parti ti ons 1t and -r form an S-S pair <n,·n on thei

machine, then, as long as we know the block of 1t which contains the

state of the machine, we c:an c:ompute the blockof -r to which this state

will be transferred by the machine, for every input. Similarly, if

<(,-t) is an I-S pair, then as long as we only know the bloc:k ~ which

c:ontai ns the input of the machine, we can compute for every present

30

state the bloc::k of 't to whic::h this input makes the state transferred by

the mac::hine, and so on. It may be said that a pair gives the information

dependenc::e in the part aspec::t, such as, present state to next state,

input to next state, and etc::. The c::onc::ept of partition trinity is more

general and is introduc::ed to study how all the information flows

through a sequentia! mac::hine when it is in operation.

From the disc::ussion that fellows, we will know that, from the

viewpoint of mathematic::s, the partition trinity is the hard-core of

all c::oncepts of mathematic::s for a sequentia! mac::hine, because some

part i ti ons have the PP property, some PP' s have a SP and some PP' s wi th

SP have partition trinity property. Fig. 3.1 shows the inclusion

relations among the concepts of partitions, partition pairs, SP

partitions, and partition trinities on a machine.

p

P Partitions

PP: Partition Pairs

SP: SP partitions

PT: Partition Trinities

Fig. 3.1 Inclusion relation among P,PP,SP and PT concepts

3.1 Pa~titibn T~inity

3.1.1 Partition Pair

The concept of a partition pair <PP) was first introduced for the

study of sequentia! machines by Hartmanis [10,14J. Here, we will

reeall some of its main points and derive some properties of them in

order to devel op i t to a higher 1 evel , as a mathernat i cal tool f or the

further study of sequentia! machines.

31

DEFINITION 3. 1

Fora.ma.chineM= <I,S,O,S,).), let:n', 'I', (a.ndwbethepa.rtitionson

M a.nd, in pa.rticular

:n', 't on S; ~ on I; bl on 0.

Then, we define

i) (:n','t) is a.n s-s pair i"f and only i"f

\fBen', \f>< eI
=

BSxÇB' e't

ii) q ,'I'> is an I-S pair iT and only i"f

\fee(, \fseS : sS0 ÇB'e1:'

i i i> (:n',w) is a.n S-0 pair iT and only i"f

\fBe:n', \fx eI : B~xçQ Eb!

i v) (t 'c.:~) is a.n I-0 pair iT and only i"f

\fee~, \fseS : s~cÇQ Ec.:l

(End OT De"finition 3.1)

LEMMA 3.1

If <:n'1 ,'t1 } and <K2 ,'t2 > are PP's on a machine M, then

i> <71.'1 ·71.'2 , 't1 ·'I'2 > is an PP on M, and

ii) (71.'1+71.'2 , 't1 +'t2 > is an PP on M.

Proo"f. Suppose <K1 ,'t1 > and <K2 ,'t2) are S-S pairs.

i) Be <:n't ·71.'2)

=9 B ç B'e:n'1 1\ B ç B" e:n'2 {def. of partition product

=9 B8xç .6' e·t1 1\ BSx ç .6" {(1f'1,'ti)' (:n'2,'t2)}

==} BSx ç .6'(\.6" {calculus}

:::;. BSxÇ .de ('ti •'!:';;;> {def. of partition product}

ii) Be<:n'1+:n'2)

[15]}

=9 3B 1 ,B2 , ••• ,Bk, BieK1 V Bie:n'2 : {def. of pa.rtition sum [15]}

k
B;OB;+ 1 t0 1\ U B·=B

• • i=i 1

==} BSx

k -
<.U Bi> &x •=1

j=1.. k-1

{statement}

{substitution}

{Prop. 2.5}

32

==? Bi n Bi+i8xt0 i=l •• k-1

A (B.;Bx!:B' e-t1 if B,; en'1

V B .i 8;:'58"' e·'t2 if B.;en'2)

{def. of partition sum}

Therefore, we have that

(n'1+1!:'2, 1:'1 +1:'2) is an PP.

{substitution}

In the other cases of I-S, S-0, and I-0 pairs, the proofs

are the same as shown above, and may be omitted.

(End of Leaaa 3*1)

It should be noted that in Lemma 3.1, <K1 ,-t1) and <11:'2 ,1:'2 > are

always of the sametype of pairs; otherwise, the lemma does not hold.

LEMMA 3.2

If <K,·n is an PP, then

i> 11:'' <11:' implies that (?(' ,-r> is an PP

i i) '(')'(implies that <K,"t') is an pp

iii) 11:'' (11:' and "t'>-t imply that

(;lt' '·'t') is an PP.

Proof. We consider the case where <K,-r:> is as an I-0 pair to

prove.

11:'' <11:' A <K,"t> {assume <:Jt,-'t) is an PP}

==? VB'en'']Ben': B'C B

A VBen' VseS: s;;:-8 '5.6e"t {definition}

==? s;;:B,Ç s;;:. ç .6e-t {B'C B, Prop. 2.4}

==? s;;:u,ç .6e"t. {calculus}

Hence (11:'' ' '() is an I-0 pair.

ii) By a similar argument.

i i i> For (11:'' ,-n using Lemma 3. 2 (i i> again.

In the same way, we can prove for other cases that

<K,-t> is an s-s, I-S, or s-o pair.

(End of Leaaa 3.2)

Now, we wish to develop a theerem on partitions as fellows.

33

THEOREM 3.1

Let Ki, n2 and Ka be partitions on the same set of a machine.

If K1S n2 and K2S Ka, then nis "a·
Proof.

nis "2 and K2S K-a imply

Ki •K2 "1• K2·Ka "2•
n1+n2 = "2• K2+K3 = "a·

Then, K1 •K-a K1 •K2 ·Ka

Kt+?ta

=

Hence, K1 S K3 •

(Enf of Theorea 3.1)

3.1.2 Par-titien Trinity

DEFINITION 3.2

A partition trinity

K1 •K::z

n:d
K1+K2+?f:a

K2+K3

"a·

M = <I,s,o,&,1..>

(1)

(2)

{ (1)}

{(1)}

{ (1)}

{ (2)}

{(2)}

{ (2)}

is an ordered triple of partitions en the sets I, S and 0,

respectively, such that

(End of Vefinition 3.2)

Thus, <KI,Ks,Ko> is a partiticn trinity on M If and only if the

blcc:ks of n5 and KI are mapped intc the bleeks of n5 and ?t0 by M. That

is, fcr every bloc:k C in KI and a bleek B in n5 , there exist a 8' in n:5
and a Q in n:0 , such that 8Sc is in and only in 8' and 8~c is in and only in

Q.

This definiticn is suitable, in c:cnc:ept, fcr all kinds of machines,

c:ompletely specified er inccmpletely specified. In this c:ase that Mis

an incompletely spec:ified machine, bath BSc and 8~c probably c:ontaih

"dcn't c:are"' c:cnditicns. A detailed disc:ussion will be presented in

another c:hapter.

For c:cmpletely specified machines, we have the following theorem.

34

THEOREM 3.2

Let M = <I,S,O,S,A) be a completely specified machine and

K5 ,Kr and K0 be three partitions on s, I and 0, respectively.

Then, <Kr,K5 ,K0 > is a partition trinity if and only if

i) <Ks,Ks> is an s-s pair, and

ii} <Kr,1t's> is an I-S pair, and

iii) <Ks ,1t'o> is an s-o pair, and

i V) <Kr ,Ko> is an I-0 pair.

Proof.

Assume that (7t'5 ,7t'5 >, <Kr ,7r5 >, <7t'5 ,K0 > and <7t'1 ,K0 > are pairs.

==?

=iJ>

VBen5 Veen I VseS Vxei

BB x ç B'e1t5 1\ s60
ç B" e7t'5

1\ B);x ç; Q' e1t'o 1\ s);c ç; Q"en0

VseB VxeC : B'=B" 1\ Q'=Q"

BB0 ç Be7t'5 1\ B);c ÇQ'e7t'0

BB<x x x , ç B'eK5 1' 2' •••• k~

1\ {s 1 ,s2 , ••• ,s;>Bc ç B'e7t'5

1\ B); c Q'e1t'o
"(X1,X2'''''Xk)-

1\ ,s2, ••• ,sj});c ç Q'e1t'o

k -
_U <BSx.> ç B'en5
1=1 l

{(1t's,1t's>,<1t'r,1t's>}

{(Ks,1t'o>,<Kz,Ko>}

{(1ts,Ks>,<1t's,Ko>}

{calculus}

{def. of PT}

{def. of PT}

{calculus by

{Prop. 2.6}

{Prop. 2. 5}

{Prop. 2.6}

{Prop. 2.5}

=9 BSx i ç B' e7r5

A si 8 0 Ç B' e1r5

A B?;'x i Ç Q' E1ro

A si?;"c ç Q' e1ro

A B?;'x Ç Q'e1r0

A s?;"0 ç Q' e7r0

Hence the theorem.

(End of Theorem 3.2)

i=!.. k

i=l .. j

i=l.. k

i=1.. j

35

{calculus}

{calculus}

It should be mentioned again that Theerem 3.2 holds only for

c:ompletely specified machines. For inc:ompletely spec:ified machines,

i t does nat hold because (1r5 ,1r5) and (1(I ,1r5) do not imply BS0 ÇB' e1r5 , if

there is a "don't care" condition in B80 • The concept af trinity for

inc:ompletely specified machines will be disc:ussed in a later c:hapter.

In other words, from a partition trinity <1rx,1r5 ,1r0 >, if we only

know the bloc:k of 7r5 which contains the state of M, then, we can

compute, for every input block the blocks of 1(5 and 7r0 to which this

state is transferred and the output is formed by M.

Since, from a PT, we knowhow "ignorance of all infarmation of

state, input and output spread" ar "all information flows" through a

sequentia! machine when it operates, it is obvious that a PT gives

dependences of all the information of a sequentia! machine and it

describes an integral c:harai::teristic: of the machine. Therefore, it is

a more useful tool far studying sequentia! machines than partition

pairs.

Now, we should study the general properties and definitions of

partition trinities on a sequentia! machine.

36

DEFINITION 3.3

A cardinal trinity <N 1 ,N 5 ,N 0 > of PT <K 1 ,~ 5 .~ 0 > is an ordered

triple of positive integers and it expressas the cardinal properties

of the partition sets of ~ 1 .~ 5 and ~ 0 , respectively. Symbolically,

where lxl is the cardinality of set x.

(End of Definition 3.3)

DEFINITION 3.4

Partition trinities (~ 1 ,~ 5 ,K 0 > and <-t1 ,-t5 ,-t0 > are said to baequal

if and only if the eerrasponding components are

identical, that is,

i) ~s 'l's on s, and

i i) ~~ -ti on I, and

iii) ~0 = 'to on s.
(End of Definition 3.4)

DEFINITION 3.5

For PT's <Kz •~s,Ko> and (-ti, ,-to> on a machine M,

<~I •~s.~o> 2: <-ti ,·rs,-to>

if and only i"f

i) Ks 2: "t's on s, and

i i> ~I 2: ·"(I on I' and

iii) ~0 2: "t'o on o.
(End of Definition 3.5)

In the same manner, we can define the relations > and < •

DEFINITION 3.6

An identity trinity TI of a machine M is defined as

where ~I< I> ,K5 (I> and K0 (1) are the identi ty parti ti ons on I, S, and o,
respectively.

A zero trinity T0 of a machine M is defined as

where K 5 <0>,~ 1 <0> and ~ 0 <0> are the zero partitions onS, I and O,

respectively.

(End of De"finition 3.6)

37

DEFINITION 3.7

A partition trinity (1ti,?t5 ,1f0) on a machineMis said ta be

nontrivial i7 and only i7

i) 1t s t 1ls (I> and n's "/. ?ts W> • and

ii) ?ti t ?ti (I> and ?ti t ?(I (0) ' and

iii) 1to t ?to<I> and 1to t ?to<O> .
(End o"f De7 in i ti cm 3.7)

DEFINITION 3. 8

A partition trinity <?ti,?t5 ,n0 > is called

a basic partition trinity i"f and only i"f

i) ?t1 = K <?t;l<?t;, ?t5 , 1t0) is anPTon M}, and

ii) ?t0 I {1t~l<n 1 , K5 , K~> is anPTon M}.

where K and I denote repeated addition and multiplication on

partitions.

(End o"f De"finition 3.8)

3.1.3 Trinity Algebra and lts Basic Properties

In this section, we look at the general properties of partition

trini ties on a sequentia! machine and werk out some algebraic

relationships that the partition trinities satisfy, such as trinity

poset, trinity lattice and trinity algebra.

Let T be a set of all the partition trinities on a machine M.

Considering the relation ~ de·fined in Definition 3.5 forT, then, we

have the next theorem.

THEOREM 3.3

The trinity set T on a machine M is a poset under relation ~.

Proo"f. i) For any xeT, x=x implies x~x.

This states that ~ is reflexive.

i i) Let x,yeT and x=<XI,X 5 ,X 0 > and y=<VI,Vs,Vo>

x:Sy implies that

XI :s; VI, (1)

and Xs :s; Vs, (2)

and Xo ~ Vo. (3)

y~x implies that

VI ~ Xz, u,)

and Vs ~ Xs, (2')

and Vo :s; Xo. (3')

38

Combining <1> and (1'>, (2) and (2'>, and

(3) and (3'), we have

XI = VI ' Xs = Vs ' Xo = Vo •

By Definition 3.4 it is true that x=y.

This shows that ~ is antisymmetric.

iii) For any x,y,zeT, x~y and y~z provide that

XI ~ VI and VI ~

Xs ~ Vs and Vs ~

Xo ~ Vo and Vo ~

Using Theorem 3.1 and

through (6) we obtain

x ~ z •

ZI

Zs

Zo

Definition

This states that ~ is transitive.

Hence the theorem.

3.5 for

(End of Theore• 3.3)

(4)

(4)

(5)

(6)

We introduce two binary operations 0 and 1:9 on the poset T, which are

defined by the following definition.

DEFINITION 3.9

Let x,y eT and x=<XI,X 5 ,X 0 > and y=<VI,V5 ,V0 >.

The trinity multiplication and trinity addition are defined as

follows.

xOy <XI•VI, X5 ·V5 , X0 ·V0 >

xl:tly (XI+VI, X5 +V 5 , X0 +V0)

where + and • are partition addition and multiplication.

xOy is called a trinity product,

xffiy is called a trinity sua.

(End of Definition 3.9)

Having obtained the operations on poset T, a problem naturally

arises, that is, whether the trinity product <or sum) of any two PT' s

is a PT. The foll owi ng theorem gi ves the answer and shows the proof in

detail.

THEOREM 3.4

For any x,y eT,

i) xl:tly eT

i i> xOy eT

i i i> xffiT I TI, x OT I= x

iv> xOT 0 To ,xeT 0 = x .

ProoT. Let x = <X 1 ,X5 ,X 0 > and y = <Y 1 ,Y5 ,Y0 >.
i) x,yeT implies that

<Xs,Xs> • <Ys,Ys>

<Xx,Xs> ' (YI,Ys>

<Xs,Xo> ' <Ys,Yo>

and <X 1 ,X 0 > , CY 1 ,Y0 >

are PP's. By Lemma 3.1 and (1)

<Xs+Ys, Xs+Ys> is an s-s pair.

Similarly,

<Xx+Yx, Xs+Ys> is an I-S pair.

<Xs+Ys, Xo+Yo> is an S-0 pair.

OC 1 +X 1 , Xo+Yo> is an I-0 pair.

From Theerem 3.2, we know

x~ = <X 1 +Y 1 ,X 5 +Y 5 ,X 0 +Y 0) is an PT.

Therefore, x~eT •

ii) By the sameargument as (i).

iii) xffiT 1 = <X 1 ,X 5 ,X 0 > ffi (~ 1 <I>,~ 5 <I>,~ 0 (1))

(XI+~I(l),Xs+~s<I>,Xo+~o<I>>

<~I U> • ~s < I> • ~o < I > >

TIJ

x0T 1 = CX 1 ,X5 ,X 0 > 0 <~ 1 <I>,~ 5 <I>,~ 0 (1))

= <Xx·~I<I>,Xs·~s<I>,Xo·~o(l))

= <Xx,Xs,Xo>

x.

iv) It is similar te <iii).

(End OT Theore• 3.4J

(1)

(2)

(3)

(4)

39

The definition and the theerem has shown that, for every pair of x

and yin T, x0y and x~ certainly ex i st. This gives a reminder that,

under the operations of 0 and ffi, the poset T farms a lattice like the

definition given below.

DEFINITION 3. 10

A trinity lattice LT is a triplet

LT =<T,O,ffi)

in which, for any x,y e T

SLB<x,y) = x0y LUB<x,y) = xffiy

where T is a nonempty set of all the partition trinities on a

sequentia! machine, and 0 and ffi are trinity multiplication and

addition.

(End OT DeTinition 3.10)

40

THEOREM 3.5

Any machine M has a finite trinity lattice with the identity

element T 1 and zero element T0 •

Proof. i) For any xeT, by the Theorem 3.4

T zO x = x' TIe x == TI'

T0 0 x = T0 , T0 e x x.

Hence, T1 is the identity element, and T0 is the

zero element of LT of a machine.

ii) Any machine has at least two trinities T 1 and

T0 which can form the simplest lattice:

iii) A finite machine implies that the partition sets of I,

S and o, are finite. Any machine has a finite

tri-partition set L = <P 1 xP5 xP0 }, where P 5 ,P 1 and P0

are sets of all the partitions on I,S and 0,

respectively. T is a subset of L;

therefore, LT is finite.

(End of Theore• 3.51

EXAMPLE

Now, we take the machine A shown in Fig. 3.2 as an example to

illustrate the concept of trinity lattice.

present state
1
2
3
4

1

3/1
4/4
1/4
2/1

2

1/1
2/1
3/1
4/1

3

2/2
1/4
4/3
3/1

4

4/2
3/1
2/2
1/1

Fig. 3.2 Machine A

input

next state I output

8y the computation on a computer Machine A has totall y 24 PT' s as

follows:

To = ({Ï,2,3,4>,{Ï,2,3,4>,{Ï,2,3,4})

T1 = ({Ï,2,3,4},{1,3,2,4},{1,4,2,3})

T2 = ({Ï,2,3,4},{1,4,2,3},{1,2,~})

({Ï,2,3,4},{1,3,2,4},{1,4,2,3})

T4 ({1,2,3,4},{1,3,2,4},{1,4,2,3})

({1,3,2,4>,<1,4,2,3},{1,2,3,4})

= ({Ï,2,4,3},{1,4,2,3},{1,2,3,4})

T7 ({1,2,3,4},{1,3,2,4},{1,4

T8 ({1 ,3,2,4>, {r;4',2,3), <'1;2,~})

T9 = <<1,2,3,4},{1,2,3,4},{1,2,3,4})

T10= ({1,3,2,4},{~2,3,4},{1,2,3,4})

T11= <<Ï,2,3,4},{~~},{1,2,3,4})
T12= <<2,1,3,4},{1,2,3,4},{1,2,3,4})

T13= <{3,1,2,4},{1,2,3,4},{1,2,3,4})

T14= ({Ï,2,3,4},{1,2,3,4},{1,2,3,4})

T15= ({1,2,3,4},{1,2,3,4},{1,2,3,4})

T16= <<Ï,2,3,4},{1,2,3,4},

T17= <<1,3,2,4>,{1,2,3,4},

T18= <<Ï,3,2,4},{1,2,3,4},

T19= ({4,1,2,3},{1,2,3,4},

T20= ({1,4,2,3},{1,2,3,4},

'{1 ,2,3,4})

T22= <<Ï,4,2;3>,<1,2,3,4},{1,2,3,4})

T 1 = ({1,2,3,4},{1,2,3,4},{1,2,3,4})

41

42

The trinity lattice of machine A is depicted in Fig. 3.3

TI

Ta

Fig. 3.3 Trinity lattice of machine A

From the lattice, we know that T3 through T8 are nontrivial

trini ties, T 7 and T 8 are basic nontri via! parti ti on trini ties, and the

rest are trivia! trinities. It is easily checked that

T3 0 T4 = T1 , T3 e T4 = T7 ; T5 0 T6 = T2 , T5 e T6 = T8 ;

and so on.

(End of ExaapleJ

Theerem 3.4 states that the operations 0 and eon the set T are

closed, which induces us to consider an important property on T given

by the following definition.

DEFINITION 3. 11

A ~rini~y algebra is an algebraic system

< T; e, 0; Tx, T0 >
where T is the set of all partition trinities;

e and 0 are trinity addition and multiplication,

T 1 and T0 are the identity trinity and zero trinity.

(End of Definition 3.11)

43

Thus, a trinity algebra is a binary relation on T which is closed

under trini ty operations of 0 and E9 and c:ontains all the elements suc:h

as <n1 <I>,n5 <I>,H0 <I>>, and so on.

If we say that partition pairs c:haracterize some transformation of

the information that transpires in the eperation of a machine, then,

we can say that partition trinities charac:terize all the

transformation of information that transpires in the operatien of the

machine. The property that x0y is in T c:an be interpreted as nthe

combination of the information in X5 and Y5 or in X1 and Y 1 is

suffic:ient to c:ompute the c:ombined information X5 and Y5 or X0 and Y0 ".

Similarly, xffiy states that "the combined ignorance in X5 and Y 5 , or in

X 1 and V 1 , is suffic:ient to c:alc:ulate the combined ignoram::e in X5 and

, or in X0 and Y0 ".

In view of the applic:ation to thefull-decomposition of sequentia!

ma,:=hines and in view of ether possible applications yet undiscovered,

we wi 11 extract the c:ommon properties of trini ty algebraic systems in

order to derive the algebraic relationships in terms of these

properties, in the rest of this section.

THEOREM 3.6

If <Hx ,Hs ,Ho> is in T, then

i) H' I
:;; HI implies that (H~ ,H5 ,K0) is in T

i U K'
0 2: no implies that (Hz,K 5 ,K~> is in T

iii) H' x :;; Hx and n' 0 2: Ko imply that <K~,H 5 ,K~) is in

Proof.

i) Fr om Theerem 3.2 we know that

<K1 ,K5 ,H0 > is an PT implies that

<K5 ,H5 > , (K1 ,K5 >, <K5 ,H0) and <K1 ,H0) are PP's.

By Lemma 3.2 K~ :;; KI implies that

<K~ 7 K 5 > and <K~,K 0 > are PP's.

Combining them with <K5 ,H5 > and <n5 ,K0 > gives

that <n;,H5 ,K0 > is an PT.

Hence, <K;,n5 ,H0 > is in T.

ii) With the sameargument as (i).

T

iii> For <K~,K 5 ,K~> using Theorem 3.6(i} and (ii> again.

fEnd of Theore• 3.6)

This theerem is useful for c:omputing partition trinities toe,

sinc:e it presents another way of doing the computation.

44

NOTA TI ON LetS be asetand 1l be a partition onS. Fors and tin s, we

wri te [sJ7t = [tJ7t to denote that s and t are in the sameblockof 1l in the

following discussions and chapters.

(end of Hotation)

The theorem below shows the conneetion between relationships :S and

operations 0 and m.

THEOREM 3.7

In algebraic system T, the multiplication and addition of two

elements of T have the following property:

x:Sy if and only if x0y = x and xffiy = y.

This property is referred to as the consistency property.

Proof. Suppose that x :S y and

x = <XI,x 5 ,X 0) and y = <Vx,V 5 ,V0 >.

x:Sy implies that

X5 :S Y5 , XI S VI , and X0 S V0 •

For X5 S V5 , for any two states s and t in s,

From the definition of partition multiplication and

addition, the following relationships certainly

ex i st:

Xs·Ys Xs and Xs+Ys = Ys·
Similarly, we have

xi.vi = XI and Xx+Vx = V I'
Xo·Yo Xo and Xo+Yo = Vo•

Th at is,

x0y <Xx•Vx, Xs·Vs• Xo·Yo>

<Xx,Xs,Xo>

= x,

xffiy <Xx+Vx, Xs+Vs, Xo+Vo>

= <Yx,Vs,Yo>
y.

Conversely, if x0y = x and xffiy = y •

they mean, for any block Bx

ex i st a B.". in Vs of y, such

in X5 of x, there must

that

Bx ç B."..

It indicates that

Xs :S Ys•

With the same argument, we get

XI ~ VI and X0 ~ Y0 •

By Definition 3.5 we have

x ~ y.

(End of Theorem 3.7)

46

Finall y, some properties on the rel a ti onship ~ and operati ons 0 and

~ are derived and given by the following theorem.

THEOREM 3.8

In the algebraic system T, the operations 0 and ffi for any two

elementsof T satisfy the idempotent, commutative, associative, and

absorptive proper-ties; that is, for any x,y and z in T,

i)

ii)

iii>

iv>

Proof.

Ide•potent : xOx x ' x~ = x

Colltmutative: xOy yOx ; xffiy = y~
Associative: x0<y0z > .(x0y) 0z

x ffi (yffiz > <x~y>&r.z

Absorptive : x0(xffiy> x ; xE!HxOy> = x .
The properties (i) and (ii) fellow directly from

the definition of 0 and e. The property <iii> is

evident since x0(y0z) and <xOy)Oz are beth equal

to the greatest lower beundof x,y and z, while

xffi<yffiz) and <xffiy>ffiz are both equal te the least

upper beund of x,y an z.

Te prove (iv>, censider the fellowing three cases:

<1> If x~y, then, by Theerem 3.7, we have

x0(xffiy> = x0y

x,

and xffi <xOy> xffix

x.

(2) If x~y, then, basedon Theerem 3.7 again, we have

x0<xffiy> xOx

= x;
and x~<xOy> xffiy

x.

(3) If x~y and y~x ,

fer any x,y eT, it is obvious that

xffiy ~ x • <1>

46

By Theerem 3.7, (1) implies

xO<x€9y> = x.

Similarly, we have

xOy ;S; x •

Theerem 3.7 shows that

x8Hx0y> = x.

(2)

(End OT Theeree 3.8)

THEOREM 3.9

In the algebraic system T,

i) All elements satisfy the isotone property; that is,

if x S y, then xOz S yOz and x61z S y61z.

ii> All elements satisfy the modular inequality, which is,

if x S z, then xS<yOz> S <x€9y)Oz.

iii> The distributive inequalities are satisfied:

Proof.

xO<yE9z > ~ <xOy> S(xOz),

xw(yOz) ~ (x€9y)0(x61z).

U If x:Sy, then by Theorems 3. 7 and 3.8

xOz <xOy> O<zOz >

= <xOz > O(yOz >.
Basedon Theerem 3.7, it implies that

xOz S yOz.

The secend inequality may be proved in a similar

way.

ii> Since x S z and x ;S; x€9y,

x S <x€9y>Oz

and since yOz S z and yOz S y ;S; xey

yOz S <x€9y>Oz.

Combining these results and in view of the

definition of e, we obtain

xw<yOz) s (x€9y) 0z.

iii) Since xOy S x and xOy S y S yez,

xOy S xO<yE9z).

From the relations xOz S x and xOz S z S yez,

xOz S x0(y61z >.
Hence, xO<yez) ~ (xOy) S<xOz).

Again, the secend inequality may be proved in

a similar way.

(End OT Theerem 3.9)

4'1

In this section~ we study the relationships between two machines

and these on a machine with respect to different partition trinities,

which is the basic idea behind the full-decompositions which will be

introduced later.

DEFINITION 3.12

Let M = <I,S,O,S,À) and M'= (l',S',O',S',À') be machines.

If there exist three onto mappings

~: S ~ S', ~: I ~ I' and 9: 0 ~ 0'

such that for any seS and iel~

~<s8i) ~<s>S~Iil

and 9(sÀi) = ~(s)ÀYtil

then the triple (~,~.e> is called a homomorphism from M to M' and we

write

(~,~,EH : M ~ M' •

(End of Definition 3.12)

If <~.~.e> is one-to-one, then, we call it a monomorphism, and if

<~.~.e> is onto, then, it is called an epimorphism. An isomorphism of

machines is both a monomorphism and an epimorphism.

Under the mapping 111: S ~ S' there e:xists a partition ons, say 1t5 ,

defined by

~(t).

For the same reason, we have two partitions, 1l'x and 1t0 , under

mappings 't' and e. Consequently, we obtain a tri-partition <1t:n1t5 ,1t0 >

on M. The tri-partition is called a tri-partition defined by the

homomorphism <lll,~,e>.

The idea of a partition trinity discussed inthelast sectien leads

toa procedure for constructing quotient systems in the following way.

48

DFINITION 3.13

Let M = <I,S,0,8,11.) be a machine and t

trinity on M. The quotient machine

M/t = <X,Q,Y,8' ,11.' >

of M with respect to t is defined by putting

Q = 1ts • x = 1('1 and y = 1to

and 8' <q,x) q' <?> qSx ç; q'e1ts

1>! (q ,x) y' # qÏ:x ç; y' e1t'o.

for all qeQ and x eX.

(End o"f De"fir.itior. 3.13)

These definitions of 8' and 11.' are well-defined since t is a

partition trinity which preserves the functions of 8 and 11.. From

Definitions 3.12 and 3.13 we easily get the following theerem which

indicates the relationship between M and M/t.

THEOREM 3.10

Let t be a partition trinity on a machine M

there exists a homomorphism

<~.~,9>: M ~ M/t •
Proo"f.

<I,S,0,8,11.>. Then

Suppose that m is defined by that ~(s) is the block which

contains s and so is ~(i). Since t is a trinity,

for all seS and ie!,

s8ie~<s>S~til = {s'Si.ls'em<sl 1\ i'e~(i)}

we can prove that 9(s1\.i) = m(s)À~!il"

(End o"f Theore• 3.10)

The homomorphism <m,~,e> is also called the natural epimorphism

defined by t, because, for any qeQ, xeX and yeY, thereat least exists

a triple of seS, iel and zeO such that m<s>= q , ~<i)= x and 9(z)= y.

Same remarks concerning the relationships between two quotient

machines over the same machine M are worth making.

Suppose that t and t' are two partition trinities on machine

M=<I,S,0,8,À). If t ~ t', we can construct an epimorphism from

M/t to M/t'. This leadsustoa homomorphism theerem for the machines.

49

THEOREM 3.11

Let M and M' be machines and

<41,'f,9>: M-+ M'

be an epimorphism. If t' defined by (tll,'f,9) is anPTonMand t is an PT

on M sa ti sfyi ng the condition t :$ t' , then, there ex i sts an epi mor ph i sm

suc:h that

<41, 'f ,9> = <41' , 'f' ,9' > o <til", 'f" ,9">

where {$' ,'f',9'>: M-+ M/t and o denotes func:tion composition.

Furthermore if t t' then (tll'",'f",9") is an isomorphism.

Proo'f.

Let t

We define

$'': 1C s -+ S" by $" (8) tll(s) where seBe:n'5 ,

IfN: :n'I -+ I" by 'f"<C> = 'f (i} where ieCe:n':r• (1}

en: :n' 0
-+ 0" by 9"(0) 9<y> where yeDe:n'0 •

These are well-defined for if s'eB then there

exists a B' in :n'' s suc:h that

s,s' eB Ç B' and tll(s) = tll(s'> {t :$ t'}

and so are C and D.

For any Be:n'5 and Ce:n'1 ,

tii"<BS~>

tll(s'eBS~> { (1)}

= 41 <ss1 > {s&B A i &C>}

tll<s>S"
'f (i)

{ (tll,'f,9)}

= tii"(B>S;~(Cl { (1)}

By the similar way we have

50

9"(BÀ~} = $"(8}À~ICl

It is implied that ($",'f",9"> is an epimorphism.

Secondly, to show communitive homomorphisms,

$(s}À~Ii>

= $"(B)À~"1Cl { (1)}

$"'($' (s))À~ •. I'f'li>> {($' ,'f' ,9')}

{functional composition}

With the same procedure we have

Hence, the theorem.

Furthermore, if t = t', ($0
9 'i' 0 ,9°) becomes one-to-one.

Therefore, it is isomorphic.

(End of Theorea 3.11)

The theerem is also illustrated by the following diagram which

shows the communitive proparty of the homomorphisms.

M

($' ''i'' ,9' } ($,'f,9)

M/t ------------- M'

($",'f"',9"}

In the theorem, if t ~ t', it is easy to show that ($"','f",9") is in

the opposite direction, that is,

with the same statements. This is included in the theerem if we

consider M' as M/t, and therefore, it is omitted.

3.3 C~mput~ti~n ~f P~rtiti~n

Trinity L~ttice

61

For applications of partition trinity theory, the first thing is to

compute a PT or a PT lattice i'or a given machine. In this section, we

discuss the ways of computing an PT and an PT lattice using the

properties given in the last section.

3.3.1 Compute Nontrivial PT's

From the dei'inition we know that the direct method i'or computing

part i ti on trini ty is to calculate all the parti ti on pairs of S-S, I-0,

S-0 and I-0 for a machine. Then, compare them and find some parti ti on

trinity. But, experiments show that it takes a very long computation,

because of the very large number of pairs. From the experiments and

examples, we found that the difference between the numbers of

partition pairs of different types of pairs was very great. Usually,

the number of part i ti on pairs of S-S and S-0 wer-e great, whi Ie the ones

of I-S and I-0 were small, because of the structural characteristics

of sequentia! machines. The procedure below gives one of the ways to

compute an PT based on the above consideration.

PROCEDURE 3.1

1. Find a nontrivial I-S pair <~I.~ 5 >;

2. If <~ 5 ,~ 5 > is not an s-s pair, then go to step 1;

3. Find an output nontrivial partition

4. If <~s.~o> is not an s-o pair, go to

5. If <~I •~o> is not an I-0 pair, go to

6. <~I •~s.~o> is a nontrivial PT;

7. Exit.

(End o7 Procedure 3,1)

~ 0 from ~ 5 ;

step 1;

step 1;

In Procedure 3.1, because of trial and error, the computation of

one pair may take langer in step 1. An alternative way is given by

Procedure 3.2 below.

52

PROCEDURE 3.2

1. Compute the set of secend components of all the smallest

s-o pairs ;

2. For any two elementsin the set carry out partition addition on

them; the result is a new output partition that can be used to

construct an S-0 pair with some state partition; after this

step, a set of all output partitions which are the secend

components of the same S-0 pairs;

~- If K0 is in the set, compute M5 _ 0 <K0 > = K5 ;

4. If (K5 ,K5) is net an S-S pair, go to step 3;

5. For K5 , compute M1 _ 5 (K5 > = K1 ;

6. If <K1 ,K5 > is net an I-S pair, go to step 3;

7. If <K1 ,K0 > is net an I-0 pair, go to step 3;

8. <K1 ,K5 ,K0 > is an PT;

9. For all K0 in the set, repeat steps 3-B;

where M1 _ 5 <K5 > and M5 _ 0 <K0 > are two pair operations

and are defined by

(End of Procedure 3,2)

Another way is suggested by Procedure 3.3. In this procedure, we

first compute the SP parti ti ons. This is because we know that SP is the

nearest toPT from the inclusion relation diagram in Fig. 3.1, and it

will take less time to compute. The procedure also gained by the fact

that the number of SP partitions is far smaller than that of all S-S

part i ti ons on a machine. Hence, we do net need to compute the pairs of

HK,-t:)} in which K "1- 'T ,

PROCEDURE 3.3

1. Compute all the SP partitions, that is,

{'T5 I'T5 is an SP partition};

2. If K5 e{'T5 }, then calculate K0 = m0 _ 5 <K5 >;
if m5 _ 0 (K5 > = K0 (0) or m5 _ 0 (K5) = ~ 0 <I>,

then go to step 2;

3. Calculate ~I= M 1 _ 5 <~ 5 >,

if M 1 _ 5 <~ 5 > = ~ 1 (0) or M 1 _ 5 (~ 5 > = K1 <I> ,

then go to step 1;

53

4. If urt ,1l'o> is an I-0 pair, then

<1l't ,1l's,1l'o> is a basic: nontri via! PT,

otherwise, go to step 2;

5. For all 1l's in <'ts}, repeat steps 2-4,

where ms-o<1l's> is a pair eperation and is defined by

fEnd OT Procedure 3.3J

It should be stated that pair operations M(1C) and m(1C) are done by a

direct method from the transition table on a computer insteadof by the

definitions of them.

3.3.2 Compute PT Lattic:e

In this sec:tion, we present the general procedure for c:onstruc:ting

an PT lattic:e of a given sequentia! machine.

PROCEDURE 3.4

1. Compute the set {Tb} of all basic: nontrivial PT's;

2. For any x,ye{Tb}, perfarm operations 0 and ~on them;

if x0y or xffiy is a nontrivial PT, put it in {Tb};

3. For ze{Tb}, z = <Zt,Z 5 ,Z 0 >,
using Theerem 3.6 for ZI and Z0 , we get two sets.

4. {({Zi}xZ 5 x{Z~})} gives a set of PT's which are derived

from basic PT z;

5. For all ze{Tb} , repeat steps 3 and 4;

6. Set up a table in which the rows and columns are PT' s;

for a row x and a column y, if x:S;y <or x;!!:y>, then

put the sign of :S; (or ;!!:) on the cross en try of x and y;

the table is referred to

7. Using the R table,

a lattice diagram.

(End OT Procedure 3.4J

join

as an "'R table";

all PT's tagether in order to draw

CHAPTER 4

PARALLEL FULL-DECOMPOSITIONS

In the preceding chapter the concept of a partition trinity was

presented and trinity algebra was discussed systematically. The

results developed there will be used in this chapter and following

chapters in order to study the full-decompositions of sequential

machines. Before we deal with the parallel full-decomposition~ we

have to make a rule -for the relationship between the original machine

and a simple network of component machines, which is described by the

concept of realization.

4.1 Re1~t~o~sh~ps
bet,;;ree~ M~~h~~es

In this section, we consider the relationship between two

machines, which will serve as a basis for the decompositions

throughout this thesis.

Let M = <I,S,0,6,A)

and M'= <I',S',O' ,8' ,A'}

be two machines with the same type.

DEFINITION 4.1

Machines M and M' are isomorphic if and only if there exist

three one-to-one onto mappings

a: S -+ S'

i!: I -+ I'

'Y: 0 -+ 0'

such that

55

fEnd of Definition 4.1)

We refer to the triple (a,~,Y} of mappings as an isomorphism

betweenMand M'.

The defini ti on states that two sequentia! machines are isomorphic

if and only if they are identical except fora renaming of the states,

inputs, and outputs. Machine isomorphism is the most elementary case

of two machines imitating each other through the use of combinational

circuits, in order toperfarm the three mappings. If we have a machine

M' which is isomorphic to M, then by just placing a combinational

circuit in front of the machine M' mapping inputs, and one at the rear

of the machine for mapping outputs, and/or one to one side of the

machine for mapping statesin the case of observing states or of state

machines, we can convert i t into a machine whic:h behaves like M. The

schematic representation of this conversion of M' into M, using three

combinational circuits, is shown in Fig. 4.1, where, triangles are

combinational circuits and indicate the directions of mappings.

r--------
1 P---~

I I I '

I
I
I

S'

L ____ - -----

Fig. 4.1

0'

I
I
IO

M I ________ J

Machine M is simulated by its isomorphic

machine M'with combinational circuits.

In the above defini ti on, we defined three one-to-one onto

mappings. If we omit the condition of one-to-one, a more general

concept is obtained, which has been briefly mentioned in Chapter 3.

56

Let lH S-+ S', v: I -+I' and hl: 0-+ 0' be three onto mappings from M to

M'. If they satisfy that,

for all s in S and x in I,

then, machinesMand M' are said to be homomorphic and M' is said to be a

hoaoaorphic iaage of machine M. By the definition in Chapter 3, it

means

M-+ M'.

Again, we can simulate a machine, M', by another machine, M, with

some combinational circuits, if M' is a homomorphic image of M. The

schematic representation of this simulation is shown in Fig. 4.2. If v

does net have a unique inverse, then v- 1 hd is interpreted as any input

symbol which ismappedontox' byv. Intuitivelyspeaking, themachine

M does more than M' can, but it c:an be modified by attaching

combinational circuits in order to imitate its homomorphic image M'.

r-- ----------

' I' I I 0
M 1--__., ...

'-- ---
s·

Fig. 4.2

__ ,
I
I o·

I

wl __ ...J

Simulation of the homomorphic image M' of M.

In addition to the isomorphic and homomorphic relations, in

practice, we prefer the case of how a machine M' can be used to i mi tate

the behaviour or functions of M. For this, in [22], this was referred

to as realization, and in [15,221 it was defined by the concept of

c:overing.

57

The former is emphasized by the mappings that make M' behave like M.

but the latter concerned M' producing the same output sequence as M

did.

In many applications, we are concerned wi th not only the outputs of

a machine but also with the state changes, of the machine; therefore,

we think that realization is suitable in our situations.

A realization is defined as follows. M' is a realization of M if

there ex i st three mappings: lil is a mapping of S into nonvoid subsets of

S'; 'I' is a mapping of I into I'; and a is a mapping of 0' into o, such

that (lll,'I',B> preserve the properties and binary operations. This

definition is not too convenient in practice. The rea.sons for it are

twofold. One is tha.t, in a. physical implementation we cannot directly

get the combinational circuit designsforsome mappings. such as ld. We

must cal cul a te lil< -1) f i rst. Another reason is that we cannot make the

definition coincidential with that for state machines. In the

following definition, some improvements will be made.

DEFINITION 4.2

A machine M' is said to be a realization of machine

M if and only if there exist three relations

lil: S'~ S is a surjective partial function

'1': I ~ I is a function

a: 0'~ 0 is a surjective partial function

such that

lll(s')Sx = lll(s'S~IXl)

and lll(s'>Ax = 9<s'A~ 1 x 1 >.

(End of Derini~ion 4.2)

We denote the realization by:

diagramatically in Fig. 4.3.

I

r-

' I

I
I
I
I L ___ _

I ,

S'

s

M <1 M' and illustrate it

0'

-----,
I
10

M _ ___)

Fig. 4.3 M <~ M'

58

Fig. 4.3 states that if M' is a realization of M, then M' started in

a state s' behaves like M under the interpretation of Q and h when

started in I!Hs'), if we c:onsider 41, 'f and 9 as three inter-pretors. In

ether words, that M' real i zes M means that we c:an put three

c:ombinational c:irc:uits of 'f, 41 and 9 by whic:h M' works exactly like M

under the translations on the inputs, states and outputs of M'.

It should be mentioned here that if M' realizes M, then the two

machines do not necessarily have to be isomorphic or related by

homomorphism. There is though, a homomorphism which relates M' to the

reduc:ed machine equivalent to M in the case when 'f is a one-to-one

mapping, as shown in [15].

4.2 P~r~llel F~ll decompos.:i.tion.s

In Chapter 2 we have described some meanings of parallel full

dec:omposi ti ons for sequentia! machines. In this sectien, we are going

to disc:uss them in detail. A parallel full-decomposition is suc:h a

dec:omposition that the original machine M is dec:omposed into two

component machines M' and M" each of them werking independently and

having fewer states, inputs and outputs. Befere studying this

dec:omposition, we make a precise definition of the parallel

conneetion of machines.

DEFINITION 4.3

A parallel conneetion of two machines

M' = (I' , S' , 0' , 8' , :À')

M"= ci·,s·,o•,s•,,.,-,
is the machine

M = M'H M• = CI'x!",S'xs•,o•xo•,s*,A*)
its transition func:tion s* and output func:tion A* defined by

(c' ") "* ·- ,s 0 !X' ,X"l

(, •) ... *
' 5 ,s "IX' ,X"l

tEnd of Definition 4.3)

DEFINITION 4. 4

Machines M' and M" are said to be a parallel full-dec:omposition of

M <I,S,O,B,:À) if and only if

M er M' 11 M".

(End of Definition 4.4)

59

THEOREM 4.1

Let M = <I,S,O,S,A> and suppose that t' and t" are two partition

trinities on M. If both t' and t" are non-trivia! and orthogonal,

namely, t'O t"=T 0 , then,

M c:a M/t' 11 M/t".

Proo"f.

Let M/t' = M' and M/t"= M"

with t'= <~I.~s.~o>

Thus,

where

M'= (~I.~s•~o,S' ,A')

M•= <~I.~s.~o,s•,A•>,

for all B'e~s• ~'e~I. e·e~s• ~"e~I.

From Definition 4.3,

where f8' 8")"'* • ' o,~· '~ .. I

and <B' ,B")A~~· .~ .. 1

Let 'f: I -t ~Ix-ti be defined by

'f(x) = (~'.~") such that

~, e~I' ~"e~I• ~'o~·= x ;

111: ~sx~s ... s be defined by

t1l <B' , B" > = s such that

B' e~ 5 , B"e~ 5 , 8'08"= s ;

e: ~ox-"to ... 0 be defined by

6(z',z") = z such that

Since t'O t"= T0 , 6 is an injective function.

t1l and e are two surjective partial functions.

For each (8' ,B•)e~ 5 x~ 5 , 8'0 a·~ 0 and xei,

60

tli(B' B">B
' x

{let B'OB"=s}

<B'OB">Bx {calculus}

{B' OB"trz.n

{calculus}

{M' and M"}

tll (B' 6~ I • x I • B" 6 ;f I x • I) {defination of tll}

mtB' R"\"*
~ • ,~ ' 0 'i'l X I {defination of M' H M"}

where 'i'< •x > denotes the f i rst component and 'i' (x • > the second one of

'i'<x>, namely, 'i'(x)=('i'(•x>,'i'<x·>>.

Si nee there c:ertai nl y ex i st an A' e7t5 and A" e·r5 suc:h that

[B'BxJ:n'5 =A' and [B"SxJ'l'5 =A" and IA'OA"I= 1 indeed

from 7t 5 ·~ 5 =7t 5 <0>, in the sequenc:e, it should be true that

Thus,

tliCB' B")6 = tli<<B' B">6* >
' X ' 'i' I X I

Similarly,

tli(B' B")?\ ' x

{let tli(B' ,B">=s}

{B'OB"=s}

{M' and M"}

{defination of 9}

{def i nat i on of M' 11 M"}

That is,

By Definition 4.3 we know

M ~ M'H M" = M/t'H Mtt•

(End of Theorea 4.1)

61

Let us use an example to illustrate this theorem.

EXAMPLE 4.1

With Theerem 4.1 find a parallel full-decomposition, if it exists,

for the machine shown in Fig. 4.4.

---------------------------------~----------------

1 2 3 4 5 6 ..
1 5/4 4/1 2/5 1/2 8/5 5/3
2 3/2 1/2 6/2 7/2 3/2 712
3 6/1 7/1 3/1 1/1 6/1 1/3
4 8/4 1/2 6/4 712 8/4 8/2
5 6/4 2/5 2/5 6/4 3/5 1/3
6 6/2 4/1 2/1 1/2 3/1 1/3
7 5/5 7/1 3/5 1/1 5/5 5/3
8 6/5 3/5 3/5 6/5 6/5 1/3

Fig. 4.4 Machine B

Calculating with a computer shows that trinities

{ 1 • 4 • 7 ' 2 • 3 '6 • 5' 8} '

{1 • 2. 3' 4 '5})

t"= ({1,4, ' 5, b}.

{ 1 ' 5 ' 6 ' 2' 4 ' 3 ' 7' 8} •

are orthogonal. Therefore, weusethem to build the quotient machines

B/t' and B/tn. The quotient machine B/t' is formed in Fig. 4.5 by

making the following short notations:

Rs {1,4,7,2,3,6,5,8} = {a1 ,a2 ,a3 }

R0 {1,2,3,4,5} = {Y1 ,Y2 }

In the same way, the quotient machine Bit" is formed in Fig. 4.6 with

the following short notations.

62

.81

a 1 a 3 /Y2 a 1 /Y2 a 2 /Y2 a 3 /Y1
a2 a2/Y1 a1/Y1 a2/Y1 a1/Y1
«a a2/Y2 a2/Y2 a2/Y2 a1/Y1

Fig. 4.5 Quctient machine B/t'

x1 x1/z2 x2/z1 x3/z1 x1/z3
x 2 x 3 /z 2 x 1/z 2 x 3 /z 2 x 3 /z 2
x 3 x 1 /z 1 x 3 /z 1 x 1 /z 1 x 1/z 3

Fig. 4.6 Quctient machine B/t"

If we make the fcllcwing nctaticns between machineBand B/t' 11 B/t":

are defined by,

fcr all x ei; CB' ,B") e1f5x't5 ; (z' ,z"> e1f0x't0

x 'f<x> CB' ,B"> lil <B' ,B" > (z' ,z") 9(z' ,z">

1 (b1'y1) (a1,x1) 1 (Y1,z1> 1
2 (b2,y2} (a2,x2> 2 (Y1,z2) 2
3 (b3,y2) <a2 ,x a> 3 <Y 1 ,za> 3
4 (b2,y1) Cai ,x2> 4 (Y2,z2> 4
5 (b1,y3> <aa,x1> 5 (Y2,z1> 5
6 (b4,y4} (a2,x1> 6

(ai ,x a> 7
<aa,xa> 8

It is cbvicus that 'f is an injective functicn and bcth lil and 9 are

surjective partial functicns. By the definiticn we have

B <::~ B/t'll B/t"

Fcr example, let <a3 ,x 3 > e1f5x't5 be a present state in B/t' 11 Bit"; with

the input 6ei, 'f(6>=<.84 ,y1 >, the B/t'll B/t" gces te

lllCa3 ,x 3 >86 = 886 1.

Therefore, lll<<aa,x 3 >8; 161 > = lll(a3 ,x 3 >8 6 = 1.

A schematic representaticn for the full-decompositicn of machine B

is given in Fig. 4.7.

(End of Exa•ple 4.1)

63

r--- --- - - - - - - - - - -· I
1tx

0

B/t' I

I
I I

I I
I Is
I B/t" I

I I
B I L ___ -- - - -- - - -- -- -- - _.J

Fig. 4.7 B~ B/t'H B/t"

From Theerem 4.1, we can obtain a parallel full-decomposition

M/t' 11 M/t" which realizes the original a machine M. It should be

noted that sometimes M/t'll M/t" may be isomorphic to M. Here, we will

study this special case of the theorem.

Firstly, we define some partitions and trinities whic:h are

permutable.

DEFINITION 4.5

Let S be a set and 1(and --r be part i ti ons on S. The part i ti ons 1(and 't

are said to be permutable if and only if

VB'e1t VB"e't; IB'OB"j= 1

(End of Vefinition 4.5)

Thus, if 1(and 't are permutable, then any elements in a bleek of 1(

are ene permutation over all bloc:ks of 't, and vice versa. For example,

ar-e permutatable. Obvious examples of permutable parti ti ons are the

trivia! par-titions: zero partition and identity par-tition.

For a pair- of permutable partitions, we get the following property.

THEOREM 4.2

I f 1t and -r are permutabl e part i ti ons on S, then

i) 1t • 't 1t5 <0>;
ii) 1t + 't = 1t5 <I>.

64

Proo-f.

i> Sim:::e IB' nB"I 1, any bleek B in ~-~is a singleton. From

the definition, ~-~ is a zero partition.

ii) Because any block B' in ~ contains exactly an element of

every block B" in ~. the bloc:k in ~ + ·t contains all

elements of all bloc:ks in ~ or ~.

Hence, ~ + ~ is an identity partition.

(End of Theorem 4.2)

Partitions ~ and ~are called co•plemeer.ary, if they satisfy ~·-r·

?!5 {0} and Jr+~ = ~ 5 (!). From the theorem, if ~ and ~are permutable,

then, they are c:omp 1 ementary. However, converse! y, that ~ and ~ are

complementary does not imply that Jr and ~ are necessarily

permutable. For instance, if we change ·t into

then, ~ and ~still are complementary, but they are not permutable.

We can extend the concept of 'permutable' to partition trinities.

DEFINITION 4. 6

Let t' = <n1 ,Jt5 ,n0 > and t" = <~ 1 .~ 5 ,~ 0 > be two trinities on machine

M. t' and t" are permutable if and only if n·1 and ·t1 , n5 and ~ 5 , and n0

and are permutable, respectively.

(End of Definition 4.6)

In the last part of this sec:tion, we will apply the concept of

"permutable partition trinities" to test the isomorphic relation

between a machine and its parallel full-decomposition.

THEOREM 4.3

A machine M is isomorphic to the parallel conneetion of two

quotient machines M/t' and M/t" if t' and t" are permutable partition

trinities.

Proof. From Theorems 4.1 and 4.2, we know that M/t' 11 M/t" realizes M.

Since t' and t" are permutable, there is nopair of states B'

in M/t' and B" in M/t" which are disjoint. So are the pairs of

inputs and outputs. It implies that the mappingsof the triple

(m,~,e> are one-to-one. Hence the theorem.

(End of Theorem 4.3}

65

Again, we can take an example to interpret this theorem.

EXAMPLE 4.2

For the machine C shown in Fig. 4.8, a computer shows the following

partition trinities.

1 2 3

1 1/1 2/8 5/6
2 2/2 1/7 6/5
3 3/3 2/2 7/8
4 4/4 1/1 8/7
5 5/6 6/3 1/1
6 6/5 5/4 2/2
7 7/8 6/5 3/3
8 8/7 5/6 4/4

Fig. 4.8 Machine C

ti ({1,3,2,4},

{1,5,2,6,3,7,4,8},

t2 ({1,3,2;4},

{1,5,2,4,6,8,3,7},

{1,2,4,5,6,7

{1,3,5,7,2,4,6,8})

{1,2,5,6,3,4,7,8})

4

6/3
5/4
6/5
5/6
2/8
1/7
2/2
1/1

Inspecting the trinities, by using the definition of permutable,

we get two part i ti on trini ties, t 4 and ti, which are permutable and can

be used for the isomorphic full-decomposition of machine C.

66

Now, we make substitutions on t 4 and t 1 and present the quotient

machines in Fig. 4.9.

s1 s1/Y1 s2/Y2
S2 s2/Y2 s1/Y1

Fig. 4.9 Quotient machines o~ C

q1/Z1
q2/z2
q31za
q4/z4

q2/z3
q1/z4
q2/Z2
q1/z 1

Generally speaking, i~ a machineMis fully decomposible, such as M

M/t' 11 M/t"; then we can eneode the input in~ormation in a binary code

of N' +N" digi ts so that the component machine M/t' wi 11 operate onl y

wi th the first digi ts and another component machine M/t" wi 11 operate

only with the last N" digits. N' and N" can be calculated as follows

N' = flog2ln'xl l
N" f log2l't'xl 1

where f x 1 denotes the mini mal integer 1 arger than or equal to x. A

similar coding c:an ba obtained for the states and outputs. Its

importance, in prac:tice, is that combinational circuits for the

mappings can be omitted.

For the machine C we can easily eneode the inputs, states and

outputs as follows.

For the inputs,

I

1

2

3

4

pog2II 11 = flog24l = 2

N' = flog2jn'II l = flog22l = 1

1

N' + N" = 2

bi ti bit2 where

0 0

1 1

1 0

0 1

bitl=O demotas i1

bit1=1 demotas i2

bit2=0 denotes j1

bit2=1 denotes j2

67

Similarly, for states,

N' == r 1 og211rsl 1 flog221 1

N" rlog21-ts1 1 rlog241 2

N' + N" = 3

Let bit 1 denote s 1 and s 2 on C/t 4 , bits 2 and 3 denote q 1 through q 4

on C/t 1 • The codes for the states o~ C are naturally formed in the

following list

bitl bit2 bit3 s

0 0 0 1
1 0 1 2
0 1 0 3
1 1 1 4
1 0 0 5
0 0 1 6
1 1 0 7
0 1 1 8

And the output codings are the sa me as listed above.

Finally, a diagram of the realization of machine C is shown in the

following figure.

,----- -------------- -.,bit
I I 1 bitll }o

L.2!
C/t 4 2

3
I

1
C/t 1 I 2 }s I

I I 3 .__ - ------------- ___ J

Fig. 4.10 C = C/t 4 U C/t 1

with bit-wires of inputs, states and outputs.

68

CHAPTER 5

FORCED-TRINITY
AND SERIAL FULL DECOMPOSITION

From Chapter 4 we know that the parallel full-decomposition of

sequentia! machines requires two partition trinities which satisfy

the condition that their trinity product is a zero-trinity. In some

cases this is a rigourous requirement. In this chapter, we will

discuss the serial full-decomposition, that is, how to decompose a

given machine into a network consisting of theserial conneetion of

two machines with separate states, separate inputs, and separate

outputs. It will be shown that the requirement for serial full

decomposition is weaker than that for parallel full-decomposition.

5.1 Forced-trinity

In this section, we study the relationship between a partition

trinity and an image machine, which we call the physical property of a

partition trinity. With the same aims, we study some tri-partitiohs

that have a similar character to an PT, if we introducesome external

conditions for them, which is called a forced-trinity. In the next

sec:tion, it will be shown that a forced-trinity precisely describes a

tail machine of a serial full-decomposition of a machine.

5.1.1 Physical Proparty of a Partition Trinity

DEFINITION 5. 1

A sequentia! machine

M'= <I' ,S' ,0' ,8' ,:>.' >

is an image machine of the machine

M = CI, s, o, s, :).)

if and only if there ex i st three mappings:

i) Cl! is a mapping of

i i) 'f is a mapping of

iii) 9 is a mapping of

such that (CIJ, 'f, 9): M ~ M'.

(End of Definition S.tJ

THEOREM 5.1

s onto s·.
'

I onto I';

0 onto 0';

69

A partition trinity of a machine M determines an image machine of

M. In ether words, a partition trinity of a machine M co.Jrresponds to an

image machine of M.

Proof.

Let T = (1f:r,1f'5 ,11'0 > be a partition trinity of the machine M, and

<Bs 1},{8IJ} and <B0 k} bethesets of 11'5 ,n':r and 11'0 ,

respectively. Because of the pair properties of a trinity,

the machine M' constructed in the following way certainly

exists:

M' = <I·,s•,o• ,s',:>.'>

where I'= n':r, S'= n's, 0'=

and for s' e s• and x• e I'

s' 8' x· = [s'Bx· l1ts

s':h'x· [s':?lx· lft'o

""o•

(1)

(2)

The machine M' is well-defined because pair properties of 1f1 ,

11'5 and 11'0 guarantee that,

for any q',q" inS and z',z" in I,

if q' and q" in the same block of 11'5 and

z' and z" in the same block of 11'1 , then

[q' Bz' l1ts = [q"8z .. l1ts

[q':hz·l1to = [q":>.z._lft'o

Now, we make three mappings:

Cl!: S ~ S' by Cll(s) [sJw5 ,

'f: I ~ I'

9: 0 ~ 0'

by

by

'f<x> l:xJw1 ,

9Cy> = l:ylw0 •

(3)

(4)

(5)

(6)

(7)

70

Due to the partition property, lil, 1f and 9 are one-to-one ont.

For any seS, xei, we have

ill(s)S'1f(Xl

[sl7tsSixlwi

[[sl7ts8"lXl'R' l7ts
I

[sSx l'R'5 •

{(5),(6)}

{ (1)}

{(5)}

By the same argument, we have

It shows that machine M' is an image machine of M.

(End o7 Theore• 5,1)

We refer to Theerem 5.1 as the physical property of a partition

trinity. From a partition trinity, we can obtain an image machine of

the given sequential machine. An image machine has two important

proper-ties. Firstly, by using two combinational circuits, an image

machine M' can be simulated by its original machine M. Secondly, by

using the conneetion of two or more image machines, the original

machine M can be realized in the behaviours. From this point, an image

machine is a component machine of the netwerk which realizes the

original machine (see example as fellows). In this thesis, we are

especially interested in the secend property, which will be

illustrated in the following sections.

EXAMPLE 5.1

We take the machines D and E shown in Figs. 5.1 and 5.2 as an

example to illustrate Theerem 5.1.

a b c d e f

A A/y B/y c D/i C/j F/i E/j
B B/y A/x D C/j D/j E/j F/j

--------------------- E F/i E/j D/k C/1
F E/j F/j C/1 Dil

I1 {a,b} ----------------------------
si {A,B} s2 = {C,D,E,F}
01 {x ,y} 12 = {c,d,e,f}

02 H,j,k,l}

Fig. 5.1 Machine D Fig. 5.2 Machine E

71

For machine E, a partition trinity T

1tz = <c,d,e,f},

'lts <C,D,E,'F>,

and 1to <k,l,i,j},

is easily obtained by the trinity c:omputation with machine E.

Furthermore, based on the mappings defined in the proef of Theerem

5.1, we get an image machine M that is isomorphic toD. Therefore, for

machine D we c:an si mul a te i t by E, i f we conneet i t in the way shown in

Fig. 4.2.

On the ether hand, u si ng the method ment i oned in Chapter 4 i t is

easily checked that image machine D is a component machine of a

parallel dec:omposition of machine E. The netwerk is shown in Fig. 5.3.

(End of Exa•ple 5.1)

~---------- ----,
I I I 01 I 11

{
• D •

}0· I2

I ' ·I I o· tI 1 D' 1 • I

I
E _ _I .._ __ ----- ----

Fig. 5.3 Image machine D as a component machine

of a parallel decomposion of E

5.1.2 Forced Trinity

Now,. we turn our attention tosome tri-partitions with a similar

c:haracteristic as an PT. If we substitute a tri-partition <1:'1 ,1:'5 ,1:'0)

for its original machine, wegetasmaller machine with l'l'sl states,

k xl1:'1 1 inputs and l'l'ol outputs, where kis a constant. Bec:ause the

smaller machine, in fac:t, is not an image machine, but it looks like an

image machine, and is obtai ned wi th some restri ct i ons, such as to k. We

refer to this kind of tri-partitions as a forced-trinity.

In order to make a precise description of a forced-trinity,

firstly, we will give some definitions about the concept of machine

vectors.

72

DFINITION 5. 2

For a machine M = <I ,s,o, 8,)..) , the c:ol umn veetors of i ts mac:hi ne

tabl e are c:all ed state vee: tors or output veetors. Symbol i c:all y, they

are defined by

(5.1.a)

for a state vector and

(5.1.b)

for an output vector, where iel; n=ISI; skeS; skts 1 if k~l;

and S is c:onsidered as an n-arrangement in some order.

(End of Definition 5.2>

Note that a vector is an ordered n-tuple <or m-tuple, m<n, for a

subvec:tor) and the order is defined by the position of sk. In this

Chapter we write a vector by

V instead of S or ~

in order to have a easy notatien for developing properties of vec:tors.

If we substitute skoi by its bloc:k [skoiJ of a state partition 1t

and skAi by its bloc:k [sk).iJ of an output partition ~. we have

DEFINITION 5.3

The bloc:k veetors of a machine M are defined by

V'!
.I

<5.2.a>

and V~ • (5.2.b)

for state block vector and output bloc:k vector with partitions 1t and ~

are on S and 0 of M.

(End of Definition 5.3)

Let 'lt' be another state partition onS. Using partition 'lt' we c:an

divide a vector V into IK! segments, each of which is called a

subvector of V. A precise description is given as follows.

DEFINITION 5.4

Let B' be a block of a partition n' on S. Vector v:. i

'
resp. · f d t b t f V5 V0. 1s re erre o as su vee or o 1 resp.

1

73

if

vBs' . , 1 <5.3.a>

resp.

where skeB', k=l .•• m, m=IB' I and s .. ;ts 1 if k;tl.

<End of Definiton 5.4)

(5.3.b)

Similarly, we can define subveetors of block veetors by

V'!. .
~ ' 1

........ ' (5.4.a)

resp. v-ra· . • • (5.4.b)

Usuall y, we refer to the state vector and output vector together

in many problems. Therefore, we can make an abridged notatien by

combiriing (5.4.a) and <5.4.b>, sueh as

for a convenient expression in the following sections.

DEFINITION 5. 5

Two veetors are said to be equal, if and only if

skS i == skS.i for V'iif = V~ 1 J

s .. :l\ i = sk}'j for y? V~
1 J

rs .. s i J'n' [s .. s j J'n' for V 'I! V"! and v: .. i v:. . 1 J • J

[SkAi]'l' [SkAj]'l' for V~ v-r: and v;. . v;. .
l J ' 1 • J

for all s .. es.
(End OT Definition 5.5)

For two bleeks B' and B" wi th different number of elements in n' ,
we can examine the relationship also with the concept of

compatibility, which is defined by

74

DEFINITION 5.6

Two subvectors, v:. ,i and v: .. ,j, are said to be compatible

wi th respec:t to a state part i ti on 7t", 1t' •1t" = 7t5 (0) , that is,

v:. ,i~ v: .. ,,; <x">

iT and only iT ~for all seB' and teBn,

if [sJ?t" = [t]?t", then

or

[t6 j J?t

[tÀ j]1!'

for a state parttien 7t;

for an output partition 7t,

where i,jei; B',B"e7t'.

(End oT Definition 5.6)

Under this definition we c:an c:onsider two vec:tor operations of

two compatible subvec:tors, whic:h are shown as fellows.

If yna~. .
• 1 v: ... j (7t") and 1t" = {81 , B2 , ••• , B.>,

then

and

V7ta· . + ••
where Ake7t

and Ak

and Ak =

Bk

yna· . *
• 1

v-; ... j

for k = 1 ••• m,

[sk8 i Jn if skeB'

[tk8 i]1!' if t~eeB"
'_, otherwise;

v:i

where Ake7t, k = 1 ••• m,

and

and

and Ak = [sk6 1 J7t = [tk8JJ7t

skeBk;

tkeB1d

if skeB', tkeB" and sk,tkeBk, or

Ak = '-' otherwise.

or

or

When 1t is an output parti ti on the vector operations are the same as

we defined above and are omitted here.

Now, we are at a position to make a definition for forc:ed

trinities.

DEFINITION 5. 7

Let ~ 5 , ~~ and ~ 0 be partitions of a machine M on s, I and 0,

respec:tively. <~x.~s.~o> is c:alled a forc:ed-trinity <FT>, if and only

if either

i) there is an S-0 pair <K5 ,K0 > such that

and for all i,jel and B',B"eK5 ,

implies V'ts''to ~ V'ts''to
B 01

1 i s~~ 1 j

in this case C-t 1 ,-·t5 ,-t0 > is an FT of type I; or

ii) there is a K5 such that

and for all i,jel; B'eK5

In this case• <-t1 ,-t5 ,-t0) is an FT of type II;

where K5 and K0 are referred to forcing-partition CFP>.

fEnd of Definition 5,7}

76

Because K5 and -t0 are two distinct types of partitions, we simply

appl y "'<-t1 ,-t5 , -t0) wi th FP K0 or K5 " to state that (·t" I, -t5 , -t0) is a FP of

type I or of type II.

Besed on the definition, a procedure for determining a given

<-t1 ,-t5 ,-t0) whether or not it is an FT is outlined as follows.

PROCEDURE 5.1

1. Findan K5 such that K 5 • -t5 = K5 <0>;

2. Initialize {V'ts''to}, BeK5 , beK1 , into empty vectors;
B 1 b

3. For all BeK5 do

4. For all iel do

otherwise, go to 7·
'

6. C-ti,-ts,-to> is an FT with --r·s; go to 16;

7. If there is another Ks such that Ks (0) , then repeat

1-5 for the new Ks; otherwise

76

8. Find a new ~ 0 such that <~ 5 ,~ 0 > is a pair;

9. Initialize {V'tsl'to}, B' e~ 0 , be't1 , into empty vectors;
B' 1 b

10. For all Be~ 5 do

11. For all iel do

12. If

then

otherwise go to 14;

13. ('t 1 ,"t: 5 ,.t:0) is a FP with ~ 0 ; go to 16;

14. If there is another ~ 0 , then repeat 8-12 for the new it;

15. <'t 1 ,'t5 ,'t0 > is not an FT;

16. Exit.

(End of Procedure 5.1)

Wi th Procedure 5. 1 we can obtai n an FT wi th a FP" i f they ex i st. But

Theorems 5.2 and 5.3 present ether ways to get an FT and its FP.

THEOREM 5.2

If <~I ,~ 5 > is an I.:S pair and <~I ,~ 0) is an I-0 pair, then

<~ 1 ,~ 5 ,~ 0 > is an FT with any FP 't5 such that ~ 5 ·'t 5 =~ 5 <0>.

proof. The I-S pair <~I •~s> implies that

[si<SiJn's = [si<SjJn5

for all s .. es and i,jei, such that [i]n'I

Hence, for any a FP ·"ts' if B'e't5 , then

for all s .. es and i,jei, such that [iJni

Therefore, for the ·t:5 , if B' e·t:5 , then

= yno
B' .

' J

Combining (1) and <2>, we have

(2)

This shows that <1f'I,n's,1f'0) is an FT with any FP ·rs.

(End OT Theore• 5.2 J

THEOREM 5.3

77

If <KI ,1ts ,1f'0) is an PT, then <1f'1 ,n's ,1t0 > is al so an FT wi th any FP ·r5

suc:h that ·t's •1f'5 = 1ts <O>.

ProoT. That (1f'I,1f's,n'o> is an PT implies that (n'I,Ks> is an I-S

pair and (1f'1 ,1f'0) is an I-0 pair. From Theerem 5.2

(1f'1 ,1f'5 ,:rt0 > is an FT with any FP ·t's•

(End OT Theore• 5.3)

Under Definition 5.6 the

c:onstruc:ts a transition table of a machine, if we eonsider eaeh bleek

Pi of 1t1 as an input; eac:h bleek QJ of 11'0 as an output, and eaeh bleek RI<

of 11'5 as a state <they are vi rtuall y i somorphi c: map pi ngs>. I f we refer

te the image machine c:orresponding te a partition trinity as an

independent image •achine, then, we call the machine c:onstruc:ted by

c:orresponding to a forced-trinity a dependent image machine. This

machine can become a component machine of its original machine if some

condition is satisfied, that is, it depends on the existenee of some

indepindent image machine. This will be shown in the following

sections.

5.2.1 Serial Full-decomposition of a State Machine

In our first disc:ussion of serial decomposition, we shall net be

derec:tl y concerned wi th the output of the machine, but are pri mar i 1 y

interested in the problem of serial decomposition only with separate

inputs and separate states.

'18

DEFINITION 5.8

The serial conneetion of two state machines

M1 = <1 1 ,S 1 ,S 1 > M2 = (1 2 ,S2 ,S2 >

for which I 2 = S 1 x 12
is the state machine M = M 1 ~ M2 = <I 1 xi 2 , S 1 xS2 , s*>
where s* (<s,t)' (x1,x2)) = <8 1 <s,x 1) ,82 (t, <s,x2))).

(End of Definition 5.8)

A diagram of this conneetion is shown in Fig. 5.4.

r- - - - -- - - - - - - -- -,
I I

I s2 I
Mt I I 1 1 I I

I I

I I
I st I
I 12 M;:z

I
I

I_----
_ _.

Fig. 5.4. Serial conneetion of state machines

M1 and M2 with separate inputs.

DEF1NITION 5.9

The state machine M 1 ~ M2 is aserial full-deco•position of state

machine M if M 1 ~ M2 realizes M.

fEnd of Definition 5.9)

The serial full-decomposition is nontrivial if

Is 1 I < Is I , I s2 I < Is 1.
I I 1 I < I I I • and IS 1 x I 2 I :!> I I I •

THEOREM 5.4

The state machine M = <S,1,8) has a nontrivial serial full

decomposition if there exist two partitions ~ 1 and ~ 2 on S and

two partitions -r1 and 't2 on I which satisfy the following c:onditions:

i) or1..~2} is an s-s pair, and

i i)

iii)

i v>

<--t 1 ,~ 1 > is an I-S pair, and

< ·r 2 , ~ 2 > is an I-s pair , and

Proo"f,

79

Given <~ 1 ,~ 1 > and <~ 2 ,~ 2 > on M, which satisfy

(~1,~1) A (~:1.-~2= ~1(0)) A (~1-~2=~s(0)) (0)

Let M1 and M2 be two machines which are constructed by

Mt = <~~,~~,8')

M2 <~1x~2.~2•8")

where ~ 1 ,~ 2 , and ~ 1 ,~ 2 are considered as collections of

bleeks, each of which acts as an element of the inputs and

outputs of machines M1 and M2 and 8' and 8" are defined by

VB'e~ 1 V.6'e~ 1 : 8'8'.6· [8'8.6 ..]~:1.

and VB'e~ 1 VB"e~ 2 V.6"e~ 2 :

8" 8" lil' • .6" I = [<B"fiB') 8 .6"]~2.

Let ~= I ~ ~~x~ 2 be an injective function,

$: ~~x~ 2 ~ S be a surjectioe partial function

defined by

(1)

(2)

Viel: ~U> = ([i]~1'[il~ 2 > (3)

and V<8' ,8") e~ 1 x~ 2 , B'fl B";t 0: $(8' ,B")=B'OB" (4)

Si nee ~~ -~ 2 =11' 5 <O> IB' OB" 1=1, that is,

]seS: $(8',8") = 8'0 8" = s. (4')

Now, by the definitions of $ and ~ and definition of

realization we have

ill((8' ,8">>8x

s8x {(4')}

ç 8'8rx 1 ~ fl<8'fiB">8cx 1 ~ {Prop.2.4}
1 2

ç [8'8txl~ l11'1 fl [(8'08n>8txl~ l~2 {(~1,11'1>,<~2,~2)}
1 2

= $(([818EXl~]Kt, [(B'nBn>S[XlT]~2))
1 2

$((8'8'txl- t 8"8"ta• txl- ,>>
~1 • ~2

$ < <B' 8' ~ 1 • x 1 ' B"' 8" t B • , ~ 1 x • l l))

ill((8' ,8")8*~1XI)

{(4)}

{(1),(2)}

{Def. 5.8}

80

It shows that serial conneetion of M1 and M2 realizes M by the

definition of realization.

(End OT Theorea 5.4)

The procedure for obtaining a serial full-decomposition of a

given state machine may be explicitly outlined as fellows.

PROCEDURE 5.2

1. Find an I-S pair <~ 1 ,n 1) such that <n1 ,n1 > is an s-s pair'

2. Find an I-S pair <~ 2 ,n 2 > such that

n 1 ·n2 =n5 <0> and ~ 1 ·~ 2 =ni<O>;

3. Construct the machine M1 using the pair <~ 1 ,n 1 >;

4. Construct the machine M2 using the pair <~ 2 ,n 2 > and

partition n 1 , and transfer the inputs into S 1 xi 2 •

(End OT Procedure 5.2)

The following example illustrates this procedure.

EXAMPLE 5.2

Find a serial full-decomposition of the state machine shown in

Fig. 5.5.

-----~----------------------

1 2 3 4 5 6
1 3 4 3 4 1 2
2 3 3 3 3 1 1
3 2 1 4 3 4 3
4 2 2 4 4 4 4

Fig. 5.5 Machine F.

Step 1. We take the I-S pair <~ 1 ,,n 1 >,

T 1 = <1,2,3,4,5,6} n1 =<1,2,3,4}

It is easily checked that <n1 ,n1 > is an s-s pair.

Step 2. I-S pair <~ 2 ,n 2 >,

~2 = {1,3,5,2,4,6}

is suitable as secend pair because it satisfies

and

Step 3. Let ~ 1 = {1,2,3,4,5,6} = {a,b,c,d} and

n 1 = <1,2,3,4} = <A,B}.

81

Substitute {a,b,c} and {A,B} for {1,2,

{1 ,2,3,4} in machine F. We get a new transition table shown in

Fig. 5.6 and delete the identical columns and rows. Finally,

the machine F 1 is got and shown in Fig. 5.7.

a a b b c c

.............
A B B B B A A
A B B B B A A
B A A B B B B
B A A B B B B

Fig. 5.6 Substitutions

a b c

A B B A
B A B C

Fig. 5.7 Machine F 1 •

Step 4. Let 1:'2 =

'1(2 =
2,4,6}={e,f} and

By the substitutions <see Fig. 5.8(a) >,transfer and deletien

(see Fig. 5.B>, we obtain the machine F 2 shown in Fig.

5.B<c:>.

--------------~--------- --------------
e f e f e f

A c c D c D c D
A D c c c c c c
B c D c D c D c
B D D D D D D D

<a> Substitutions

A B
e f e f '"'

c c D D c
D c c D D

(c) Transfer
and deletien

c
D

h i j k

C D
c c

D C
D D

(c) Machine F 2

Fig. 5.8 The steps of c:onstructing machine F 2 •

The following mappings illustrate the isomorphic relation

between machine F and machine F 1 ~ F 2 •

s -t S 1 xS2 I -t I 1 xi 2 I'
2

-t s 1 xi 2

1 -t <A,C> 1 -t <a,e) h -t <A,e>
2 -t <A,D> 2 -t <a,f> i ~ <A,f>
3 -t <B,C> 3 -t (b,e) j -t <B,e>
4 -t <B,D> 4 -t <b,f) k -t <B,f)

5 -t <c,e>
6 -t <c,f)

(End of Exaaple 5.2)

82

5.2.2 The Type I of Serial Full-Decomposition

We now begin by considering the problem of serial full

decomposition of a Mealy machine. Firstly, we develop the serial

full-decomposition of type I where the outputs of the first machine

are fed into the secend machine as a part of inputs of it.

Furthermore, a systematic method for calculating the forced

trinities used in this type of serial full-decompositions will be

discussed.

DIFINITION 5.10

The serial conneetion of type I of two machines

M1 <It,s1,o1,s1,~1>

M2 <I~,s2,o2,s2,~2>

for which I; = 0 1 xi 2
is the machine M = M 1 ~ M2 = <I 1 xi 2 ,S 1 xS 2 ,0 1 x0 2 ,S*,~*>

where s* ((s 't) ' <>< 1 'x 2)) (S 1 <s, x 1) '82 (t' (~ 1
(s' x 1) 'x 2))

~*<<s,t>,<x 1 ,x 2 >> = <~ 1 <s,x 1 >,~
2
Ct,C~

1
<s,x 1 >,x 2 >>

(End of Definition 5.10)

DEFINITION 5. 11

The machine M 1 ~ M2 is a sertal full-deco•position of type I of

machine M if theserial conneetion of type I of M1 and M2 realizes M.

CEnd of Definition 5.11)

THEOREM 5.5

A machine M has a nontrivial serial full-decomposition of type I

if there exists a partition trinity (7t17 7t5 ,1t0) and a forc:ed-trinity

(~ 1 .~ 5 ,~ 0 > with forcing-partition ~ which satisfy:

Proof.

i) ~ = 1t0 , and

i i> n's ··'ts=n's <O> • n'I ·~I=n'I CO> and 1to •'t'o=1to <O> •

We show that when tp = (1t1 ,K5 ,K0 > and t., = <~ 1 ,-r 5 ,~ 0 > satisfy

the above conditions the serial conneetion of machines M'

constituted by tp and Mu constituted by t., realize M.

Let M'and M" be

M'=<n'x,n's,n'o,S',~')

M"=<Kox~I.~s.~o,sn,~")

83

(1)

(2)

(3)

Since tp is a PT, (1) is well-defined, It means that

B' 6 .6' is 1 ocated on one and onl y one bl ock of 1r5 • So is B' ;;:.6' •

For <2> and (3) they are well-defined too, because t., is a FT

which implies, for s,teS, x 1 ,x 2 ei, if

then [s8x l~s = [t8x l~s and [s~x l~ 0 = [t~x l~ 0 •
1 2 1 2

Thus, B"8';y.,su 1 resp. B"~",y.,su 1 are indeed on one andonly

one block of resp. 1:'0 •

Let 't': I ~ 1l'1 x1:'I be an injective function

~= 1l'5 x1:'5 ~ S be a surjective partial function

e: 1l'ox'to ~ 0 be a surjective partial function,

where 't'<x> = Hxl7t1 ,[xl-r1 >,
~((8',8")1 = 8'0 8" if 8'0 8";t0

and 9((y' ,y">} = y'O y" if y'O y";t0

Due to the fact that tp and t., are orthogonal

that 't', 111 and e are one-to-one and that

~ < < 8' , 8"' l l e S and 9((y',y")) e 0.

Therefore, for (8',8")e 1l'5 x1:'5 , 8'0 8";t0, xei

(8'0 8">8x

(8'0 8">8x 0 (8'0 8°)8x

ç B'Bx 0 <8'0 8°l8x

{(5)}

{calculus}

{calculus}

{8'0 B"Ç8'}

we know

ç 8'B[X]1(I 0 8"8"(B').i:XJ1tx'[Xl'l'zl {18'0 8"1=1,(2)}

= 8'8''t'c-xl0 8"8"ca'>-\rc.xl''t'IX•ll {(4>,<2>}

111(8'8'\f«•Xl' 8"8"cy't't'«X•II

= $((8' t 8'")8*\j'()()) {Def. 5. 10}

(4)

(5)

(6)

(7)

84

Similarly,

!11(<B' ,B"))Äx

c B'Ä' n B"Ä" <<4>,<3>,IB'nB"I=1> - 'fi•Xl IB')o.~I•Xl''fiX•II

= ecB'Ä''f,.x,, B"Ä",y.,'f,X•l) <<6>>

= ecCB', B11 lA*'fiXll {Def. 5.10}

From the definition of realization we can conclude that

M'~ M" realizes M.

(End OT Theore• 5.5)

PROCEDURE 5.3

1. Find a partition trinity CK1 ,K5 ,K0);

2. Find a forced-trinity <-t'1 ,'f5 7t'0) with forcing-partition ·"(

such that

i > -r = K 0 , and

ii> !Kol x l'fxl ~Ph
3. Construct the machine M1 based on partition trinity

CK1 ,K5 ,K0). In other words, construct the image machine

corresponding to CK1 ,K5 ,K0 >;
4. Construct the machine M2 based on forced-trinity

C'r·I,-t's,'f0). with FP K5 ;

5. Conneet machines M1 and M2 by the Definition 5.10.

(End OT Procedure 5.3)

EXAMPLE 5.3

Consider the machine G gi ven by the transition table in Fig. 5. 9.

1 2 3 4 5 6 7 8

•••••••••• 11 ••••••••••••••••••••••••••••••••••

1 1/4 2/4 3/4 4/4 4/1 3/1 2/1 1/1
2 1/2 1/4 3/2 3/4 4/3 4/1 2/3 2/1
3 2/1 1/1 1/4 2/4 3/4 4/4 4/1 3/1
4 2/3 2/1 1/2 1/4 3/2 3/4 4/3 4/1

Fig. 5.9 Machine G

Step 1.

Step 2.

It

is

We

is easily checked that <?tz,:n's,n'o> •

?l's {1,2,3,4},

?(I = {1,2,3,4,5,6,7,8},

n'o {1,3,2,4}

a par-titien trinity of machine 6.

take tri-par-titien <~ 1 ,~ 5 ,~ 0 >,

·ts

~I

~0

= {f-;3,2,4}

{1,3,5,7,2,4,6,8},

{1,4,2,3},

as a candidate of forced-trinity with forcing-prtition

:n'0 = {1,3,2,4}

Here, ln 0 lxl~ 1 1= 2x2 = 4 < lil= 8.

85

The thing left is to check <~ 1 ,~ 5 .~ 0) whether or net it

is a forced-trinity.

Firstly, we substitute {A,8}, <e,f}, and <x,y} for

~ 5 ,~ 1 , and ~ 0 in machine 6, respectively. A set of bleek

veetors for machine 6 is obtained as fllows:

V, <Aiy,A/x,8/x,8/y)

v2 = (8/y,A/y,A/x,B/x)

V-a <Aiy,Aix,A/y,A/x)

v4 = (8/y,Aiy,8/y,A/y)

Vs (8/x,81y,Aiy,A/x)

v6 = <Aix,Bix,B/y,A/y)

v7 <Bix,8/y,8/x,B/y)

Va <Aix,B/x,A/x,B/x)

Wh ere V denotes V'ts''to.

Secondly, we substitute ?l'5 = {1,2,3,4} with {a,~} to

par-titien of states in machine 6. We ean divide the

veetors above into the

V~, 1 =(8/x,8/y)

V~,2=<Aix,8/x)

V~,-a=<Aiy,A/x)

V~,4=(8/y,A/y)

V~,s=<Aiy,A/x)

V~,6=<81y,A/y)

V~,7=(8/x,8/y)

V~. 8 = (A/x ,8/x >
Where V denotes v-r:s''to

following subveetors:

Va, 1 =<Aiy,A/x)

Va, 2=<8ty,A/y)

Va,a=<Aty,A/x)

Va, 4 ==(8/y,Aiy>

Va,s=<81x,8/y)

Va, 6==(A/x,8/x)

Va, 7 =(8/x,8/y)

Va,a=<Aix,8/x)

for short.

86

It is obvious that

vno ~ yno yno ~ yno <"ts> implies
a, :I. .6,3 .6,3 .a,s

VTs 1 'éo V'ésl'éo ~
.6,3

V'és''éo V'és''éo
.a,s

<"ts);
a, :I. a, a

vno ~ vno ~ vno ~ vno <"ts> implies
.6,:1. a,s .6,7 a 0 7

VTs''éo V'ésl'éo ~ V'ésl'éo VTs''éo <"ts>;
.6,:1. a,s .6,7 a,7

yno ~ V'lto ~ vno ~ yno <"ts> implies
a,2 .6,4 a,4 .6,6

V'ts''éo ~ VTs''éo V'ts''éo ~ V'ésl'éo <"ts>;
a,2 .6,4 a,4 .6,6

vno ~ yno ~ yno ~ yno <"ts> implies
.6,2 a,6 a,e .6,•

V'és'"o VTs''éo ~ V"s''éo ~ VTs'"o <"ts) •
.6,2 a,• a,e .6,s

Hence, we get

{ VTs'"o} = {v'és'To '
VTs''éo

'
V"s''éo

' V'és'-ro}.
'ltsX'éz a, :I. .6,:1. a,2 .6,2

This indicates that <"t1 ,-r5 ,-r0 > is a forced-trinity with

forcing-partition 'lt0 •

Step 3. Substitute 7t5 = {1,2,3,4}, 7t1 = {1,2,3,4,5,6,7;8},

and 7t0 = {1,3,2,4} by {a,.6}, <a,b,c,d} and <C,D}.

An image machine 9 1 of machine e is obtained and shown

in Fig. 5.10.

Step 4. Listing the veetors in

title in columns by the following way

titli of VTs''éo = ([8'~ 1 -ln 0 , [il'é1)
B' , i

and with titles in rows by the order

The table reprents dependent image machine <tail machine>

in a serial full-decomposition of the machine e, which is

shown in Fig. 5.11.

87

Step 5. Theserial conneetion of 6 1 and 6 2 is the same as Fig.2.7

except for changing M1 and M2 into 6 1 and 6 2 •

fEnd of

a b d

a a/D ~/D ~IC a/C
~ a/C a/D ~/D ~/C

Fig. 5.10 Machine 6 1

CC,e> <C,f) <D,e> <D,f>

A B/x
B B/y

A/x
B/x

A/y
A/x

B/y
A/y

Fig. 5.11 Machine 6 2

From the partition trinity and forced-trinity that we

apply here, we obtain the following isomorphic mappings

between machine 6 and machine 61-t 62.

111: s ... S 1 xS2 'f: I ... I 1 xi 2 9: 0 ... 0 1 x02

1 ... <a,A> 1 ... <a,e> 1 ... CC,x)
2 ... Ca,B) 2 ... Ca,f) 2 ... <D,x>
3 ... <~,A> 3 ... <b ,e> 3 ... <C,y)
4 ... c~,B> 4 ... Cb,f) 4 ... <D,y)

5 ... Cc,e)
6 ... <c,f)
7 ... Cd ,e>
8 ... Cd,f)

For example, for 3 in s and 6 in I,

111(3) = <~,A>, 'f(6) = <c,f>,

8<3,6) = 4, ")..(3,6) = 4,

111(4) = <~,B>, 9(4) = <D,y>,

8 1 <~.c> = ~. ")..:I.C~,C> = D,

8 2 <A, (D, f)) = B, ")..2 CA, <D,f) = y,

Therefore,

111(8(3,4)) = C8 1 C~,C>, B 2 <A,").. 1 C~,C),f))),

9(")..(3,4)) (")..t(~,C>, ").. 2 CA,").. 1 (~,C),f))),

Exaaple 5.3)

From Definition 5.6, we know what a forced-trinity means and how

to check a tri-partition to see whether or not it is a forced-trinity

and what type of forced-trinity it is, if it is a forced-trinity. But

i t does not tell us how to findan FT easily. That is, to findan FT, if

it exists, from the definition we have to take all the possible tri

partitions and checkthem against the definition. Does a way exist by

whit:h we can find all FT's directly, or by which we can see easily that

no FT exists for the machine under the forcing of some given trinity?

88

Inthelast part of this section, we are going te discuss the problem.

For the sake of convenience, we reeall the definition of a

forced-trinity of type I here again.

Fora given trinity <~ 1 .~ 5 ,~ 0 >, tri-partition <~ 1 ,~ 5 ,~ 0 > is a

forc:ed-trinity under the force of the trinity if and only if for all

i,jel and B',B"en5 ,

[il't'z= [jJ't'x and V'lto ~ V'lto <~s>
B' , i au,.;

imply V't's''t'o V't's''t'o <~s>
B" 1 i J

Firstly, we analyse the condition V'lto V'lto <~s> •
•• ' i ·-. .;

We know the following relationships held for the Definition 5.5:

Similarly, for ("t5 > , we have:

Therefore, Definition 5.6(i) becomes that (~ 1 ,~ 5 ,~ 0) is a FT if and

only if for all i,jel and s,teS,

imply

[sJ't'5 = [tJ-r5 A [s61 J-r5 = Ct6JJ-r 5 •

By the predicate calculus [19]

<A A B =* A A C) ~ CA A B =* C> ,

the <3> bacomes

[iJ-r 1 =CjJ't' 1 A [sJ't'5 =[tJ't'5 A [sA 1 l1t0 =[tA.;l'1t0

imply [s8 1 J-r 5 =Ct6.;l't'5 •

Again, based on

<A A B =* C) ~ <A =* (8 =* C)) ,

(3') bacomes

[sA 1 l1t0 =[tAj]1t0

implies that

CiJ-r 1 =[jJ-r 1 A [sJ-r5 = [tJ-r 5

imply

(3)

(3')

(4)

89

The equation <4> indicates that, for all yeO which beleng to the

same block in X0 , we should check the corresponding entries to see

whether they satisfy that,

for any Be~ 5 , Ae~ 1 : BSA ~ B"e~ 5 • (5)

Befere we discuss the procedure, we should make a precise

definition on the partial machines prodw:::ed by a given output

part i ti on n'0 •

DEFINITION 5. 12

Let n'0 be a parti ti on on output set of a machineMand y be any bleek

in n'0 • Then,

My = <I ,S,By>

is called as a partial state machine with respect to y,

for which, for any seS and iel,

. { don' t care
By<s,l) =

B<s,i >

if). <s,i> 9! y

if).(s,i> e y

(End of Definition 5.12)

(6)

From the definition, we see that My is an incompletely specified

machine and is part of the machine M. Thus, all of the partial machines

produced by the bleeks of n'0 form the original machine M by piling them

up together, if we see them transparently. Fig. 5.12 illustrates this

idea.

r - - - - - - - - - - - -- -

••

M

c:J
I

I
I
I
I

- __ j

M = <I,s,o,s,).>, n'0 = {y~, Y2•······•Ym}

My.= <I,s,sy.>, i=1 ••• m,
1 1

Fig. 5.12 MachineMand its partial machines

90

The following procedure describes the methad for calculating FT's

from partial machines.

PROCEDURE 5.4

1.

2.

For given ~ 0 = {y 1 ,y 2 , ••••• ,ym} separate M into {Myi}.

From each My. calculate partition pairs
1

Pi = {("t5 ,-t1 > jVB 1 e"t1 1\ VB 5 e"t5 : SYi <B 5 ,B 1 H;B~e"t 5 }.

3. Calculate m
P = n p.

i=i 1

4. If P=0, return

nthere is no FT with respect to ~ 0 for Mn, exit.

5. Calculate the set of FT's based on P

FT's

6. Exit.

(End of Procedure 5.4)

Weshouldexplainthestep2morefully. WhenwedoSy<B5 ,B 1 >, ye~ 0 , we

must omit some seB 5 , xei, such that Sy<s,x> is undefined. After

Chapter 7 we will see that <-t1 ,-t5 > is a weak partition pair with some

special features.

In this section, we considered two different ways of calculating a

forced-trinity: one by veetors of a machine and the other by partial

machines of the machine. With the farmer we can check given tri

parti ti ons and bui 1 d a tai 1 machine easi 1 y, but i t is not so easy to get

all the FT' s. In contrast, from the 1 at ter, we can si mpl y cal cul a te all

the FT's, but it takes a very long time, due to the incompletely

specified partial machines. In practice, we choose one, or bath, of

them to reach our goal.

To end this section, we give an example to explain the methad

mentioned above.

EXAMPLE 5.4

Using Procedure 5.3 calcultate FT's for the machine shown in Fig.

5.13 under the force of trinity

1 2 3 4 5 6 7 8
......................................

1 1/2 2/2 3/2 4/2 4/1 2/1 3/1 1/1
2 1/3 1/2 3/3 3/2 4/4 2/4 4/1 2/1
3 2/4 1/1 1/2 2/2 3/2 4/1 4/2 3/1
4 2/1 2/1 1/3 1/2 3/3 4/4 3/2 4/1

Fig. 5.13 Machine H

Step 1. Given ~ 0 = {1,4,2,3}, the partial machines are H11 , 41

and H12 , 31 shown in Fig. 5.14 respectively.

Step 2. For machine H11 , 41 we obtain T = {1,3,2,4}

D = {{1,5,7,2,6,8,3,4},

{~.~.3,4},

{1,3,5,7,2,4,6,8}}

such that TxDÇP 11 , 41 •

For machine H13 , 41 it is obious that

~~ = {1,3,2,4} and

D' = {{1,3,5,2,4,6,7,8},{1,3,5,7,2,4,6,8}}

such that ~'xD'ÇP 12 , 31

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 \
1
2
3
4

2 1
2 2

4 3 2 1
4 4 2 2

4 3
4 4

1
2
3
4

1 2 3 4
1 1 3 3

1 2 3 4
1 1 3 3

<a> H,1,4l (b) H12,a1

Fig. 5.14 Partial machines of H

Step 3. ~xD n --e xD'

ç P,1,4ln Pl2,3l

Step 4. P 11 , 41 n P 12 , 31 t0 go to step 5.

Step 5. For ~ 0 {1,4,2,3} there are two partitions

~0 {1,3,2,4}

~~ {1 ,2,3,4}

which are orthogonal to ~ 0 •

Therefore, tri-partitions

{
~z {1,3,5,7

~s {1 ,3,2,4}

~0 {1,3,2,4}

~·{ Tz =
~s

~~ {1,2,3,4}
0

are forced-trinities with respect to ~ 0 •

fEnd of Exaaple 5.4)

91

92

5.2.3 The Type II of Serial Full-Decomposition

In type I of the serial full-decomposition, it should be noted

that there is a problem of time delay. By the way of type I conneetion

the f i rst component machine has to compute i ts next state and output

befere the secend component machine can compute its next state and

output. Thus, if we assume that each machine computation requires a

certain time interval, the output of theserial conneetion appears

after two time intervals. Thistime delay increases with the number of

serially connected machines and may be undesirable practical

applications. On theether hand, the time delay requires the lasting

time of input signals to be long enough for all machines to finish

their operations correctly. In ether words, the time delay limits the

frequency of the input signals. For the reasens above, we must develop

another type of serial full-decomposition for seqential machines.

DEINITION 5. 13

The sertal conneetion of type 11 of two machines

Mi <I1,S1,01,81,A1)

M2 = <I~,s 2 ,o 2 ,s
2 ,A 2 >

for which 1; = S 1 xi 2

is the machine M = M 1 ~ M2

where s*<<s,t>,<x1,x2))

A*<<s,t>,<x 1 ,x 2 >>

(End of Definition 5.13)

<I 1 xi 2 ,S 1 xS2 ,0 1 xo2 ,s*,A*>

<8 1 Cs,x 1 >,6 2 <t,<s,x 2 >>>

(A1 (s,x 1 >,A2 <t,<s,x 2 >>>.

A schematic representation of type II serial conneetion is shown in

Fig. 5. 15.

ï - -- - -- - --- --- -- --.,
I

I 011
I 1 1

I { -~-~-2--M-1---- '-_ ---.•:--M-:2....,.1-o-2_! __ } 0

I I
I M I 1------------ -----'

Fig. 5.15 Serial Conneetion of type II.

93

DEFINITION 5.14

The machine Mi-+ M2 under the conneetion of type I I is aserial full

decoaposition of type 11 of machine M if Mi-+ M2 realizes M.

(End of Definition 5.14)

THEOREM 5.6

ThemachineMhasanontrivial serial full-dec:ompositionof type II

if there exist a partition trinity <K1 ,K5 ,K0 > and a forc:ed-trinity

<~ 1 .~ 5 .~ 0) with forcing partition ~ which statisfy:

i) ~ = 1l'g;

ii) Tri-partitions C1l'1 ,1l'5 ,K0 > and (~I.~s.~o> are orthogoal.

Proof. Let tp = <n1 ,K5 ,1l'0 > and

t~ = <~I,-t 5 ,~ 0 > with 1!5 •

By the definition of FT t~ satisfies

1! 5 ·~ 5 = 1!5 (0) and for all i,jei; B'eK5

By the definition of compatible we have

Cih' 1 =[j]'l' 1 =9

([sJ'l'5 =CtJ'l'5 =9 CsS 1 J'l'5 =CtS;l'l'5 A [sA 1 J't'0 =CtAjJ-r0 > (2)

Based on the rule of predicate calculus, (2) bec:omes

[iJ'l'I=[j]'l'I A [sJ'l's=EtJ'l's =+
([sS 1 J'l'5 =[tS;l'l'5 A [sA 1 J'l'0 =[tAjl'l'0).

However, since 1! 5 ·~ 5 = 1!5 (0) if s,teB'e1l'5

[sJ'l'5 =CtJ'l'5 if and only if s=t.

So, (3) is replaced by

(3)

(4)

[iJ'l' 1 =CjJ'l'I ~ ([s8 1 J-r5 =Cs8;l'l'5 A [sA 1 J-r0 =CsA;J'l'0 > (5)

which indicates that

and

(~I.~s> is an I-S pair,

<~I,~o> is an I-0 pair.

Now, let M' (1l'I 0 1l'5 ,1l'0 ,8' 0 A')

and M" <K 5 x~ 1 .~ 5 ,8",A
0

)

where B'S' A' = CB'BA.J~ 5

B'A' A' = CB'~A' J~ 0
for B'e1l'5 and A'e1l'1 ;

and 8"8" 111 • ,A" I = [(8'11 B">B8 .. J'l'5

B"A"tll' tA"l = [(B'n B")~8 .. J'l'o

for B'e1l'5 , B"e~ 5 , Ane~x·

(6)

(6')

(7)

(7')

(8)

(8')

94

tp guarantees that (7> and (7') are well-defined. And so

do (6) and (6') to (8) and (8').

Let $: ~sX~s ~ S defined by

$ < < B' , B") > = B' () B"

~= I ~ ~ 1 x~ 1 defined by

~<x>= ([xJ~ 1 ,[xJT 1 >,

a: ~oX~o ~ 0 defined by

a < < y' 'y" > > = y' n y".

Then, for <B',B
0
>e~ 5 x~ 5 , B'(l B"t0

$ (< B' , B") > Bx

<B' () B" > Bx

= <B' () B">Bx () <B'(l B">Bx
ç B' Bx () <B' 0 B" >i" x

ç [B'Btxl~ J~s 0 [(B'n B"'>S[XlT lTs
I I

B'B'~c-x,n B"tt",•·.~cx-11

$ <B' 8' ~I • X I ' B" 8" I B • ''t' I X • I J)

$((8', B")t;*'t'IX•I);

and by the same argument we have

$((B' B")):l\ ' x
<B' fl B" >).x

<B'fl B">:l\x n CB'fl B">:l\x

ç B'~x n <B'n Bn>~x

ç rB'~rxl~ J~o o t<B'n B">~EXJT JTo
I I

Hence, machine M'~ M" realizes M.

rEnd of Theorea 5.6)

x el,

{(9)}

{calculus}

<B'n B"ÇB'}

{calculus}

(9)

(10)

(11)

{ (7). (8) '(10)}

{(9)}

<Def. 5.14}

{(9)}

{calculus}

<B'nB"ÇB'}

{calculus}

{(7'). (8') '(10')}

{(11)}

<Def. 5.14}

Camparing Theerem 5.5 with Theerem 5.3, we see that serial full

decomposition of state machine is only a special case of the type II of

serial full decomposi ti on omi tting the outputs of a sequentia!

machine.

We now outline the procedure of finding a serial full

decomposition of type II of a given machine as follows.

95

PROCEDURE 5.5

1. Find a partition trinity <~ 1 ,~ 5 ,~ 0 >;

2. Find a forced-trinity (~ 1 ,~ 5 ,~ 0 > with forcing-partition ~;

which satisfy:

3.

4.

5.

{End

i> ~ = ~s

ii) (~I,~S,~O) 0 (~It~St~O) = (~ICO>,~s<O>,~o(0));
iii> 1~1 x I~II ':$ lil;

Set up component machine Mi based on (~I t ~5 t ~0) ;

Set up component machine M2 based on (~I,~S,~O) and ·r;

Conneet Mi and 1'12 by the way given in Fig. 5.15.

of Procedure S.SJ

EXAMPLE 5.5

Find aserial full-decomposi ti on of type II of machine J shown in

Fig. 5.16.

1 2 3 4 5 6 ...

1 1/8 3/11 5/4 7/3 9/2 11/7
2 1/11 2/8 5/3 6/4 9/7 10/2
3 2/6 1/11 6/12 5/3 10/10 9/7
4 3/5 4/6 7/1 8/12 11/9 12/10
5 12/10 10/9 4/12 2/1 8/6 6/5
6 11/7 11/10 3/3 3/12 7/11 7/6
7 10/2 9/7 2/4 1/3 6/8 5/11
8 9/9 12/2 1/1 4/4 5/5 8/8
9 5/4 5/4 9/8 9/8 1/2 1/2
10 8/12 8/3 12/6 12/11 4/10 4/7
11 7/12 8/3 11/6 12/11 3/10 4/7
12 6/3 6/12 10/11 10/6 2/7 2/10

Fig. 5.16 Machine J.

The computation of partition trinity shows that <~ 1 ,~ 5 ,~ 0) is a

partition trinity of machine J, where

~s <1,2,3,4, 5,6,7,8, 9,10,11,12},

~I {1;2, 3;4, 5;6},
~0 {1,3,4,12, 5,6,8,11, 2,7,9,10}.

The image machine J 1 corresponding to <~x ,~ 5 ,~ 0 > is shown in Fig. 5. 17

with the substitutions of

and

M
N
p

I

1'1/f
P/g
N/e

J

N/e
M/e
P/f

K

P/g
N/f
1'1/g

Fig. 5.17 Machine J 1

96

"ts {1,5,9, 3,7,11, 4,8,12},

-rx = {1,3,5, 2,4,6}, and

"to {1,5,9, 6, 10, 12, 2,4,8}

and -r {1 ,3,4,12, 5,6,8,11, 2,7,9,10} as the c:andidate of

forced-trini ty. It is obvious that -r = 1!5 and <-tx ,-r5 > is anI-Spair and

<-rx,-t0 > is an I-0 pair.

<M,a> <M,b> <N,a> <N,b) <P,a> <P,b>
... "

A A/w C/z D/y B/x A/w A/w
B A/z B/w C/z C/y D/y D/z
c B/y A/z B/w A/z C/y D/z
D C/x D/y A/x D/w B/z B/y

Fig. 5.18 Machine J 2 •

In the following substitutions of

·r5 {A,B,C,D},

"tx {a,b},

1:'0 {x,y,z,w}, amd

·r {M,N,P}

and c:omparing of vec:tors, we obtain a dependent image machine J 2 <see

Fig. 5.18>. Itcanbeshownthat <-rx,-rs,-1'0 > with-t'isaforc:ed-trinity.

Therefore, the machine J 2 is a component machine of J 1 -+ J 2 which is a

serial full-dec:omposition of type II of machine J. The mappings are

listed as follows:

s -+ S 1 xS2 I -+ I 1 xi 2 0 -+ 0 1 x02

1 -+ <M,A> 1 -+ <I ,a> 1 -+ <e,x>
2 -+ <M,B> 2 -+ <I,b> 2 -+ <g,w)
3 -+ <M,C> 3 -+ <J ,a> 3 -+ <e,z >
4 -+ <M,D> 4 -+ <J,b) 4 ... <e,w>
5 -+ <N,A> 5 -+ <K,a> 5 -+ (f ,x)
6 -+ <N,B> 6 -+ (K,b> 6 -+ (f ,y>
7 -+ <N,C> 7 -+ <g,z)
8 ... <N,D> 8 -+ (f ,w>
9 -+ <P,A> 9 -+ <g,x)

10 -+ <P,B> 10 -+ <g ,y>
11 -+ <P,C> 11 -+ (f ,x)
12 -+ <P,D> 12 ... <e,y>

(End of" Exaaple !5-!5J

97

CHAPTER 6

H- AND WREATH DECOMPOSITIONS

In this chapter, we shall discuss some special decompositions

which are supplementary te the full-decomposition theory introduc:ed

in the previous chapters.

6.1 H-deo~mp~aiti~na

From c:hapters 4 and 5 we know that for a given machine M, if its

full-dec:omposition exists, there are then two machines, M1 and M2 ,

whic:h are construc:ted by two partition trinities <fora parallel full

dec:omposition) er ene partition trinity and ene forced trinity (fora

seriel full-dec:omposition). Henc:e,

M<~M 1 11 M2 er M<"~M 1 -t M2

and there are three mappings:

$: S -t S 1 xS2 ; Y: I -t I 1 xi 2 ;

where the mappings satisfy,

for i=1 ,2,

IDii<IDI-

However, we note that for some machines that are net fully

dec:omposible, but there are some SP partitions on them. We are

interested in looking forsome dec:omposition for them. As a result, we

found a type of decompositions that looked exac:tly like the full

dec:omposition introduced by Chapter 4.

98

For the new type of decomposi ti ons, we must introduce new mappi ngs

on input and output sets as follows

'f': 9':

where I 1 n I 2 = 0 and 0 1 n 0 2 = 0 • From the mappings, we know for each

i eI , ei ther 'f' (i > eI 1 or 'f' (i > e 1 2 , whi ch means the component mach i nes

M1 and M2 only can recognize parts of the inputs of the original

machine M via the mapping, but tagether they can recognize all the

inputs of M. In this way the two component machinesworkin a mutually

exclusive way, such that for any an input i in I, only one component

machine is in active state, if 'f' (i) intheinput set of the component

machine and another is in an inactive state. Therefore, the

decomposition is called an H-dec:omposition due to its feature of half

werking.

6.1.1 H-connections

There are three main ways of connecting two machinestomeet the

above mappings eerrasponding to three modes of machines: state

machines, Moore machines and Mealy machines. The connections are

called H-connections and defined as fellows.

DEFINITION 6. 1

Let Mi = <I 1 ,si,Bi>, i=1,2, be two state machines. The H

connection of the two machines is defined by

where

{

<S 1 (s 1 ,i>, s 2)

(s1, B2 Cs2,i))

for all <s 1 ,s2 >eS1 xS2 and iei 1 UI 2 , I 1 0I 2 = 0.

(End of Definition 6.1)

We write M1 V M2 for the H-connected machine.

If M1 is a Mealy machine we have the following definition.

DEFINITION 6.2

The H-connection of two Mealy machines M1 and M2 ,

M 1 =<I 1 ,s 1 ,o,,s•.~•>, i=1,2,

is defined as fellows

M1 V M2 = <I 1 UI 2 , S 1 xS2 , 0 1 U02 , Sv, ~v)

where

{ (5
1 <s 1 ,i>, s2) if i ei:t.

Bv (<s:t. ,s2 >, i) =
(si' B2 <s2 ,i>> if i ei 2

{ <~
1 <s:t.,i>, s2) if i e-I :t.

~v((s1,s2)' i) =
<s:t., ~2(s2,i)) if i ei 2

for all <s 1 ,s2 > eS1xS2 and iei 1UL2 , I 1 ni 2 =0.

fEnd of' Def'inition 6.2}

99

The Definition 6.2 can also be used for Moore machines. However,

we would like to introduce another defini ti on forthem due tothefact

that each state in a Moore machine accompanies an output so that we c:an

ac:hieve greater output messages from the connec:ted Moore machines.

DEFINITION 6.3

Let Mi <Ii,si,oi,Bi,~i>, i=1,2, be Moore machines. The H-

conneetion of them is defined by

where Sv is the same as that in Definition 6.1 and

~v((s:t.,s2)) = (~1(s:t.)• À2(s2))

for all <s1 ,s2 > e S 1xS2 •

(End of' Def'inition 6.3)

From the definition, we know that M1 vM2 presents a new and special

work mechanism which shows the c:haracteristics of parallel and

mutually exc:lusive action states. We say it is werking parallely since

any one of the H-c:onnected machines works independently, that is, its

next states and outputs only depend on its present states, not on the

states or outputs of another machine, in addition .to inputs of the

machine. The mutually exc:lusive is due to the fac:t that for any input

in I 1UI 2 only one of the H-c:onnec:ted machinescan rec:ognize it, so that

it is enabled by the input and another one c:ertainly does notknowit so

that it appears dummy to the input.

100

Figure 6.1 shows the structure of a H-connection M1 V M2 • It looks

exactly like a parallel full-decomposition in Chapt.er 4 except

indicating I 1UI 2 •

r--

I M2
I
I,.. _______ _

--,

I
I ---·

Inthelast part of this sect.ion, we are going te discuss some of

the properties of H-connections of state machines.

THEOREM 6.1

If both Ms. and M2 , M1=<Ii'Si,S 1 >, i=1,2, are permutation

machines, then M1v M2 is a permutation machine.

Proof. We know that in general M is a permutation if and only if

for any s,teS

s t t =9 sSx t tSx

for all xel of M.

Let <st,s2) and (ti ,t2)

in M1v M2 • If <s1,s2> t

neither si = t:l.'
nor s:2 t2.

be any pair of present states

<t 1 ,t2 >, it implies

Therefore, for any xels_UI 2 ,

(1)

(2)

(3)

results in <s 1 ,s 2 >S~ t <t 1 ,t 2 >s;. <4>

Otherwise, s 2 t t 2 results in the same situation. With the

same reasen (4) also is true for xei 2 •

Hence, M1 v M2 is a permutation machine.

(End of Theore• 6.1J

101

THEOREM 6.2

For any Mi= CI i ,Si ,Bi>, i=1,2, the H-c:onnection M1 V M2 never be a

reset machine with a constant input mapping.

Proo-f, Si nee for any an input x in I 1 U I 2 , i t maps the preset statas to

the next states and keeps one mac:hi ne i nacti ve, thi s means the

first <or sec:ond) c:omponents of the next states are the same

as the components of the present states. The number of

distinct elementsin the c:ompomemts are at least I Si lnext

states are distinct. Henc:e, machine M1 vM2 has nota column in

the transition table with a constant next state.

(End of Theore• 6,2)

6.1.2 H-PAIRS

In order to analyse the condition of H-dec:ompositions of a

machine, we introduce a special partition pair -- H-pair as follows.

DEFINITION 6.4

Let KI be an input par-ti ti on wi th two blocks on a machine 1'1, that

is:

and 'lts a part i ti on on state set of 1'1. <KI ,'lts) is aH-pair if a.nd orlly if

either for any x 1 eB0 and x 2 eB1 ,

Blfx ç B and
1

for all Be'lts.
(End of Definition 6.4)

(1)

(2)

Bec:ause of the arbi trary of assumptions for the input blocks B0

and B1 , (1) is sufficient for the definition of H-pairs. We call input

block B0 in KI as keeping block and B1 as acting block.

AH-pair of a machine dedic:ates the feature of half werking of the

machine. For the inputs in bloc:k B0 they retain the next states

unc:hanged wi th respect to part i ti on 11'5 , but for ethers in B1 they make

the machine work as usual with respect to 'lts• In other words, the

feature obviously appears on the factor machine M/7t5 of machine M.

A proparty on H-pairs is given in the following theorem.

102

THEOREM 6.3

If <K1 ,K5) is a H-pair, <K5 ,K5 > then is an S-S pair.

Proof. Following the (1) we know for any s,tes, [slns=CtJns

implies [s8xln5 = Ct8xln5 for all xei.

(End of Theorem 6.3)

In ether words, Theerem 6. 3 states: i f <:1t1 , :1t5) is a H-pai r, K 5 is an

SP partition. We should mention it here that ,in general, aH-pair is

not an I-S pair defined by Hartmanis although we have concerned the

pair on the sets of inputs and states. I f i t is an I-s pair, we know the

machine is possibly fully decomposible as a state machine and we can

solve it with the concept in the previous reports. On theether hand,

we shoul d note that an I-s pair is not: normall y a H-pai r. I t means that

H-pairs give completely a new concept induced by the new problem of

decompositions of sequentia! machines.

Finally, a definition on H-pairs is given to end this sec:tion,

which will be used in later sections.

DEFINITION 6. 5

Two H-pairs, <K1 ,K5) and ('t1 ,--r5 > are mutually complement if

i) B0 A1 and B1 =A0

ii) K5 • 't5 K5 (0)

We call <'t1 ,K5 > a complement of H-pair <1t1 ,K5 > and vice versa.

(End of Definition 6.5)

It isobviousthat, for anH-pair, itscomplement isnot unique. In

the definition, it is true that K1 ='t1 , but they appear to be

different functions in the H-pairs. We shall use one input partition

to denote the complement H-pairs and indicate one bloc:k of it an

ac:ting block in a H-pairs and another block as an ac:ting block in

another H-pair.

6.1.3 H-decompositions

In this sectien we start by c:onsidering how to evaluate a given

machine i f i t is H-dec:omposi bl e or not and how to do the H

dec:omposition if it exists.

Firstly, we c:onsider a state machine of which the H-dec:omposition

is described by the following theorem.

103

THEOREM 6.4

State machine M = <I,S,B) is H-decomposible if there are two

complementH-pairs <K1 ,K5 > and <K 1 ,~ 5 >.

Proof. Suppose <K1 ,K5 > and <K 1 ,~ 5 > are complement H-pairs on M

and K1 ={B0 ,B 1 }, B0 is the acting blockof K5 and B1 the one of

·r5 • To construct M1 and M2 , we take

M1 = <B0 ,K5 ,B 1 > and M2 = <B 1 ,~ 5 ,B
2 >

where a block of K5 is as a state on M1 and the same on M2 ,

and
(1)

and
(2)

for all te~ 5 and xeB 1 •

Since K5 and ~s are SP partitions (from Theerem 6.3) the

definitions for 8 1 and 8 2 are well-defined.

Next, we should check whether the H-connection of M1 and M2

realizes M. For any seS and x ei we have the partial functions:

41: Ksx~s ... s
by 41<A,B> = s if AOB s

and 'f: I -J B0 UB 1

by 'f(x) = x

where AeK5 Be~ 5 ;

since Ks·~s = K5 <0>, 41 is surjective.

By Definition 6.1 and 41 we have

41(<A,B)) Bx

= <AOB) Bx

<AOB>Bx n <AOB>Bx

ç; ASx n BSx

~ rABxJ~ 5 n rBSxlT5

{

HASx J~ 5 = A> n rBSx JT5

rASxJ~ 5 n <rBBxlT5 = B>

{
= {

{

A n BB~
AB! n B

A2 !II(A, BBX)
-1 !II(A8x, 8)

{ (3)}

{calculus}

{Prop. 2.7}

{(Kx,Ko>,<~x,~o)}

{substitutions}

{(1),(2)}

{(3)}

(3)

(4)

104

{ (4) ,Def. 6. U

It shows that M1 V M2 is a realization of M.

(End of Theore• 6.4)

We take an example to illustrate Theerem 6.4

EXAMPLE 6.1

For the machine K shown in Fig. 6.2 find a H-decomposition for it

if it exists.

1
2
3
4

a

3
4
1
2

b

2
1
4
3

Fig. 6.2 Machine K.

For the machine

1(5 = <1,2,3,4)

and ~s = <1,3,2,4}

are two SP partitions such that 1t 5 ·~ 5 = 1t5 (0).

Since I={a,b} has two elements, the only partition is zero-1tartition

1ti<O> = <a,b}

that can be used here.

For (1(I(0), 1t5 > we have

U ,2}Sa. = <3,4}

and {1,2}Sb = {1,2}

{3,4}60. = {1 ,2}

{3,4}Sb = {3,4}

It means that {a} is an acting block and {b} is a keeping block for

1t5 • In the same way we know that (1(I(0),~ 5 > is aH-pair too, and

(1(1 (0),1(5) and (1(1 (0),~ 5 > are complementary.

Thus, MachineKis H-decomposible and the component machines are

shown in Fig. 6.3.

1
2

a

2
1

Machine K1

1
2

b

2
1

Machine K2

Fig. 6.3 Component machines of K1 V K2

Machine K1. is constructed from <1l'x ,11:'5 > and K 2 from <1l'x ,·-r·5 >.
(End of Exa•ple 6.1)

105

In the example, the machine K has only two inputs. It is said that

the machine is not fully decomposible. But we have obtained a H

decomposi ti on wi th two same component mach i nes. Therefore, under the

concept of H-decompositions, a zero-partition is no langer a trivial

partition, which differs from full-decomposition analysis in the

previous chapters.

Now we present a theerem and an example to show the H-decomposition

of Mealy machines.

THEOREM 6.5

A Mealy machine M = <I,S,0,8,A) has a H-decomposition if there

ex i st two complements H-pairs <1l'x ,11:'5 > and <1l'x ,·"t5) such that

(11:'5 ,11:'0 <O>) is a restricted S-0 pair with respect to one inputblockof

1l'x and <~ 5 ,11:' 0 <0>> is a restricted S-0 pair with respect toanother

input block of 1l'I.

Proof. The concept of a restricted pair comes from Haring. A

restricted pair with respect tosome inputs means that the

pair is defined only on the columns of these inputs of the

transition table. A detai led description can beseen in [10J.

By the conditions above, if we omit the outputs, M is H

decomposible, which is proved by Theerem 6.4. Here it is

necessary only to consider how to keep a correct

decomposition for the outputs of M.

Let .8 0 denote thesetof outputs which appear in the columns of

inputs in block B 0 of 1l'x , and .81. the set of outputs in the

column of inputs in block B 1 of 11:'1 • Then, .8 0 U .8 1 = 0 and 11:'0 =

{.80 , .81.}. We construct the component mach i nes of the H

decomposition

by M1= <Bo,1l's,.Bo,81,A1)

M2= (B1,~5,.81,82,A2)

where 8 1 and 8 2 are the same as these in the proef of Theerem
6.4, and

1
SA i [s):i]:n'o (1)

tA~
J

[t):,;]'t'o (2)

where se11:'5 , te·"t5 , i eB 0 , j eB 1 •

106

Since K5 and ~s are output-consistent from that (~ 5 ,~ 0 (0))

and <~ 5 ,~ 0 (0}) are 5-0 pairs, <1> and <2> are well-defined.

Let 9: ~ 0 U~ 1 ~ 0 by 9(y) = y. It is an one-to-one onto

mapping. Both $ and ~ are the same as ones in Theerem 6.4.

Thus, for all seS and iei, $(s1 ,s2 >

and ~(i) =i, 9(A(s,i>> = A(s,i)

On the other hand

$(s1,s2)).i

<si n s2)).i {(3) in Theo.

{ si~l ç {Prop. 2.7}
5 2~1

{ [si;;_-l l?to
ç {calculus}

[s2ï:"i l'l'o

{ S1Aî
2 {(1),(2)}

S2Ai

{
1

a <si"~~ i'>
2 { (3)}

"
9(s2À~!ll)

V
9((s1 ,s2)A~! i I) {Def. 6.2}

6.4}

Hence, M1V M2 is a H-decomposition of Mealy machine M.

(End of TheoFem 6.5)

EXAMPLE 6.2

Fi nd a H-decomposi ti on for Meal y machine L shown in Fig. 6. 4, i f i t

is H-decomposible.

i j k
...................................

1 3/2 2/e 1/b
2 5/a 4/c 2/b
3 1/b 5/e 1/a
4 6/a 1/d 4/b
5 2/b 6/c 2/a
6 4/b 3/d 4/a

Fig 6.4 Machine L.

By the careful examinatien of the machine table, we notice that,

107

there are two SP partitions

n's = {1,2,4,3,5,6}

and ~s {1,3,2,5,4,6}

which can form two H-pairs with input partition

?t'I = {i ,k,j}

together. That is, <n'1 ,n's> and <n' 1 ,~s> are complementary H-pairs.

Furthermore, we see that <n's,n'0 (0)) is a restricted S-0 pair with

respect to the input set {i, j} and <~s ,n'0 <O> > is a restricted S-0 pair

with respect to {j}. Therefore, according to Theerem 6.5 there are

<Bo,n's,..Bo> and <B1,·rs,..61>'

to form machines

and

where {i ,k} {j}

and {a,b}

{1 ,2}

{c,d,e}

{1,2,4,3,5,6}

·ts {1 ,2,3} = <1,3,2,5,4,6}

The 8° and 8 1
, A0 and A1 are shown by the machine tables in

Fig. 6.5.

1
2

i

2/a
1/b

k

1/b
1/a

1
2
3

j

2/e
3/c
1/d

Machine L0 Machine L 1
Fig. 6.5 Component machines

(End of Example 6.2)

The following theerem states the conditions for evaluating the H

decomposition of a Moore machine. The proof is the same as that in

Theerem 6.5

THEOREM 6.6

For a Moore machine M,

M = M1 v M2

if there are two complementH-pairs <n'1 ,n's> and <n' 1 ,~s> which meet,

there are two partitions n'o and ~0 on output of M

i) <n's • n'o > is an S-0 pair

and ii> <~s,·t'o> is an S-0 pair

and iii) n'o . ~0 ?t'<O) •

108

P~oof. With the same argument as that in the proef of Theerem 6.5

(End of Theo~em 6.6)

To end this section, we give a simple way to discover if a given

machine is not H-decomposible by Theerem 6.7.

THEOREM 6.7

Machine M is not H-decomposi bl e i f there is an input whi eh maps all

the present states into one state.

P~oof. If there is a consistent input mapping on a machine M, from the

defini ti on of H-pairs, we know that there is no H-pair which

considers the input as a keeping input. This implies that

there are not two complementary H-pairs because one of them

requires the input as a keeping input.

(End of Theo~em 6.7)

This sectien is only an introduetion to the H-decompositions of

sequentia! machines. This werk on the decompositions is just a

beginning of the complete theory. Some problems remained that are

worth further study, such as the H-decomposition of multi

submachines, and a systematic methad to find H-pairs for a given

machine.

6.2 w~e~th Decompositio~s

Wreath product and decomposition of machines were presented and

di scussed by Hol combe [16l. The methad of wreath decomposi ti on was

descibed by the semigroup theory. The decomposition theerem says

that, if the transformation semigroup of a machine is decomposible

wreathly, then the machine is decomposible too <Theorem 3.1.2 in

[16]). Thus, the attention was paid to the study of semigroups of

machines.

Since the wreath decomposition presents one part of the serial

decomposition method, we do wish to take it as one part of full-

decomposition theory. In this section, we will study the wreath

decompositions of machinesbasedon a partition pair and a partition

trinity, which clearly shows the details of judgement and

determinations of the inputs, states and outputs of component

machines.

6.2.1 Wreath Conneetiens

DEFINITION 6.6

Let Mi = <I1,s1,o1,s1,,..1)

and M2 = <I2,s2,o2,s:a: ,,_:a:)

be Mealy machines. The wreath conneetion of

M1 oM 2 = <I 1xi 2 ,S 1 xS2 ,01x02 ,8°,?t.0
)

where for <s,t) e S 1 xS 2 , <x,f) e I 1 xl:1

<s,t>B~x ., 1
' '

1 2 = (s8x, t8.f(XI)

and <s,t>:>.~x,.fl

where

The definition can be depicted in Fig. 6.6.

Mi and

~------------ ------·
I I
I I

"i 0 1 1
l
I I
I

81.
I

I I
l

~
I

I 1s
1 I2 021

I 2 M2
I V I
I I

~---
______ J

109

M2 is

Fr om the def i ni ti on, we know that, on one hand, a wreath

conneetion is greatly characterized by the mapping between two

component machines. On the other hand, it describes one type of

serial full-decompositions. The mapping to the tail machine is a set

of all the functions from states of the front machine to inputs of the

tail machine. A wreath conneetion looks very much like aserial full

connection of type II represented in Chapter 5, But, the difference

appears in input assignment for the tail machine. In a serial

c:onnection, an input is mapped by only one element in the domain, while

in a wreath c:onnec:tion, more than one are mapped. From the viewpoint

of dec:omposition, the number of inputs on the tail machine by a wreath

decomposition is less than that by aserial full-decomposition for the

same machine.

110

6.2.2 Wreath Decompositions

We start with a definition and notatien of compatible classes of

machines befare we deal with the description of wreath decomposotion.

Let M = <I,s,o,s,~> be a machine with distinct inputs. What

distinct means is:

For the sake of simplicity, we will make this restriction, but it can

be easily removed when applying the results of this section. Assume

that V is a set of all the bleek vectors, V8 , i• where Be1t5 and iel. Then

arelation R on VxV is defined by <v 1 ,v2 > eVxV v 1 Rv2 iff v 1 ~v 2 (1:'5).

The relation R obviously is reflexive, symmetrie, and transitive.

Therefore, Ris an equivalence relation onS. By the relation R, vector

set V can be divided into equivalence classes,each of which is defined

by

[vl = {v'l vRv'} (1)

Naturally, all of equivalence classes ferm a set

W = {[vJ I [v] is an equivalence class over M} <2>

and we write an equivalence class [vl as

1: <B,x) l = <<B' ,x') (3)

The equivalenc:e classes are also called compatible classes for an

explicit meaning.

For any a machine M with distinct inputs, we can check whether er

net it is wreath decomposible with the fcllcwing theorem.

THEOREM 6.8

Machine M can be r.ealized by some smaller machines M1 and M2 in

wreath connection, if there e:~~ist an PT tp = <1l'I,1ts,1l'o> and an FT ti'=

(1:'I,1:'5 ,1:'0 > with 1t5 which satisfy

i> tp and ti' are orthogonal, and

iU IWI'?l'sl =I'T'zl•
where W is a compatible class set.

Proof. Since the conditions for a wreath decomposition are very

similar te thesefora serial full-decomposition of type II

except the extra condition (ii>, most of steps fellewed are

the sameasthese in the proef of Theerem 5.5. We simply state

the procedure again here with some differences in the tail

machine and in condition only (ii).

Suppose M1 = <~ 1 ,~ 5 ,~ 0 ,8
1 ,~ 1)

and M2 = (W ,--t5 ,L'0 ,B
2

,A2
)

111

where W is the set of all compatible classes over Mand its

blocks areelementsof the input symbols of tail machine M2 •

The definitions for 8 1 and :>. 1 are the same as <7> and (7') in

Theerem 5.5, while ones for 8 2 and :l\ 2 are given as fellows.

For B"e~ 5 and veW

(8)

(9)

With the and (9) in mind we c:an naturally make the

definitions on f in ~I by

for any fe~I and Be~ 5

f(B) = v if and only if

where ~s

For f and f' in ~ 2 ,

if and only if for all B 1 e~ 5

f<B 1 > = f' <B 1>

V = V'tsl'to.
I .B, ~ l

Because of distinct inputs on M

are compatible if [iJ-t 1 = [jJ-t 1 , we have that,

for any f,f'e"Cz•

if and only if f f' •

This states that by <10)

'ti= { fl f: ~s ~ W}

(10)

is equal to wxs, all the mappings from ~s to W, due to the

condition Ui>.

Now, let us make some relations $, ~ and a by

$: ~s x ~s ~ s by $ < <B' , B">) = B'OB"; (11)

'f: I ~ ~I x ·"(I by 'f()d = (.6' ,.6") (12)

suc:h that .6'0 .6" = x;

a: ~0 x "Co ~ 0 by a< <y' ,y"> > y'Oy". (13)

112

8ecause of condition U> both 111 and e are sur jecti ve part i al

functions and ~ is an injective function.

For any <8' ,8"> e ~ 5 x~ 5 , 8'08"~ 0; xei,

11:1 ((8' ,8")) Bx

(8' fl 8") Sx

ç 8' ti t x 1 '1t n < 8' fl 8" > ti t x 1 't'
I I

8' s:a.
ç 8'6:a. fl 8"6~_ 18 • 1

lll<C8'S:a., 8"S~·cs•t>>

11:1 (< 8' , B" > 6~ .6' , ,6- t)

IIJ((B' ,8")8;1Xl)

With the same argument we have

{ (11}

{calculus}

{Prop. 2.7}

{.tl'=[x]ni,C7> in Theo. 5.5}

{.6°=[xJ't'I,, 18'0 8"1 = 1}

{(11)}

mef. 6.6}

{(12)}

11:1((8' ,B"»P.x eC<8' ,8")).;00)

e<B'"y,.x>' 8 n""~cx-11s' ,>

Hence, M'oMn realizes M correctly.

CEnd of Theore~ 6.8)

In the above theorem, condition (ii) is a key for keeping the

decomposition as a wreath decomposition. Since the inputs are not

relevant to their symbol names, a mapping f1 ~ 5 ~W is in the same

si tuation as ~ 5 x~I-+W. Thus, a wreath dec:omposi ti on is just a special

case of serial full-decompositions, where I~II = IWI 1'1ts 1 •

The stepsfora wreath decomposition are implicitly stated in the

proof of the theorem. Here we 1 i st a procedure for appl yi ng the theerem

to a wreath decomposition.

PROCEDURE 6.1

1. Find an PT tp = <~ 1 ,~ 5 .~ 0 >. If there is no, go to <9>;

2. Find a tri-partition t4' = (~I.~s.~o> such that

tp 0 t4' = T 0 • If there is no, go to (1);

3. Calculate compatible classes

W = {[CB,f)J}

to partition ·t'5 ;

4. If t4' is an FT with 71'5 and IWI 171'sl =11:'1 1,
then (5); otherwise go te <2>;

5. Construct M1 by tp;

6. Construct M2 by putting W in columns

With the title V on the top Of v~s 1 ~0 if
(•• 4')

V = [v~s 1 ~0].
IB,i'l

The colleetien of v's is the input set of machine Mn;

7. The mappingsof f's is listed by

8. M<~ M' oM"; exit.

113

9. There do net exist M' and M" suc:h that M' oM" realizes M; exit.

(End o7 Procedure 6.1)

In the case of a computer aided decomposition, we can take

steps <2> (5) in Procedure 5.1 instead of step (3) here. If

meeting an input j of which v~s'~o is net compatible with the
I B' J l

VeCtOr v~s 1 ~o, jefe'l·I, We StOp the searc:h immediately and go te
I B, 4' l

step <2>. In order te make the reader familiar with the theerem

and the procedure, we give the following example.

EXAMPLE 6.3

Let us apply the procedure te machine N shown in Fig. 6.7

--
1 2 3 4 5 6 7 8

...
1 4/1 1/1 1/1 4/1 2/1 3/1 3/1
2 3/3 2/1 2/1 3/3 1/3 4/1 4/1
3 2/4 4/1 3/1 1/4 3/1 1/4 2/4
4 1/2 3/3 4/1 2/4 4/1 2/4 4/4

Fig. 6.7 Machine N

Step 1. Consider tp <?l'I '1l'o '?l's>

({1,4,6,7, 2,3,5,8},

3,4}

{1 ,3,2,4})

which is a partition trinity.

2/1
1/3
4/1
3/3

114:

Stap 2. Take ("ti ,"ts,-'to>

({1,8,3,6,4,5,2,7}

{1 ,3,2,4}

<1,4,)

It is apparent that tp0t~ = T0

Step 3. Substitute tha bleeks of partitions by symbols:

{11,12} =({1,4,6,7, 2,3,5,8} = ~I

<Al ,A2>

{Cl

= {1,2,3,4} = 1t
5

= <1,3,2,4} = 1t
0

{Jl,J2,J3,J4} =({1,8,3,6,4,5,2,7} = "ti

{81,82} = <1,3,2,4} = "t5

{01,02} {1,4,2,3} = "t0

In the following diseussion,

V denotes v~s'~o, for short.

Caleulating the bleek veetors we have

Vua,u = Vu:a,s> v!A:t,J:J.I

= v,A2,1l = VIA2,SJ VIA2,Jil

= VcA:t,~+l = Vuu.,s> VcA1 1 J3>

Vu:..2,21 v(A2,7l VIA2,J41

<82/01,81/02)

VIA:J.,2J VIA1,7l = VIA1,J4l

= VIA2,3l = VIA2,6l = v,A2,J2l

= VIA2,4l = v,A2,s1 = VIA2,J3l

VIA1 1 ;;n = VIA1, 61 VIA1,J2l

<81/01, 82/01)

The compatible classes are

[(Al,Jl)] { v!A1,J11t VIA2,J1l' vtA1,J31' VIA2,J41};

[(Al,J4>l < v,A1,J4l' v,A2,J2l' v,A2,J31' v,A1,J2,>.

Step 4. From <1> and (2) we know, for all Ae~ 5 and i,je1

V181 ;. 1 =V 1 B,jl if Lil't'x=(j]'t'I

Henca t~ is an FT with ~ 5 •

On the othar hand,

W = {[(Al,J1>J,[(A1,J4)]}

I W I I '~~'s I = = 4 = I "tI I

(1)

(2)

Step 5. The machine N1 can be formed by tp, which is drawn in Fig. 6. 8

I1 12
Al
A2

A2/C1
A1/C2

Al/Cl
A2/C1

Fig. 6.8 N1

Step 6. Columning the vectors, from compatible classes,

Vu;u,.Jil

and V1At,.J4l

C82/D1, 81/D2>

<81/Dl, 82/Dl>

115

and assigning the title v 1 and v 2 , respectively,we construct

the tail machine N2 shown in Fig. 6.9.

81
82

v1 v2

82/Dl
81/02

81/01
82/D1

Fig. 6.9 N2

The input set of N2 is {v 1 ,v2 } = W

Step 7. The mapping set

w1rs = {J1,J2,J3,J4} = 'r'I

is defined as the following table

A

Al
A2

Jl <A>

vl
vl

J2(A)

v2
v2

J3<A>

vl
v2

J4(A)

v2
vl

Step 8. A careful checkness on N1 oN2 and N shows that

N <~N 1 oN 2

Note that machines N1 and N2 are isomorphic.

(End of Example 6.3)

In the above theorem, if we omit the ouput partitions, we can

easily get a theerem for the wreath decomposition of state machines.

THEOREM 6.9

State machine M = <I ,S,S> can be decomposible in wreath conneetion

if there exist two I-S pairs, (~I.~s> and (~I.~s> which satisfy

i) (~l'~S) "(~I t~S) = (~I (0) '~5 (0))'

ii) <~s.~s> is an s-s pair, and

iii) lW I !n's I = I~I I
where w = {[V'rs J}

ll!,f)

Proof. The proof is exactly the same as that for Theorem 6.8 without

considering the output partitions and vectors.

(End of Theorea 6.9)

116

CHAPTER 7

FULL-DECOMPOSITION OF ISSM,a

7.0 I:nt.:rod.u.c::t.io:n

In many practical design problems, the design specifications

require only that a part of the transition table be specified; the rest

is left blank or unspecified which is called a don't care (d for

short). Moreover, evenfora given completely specified machine, the

first step in realizing it using digital components is to code the

states in binary codes and also the input and output symbols, if they

are not binary. In this case, some new blank or unspecified entries

might be y.ielded if the number of symbols is not an integral power of 2.

This generally results in an incompletely specified sequentia!

machine <ISSM>. Hence, we need to consider the problem of full

decomposition of this type of machines.

Based upon the concepts of weak partition pairs and extended

partition pairs presented by Hartmanis for the purpose of state

assignments of ISSM's, in this chapter, we will develop the concepts

of weak partition trinities and extended partition trinities and use

them to solve the problem of full-decomposition of ISSM's. In sectien

7.1, the definition and properties of weak partition trinities are

presented and used for one approach for full y decomposing an ISSM. In

sectien 7.2 we outline the main conceptsof extended partition pairs

and propose the extended partition trinities as another approach for

the full-decomposi ti on of ISSM' s. Because of the similarity of

discussions to that of partition trinities, we only give some general

results here, without a detailed description.

117

7.1 APPROACH I WPT

7.1.1 Weak Partition Pair <WPP>

Here, we simply outline the main c:onc:epts of weak partition pairs.

DEFINITION 7. 1

Let M = <I, s, o, 8, 1\.) be a mac:hine with d c:onditions and 1t and 't.

be parti ti ons ons, (on I, and UI on 0. Then, the ~o~eak part ition pairs on

M are defined by:

i> <1t, ·n is a weak s-s pair, i'f and only i'f,

for all s,teS and all xei,

[sln=[tJ~ ~ [s8xl~=[t8xl~

whenever s8x and tBx are both spec:ified.

ii> <(, 't) is a weak I-S pair, i'f and only i'f,

for all a,bei and all seS,

iii>

[al~=[bJ~ ~ [s8«l~=[s8bl~

whenever s84 and s8b are both spec:ified.

<1t, U~) is a weak S-0 pair, i'f and only i'f,

for all s,teS and all xei,

[sJn=[tJ~ ~ [s11.xllr.l=[t11.xllr.l

whenever s11.x and t11.x are both specified.

iv) q, w> is a weak I-0 pair, i'f and or.Zy i'f,

for all seS and all a,bei,

[alt=[bJt ~ [s1\.«Jw=[s11.bllr.l

whenever s11.4 and s11.b are spec:ified.

(End o'f Ve'finition 7.11

From the definition it is obvious that the following theerem holds.

THEOREM 7.1

If W is the set of all the WPP's on M with d c:onditions, then

i) (1(,1((1)) and (1((0) ,1() are in W.

ii) (1t1 ,'t1) and <1t2 ,'t2) are in W imply (1t1 ·1t2 , 't1 •'t2 > inW.

iii) <1t1 ,'t1) in W implies (1t1 , 't1 +1t2 > in W.

(End o'f Theore• 7.1J

118

I t states that the WPP' s sat i sf y all ex cept but the "+" postul a te

of a pair algebra, which is replaced by a weak ferm. It can be

generalized in order te cover weak pairs. Although some properties are

lost in a weak pair algebra, there is still a goed possibility of

developing the concept of PT-like based upon four WPP's whic:h have

some special charac:ters, that is, the weak partition trinities te be

discussed below.

7.1.2 Weak Partition Trinity

In the case of an ISSM, there c:ertainly exist some unspec:ified

entries in a machine table. Normall y, we denote the entries by dashes.

that is, for some seS and iei,

if s;\i er sSi is unspecified. This causes a little changes for some

operatien results, such as

where B CS and AC I. During the discussionsin this section, we keep

this in mind.

DEFINITION 7.2

Let M = (I ,s,o,S,;\) be a machine with d conditions and 1l'5 , 1l'z and 1l'0

be partitions, separately, on S, I, and 0. Then, tri-partition

<1l'z,1l'5 ,1l'0 > is called a weak partition trinity <WPT>, if and only if,

for all Ae1l'5 , there exist a B'e1l'5 and a Ye1l'0 , such that

(End of Definition 7.2)

The definition naturally hints some connec:tions between a WPT and

WPP's, which are stated in theorems 7.2 and 7.3.

119

THEOREM 7.2

lf C7t1 ,7t5 ,7t0 > is an WPT on an ISSM, then <1l'1 ,1l'5 >,<1l'1 ,1l'0 >,<1l'5 ,1l'5 >

and <1l'5 ,1l'0 > are WPP's on the ISSM.

Proo1'.

VAe1l'1 VBe1l'5

:J 8' e1l'5 3 Ve1l'0 :

BSAÇB'U{-} A B~ASVU{-}

~ Vs1 ,s2 eB Vx1,x2eA:

<s16x1t'-'ts1Sx2 ~

A <s1~x1't'-'ts1~X2 ~

A (s16x:~.'t'-'ts28x1 =9

A Cs1~x1t'-'ts2~x1 ~

~ Vs1,s2 eS Vx1,x2ei:

{def. of WPT}

{calculus}

s 1Bx 1 e8' A s 16x 2e8')

s 1 ~x 1 eV A s:I.~X2eV>

s 1Sx 1 eB' A s 2 Bx 1e8')

s1~x:~.eY A s2~X1eV>

{calculus}

([X 1]7t1==[114:2]7t1 A siBx 1'~-' _, ts18X2 ~ Es:~.Bx1l7ts==Es1Bx2l7ts>

A ([X 1]7t1=[X 2]7t1 A st~xt't'-'ts1~X2 ~ rs1~xtl7to=[s1~x2l7to>

A ([s1 l7ts=[s2 l7ts A s 1Bx 1 '/.' -' '/.s28x 1 ~ rs16xil7ts=Es2Bxil7ts>

A ([s1 l7t5=ts2 l7t5 A s1 ~x 1'1-' -' ts2~x 1 =9 [s1~x1l7to=[s2~X1l7to>

<End of ThBorea 7.2)

THEOREM 7.3

Let (1l'1 , 1l'5 > , <1l'1 , 1l'0 > , (1l'5 ,1l'5 > and <1l'5 ,1l'0 > be WPP' s on an ISSM. Th en,

<1l'x,1l'5 ,1l'0) is an WPT on the ISSM if

Vs 1,s2 eS Vx1,x2ei:

[s1 J7t5=Es2 J7t5 A [X:tJx1=[X2]7t1

~ rs1Bx1l7ts=Es28X2l7ts A rs28X1l7ts=[s1Bx2l7ts

A rs1~x1l7tx=[s2~X2l7tx A [s2~x2l7to=Es1~x2l7to

(1)

(2)

120

Vx 1, x2e1:

A ([X1lwz=[X2lw1 =* [s1 Ax 1 lw0 =[s2Àx 2 lw0 >

A ([s 1 Jw5 =[s2 Jw5 =* [s1 8x 1 lw5 =[s2 6x 2 lw5 >

A ([s 1 Jw5 =[s2 Jw5 =* [s 1 Ax 1 lw0 =[s 2 Ax 2 Jw0 >

whenever s 18xj and s 1Axj• i,j=1,2, are specified.

Combining <1>,<3> and (5), we have

[s 1 Jw5 =[s2 Jw5 A [X1]K1 =[X2]W1

(3)

{4)

(5)

(6)

=* [s16x1lws=[s18x2lws=[s28X1Jws=[s28x2lws (7)

whenever si6xj• i,j=1,2, are specified.

Combining (2),(4) and (6), we obtain

[s1 Jw5 =[s2 Jw5 A [Xilw1 =[X2]W1

=* [s 1 Ax 1 lw0 =[s1Ax 2 lw0 =[s2Ax 1 Jw0 =[s2Ax 2 lw0 (8)

whenever s 1AxJ• i,j=1,2, are specified.

Moreover,<7> and (8) mean that

VAeK1 VBeK5 lB'eK5 3YeK0 :

BBA ç B'U{-} A B~Aç VU{-}

Namely, (K1 ,K5 ,K0 > is an WPT.

(End of Theore• 7.3)

Like a partition trinity, a weak partition trinity gives the

dependences of all information flows on an ISSM. Many properties of

partition trinities remain in WPT's except the trinity operatien e
rules out because of the limited properties of WPP's. Therefore, we

study here some simple properties that are used in the study of full

decomposition of an ISSM.

THEOREM 7.4

If <K1 ,R5 ,K0) is an WPT on a machine M with d conditions,-t1 on I

and 1:'1 :S K1 , and 't0 on 0 and 't0 ~ K0 , then

i) <-t1 ,K5 ,R0) is an WPT on M,

Proof.

ii)

i ii)

i)

ii)

i i i)

CK1 ,K5 ,-t0 > is an WPT on M, and

<"'I':r,Ks9t'o> is an WPT on M.

CK:r,K5 ,K0 > is an WPT

**" VAe7t1 VBeK5 lB'e7t5 lYeK0 :

BSA ÇB' u{-} A B):"AÇYU{-}.

·r:r :S 7tl

=* VA'e"'I'1]Ae1l'1 : A'Ç

=* VA' e"'I'1 :

BSA' ç BSA A B):"A.Ç

The same as (i).

=* C"'I'1 ,7t5 ,1l'0 > is an WPT

A "'I'o:i!Ko

A

a):"A

=* C"'I' 1 ,7t5 ,"'I'0 > is an WPT.

(End of Theore• 7.4)

121

(1)

{def. of ;S}

{Prop. 2.4}

{calculus, Cl)}

{def. of WPTl

{(i), (1}}

{(ii)}

Theerem 7.4 provides one way of computing WPT's. Also, the WPT

from which we can get a set of WPT's is called a basic WPT's. It is

bet ter to cal cul a te basic WPT' s f i rst, than u se the theerem to produce

all other WPT's. Usually, it is faster and simpter than one by one

computation according to the definition of WPT's.

THEOREM 7.5

A WPT of a machine with d conditions corresponds to an image

machine of the machine.

Proof. Using the same procedure as in the proof of Theerem 5.2 in

Chapter 5, besides doing all argumentation under the

condition that s6x or s~x is specified.

(End of Theore• 7.5)

Similarly to partition trinities, we refer to the theerem as a

physi cal property of the WPT, because i t presents a component machine

in parallel or series decomposition of an ISSM.

122

When dealing with serial full-decompositions in chapter 5, we

presented the concept of forc:ed-trinity. Similarly, we must consider

that concept here again in order te obtain the serial full

decomposi ti ons of ISSM' s. Because of d condi ti ons, we referte i tas a

forced weak trini ty <WPT> wi th some restraints below for the

definitions and operations from ones of FT.

i) If s8 i, seS and i ei, is net specified, a dash '-' is put in a

vector er a bleek vector insteadof s6'; er [sli';l, such as in Def. 5.4.

ii) Whenever we deal with s6'i and tli'i, s,teS and i,jei, we must

makesure that both s6' 1 and t6'i are specified, as in Defs. 5.5, 5.6 and

vector operations on compatible subvectors.

The above restraints also apply te the output veetors and

operations. With this in mind, we can consider full

decompositions of IBSM's by directly applying similar methods te

these Chapters 4 and 5.

7.1.3 Approach I of the full-Decomposition of ISSM's

Now we start by considering the problem of full-dec:omposition of

an incompletely specified sequentia! machine.

Because of i ts si mi 1 ar i ty of di scussi ons wi th the full

decompositions of completely specified sequentia! machines, we only

need gi ve here the decomposi ti on theorems without proef si nee they are

the same as these for partition trinities.

THEOREM 7.6

A machine M = <I,s,o,s,~> with d conditions has a nontrivial

parallel full-decomposition if there are two WPT's, <~ 1 ,~ 5 ,~ 0) and

(T1 ,T5 ,T0), such that

(~I,~S•~o) 0 (Tz,Ts,To)

(End of Theore• 7.6}

THEOREM 7.7

A machine M = <I,S,O,B,~> with d conditions can be decomposed into a

serial conneetion ferm of type I, if there ex i st ene WPT <~ 1 .~ 5 .~ 0 > ,as

well as, a forced-WT (T1 ,T5 ,T0) with a forcing-nartition T which

satisfy

i) T = n0 , and

i i> <1l'x ,1l's,1l'o> 0 <Tx ,Ts,To>

(End of Theore• 7.7)

123

THEOREM 7.8

A machine M = <I,S,O,B,"-> with d conditions can be decomposed into

aserial conneetion form of type II if there exist one WPT (1fi,1f5 ,Jr0 l,

as well as, a forced-WT C't'I,-r5 ,"t0 > with ·r which satisfy

i> "t = 1to;

i i) ('t'I ,'t'5 > and (·t5 ,"t0 > are WPP' s;

iii> <KI,1fs,1fo> 0 <"l'x,"l's,"to> = <Kx<O>,Ks<O>,Ho<O>>

CEnd of Theore• 7.8)

An example is given below in order to illustrate the proc:edures

for decomposing an ISSM using these theorems.

EXAMPLE 7.1

Find a full-decomposition of the machine P shown in Fig. 7.1 in

which a don't care condition is denoted by a dash.

1 2 3 4 5 6 7 ..

1 5/- 7/1 3/1 1/- 1/7 5/7 7/4
2 -/5 6/3 6/3 -/5 6/6 6/6 -/2
3 2/2 1/6 1/6 2/2 4/3 4/3 5/5
4 -/6 6/2 -/2 6/6 6/5 -/5 6/3
5 5/7 7/4 7/4 5/7 1/- 1/- 3/1
6 3/4 4/7 2/7 7/4 7/1 3/1 4/-
7 2/3 1/5 5/5 4/3 4/2 2/2 1/6

Fig. 7.1 Machine P

Step 1. For Machine P, computation shows that there are more than two

WPT's which satisfy the conditions of parallel full

decomposi ti on gi ven in the Theerem 7. 6. Therefore, we choose

the largest WPTl and WPT2 for two component machines.

=({Ï,

Step 2. Construct an image machine corresponding to WPT1.

Generally speaking, an image machine corresponding to an WPT

can be c:onstruc:ted in two steps:

124

i> Symbol assignments.

To assign the symbols for the blocks of WPT1~ we take

WPT1 = ({a,b,c,d},{A,B},{a,~}
Hence, the component machine Al has the input, state,

and

output sets I 1 , S 1 and 0 1 as the assignment for WPT1.

i i> Determine the machine functions 81 and À :t..

For all x in 11 and s in s1,

either

s6!_ [sSx {-} l7ts if sSM ;t. {-}

and sÀ~ = [s;\x {-}l7to if s;\x ;t. {-}

or

s81 = r -' if sS x = {-} x
and s:>-.1 r -' if s;\x = {-} x

In this way, all entries for Machine P 1 are defined and shown

in Fig. 7.2

A
B

a

B/~

B/a

b

A/a
A/~

c

B/a
A/IJ

Fig. 7.2 Machine P 1

d

A/IJ
B/a

Step 3. Construct an image machine corresponding to WPT2.

With the same procedure, we can easily obtain the image

machine

where

based on WPT2 shown in Fig. 7.3,

c 1 ,5,

D 2,4, e f

E 3,7,
F = c C/w E/x

e 1,4,5,6, D F/z F/y

f 2,3,7, E D/y C/z

x = 1,4, F E/x D/w

y

z = Fig. 7.3 Machine P 2

w

125

Step 4. The mapping between machines P and P 1 11 P 2 •

s -+ s 1 xs2 I -+ I 1 xi 2 0 -+ 0 1 x02

1 -+ <A,Cl 1 -+ <a,e) 1 -+ <a~x>

2 -+ <B,D> 2 -+ (b,f) 2 -+ <a,y>
3 -+ <B,E> 3 -+ <c ,f) 3 -+ <.6,y>
4 -+ <A,D> 4 -+ <d,e) 4 -+ <.S,x>
5 -+ <B,Cl 5 -+ <b ,e> 5 -+ <a,zl
6 -+ <A,F> 6 -+ <c,e) 6 -+ (.8,z)
7 -+ <A,E> 7 -+ (d,f) 7 -+ <a,wl

(End o"f Exaaple 7.1)

In this example, we show the decomposition procedure in detail for

a good understanding of the properties of WPT' s. However, in practic:e,

i t can be done in a simple way insteadof calculating all sets of si x or

s;;:x· After giving the block symbols~ we can list the table of an image

machine for the new inputs with the input block symbols and for the

present state with the state block symbols. The next states and

outputscan be filled by finding a state in the corresponding present

state block and one input in the corresponding input block. The blocks

of the next state and output of the state and input in the original

machine table should be the entries in the image machine table. In

fact, this just is the c:omputation of 8 and ~ on the bloc:ks. For

example, for the machine P 2

w.

Correctness is ensured by examming the properties of the weak

partition trinities.

7.2 App:roach II EPT

7.2.1 Extended Partition Pair <EPP>

In the concept of WPT' s, we ignored the accurences of d

c:onditions. In that situation, trinity operatien eis ruled out, so

that one operatien is lost in the WPT algebra. In approach 11, we give

eac:h d condition a separate name, and then keep a careful record of it.

A machine with labelled d conditions is given by a machine table where

values of 8 may be from a set C of labels and somevalues of~ may be from

a set D of labels. Under this consideration, the concept of an

extended partition pair is naturally obtained.

126

DEFINITION 7.3

Let M = <I ,S,O, 8, 11.> be a machine wi th labelled d ccndi ti ons C and D

and ~ be partiticn on s, ~on SUC, t on I, and w on OUD. Then, the

extended partition pairs <EPP's) on M are defined by

i) <~. ~) is an s-suc pair if and only if,

for all s,teS and all x el,

(sJ:n'=[tJ?t ::::=} [s8x J'l.'=[t8x J'l.';

ii) (t. 'l.') is an I-SUC pair if a.nd only if

for all a,bel and all seS,

(aJ(=(bJ(::::=} [sS .. J'l.'=[sSbl't';

iii) c~, w> is an B-OUD pair if a.nd only if

for all s,teS and all x ei,

[s]:n'=[tJn ::::=} [s11.xlw=[t11.xlw;

vi> (t' w> is an I-OUD pair if a.nd only if

for all a,bel and all ses,

(End of Definition 7,3)

Now, we take the machine Q shown in Fig. 7.4 as an example to

illustrate the concept of EPP.

--------~-----------~-------------------------
1 2 3 4 5 6 ... "

1 7/1
2 714
3 9/d:l.
4 6/4
5 2/5
6 2/1
7 2/4
8 d2/5
9 5/3

In the machine

c = {d:L ,d2,d3}

D {dud2 }

5/6 2/5 7/2 3/1 3/2
4/3 d3/3 7/5 6/4 6/5
5/2 2/1 6/4 4/1 8/2
2/3 5/3 6/5 8/d2 4/3
3/2 3/1 5/6 9/5 1/6
7/4 2/4 5/2 4/1 8/2
8/2 4/1 714 9/4 6/4
7/2 d:l./1 1/6 3/1 3/2
7/5 714 2/3 8/3 4/3

Fig. 7.4 Machine Q

suc

OUD

{1,2,3,4,5,6,7,8,9,d1,d2,d3}

{1,2,3,4,5,6,d:L,d2}

127

Observe that,

and
<~ 1 ,~ 1 >=<<1,2,7,3,4,5,6,7,8,9},{Ï,~ 1 ,3,~a ,6,9,d2})

(~2.~2)=({1,7,2,3,4,5,6,7,8,9>,{l,2,4,7,d2,3,6,9,d2,5,8,d2})

are EPP's. The partition operations of multiplication and addition

holdon the set of all EPP's such as

and
(~1+~2. ~1+·'['2)

({1,2,7,3,4,5,6,8,9},{Ï,2,4,5,7,B,d 1 ,d3 ,3,6,9,2,d2 }>

are also EPP's. More generally we have the next lemma.

LEMMA 7.1

Thesetof all extended partition pairs on a machine with labelled

d conditions is a pair algebra.

Proof. The proof for PP algebra carries over word for word except

that set SUC or OUD is used instead of S or 0.

(End of Lemma 7.1)

Now we have the m operator and M operator with all pair algebra

results at our disposal. That is, on the algebra of extended pairs, we

havemand M operations on the pairs of S-SUC, 1-SUC,S-OUD and I-OUD.

In the following discussions, when we refer to :t as the

restrietion of~ to s, we mean

for all s, teS, ~ on S, and ~ on SUC,

[s]~ = [t]~ ~ [S]T = [t]T

In the same way, we have the restrietion w of w to 0 defined by

for all a,~eo, w on 0, and w on OUD,

raJw = [~Jw ~ [aJw = LBJw.

7.2.2 Extended Partition Trinity

Under the definition of extended partition pairs, the concept of

an extended partition trinity is naturally obtained and is simply

described here. It is another useful tooi for studying the full

decomposition of ISSM's.

128

DEFINITION 7.4

Let M = u,s,o,s,'-> be a machine with labeled d conditions C and D

and x5 be a partition on SUC, x1 on I, and K 0 on OUD. Then, tri

partition <n1 ,K5 ,n0 > is called an extended partition trinity CEPT>,

if and cmly if, for all Beië5 and AeK1 , there exist a B' eK5 and a Yen0

such that

BSA ç B' and B~A Ç V

where 1i"5 is the restrietion of K5 te S

(End OT DeTinition 7.4>

Like Theerem 3.2, we have a similar result for ISSM's.

THEOREM 7.8

A tri-partition <K1 ,n5 ,K0 > on a machine with labelled d

conditions is an EPT if and only if <n1 ,K5 >, CK1 ,K0 >,<1i"5 ,K5 >, and

C1ë5 ,K0 > are EPP's.

ProoT. The proef is exactly the same as that in Theerem 3.2 except we

have te pay attention te restricted partitions sometimes. Sc,

we omit it here.

(End oT Theorea 7.8)

With the definition and the theerem in mind, we c:an prove that the

trinity operations of 0 and e are closed within thesetof all EPT's of

an ISSM. This just is the advantage of EPT's over WPT's bec:ause the

operatien e holds. Therefore, we c:an study the EPT's by a similar

manner as that on PT algebra. All of these will be referred te in later

discussions without writing out their formal forms.

7.2.3 The Full-Decomposition of ISSM's By EPT's

The concept of EPT algebra presents another approach for the full

decomposition of an ISSM. Similarly, we c:an develop some

decomposition theerems on the parallel full-dec:omposition and serial

full-decomposition of ISSM's by applying EPT's.

Here, we give the decomposition theorems without detailed

description er proef which can be easily derived in a similar way to

those in the previous c:hapters. Finally, an example of serial full

decomposition of type I of an ISSM is given to illustrate the special

charac:teristics of dec:omposition of ISSM's in this approach.

129

THEOREM 7.9

let M = <I,S,O,B,11.) be a machine with labelled d conditions C and

D. Then,

a) M has a nontrivial parallel full-decomposition if there exist

two EPT's
<Kx,K5 ,K0 > and <~x.~s.~o> such that

<Kz ,n's,n'o> 0 <~:r ,:r's,) = <K:r <O> ,Ks (0) ,Ko (0));

b) M has a nontrivial serial full-decomposition of type I if

there areanEPT <Kz,K5 ,K0 > and a forced-EPT <~x,-r 5 ,-t 0 > with ·'['

which satisfy

i > ·'[' = K 0 and

ii) <Kx,~s.~o> 0 (1:' 1 ,:r'5 ,:r'0 > = <Kz(0),K5 <0>,11:'0 <0>>;

c) M has a nontrivial serial full-decomposition of type II if

there exist an EPT <K1 ,K5 ,K0 > and a forced-EPT <-t 1 ,~ 5 ,-t:' 0)

with 1:' which satisfy

(End o'f

i)

ii)

iii>

where

Theore•

~ = 1l's '

<~z•'ts> and <1:' 1 ,1:'0) are EPP's, and

<Kz,~g.~o> 0 C'tz,:r's,:r'o> = <Kz<O>,Ks<O>,Ko<O>>,

~s is the restrietion of Kg to S•
'

n'o is the restrietion of 1l'o to 0;

:r's is the restrietion of 'tg to S;

:r'o is the restrietion of 'to to o.

7.9)

EXAMPLE 7.2

Consider the inc:ompletely specified sequentia! machine 8 shown in

Fig. 7.4 and find a full-decomposition of it.

In this example an V represents an VTs'To for short.

Step 1. Compute the EPT's.

By the computation of EPT's on a computer, the machine has

totally seven nontrivial EPT's listed below:

130

EPTl ({1;4,2,3,5,6}'

{1,6,9,d2 ,2,5,7,d 1 ,3,4,B,d3 >,

{1,2,3,d2,4,5,6,d1});

EPT2 = ({Ï,4,2,3,5,6},

{1,6,9,d2 ,2,5,7,d 1 ,3,4,B,d3 },

{1,2,3,d2,4,5,6,d1});

EPT3 ({Ï,4,2,3,5,6}'

{1,6,9,d2 ,2,5,7,d 1 ,3,4,B,d 3 },

{1,2,3,d2,4,5,6,d1});

EPT4 = <<1,4,2,3,5,6>,

<1,6,9,d 2 ,2,5,7,d1 ,3,4,B,d3 },

{1,2,3,d2,4,5,6,d1});

EPT5

EPT6

EPT7

<<1;4,2,3,5,6>,

{1,6,9,d2 ,2,5,7,d 1 ,3,4,B,d3 },

{1,2,3,d2,4,5,6,di));

({1;4,2,3,5,6>'

{1,6,9,d2 ,2,5,7,d 1 ,3,4,B,d3 >,

{1,2,3,d2,4,5,6,di});

({1;4,2,3,5,6},

{1,6,9,d2 ,2,5,7,d 1 ,3,4,B,d3 },

{1,2,3,d2,4,5,6,di});

Unfortunately, within this set there do not exist two

EPT's suc:h that their trinity product is a zero trinity. This

means that we c:annot find a parallel full-dec:omposition of

the machine. But, for the existenc:e of EPT' s, it may be

possible to find aserial full-decomposition. We now try to do

se.

We take the largestEPT in qusetion, EPT1=<~z.~ 5 ,~ 0 >,

bec:ause a largerEPT usually gives us a simpler image machine.

Step 2. Find a forc:ed-EPT.

We take tri-partition

({ ï"";"3,5. 2,'4,6>
{1,5,B,d3 ,2,4,9,d2 ,3,6,7,d 1>

{1,4,d1,2,5,3,6,d2})

131

as a candidate and examine if it is a forced-EPT under the

forcing-partition

Let

1i's

~s

~D

~I

1i's

=

=

=

=

{ '1,"6";9. 2' 5 • 7 '3,4"";8} •

{1,5,B,d3 ,2,4,9,d2 ,3,6,7,d 1 } = {A,B,C}

{1,4,d1 ,2,5,3,6,d2 >> = {x,y,z}

({1,3,5,2,4,6} = {a,b}

{1,6,9,~,3,4"";8} = {M,N,P}

~ = ~ 0 = {1,2,3,d2 ,4,5,6,d 1} = {a,~}

Substi tuting them into the transition table of machine B, we

have

VM, 1=VM,s=VN, 3 =Vp, 3 =Vp,s=<Cix,B/z,A/x)

VM, 2 =VN, 4 =VN, 6 =Vp, 4 = <Aiz,C/y,C/x)

VM, 1 =VN, 3 =VN,s=Vp, 1= (8/y,C/x,B/x)

VN, 2 =VM, 4 =VM, 6 =Vp, 2 =Vp, 6 = <Ciy,B/z,A/y)

which satisfy

where

i> ~s ·1:'s=~s <0)

ii) for any i,jei, B',B 0
e~ 5 ,

{VM,l'VN,l}

{VM,2,VN,2},

It is said that (1:'I,1:'s 7 1:'0 > is a forced-EPT under the forcing

parti ti on ·r=~ 0 •

Step 3. Set up image machine Q1 •

By the substitution of

~s = {1,6,9,d2 ,2,5,7,d 1 ,3,4,B,d 3 }

~I {1 ,4,2,3,5,6} = {m,n,p} and

~0 = {1,2,3,d2,4,5,6,d1} = {a,~}

= {M,N,P}

132

and the computation of 8 1 and ~~ on the bleeks, such as

N,

a,

and se on, the image machine Q1 is obtained is shown

in Fig. 7.5.

M
N
p

m

NI a
N/.8
M/8

n

N/8
P/a
Niet

p

PI a
M/8
P/a

Fig. 7.5 Machine Q1

Step 4. Set up image machine Q2 •

The four veetors obtained in step 2 will construct the image

machine of the forced-EPT with the following

assignments in the inputs:

VM,I <a,a> because M?;:", ç; a and tea

VN'2 (AJ,b) because M?;:"2 ç; ,a and 2eb

VN,1 <AJ,a) because N?;:"1 ç; ,a and tea

VN,2 <a,b) because N?;:"2 ç; a and 2eb

the image machine Q2 is shown in Fig. 7.6.

A
B
c

<a,a>

C/x
A/z
B/x

<a,b)

C/y
B/z
A/y

<.d,a>

B/y
C/x
B/x

Fig. 7.6 Machine Q2

(AJ,b)

A/z
C/y
C/x

output

Step 5. The mappings between machine Q and machine Q 1 -t Q 2 are listed as

fellows.

s S 1xS2 I I 1 xi 2 0 o 1 xo2

1 CM,A> 1 Cm,a} 1 (a,x>
2 CN,B> 2 <n,b) 2 ca,y)
3 <P,C> 3 <n,a) 3 <a:,z>
4 <P,B> 4 <m,b> 4 <AJ,x)
5 CN,A> 5 <p ,a> 5 (AJ,y)
6 CM,C> 6 <p,b) 6 <.d,z)
7 CN,C>
8 <P,A>
9 <M,B>

(End of Exaaple 7.2)

CHAPTER B

COMPUTER AIDED
DECOMPOSOTIONS

133

During the study of the decomposition of sequential machines there

was an extensive support of a computer. This helped t.he rapid progress

of t.his study. In this chapter, we will discues a series of algorithms

for the decompositions of sequentia! machines. The algorithms are

applied in a program package in which we can calculate most of the

functions and proper-ties, such as part.itions, partit.ion pairs,

partit.ion trinities, and full-decompositions of sequentia! machines

(see Appendix>.

In Section B. 1, we wi 11 describe the data structure used. Section

8.2 discusses the algorithms for basic operations in the

decomposition theory.

8.1 Data St:rl..:lc:tl.:l:re

In the study of machine decompositions, the only input data was a

table which described the state transitions and outputs of a machine.

For the table, we made the following stipulations for the programming.

134

Expressing Form

For the sake o-f si mpl i -fyi ng the program design and management, we

defined the data o-f state, input and output with an expression -form as

follows:

State set: s = C0,1,2, ••• ,NS>

Input set: I = U ,2, ••• ,NI}

Output set: 0 C0,1,2, ••• ,N0}

where NS is the number of states;

NI is the number of inputs;

NO is the number of outputs.

The element 0 denoted a "don't care" condition. Also, NS, NI and NO

ware used as global variables to express the numbers of states, inputs

and outputs for different si zes of machines wi thin whole descriptions

of algorithms and all programs.

Storage Form

We arranged two arrays 8[l and 1.[J, wi th si zes NSxNI, to record the

next states and outputs of any machine to be studied. The arrays were

set up by a special procedure in one of two ways, one from a keyboard

input and another from a floppy disk input. In the mode of keyboard

input, the procedure accepted the data and wrote it on the disk and in

arrays of memory. In the mode of a floppy disk input, the procedure

read the data from floppy disk into the arrays of memory. The data on

floppy disk was also written in the Editor mode and was of the

following format:

machine type

basic parameters

(next state, output)

135

where the machine type was a number expressing Moore machine with 0 er

Mealy machine with 1; basic parameters were composed of three integer

numbers NS, NI and NO in order; the last part (2x>NS:xNI numbers of the

next states and outputs separated by a space and positioned according

te the original machine table. The advantage of the design was that we

could make use of Editor mode to input the data off-line.

Dynamic storage ferm

Based on the arrays a running program produced derived data or

results, such as partitions, partition pairs, or partition trinities.

And some of these data might be used as input data for another program

wi th ether func:tions. Therefore, a dynamic: data struc:ture should be

arranged for this kind of requirement. For simplici ty we chose

partitions as the c:ells of the dynamic data structure. Other forms of

data could be obtained by combining cells in a particular program. For

i nstanc:e, two cell s con si sted of a part i ti on pair and three c:ell s f er

partition trinity. In prac:tice, we used the following two types of

structures.

A. Ordered linked list.

RANK p

1

I
2

I i

3

I
Pionter -t 4

In this type of structure, each item consistsof two parts. One part

was P, which was an integral array te e:xpress a partition 1(. Another

part was RANK, whic:h gave the number of bleeks in the partitions.

Because there were many cernparisen operations of partitions in a

program and because of the property that two partitions with

unidentical RANK numbers were certainly net equivalent, it was shown

that the arrangement of RANK made a large benefit in simplifying

136

programming and fast computation. There was a pointer to keep the

position of the last used item.

B. Classed linked list.

In some programs, we used another type of structure while the

number of items was very large so that the computation was time

consuming. We noted that, for any given machine, the number of

different ranks was equal to NS <for state partition>, NO <for output

partition> or NI (for input partition>. In order to speed up the

procedure of searching partitions for the same rank, we made a classed

link instead of RANK, which was shown as follows:

RANK

CLASBHEAD

1 2 3

In the structure, part P is the same as in A. But part of RANK

recorded the next position of partition in the class <RANK i- O> or the

end of 1 ink of the class <RANK= Ol. CLABSHEAD gave the first i tem in a

class (by the content} and the number of bleeks in the class (by

index). There was also a pointer to indicate the next cel I available

forstoringa new partition, partition pair, or PT. The description of

data structure on P will be given in a special sectien later <see

Secti on 8. 2. 1>.

137

8.2 Algo:r.i-thrns

Like in any mathema:tical system, there are also some basic

operati ons in the al gebrai c theory of machine decomposi ti ons. They

are partition addition, partition multiplication,

~: t• m<~>, M<~>, etc. All the other operatiens,
'

such as partition pair operations and partition trinity eperations

are built by the basic operations. In this section, we give a general

description of the basic operations and discuss their computer

algorithms.

8.2.1 Par-titien Functien

In the study aided by a computer, we must lookfora better form of

starage and representati on of the data (here, part i ti ons> because i t

effects the computation complexity directly <space and time>.

A di reet way is to u se a set te repr-esent the part i ti on, si nee the

partition is a set of blocks each of which is a subset. In this way, for

a partition on a set S which has N distinct elements, we define the

follewing types:

block

par-titien

set of 1 •• N

array [l •• Nl of block

Since a partition may contain N blocks (zero partition> and a block

may contain N elements (identity partition> we have to define it with

N. Thus, a partition takes NxN=N2 bits if we use ene bit te repr-esent

one element in S. It is obvi ous that a part i ti on needs too much space to

do computations when set S is larger.

On the other hand, we consider an eperation of partitions, say

partition addition, under the above representation to examine the

time complexity.

Let {8 1, 1 • 81, 2 • • • • • • 81, n};

{82,1' 82,2 , •••• ,82,111};

Firstly, we should do set addition on any two blocks in the two

part i ti on i f they have at 1 east one common element, Symbol i call y i t is

inductively described as fellows:

138

Let Bj' o = B:t, i

and for any j, O<j<m, let

{
B'i, jU B2,j if B~ .fl 82' j 't 0

1 ' J

Bj,j+:t= (1.1)

Bj,j if Bj' j fl B2,j= 0

Since it is possible that there will be common elements in two

different a~ ... and

additions on {Bi, 111 }

Bi, .. of {Bj,
111
}, we have to do a check and

again, as in the above procedure, that is,

let a·;,o = Bi,•
and for any O<j~n ,

{
B'! .U Bj, .. if B'! . fl Bj, 111 't 0

1' J 1 ' J

Bi' j +:1. = (1. 2)
B'! . if B'! .n Bj, .. = 0

1' J 1 ' J

The similar procedure of <1.2) on the set {Bi,n} must be repeated

until one of the following conditions is satisfied:

i) B" n B"
lr: 1 n 1 1 n

i i> B~,n 0 a;,n

.....
A

for any k,l <k"tl>, l~k,l~n.

= B'! 1, n

Then, for any i, Bi,n is a blockof ~ 1 +~ 2 , that is,

<1. 3)

Here, to get {Bi,• } we have to do more than nxm times of set

operations, and for {Bj,n} more than nxn times of set operations.

Totally, to get ~ 1 + ~ 2 it takes

n x m + k x n x n ~ kN2

times set operations where k represents the times we repeat the

procedure on {Bi,n } for satisfying <1.3).

It is obvious that, as N becomes larger, the computation time will

be so 1 ong that i t is unacceptabl e in the cases when we must do a 1 ot of

partition additions on a largersetof partitions. The conclusion is

that a better representation of the partitions is requred.

In the following discussion, we first study the mechanism of the

structure of a partition and finally derive the general definition of

a partition function.

139

Let ·ri, j = {Ï,2, .•.. , , , ,iib be a minimal partition on which

only elements i and j beleng to the same block. Then, +or any a

partition ~ on s, we have

<1. 4)

where E denotes repeated partition additions.

In <1.4), there are totally N+C~ ~i,; we have to eKamine.But

if a check is made on {~i,j l[il~=[jl~J, we know, for any i,jeS,

But,

[iJ~=[jJ~ implies

for

i)

ii)

iii)

vi>

any

1(+

1(+

~i' i

~j,j

~i,;

~ j' i

i,jeS and

"ti. f i 1(

"ti' j
1(

e {~i, j IUJ~=[jJ~},

e {1:'1· ·I [i J~=[j]~}'
' J

e <"ti, j I [i J~=[j J~}'

e <~ 1 ,jj[iJ~=[j]~}.

for any 1(on s,

+ "t. . = 1(,

"' J
+ "t,;, i•

(1.5)

(1. 6)

It is true that some of them are redundant. They are "ti, i , "t j, j, one

of "ti , j and 1:' J , 1 and one of "1: i , J , 1:' i , k and 1:' i , k to cal cul a te ·r by (1 • 4} •

In this case, we see that the additions, 7(+1:' 1,,; are trivial.

Therefore, we need to make some restrictions to (1.4) in order to

reduce the redundant information units. It is obvious that the

restrietion

i '# j

can cut down (i) and (ii}. And because S is defined as a set of

integers, the restrietion

i ;:!!: j

can cut down (iv>. Thus, <1.4> becomes

(1. 7>

In order to ensure the minimum amount of numbers of 1:' 1 ,,; for

building a partition, we consider the following lemma first.

140

LEMMA 8.1

Let B be a bloc:k of 'ton S and let B have m distinct elements, i.e.

IBI=m. Then, weneed at least m-1 'ti,J to build B. In ether words,

-ril {l,2, ... ,8, ... ,iii>

111-1

= L {'ti,j li>j A i,jeB} (1. 8)

111-1

where E means m-1 partition additions have to be done nontrivially.

Proo-f.

1) It is obvious that when n=l, 't8 =x<O>, weneed nothing to do

it;

2) For n=2, n-1=1, since

-r8 = (f,2, ... ,i,j, ••• ,iii>

(1.8) holds.

3) Assume when n=m-1 (1.8) holds, that is

Thus,

(End

-r~ = {Ï,2, ... ,B' , ••. ,iii>

111-1-1

E {'ti,jli>j A i,jeB>.

Then, for n=m-1, suppose

B-B' ={k}, i.e. B=B'U{k}.

We know that ene more minimal partition is enough to build

Gil farm 't~ since, forsome ieB',

-r. = 't' + 'ti' .. if i >k; B

'tB 't' B + 'tlt,i if i<k.

•-1
TB = E {Ti •,; I i >j A i ,j eB}

OT Le••a 8.1)

Based upon the Lemma, we have

141

THEOREM 8.1

Let~ be a partition onS~ then there are at least N-1~1 ~i,j to

build ~ that isy

N-I 'I:' I

~ = E {~i,jli>J A [il't'=[j]'t'}. <1. 9)

proo'f:

Case 1: ~"" 11'(0), N-1"1'1 = o, we need not do anything for "t';

Case 2: T "" 7t(l)' N-J"t'l = N-1, following Lemma 8.1

Case 3: ~ ~ 7t(Q) ' and "1'~11'< I). Fr om Lemma 8.1, for each block

Bk in T, we need IB~el-1 of ~Ï,j" Thus, for ~ we need

1'1:'1 1'1:'1

E <IB~el - 1) = E IB~el

pieces of ~~, j.

(End o'f Theorea 8.1)

If we consider each Ti, jas an in'foraation unit, from the theerem a

corollary is obtained.

COROLLARV 8.1

To represent any a partition Ton S by ·t1 , j we need at least N

information units.

Proo"f:

Fr om Theorem 8. 1, we know that, for any non-zero part i ti on, we

need at least N-1~1 information units. But for the zero

partition 11'(0),

7t<O> = E {~ 1 ,jli=J>

which needs N information units to represent it.

Thus, in order to represent any part i ti on onS by T 1 ,,;, we have

to have at least N informaticn units.

(End o'f Corollary 8.1)

Now, we should consider how toselect N-1~1 "t'i,J which perfectly

construct~- Firstly, examining <1.8) we knowin {"t'i,j lï>J A i,JeB}

there are

•
E <k-U

k=1

142

distinct -ti, J" Butforsome i,j,l<:eB, i;tj;tk, there exists certainly an

order on i,j and k. Suppose the order is

i)j)k.

Then, c:learly,

1:' i , J , 1:' i , k , 1:' j , k e {1:' i, J I i > j A i , j eB}.

Si nee

-ti,j + "t' i. k + 1:' ,;, k = -ti,j + -tj,kt

or -tl,j + "['i 1 k + ·t j' k 1:' i ,J + 'ti Ik'

or '['i 1 j + "t' i' k + "t'j,k "t'J,k + "t'i,k"

This means that one information unit is redundant. In order to remove

the redundant one we must introduce the restrietion "only take one i in

{Ti
1

J li>jAi,jeB>n, whic:h is realized by

N

"t'8 I {"t'i 1 Jji,JeB A i=j}.
i=i

Bec:ause bloc:ks of "t' are disjointed (1.7) becomes

N

T [{Ti,j li>J A [iJ~=[j]~}.
i=:!.

This states that we only take the "t'i,j with different i to build "t'.

Wi th the N information units for any non-zero part i ti on "t', there

are j"t'j redundant information units. For them, we only take those

"t' i, .i suc:h that i is the minimum element in the bloc:k whic:h contains i

in order to make it coïncident on both non-zero and zero partitions.

Therefore, any partition can be built by

N

I {Ti,JIH>J> A [iJ~=[jJ~ V H=j) A <i=min(8(i)))}
i=:!.

(1. 10)

where i=min(B(i)) means that i is the smallest element in the bloc:k

containing i. Althàugh we have ITI redundant units for the

representation of non-zero partitions, we will see later that it is

very c:onvenient for the operations of partitions.

So far, we have divided any partition onS into N information units

eac:h of them meets i;tj. Since, in eac:h 1:'10 J only two parameters, i and

J, are involved, we c:an use a very simple form of representation to

indic:ate the c:harac:ter of 1:' 1 ,; : only i and

143

j in a block. An obvious way to do this is to use an array in which the

index is i and the value of index i is j. Consequently, a function is

defined as fellows:

DEFINITION 8. 1

Let 1(be a part i ti on ons. P1t is a p-function of 1(if P1t maps SintoS

by the following rule:

P1t(s)=s iT and only iT VteS: [s]1t=[tl1t =+ t~s;
P1t<s>ts if and only iT 3P1t<s>eS: [sln=[P1tts)l1t =+ s~P1t<s>.

(End of Definition 8.1)

If we make a comparison on a partition of a set and an undirected

graph, we know fortunately that the p-function is equivalent to the f

function invented by Rem[4J. This is because, if we consider the

elements of a set of a sequentia! machine as the vertices of an

undirected graph, a block of the partition just is a connected

subgraph. Therefore, the Rem al gor i thm can be direct! y used later in

the di scussi ons of al gor i thms of basic op er at i ons in machine

decomposition theory.

By definition, a p-function of a partition 1l'portraies vividly the

block characters of the partition with the following properties:

1> for any seS, 1~P1t(s)~s;

2> any block has one and only one identifying element s with

P 1t(s) =s;

3) for any s,teS

[s]1t = [t]1t iT and only iT id{s)=id(t) <P1t> ;

4> 1t is zero partition iT and only if id{P1t> 8 = N

5) 1(is identity partition iT and only iT id(P1t> 8 = 1;

6) for any Jt, ~ on S

7) 1(has more than one different p-function iT and only if

Bi e1l';

144

where i) an identifying element is an element s such that

P'n'(s)=s;

ii) id(s) denotes the identifying element which comes

from that there is a finite sequence of 1 •• i,

1:$i:!>ls 1.

id<s>= P~(p~- 1 < •••• <P~ (s)) •••))

such that pi+t <s>=P 1 (s) •
'n' 'n' •

iii) id(P'n')• denotes the number of distinct identifying

elements in P'n'.

From the definition, we know that a partition function takes NKL

bits, where Lis the lengthof wordsin a computer, and that where N>L,

a partition function gives a great advantage far the space

requirement. We shauld also note that in the case of using packed

array, a partition function only takes Nxlog 2 N bits for its storage.

An implementation of partitan functions is defined with the following

two types:

STYPE = 1 •• N

PTYPE = array[l •• NJ of STYPE.

8.2.2 Partition Addition

8.2.2.1 A Methad for 'n'1 +'n'2 by Hand

A methad for calculating the partition sum x 1 +x2 by hand, like

normal farm on compact camputation on decimal numbers, is presented

here. In this method, firstly, we draw a table in which each column

denotes an element of thesetand each line denotes a blockof x 1 or of

x 2 • Secondly, we fill entries in the table in this way: if element j

belengs tosome block i, then we put a x in columnjon the row in whic:h

the block is located. Thirdly, we calculate the partition sum by the

following procedure:

PROCEDURE 8.1

1. Take a column i without any symbol of its head;

put a line on column i and a new symbol on the head of

c:olumn i;

2. If row j has a x on c:olumn i, put a line on row j;

3. If c:olumn k (k~i) has a x on row j, put the same symbol

on the head of column k;

4. For all rows with a x on column i, repeat 2 and 3 again;

5. For all columns with a x on row j, repeat 3 and 4 again;

6. Repeat 1-5 until the heads of all columns have symbols;

7. The elements with the same symbols form a block of ff1 +ff2

(End of Procedure 8.1)

To illustrate the procedure an example is given as fellows:

EXAMPLE 8.1

be two partitions on the set

145

By Procedure 8.1, a compac:t form for c:alc:ulating partition K1 +K2 is

given in Fig. B.l.

(End of Exa•ple 8.1)

{
1,5

"1
2,7

3
4,6

{
1,6

"2
2,3

7

V * * V V V *
1 2 3 4 5 6 7

I
I

-K---
I -i-I
I I
I I
I I

I I -t--f-

J
·r

--;-

J.

I
T

I
--X

I
I
I

I
I -f-

146

In the table, each ver-tical line indicates the bleeks with common

elements and each hor-izontal line indicates a subset of block of

~ 1 +K 2 • Since we check all subsets of the bleek, a cor-rect result is

obtained. Because we do possibl y many par-ti ti on addi ti ons on a small

set during a study, the methad mentioned above pr-esents a convenient

and reliable way to do them by hand on paper.

A little more should be added when we calculate the partition sum

of more than two partitions the procedure shows a big advantage fora

c:onvenient computation.

8.2.2.2 Partition Sum P 1 +P2

Now, we c:onsider how to do par-titien addition based on two P

func:tions. This means that from P 1 and P 2 of K1 and ~ 2 , respectively,

how to do we can get a P~ which is a p-function of K~ = ~ 1 + K2 •

By the concept of information units we know, for any ~. ~ on S

N

K+~ = ~ + E {·t:i,,dH>j) A ([il't'=[jJ't') V <i=j) A <i=min(B(i)))}
i=1

Since ~+~+K = ~+~, we also know

N

K+~ = E {K+~i,jl<i)j) A ([i]'t'=[j]'t') V (i=j) A Ci=minCB(i)))}
i=1

This states that wemerge continually two bleeks B<i) and B(j) in K

if i and j are in the samebleek of ~. Camparing with an undireeted

graph 6, ~+~i,J' here, is equivalent to "aaking a new edge between

vertices i and j to the graph Gn. For this, Rem presented a beautiful

algorithm [4l basedon f-funetion representation of a graph, whieh can

be directly used in our- problem and is described as fellows:

Algcrithm NEWEDGE <var P:PTYPE; s,t:STYPE>;

input: p-functicn Pof ~ and elements s and t of ~s,t;

output: p-functicn Pof ~+~s,t;

procedure:

begin ~ s~,t 0 ,s 1 ,t 1 : STYPE;

s 0 ,t 0 := s,t;

s 1 ,t 1 :=

de s 1 <t 1

cd

end

t 1 <s:s.

P<s>,P<t>;

-+ P<t 0 > :=

-+ P<s0 > :=
Sd t 0 ,t 1

t1; so,s1

:= t 1 ,P<t 1 >;
:= s 1 ,P<s1>;

147

To hcncur the inventcr, we give the name NEWEDGE fcr its

applicaticn in cur prcblem. NEWEDGE realizes the merge of twc bleeks

which ecntain elements s and t respeetively by reassigning the values

of p-func:ticn of elements from s to id(s) and t te id(t) and finally

meeting

id(s) = id<t> min(idCs>,id(t)) •

Sec:ondly, we c:cnsider hcw te use NEWEDGE to c:alc:ulate ~+~.

Fcr Pa = P1+P2 we initialize it into P 1 , that is

Pa= P1

realized by

i : = 1;

In order to de 1C + ·t 1 , j we eall the procedure NEWEDGE by

But, bec:ause there is some redundant ~i , j in P 2 on whi eh 1(+·t i , j is

trivia!, we should give up the eperation on ~i,j"

This is dcne by

The preeedure has to be repeated fcr all

whic:h is realized by examining all P2 (i) in P 2 , that is,

Finally, a c:ompleted algcrithm for caleulating P 1+P2 is cbtained as

fellows:

1-18

Algorithm SUMP<var P 1 ,P 2 ,P~: PTYPE; N: STYPE>;

input : Partition functions P 1 and P 2 , partition N;

output: Partition sum P~= P 1 +P2 ;

procedure:

begin

beg i n :l!!!!:. i

i : = 1;

integer;

do 1~N ~i, P~(i) := i+1, P<i) od

end

beg i n :l!!!!:. i

i := 1;

integer;

do i~N ~ if i~P 2 (i) ~ NEWEDGE<P~,i,P 2 <i)); i :=i+1;

In the algorithm a variabieNis arranged by making it suitable to

any type of partitions, such as state partitions, input partition or

output partition, on which N=NS, N=NI or N=NO.

8.2.3 Partition Product P 1 ·P2

Let R, ~ be partitions on S. then, based on the definition of

partition product, we have

N N

K·~ ! {Ki,jl(i)j) A [iJn=[j]~} •! {~ï,jl(i)j) A ([ilT=[j]T}
i=1 i=1

N

=! {Ri,j l<i)j) A ([i]n=[j]n) A ([ilT=[j]T)}
i=1

It tells us the main thing to do in the eperation is to judge each

n 1,j if there is a ~i,j in~- Consequently, we should develop a

function to do this.

As we know, for any i,jeS,

[iJ~= [j]?(if and only if id(i)=id(j)(PK>

in PK. Therefore, a function IJLINKED is written easily as fellows:

Algorithm IJLINKED<var P: PTYPE; l,J: STYPE> Boolean;

input : p-function P; elements I and J ,

output: Boolean function IJLINKED = true if id<I>=id(J)

else IJLINKED = false

procedure:

begin ~ I 0 ,J 0 STYPE;

Io,Jo := I ,J;

do I 0 t P<I 0 > ~ I 0 := P<I 0 > od;

do J 0 t P<J0 > ~ J 0 := P<J0) od;

IJLINKED := <I 0 =J 0 >

end

149

Now, using the function we ca.n write down the procedure for

ca.lcula.ting P 1 ·P2 •

Algorithm XP<var P 1 ,P2 ,P3 : PTYPE; N: STYPE>;

input 1 p-functions P 1 and P2 ; partition type N;

output: P 3 =P 1 ·P2

procedure:

begin

begin ~ i : integer;

i := 1;

do i$N ~ i,P3 <i> := i+1,i od

end;

begin ~ i,j: integer;

i := 1;

do i$N-1 ~ j := i+1;

do j$N ~

if id(i)=id(j)(P1) A id(i)=id(j)(p2) ~

NEWEDGE <P3 ,i,J>; j := j+1

id<i);fid(j) <P 1) V id(i)jll!id(j) <P 2 > ~ j := j+1

fi

od; i := i+1

The rela.tion id(i)=id<P1 <i)) <P 2 > is done by

150

To understand the algorithm conveniently we write

IJLINKED<P2 ,i,P 1 <i>> by the form of id(i)=id<P 1 <i>> <P2 >.

8.2.4 1l':,t

DEFINITION 8.2

State pair <s' ,t') is a relativa state pair of state pair <s,t> if

and only if there exists a xei* such that

(s,t>Sx = (s' ,t'). (4. 1)

(End of Definition 8.2)

For any pair <s,t>, its relativa pairsforma set Rs,t•

Rs,t = {(s',t'> l<s',t'> is a relativa pair of <s,t)}. <4.2)

The pair <s,t>, obviously, is in Rs,t since for an empty input s

<s,t>Sc. = <s,t>.

by Proparty 2.11.

Then, for any s,teS, their smallest SP partition ~ t is
s'

calculated by

n:,t= E { 1l'i,;IU,J>.eRs,t}• (4.3)

Now, The things to do are to find (s' ,t') and to record it in R
51

t• We

define a p-function P to record Rs,t with the initial value

P =a p-function of 1l's,t•

When a (s',t'> is obtained, it is recorded by

NEWEDGE<P,s' ,t'>.

Once we get all (s',t'>eRs,t• the final value of P just is a

p-function of n:,t• that is,

P =a p-function of n:,t

To find a (s' ,t'>eRs,t• we start from <s,t>, for all iei, the

next statas

<s,t>S 1 e Rs,t•

Generally speaking, if <s',t'>eRs,t• for all iel, (s',t'>S 1 eRs,t

and for any (s' ,t'>S1 we must record it in P by

NEWEDGE<P,S[s' ,iJ,S[t' ,iJ

where Stl denotes the array for transition table of a machine;

another thing to do is to find continuely that for all jei,

161

The procedure should be repeated until all Cs' ,t') are checked on all

jei. Consequently, a recursive procedure is yielded as fellows.

Algorithm NEWPAIR<var P: PTYPE; s 0 ,t0 : STVPE>;

input : states s and t; array 8;

output : p-function Pof Rs,t

Procedure

begin :ti!!: i: integer;

i : = 1;

do i:!!iNI -t

if 8[s 0 ,iljli!S[t 0 ,il A id(Sts 0 ,iJ>;tidCS[t 0 ,iJ) CP) -t

NEWEDGE<P,Sts 0 ,iJ,Stt 0 ,il>;

NEWPAIR<P,SEs0 ,iJ,S[t 0 ,iJ);

i := i+l;

Sts0 ,il=Stt0 ,iJ V idCSts0 ,iJ)=idCStt 0 ,iJ) CP) -t

i := i+l;

Here the t-estriction Sts0 ,i Jjli!Stt 0 ,i J is presented from

:n'+·t:' . . = :n'
1 1 l

which guarantee that for any s,teS, the NEWPAIR is called

times. Thus, the maximum number of calling NEWPAIR is NS-1 only

when ?t!,t = :n'<I>.

So far, an algorithm for n:,tis written easily basedon the

152

procedure NEWPAIR.

Algorithm n:,t<var P: PTVPE; s,t: STVPE>;

input: states s and t; array 8[J;

output: a p-function Pof n:,t;

procedure:

begin ::!!!!!!:. i: integt::~r;

i :=1;

do i:SNS-* i,PU> :=i+l,i od;

if s>t ... P<s> == t;

t>s ... P<t> := s;

fi;

NEWPAIR<P,s,t>

end

8.2.5 m(:n')

To compute m(:n') we consider first

N

1t = E {:n'i,J li>J A [iJn=[j]~
i==1

By Theerem 3.1 in [15l,

We have

N

m(:n')=m(E {1f'i,Jii>J A [iJn=[jJ~)
i=1

N

= E {m(7t1 ,J> li>J A [iJn=[JJ~}
i=:1

(5. 1)

(5.2)

Now, the problem is how to do for m(:n'i, J) after easily getting 7t1, J in

p-function of :n'. In :n'i, J there are cnly two elements,i and J, that

shculd be considered. Ac:cording to the definition of moperatien it is

cbvicus that

153

NS

m<ni,j> = li {-'tiö Jö lfor all ken
. k' k 1=:1.

C5.3.a)

NJ:

m<ni,j) li {-'tkö. • •S. !for all keS}
i=:l. 1 J

(5.3.b)

NJ:

m(7ti,j) li {-'t~e).., k). . lfor all keS}
i=:l. 1 J

(5.3.c)

NS

m(1t';_d> E {-'ti). , J). lfor all ken
i=i k k

(5.3.d)

for s-s, 1-S, 1-0, or S-0 respectively.

Let P 1 be a p-function of 1t and P 2 be a p-function of m(7t).

Then, for <5.3) we can realize them by

k := 1

if s-s pair ~ do k:SNI ~ NEWED6ECP2 ,S(i,kl,ö[P 1 Ci>,kJ>;

k := k+1

od

i I-5 pair ~ do kSNS ~ NEWEDGE<P2 ,S[k,iJ,S[k,P 1 Ci)J);

k := k+1

od

I S-0 pair ~ do k:SNI ~ NEWEDGE<P 2 ,~[i,kl,~[P 1 (i),kl>;

k := k+l

od

I I-0 pair ~ do k:SNS ~ NEWEDGECP 2 ,A[k,iJ,~[k,P 1 Ci)J);

k := k+l

od

fi

where A[J expresses the array for output table of a machine.

If the computations are repeated for all i in P 1 , a p-function P 2 of

m(7t) is obtained finally, which is described by the following

algorithm:

154

Algorithm m(~) <var P 1 ,P2 : PTYPE; PT: string>;

input: p-function of ~; pair type PT; arraies 8[] an A[]

output: p-function of m 5 _ 5 <~>, m 1 _ 5 <~>, m 5 _ 0 <~>, or m 1 _ 0 (~)

procedure:

begin~ i,J,k,n 1 ,n2 ,n3 : integer;

if PT='S-S'~ n 1 ,n 2 ,n 3 , := NS,NI,NS

PT='I-S'~ n 1 ,n 2 ,n 3 , := NI,NS,NS

PT='S-0'~ n 1 ,n 2 ,n 3 , := NS,NI,NO

PT='I-0'~ n 1 ,n 2 ,n 3 , := NI,NS,NO

fi;

i : = 1;

i : = 1;

do i:!fn 1 ~

i f i ;tP 1 < i > ~ k : = 1 ;

do k:!fn 2 ~

od

if PT 'S-S'~

fi. _,

if S[i,kl;t8CP 1 <i>,kJ ~ NEWED8E<P2 ,8Ci,kJ,8[P 1 <i>,kJ)

8[i,kJ=8[P 1 <i>,kJ ~skip

fi

PT ='I-S'~

if 8Ck,iJ;t8[k,P1 <i>J

8[k,iJ=S[k,P 1 <i>J

:ti
PT = 'S-0' ~

if A[i,kl;tACP 1 (i),kJ

A[i,kl=A[P 1 <i>,kl

fi

PT = 'I-0'~

~ NEWED8E<P 2 ,8[k,iJ,8[k,P 1 <i>J>

~ skip

~ NEWED8E<P2 ,ACi,kl,A[P 1 <i>,kl>

~ skip

if A[k,iJ;tACk,P 1 (i)J ~ NEWED8E<P2 ,A[k,il,A[k,P 1 <i>J>

A[k,il=ACk,P1 (i)J ~skip

k := k+l

i=P 1 (i) ~ skip

i := i+l

155

8.2.6 M(7l'>

To compute M(g) means that for a given partition g to makesure

each ~i,J such that

1:' = M (g)

N

E{-tl,Jii>J A [iJM,.l=[j]N(.)}
i=1

(6.1)

Under the case of using p-function it is for every i in P 2 of M(g)

to find ene and only ene j such that

i)j and [i]MI.l = [j]MC.l"

For the restrietion i)j it is guaranteed by searching some j less

than i. But, for [iJM 1 • 1=[j]Mt•l, by the definition of M(g), it means

for all keNI, [i8kln:[j8kl•, (for M5 _ 5). That is

[i]MI·l=[j]MI.I iff [i8kJn:[j8kJ•

for all keNI, which is translated by

p2(i) = j iff id(8[i,kl)=id(8[j,k])(p1)

for all keN I.

Similarly, we can establish the judgements for ether types of M

eperatlens as fellows:

For Mz-s (g)

p2 (i)

for all keNS;

for M5 _ 0 <1l'>
p2 (i)

for all keN I;

for Mz-o (g)

j

j

p2(i) = j

for all keNS.

iff

iff

iff

When a kis found, so that id(8[i,kJ>tid(8[j,kJ)(P1 >

the checks for ether k's should be stopped. We give a centrolling

boolean variable Eb! to record it provided EQ is false we can stop the

checking immediately.

Also because only ene j is needed for the P 2 <i> we give another

centrolling boolean variable FIND to indicate if or if net

[iJn=[JJ•. Once FIND is true we can stop the searching for ether

smaller j immediately.

With the considerations above an algorithm is naturally yielded

as fellows:

156

Algorithm M<K) <var P 1 ,P2 : PTVPE; PT: string>;

input: p-function P 1 of ~, pair type PT; S[l or ~[J

output: p-function P 2 of M5 _ 5 <K>,M 1 _ 5 CK>, M5 _ 0 <K> or M1 _ 0 <K>

procefure:

begin~ i,j,k,n 1 ,n2 ,n 3 :integer; FIND,EQ: boolean;

if PT I S-S' n1,n2,n3 :=NS,NI,NS

PT I I-S' ni,n2,n:a :=NI,NS,NS

PT I S-0' nt,n::~:,n:a :=NS,NI,NO

PT I I-0' ni ,n2,n3 :=NI,NS,NO

i := 0;

do i:!>n3 -+ i := i+1; P 2 <ï> := i od;

i := n 1 +1;

do i>2 -+

i : = i -1

FIND,j := false,i

do j>1 A not FIND -+

j := j-1;

k,EQ := O,true;

do k<n 2 A EQ -+

k := k+1;

if PT='S-S'
if 8[i,kl;t8[j,k]

8[i,kl=8[j,k]

fi

PT=' I-S'
if SCk,iJ;tBCk,jJ

S[k,il=S[k,jl

fi

PT=' S-0'
if ~[i,kl;t~[j,kJ

:1\[i,kl=~[j,kl

fi

PT=' I-0'

H :1\[k, i]jil!:l\[k ,j J

Ark, il:=Mk, j l

fi

fi;

.... EQ:=id(8[i ,kJ)=id(8[j,kJ) <P 1 >

.... skip

.... EQ:=idCSCk,iJ>=id<B[k,jJ><P 1 >

.... skip

.... EQ:=id<:Hi,kJ>=id(~[j,kJ> <P 1 >

.... skip

.... EQ:=id(~[k,il)=id(:l\[k,jl)(P 1 >

.... skip

if PT='S-S' -+ EQ := id(5[i,kl>=id(8[j,kl) <Pi)

PT=' I-S' -t EQ := id<8Ck,il)=id(8[k,j]) <Pi)

PT='S-0' ~ EQ := id(~[i,kJ>=id<A(j,kJ)CP 1 >

PT='I-0' ~ EQ := id(~(k,iJ)=id(A(k,jJ)<P 1 >

if k=n 2 A EQ ~ P 2 Ci) := j; FIND := TRUE

ktn 2 v net EQ ~ skip

8.2.7 Relation Operatiens

157

Sinc:e many c:omparisons may be made for two partitions, two pairs,

er two trinities, it is essential to establish some algorithms for

them.

Bec:ause the c:omparisons of pairs er trinities are, in the final

analysis, built up by these of partitions, we only c:onsider here the

algorithms for partitions. relations on the representation of p

func:tions.

Let 1t and ~ are partitions on set S, and

N

" = E {7ti. j I i)j A [iJ:~t=[j]7('}.

i=:l.

N

~ = E {~i,j li>j A [i]T=[j]T)
i=i

Then, it is obvious te know that, for relation K~~.

for all 7ti, p i)j A ti J:~t=(jJ?t, in 7t.

With p-func:tions it is established by

for all i eS.

Thus, the algorithm for P 1 ~ P 2 is shown below.

168

Algorithm P1LTP2(var P 1 ~P 2 : PTVPE; N: integer>: boolean

input : p-functions P 1 and P 2 ; partition type N;

output: P1LTP2 := l,true;

procedure:

begin var i: integer;

i,P1LTP2 := 1,true;

do i:!>N A P1LTP2 -t

if i;tP 1 (i) -t P1LTP2 := id<i>=id<P 1 (i)) <P2 >
i=P1 <i> -t skip

fi;

i := i+l

Having the algorithm P1LTP2, other algorithms of relation operations

are easily written down as fellows:

Algorithm P1LEP2<var P 1 ,P2 : PTVPE; N: integer>: boolean;

input: p-function P 1 and P 2 ; partition type N;

output: P1LEP2=true if P 1 <P2

procedure:

begin

P1LEP2 := P1LTP2<P1 ,P2 ,N> A not<P1LTP2CP2 ,P 1 ,N))

end

Algorithm P1EQP1<var P 1 ,P2 : PTVPE; N: integer): boolean;

input: p-fuction P 1 and P 2 ; partition type N;

output: P1EQP2=true if P 1 =P2

procedure:

begin

P1EQP2 := P1LTP2<P1 ,P2 ,N> A P1LTP2<P2 ,P 1 ,N>

end

B.2.B m' (~) and M' (~)

Because of the existence of "don't caren conditions, the

algorithms for computing m and M operations on an incompletely

specified machine are ruled out. Here we consider the algorithms on

weak pairs.

Let m' denote the weak n-operation and M' the weak M-operation.

159

Then fora partition P, there are four m' (10 and four M' (1() as fellows:

m~-s (1(}

M~-s (n')

m~-s (1()

M~-s(?()

m~-o (1()

M~_ 0 Ur>

m;_
5

on

M~-s<1l'>

Ac:c:ording to the defini ti on of sets on a machine mentioned before, the

only differenc:e between incompletely specified and completely

spec:ified machines is that there are some zero entries in the 6 and:)..

tables. Therefore, we should have a special treatment to the zero

entries, just like

for weak m-operation, and

for weak M-operation.

With the representations of p-func:tions the treatments above are

easily to do in Algorithms m(1t) and MC1t) by simply c:hanging the

restrictions such as iSk~jliik~o, which are shown below.

For M' (1(), in Algorithm M(n'),

if 8[i,kJ~S[j,kJ bec:omes

if 8[i,kJ~8[j 7 k] A 8[i 7 kl~O A 8[j,kJ~O;

if S[k,iJ~Srk,jJ bec:omes

if 8[k 7 il~8[k 7 j] A Srk,iJ~O A 8[k,jJ~O;

if :)..[i,k]~:)..[j 7 kJ bec:omes

if :)..[i,kJ~:)..[j,kJ A :)..[i,kJ~O A :)..[j,kl~O;

if Ä[k,iJ~:)..[k,j] bec:omes

if :)..[k,iJ~:)..[k,jJ A :)..[k,iJ~O A :)..[k,jJ~O;

and for m' Cn'>, in Algorithm m<n'>,

if S[i,kJ~S[j,kJ becomes

if 8[i,kJ~S[P 1 <i>,kJ A S[i,kJ~O A S[P 1 <i>,kJ~O;

if 8[k,il~S[k,j] bec:omes

if S[k,iJ~S[k,P 1 Ci)J A S[k,iJ~O A S[k,P 1 (i)J~O;

if :)..[i,kJ~:)..[j,kJ bec:omes

if :)..[i,kJ~:)..[P 1 (i),kJ A :)..[i,kl~O A :)..[P 1 Ci),k]~0;

if :)..[k,iJ~:)..[k,JJ bec:omes

if :)..[k,iJ~:)..[k,P 1 (i)] A :)..[k,il~O A :)..[k,P 1 <i>l~O;

Thus, the complete descriptions of the Algorithms m' <n'> and M' (1()

are omitted here.

160

CHAPTER 9

EPILOGUE

We ~on~lude this thesis with a short summary of the results

obtained in pre~eding chapters and some apinion on further study of

the full-de~omposition theory.

Up to now, the dis~ussions in this thesis are mainly located on the

following aspects:

• Partition trinities whi~h present a suitable representation

for the information between input and output, and between

present state and next state si mul taneousl y <Chapters 3-7} •

• Trinity algebra of a ma~hine, such that we can directly apply

many of the abstract tools that have been developed in algebra

theory (Chapter 3} •

• Parallel full-decompositions examed by PT's <Chapter 4)

• Serial full-decompositions detec:ted by a PT and a FT

<Chapter 5) •

• H-dec:ompositions basedon so-c:alled H-pairs (Chapter 6> •

• Wreath dec:ompositions set up by partition trinities

<Chapter 6) •

• Basi~ algorithms for doing decompositions and analyses with a

computer <Chapter 8).

161

Moreover, we think the work appeared in this thesis is only an

introduetion to the trinity algebra and full-dec:omposition theory of

machines. We still have some motivation on this subject with the

following aspects:

• Specified decompositions. Let M5 be a machine and M be any

machine to dec:ompose. The dec:omposition to make, for some

machine M' amd some conneetion w,

is called a specified dec:omposition. In other words, we

specify a machine that should be a component machine of a

decomposition. The dec:omposition is very significant in a

si tuation where the specified machine M5 is corresponding to

an avilable IC.

The primary package DASM, Decompositions and Analyses of

Sequentia! Machines, servedas a tool for our study on machine

decomposi ti ons and runs on AL TOS inthelevel of experiments.

To develop a large package from it running on a large machine,

say VAX, fora general applic:ation isnecessary and possible.

Of course, there will besome techniques to be considered for

gaining speed and managements.

Al though having paid certain attention to mathematica!

description on trinity algevra we are still not satisfied

wi th the descri pti on on it. Maybe i t wi 11 be done by a

mathematician who is interested in the trinity algebra •

• To expand the trinity algebrabasedon a set system is useful

and possible •

• To develop the application of trinity algebra to complex

dec:ompositions in order to set up a more complete full-

decomposition theory of machines.

162

APPENDIX

DASM

The programme package DASM <D.ecompositions and f:lnalyses of

~equential ~achines> was primaryly designed and used as a valuable

tool during the study of the subject of this thesis. Here, we gave a

brief summary of DASM functions and the environment in which DASM was

used.

LANGUAGE PASCAL;

OPERATING SVSTEM: UCSD;

COMPUTER ALTOS;

FUNCTIONS:

1) Basic operations:

partition: n:.~' ~1· w2, w:l.+ w2;

pair

trinity

m<~>, M<w>, P 1 * P2 , P 1 + P 2 ;

t 1 0 t 2 , t 1 e t 2 ;

2> SP partitions;

3) Partition pairs: S-S, S-0, I-S, I-0;

4) State decomposition of machines:

parallel or serial;

5> Partition trinities;

6) Full-decompositions of machines;

7> Assignment of states of machines;

8) Simulation of machines;

9) Analyses and decomposition of ISSM's.

RUNNING:

Once the diskette DASM was put in drive A of ALTOS, the system

automaticly went to DASM state. The func:tions mentioned above c:ould be

recalled under the guidanc::e of the menu display along the top line of

the screen.

163

The main cammand line on such a guide line was like like

*DASMC1984>: D<ecomp. F<ull-decomp. I<SSM T<rinity ([HYB 84.01].

Typing a guestion mark '(' would cause a display of the rest function

commands:

*DASM<1984): P<air S<P-partition A<ssignment M<sinulation H<elp

Q<uit CHYB 84.01)

In this situation, typing any capita! letter in the cammand line can

get a certain function while DASM goestoa sublevel. For example,

typing 'D' change the guide line into

>Decomp: P<arallel, S(erial, Q(uit CHYB 84.01).

Furthermore, pressing 'P' causes DASM to make a parallel

decomposition of a machine. In this way, we can enter or leave any

level. The parameters needed for a particular calculation are input

enteredas an interactive mode. Also, the results c:an be put into a

device, such as a printer, a screen, or a diskette according to the

instructien from a user. An 'H' cammand in main level represents some

explanation for using this package.

A detailed description of DASM will be presented in a seperate

documentation accompanying the final version of DASM later.

164

REFERENCES

[1] Abdullaev 1 D.A. and D. Yuousov
DECOMPOSITION OF SYMMETRICAL BOoLEAN FUNCTIONS.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]

[11]

[12]

[13]

[14]

Autom. Control & Comput. Sci., Vol. 9, No. 2(1975), p. 11-12.
Transl. of: Avtom. & Vychisl. Tekh., Vol. 9, No. 2(1975), p. 12-13.

Cioffi, G. and E. Costantini, S. de Jiulio
ANEWAPPROACH TO 'l'HE DECOMPOSITION OF SEQUENTIAL SYSTEMS.
Digital Processes, Vol. 3(1977), p. 35-48.

Cioffi, G. and s. De Julio, M. Lucertini
Ol?TîMAL DECOMPOSITION OF SEQUENTIAL !IACïîiNES VIA INTEGER NON-LINEAR
PROGRAMMING: A computational algoritbm.
Digital Processes, Vol. 5(1979) 1 p. 27-41.

Di~kstra, E.li.
AISCIPLINE OF PROGRAMMING.
Englewood Cliffs, N.J.: Prentice-Hall, 1976.
Prentlee-Hall series in automatic computation

Eilenberg, s.
AUTOMATA; LANGUAGES, AND MACHINES. Volume A.
New York: Academie Press, 1974.
Pure and applied mathematics: A series of monograpbs and texthooks

Eileoberg, S.
AOTOMATA, LANGUAGES, AND MACHINES. Volume B.
New York: Academie Press, 1976.
Pure and applied mathematics: A series of monographs and textbooks

Enin, S.V. and P.N. Bibilo
'J'Om'r DECOMPOSITION 'OFA'"!iYSTEM OF VEÇTOR BOOLEAN FUNCTIONS.
Autom. Control & Comput. Sci., Vol. 13, No. 1(1979), p. 14-20.
Traosl. of: Avtom. & Vychisl. Tekb., Vol. 13, No. 1(1979), p. 16-22.

Friedman, A.D. and P.R. Menon
~ DESIGN OF SlilTCHING CIRCUITS.
Woodland Hills, Cal.: Computer Science Press, 1975.
Digital system design series

Giozbur~, A.
ALGEBRAC THEORY OF AUTOMATA.
New York: Academie Press, 1968.
ACM monograph series

~· D.R.
SEQUENTIAL-ciRCUIT SYNTHESIS: State assiqoment aspects.
Cambridge, Mass.: MIT Press, 1966.
Research monograph, No. 31.

Hartmanis, J.
ON THE STATE ASSIGNMENT PROSLEM FOR SEQUENTIAL MACHINES I.
IRE Trans. Electron. Comput., Vol. EC-10(1961), p. 157-165.

Hartmanis, J.
LOOP-FREE STRUCTURE OF SEQUENTIAL MACHINES.
Inf. & Control, Vol. 5(1962), p. 25-43.

Hartmanis, J.
FURTHER RESULTS ON THE STRUCTURE OF SEQUENTIAL MACHINES.
J. Assoc. Comput. Mach., Vol. 10(1963), p. 78-88.

Hartmanis, J. and R.E. Stearns
PAIR ALGEBRA AND lTS AP~ON TO AUTOKATA THEORY.
Inf. & Contro1, Vol. 7(19641, p. 485-507.

[15]

[16)

[17)

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Bartmanis, J. and R.E. Stearns
ALGEBRAIC STRUCTURE THEORY OF SEQUENTIAL MACHINES.
Englewood Cliffs, N.J.: Prentice-Hall, 1966.
Prenttee-Hall international series on applied rnathematics

Holcombe, W.M.L.
~IC AUTOMATA THEORY. Cambridge University Press, 1982.
Cambridge studies in advanced mathematics, Vol. 1.

INTEGRATID CIRCUITS. Part 10: Siqnetics Integrated Fuse Logic (IFL).
Eindhoven: Phi1ips Electronic Components and Materials Division
(ELCOMA), May 1983.
Philips data handboek, IC 10.

Kammozev, N.F. and A.N. Sychei
SPËCTRAL METHOD OF DECOMPOSIT ON OF BOOLEAN FUNCTIONS.
Autom. Control & Comput. Sci., Vol. 13, No. 2(1979), p. 46·50.
Trans!. of: Avtom. & Vychisl. Tekh., Vol. 13 1 No. 2{1979), p. 54·58.

Krobn, K. and J. Rhodes
~C THEORY ~HINES I: Prime decomposition theorem for finite
semigroups and machines.
Trans. Amer. Math. Soc., Vol. 116{1965), p. 450-464.

Lew, A.
~ SCIENCE: A mathematica! introduction.
Englewood Cliffs, N.J.: Prentice-Ha11, 1985.
Prenttee-Hall international series in computer science

tAM' G.H. HOD FOR SYNTHESIZING SEQUENTIAL CIRCUITS.
Bel1 Syst. Tech. J., Vol. 34(1955), p. 1045-1079.

lloore, E.F.
GEDiiNKEN-EXPERIMENTS ON SEQUENTIAL MACHINES.
In: Automata Studies. Ed. by C.E. Shannon and J. McCarthy.
Princeton University Press, 1956. ---
Annals of mathematica! studies, Vol. 34. P. 129-153.

Pottosin, Yu.V. and E.A. Shestakov
APPROXIMATE ALGORITHMS FOR PARALLEL DECOMPOSITION OF AUTOMATA.
Autom. Control & Comput. Sci., Vol. 15, No. 2{1981), p. 24-31.
Transl. of: Avtom. & Vychis1. Tekh., Vol. 15, No. 2(1981), p. 31-38.

Pottosin, Yu.V. and E.A. Shestakov
DËCÖMPÖSITION OF AN AUTOMATION INTO A TWO-cOMPONENT NE'l'WORK WITH
CONSTRAINTS ON INTERHAL CONNECTIONS.
Autom. Control & Comput. Sci., Vol. 16, No. 6(1982), p. 24-31.
Trans1. of: Avtom. & Vychisl. Tekh., Vol. 16, No. 6(1982), p. 25-32.

Shen, V. Y. and A.C. McKellar
~GORITHM FOR THE DISJUNCTIVE DECOMPOSITION OF SWITCHING FUNCTIONS.
IEEE Trans. Comput., Vol. C-19(1970), p. 239-248.

Shvartsman, M.I.
Olî'î'PUT DËCOMPOSITION FOR COMBINATIONAL PLA-STRUCTURES.
Autom. Control & Comput. Sci., Vol. 15, No. 6(1981), p. 9·14.
Transl. of: Avtom. & Vychis1. Tekh., Vol. 15, No. 6(1981), p. 12-17.

Sorokin, B.L.
~ITION METHOD OF SYNTHESIZING CIRCUITS BASID ON PROGRAMMA.BLE
LOGIC ARRAYS.
Autom. Control & Comput. Sci., Vol. 16, No. 4(1982), p. 47-52.
Transl. of: Avtom. & Vychisl. Tekh., Vol. 16, No. 4(1982), p. 50-55.

~,A.
~ ALGORITHM FOR THE PROPER DECOMPOSITION OF BOOLEAN FUNCTIONS.
Philips Res. Rep., Vol. 27(1972), p. 140-150.

Yoeli, M.
~CADE DECOMPOSITION OF SEQUENTIAL MACHINES.
IRE TRans. Electron. Comput., Vol. EC-10(1961), p. 587-592.

165

166

S.ame:n-v.atti:ng.

Het proefschrift behandelt het decomponeren van sequentiêle

machines in kleinere machines. Traditioneel zijn deze

decomposities gericht op het minimaliseren van het aantal

toestanden. In de hier behandelde theorie minimaliseren we ook

het aantal inputs en outputs (verbindingsdraden) in de

decompositie. We spreken dan van een totale decompositie ("full

decomposition").

Totale

complexe

decomposities ontlenen

gefntegreerde schakelingen

hun belang aan de

<VLSI) 9 waarin

komst van

het aantal

verbindingadraden een belangrijke beperkende factor vormt.

De theorie van totale decomposities is gebaseerd op de

wiskundige begrippen partitie-triniteit en triniteits-algebra,

welke in dit proefschrift worden gefntroduceerd. Evenals in de

traditionele decompositie-theorie onderscheiden we parallelle en

seriêle decomposities. Voor de laatstgenoemde decomposities

wordt het begrip geforceerde triniteit ("forced-trinity")

ingevoerd. De theorie wordt verder uitgebreid met H-decomposities

een variant van de parallelle decompositie en

kransdecomposities. We laten zien dat het merendeel van de

theorie ook kan worden toegepast op onvolledig gespecificeerde

machines.

Tenslotte presenteren we een aantal algoritmen, die gebruikt

kunnen worden bij het analyseren van machines en het berekenen

van decomposities van machines.

167

CURRICULUM VITAE

De schrijver van dit proefschrift werd op 12 april 1952 te Shaanxi

in de Volksrepubliek China geboren.

Hij beëindigde de Wugong Middelbare School met een eindexamen in

1968. In 1972 begon hij zijn universitaire studie in de afdeling

elektronica van de Xian Jiaotong Universiteit. Deze studie werd in

1975 afgesloten. In de daarop volgende jaren werkte hij op het

Instituut der Shaanxi Dynamic. Hij hervatte zijn studie op de Xian

Jiaotong Universiteit in 1978, waar hij in 1981 de M.Sc. graad onder

leiding van Prof. Zheng Shouqi verkreeg. Tot 1982 werkte hij als

docent op dezelfde universiteit. Sinds 1983 is hij research fellow in

de afdeling der Elektrotechniek van de Technische Hogeschool te

Eindhoven in de Vakgroep Digitale Systemen (voorzitter Prof.ir. A.

Heetman).

1

STELLINGEN

[1] With the development of integrated circuit tecbnology, the
decomposition theory of machines must include decomposition

related topins ot IC's. in addition to internal components
(Chapters 1,2).

[2] For any sequentia! machine, there is a trinity lattice and a
trinity algebra for it(Chapter 3).

[3] If there are two orthogonal partltion trinities for a

machine, then, that machine aan be decomposed into the
interconnection of two smaller machines which aan work
independently or in parallel wi th separate inputs and
outputs(Chapter 4).

[4] A parti ti on trini ty and a forced-trini ty in which the trini ty

product is zero trini ty show that the machine is of a serlal
full-decomposition. That is, there are two smaller machines

with distinct inputs and outputs and one of them takes a
message from the other (Chapter 5).

[5] The minterm-vector metbod provides an approach to prepare a
numerical algorithm for fault diagnosis and a new way of
calculating Boolean differences on a computer.

Hou Yibin & Zheng Shouqi: A Minterm-vector Metbod

for Diagnosting Faults in Combinational Networks,
Joumal of Xian Jiaotong Univ. Selected Paper of

Scientific Research (in English), pp. 157-161, 1981

[6] During the next ten years. computer security will be one of
the most important subjects.

Harold Lorin: Emerging Security Requirments, Computer
Communications, pp. 293-298, Vol.8, No.6, December, 1985.

2

(7] "Structured programming" is the inevitable outcome of

"structured design thought" that exists in all engineering
design areas.

1. O,J. Dahl, E.W. Dijkstra and C.A.R. Hoare:
Structured Programming. Academie Press. London. 1972.

2. V.R. Basili & T. Baker: Structured Programming, IEEE
Computer Society, IEEE catalog No. 75ch1049-6, 1975.

[8] Unlike society, science has no national beundarles, i t is a
bridge for friendship while friendship is a wing of science.

1. Claude Bernard: "Art is I, science is we."

2. THE: Statement of Intent between the Eindhoven
University and the Xian Jiaotong University,
TH Berichten, Nr.14, p.5, 16 november, 1984.

[9] The number of operational symbols in discrete matbematics is

insufficient for descrihing complex systems. Thus. it never
ends to create new symbols.

1. J.P. Tremblay & R. Hanohar: Discrete Mathematica!
Structures with Applications to Computer Science,
McGraw-Hill, 1975.

2. A. Lew: Computer Science: A Mathematica! Introduction,
Englewood Cliffs, N.J.: Prentice-Hall, 1985.

[10] Language problems consume much time, but, in the Tomorrow of
Mankind, all the people will speak the same language.

[11] A personal computer is not only an interestins asset, but it
can also be tiring to use.

