Trio-One:
Layering Uncertainty and Lineage on a Conventional DBMS -

Michi Mutsuzaki, Martin Theobald,

Ander de KeijZelennifer Widom,

Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Raghotarnthy, Tomoe Sugihata

Stanford University InfoLab
http://infol ab. stanford. edu/trio

ABSTRACT

Trio is a new kind of database system that suppdets, uncer-
tainty, andlineagein a fully integrated manner. The first Trio pro-
totype, dubbedTrio-One is built on top of a conventional DBMS
using data and query translation techniques together watimall
number of stored procedures. This paper describes Trics@aas-
lation scheme and system architecture, showing how it efftbyi
and easily supports the Trio data model and query language.

1. INTRODUCTION

In the Trio project at Stanford, we are developing a new kind of
database management system—one that haddlesuncertainty

of the data, and datneagetogether in a fully integrated man-
ner [3, 6]. Some of the application domains targeted by Tre® a
data cleaning and integration, information extractior scientific
data management [6].

Our first system prototype, dubbétlio-Ong is primarily lay-
ered on top of a conventional relational DBMS. From the user a
application standpoint Trio-One appears to be a “nativgdlémen-
tation of the Trio data model, query language, and otheufeat
However, Trio-One encodes the uncertainty and lineageeptés
Trio’s data model in conventional relational tables, andsés a
rewrite-based approach for most data management and greery p
cessing. A small number of stored procedures are used foifispe
functionality and increased efficiency.

This paper, accompanying our system demonstration, aptur
the Trio system as of late 2006. A previous overview paper [3]
captured an earlier snapshot of the project, and a previgiera
demonstration [1] included a subset of Trio’s query languagd a
limited set of additional features. Motivation and teclaigistifi-
cation for a data model and system that includes both unogrta
and lineage can be found in [2, 6]. Trio’s query language &csp
fied in detail in [5].

The remainder of this paper proceeds as follows:

e Section 2 introduces the overall Trio-One system architect
and briefly describes its application and user interfaces.

e Section 3 reviews Trio't)LDB data model (fotJncertainty-
Lineage Databasgsintroduces a very small running exam-

*This work was supported by the National Science Foundatien u
der grants 11S-0324431 and 11S-0414762, and by grants fioen t
Boeing and Hewlett-Packard Corporations.

fVisiting from University of Twente, supported by NethertsrOr-
ganization for Scientific Research (NWO)

iVisiting from NEC Corporation
This publication is licensed under a Creative Commons ®ition 2.5
License; see http://creativecommons.org/licenses/Bfar further details.

374 Biennial Conference on Innovative Data Systems ResearthR)C
January 7-10, 2007, Asilomar, California, USA.

269

| TrioExplorer
Command-line .
client i (GUI client) J

Trio API and translator
(Python)

Standard SQL

Standard relational DBMS

Encoded Trio
Data Tables Metadata

Lineage Trio Stored
Tables Procedures

Figure 1: System Architecture.

ple database, and shows how ULDB databases are encoded
in conventional tables.

e Section 4 describes Trio’s query languageQL, and shows
how TriQL queries over ULDBs are translated automatically
to SQL queries over the encoded tables.

e Section 5 describes some Trio-specific features—lineage tr
cing, on-demand confidence computation, coexistence sheck
and extraneous data removal—covering their functionality
and implementation.

We conclude in Section 6 with future directions for Trio, lumting
the possibility of arrio-Twosystem that would take a built-in rather
than layered approach. Due to space constraints this papemibt
include discussion of related work; we refer the reader 18[3].

2. THE TRIO-ONE SYSTEM

Figure 1 shows the basic three-layer Trio-One architect(riee
core system is implemented in Python and mediates between th
underlying relational DBMS (currently tHeostgreSQlopen-source
DBMS) and Trio interfaces and applications. The Python daye
presents a simple Trio API that extends the standard Pytt®n D
2.0 API for database access (Python’s analog of JDBC). Tiwe Tr
API accepts TriQL queries in addition to regular SQL, andrgue
results may be&-tuplesin the ULDB model (see Section 3) as well
as regular tuples. The API also expoBasage tracing along with
the other Trio-specific features covered in Section 5. Utieglrio
API, we built a generic command-line interactive client gamto
that provided by most DBMS's, and a full-featured graphicsér
interface calledrioExplorer.

Trio DDL commands are translated via Python to SQL DDL
commands based on the encoding described in Section 3. The
translation is fairly straightforward, as is the correggiog trans-
lation ofi nsert statements and bulk load.

BN rriiem i zanmeooramers

Trio

r Data, Uncertainty, and Lineage
[] Base table () Derived table

[Blug] certain [Gre

ertain [Orange] Uncertain

a table to s

Click on ntents.
ACCOMPLICES
name1

name2

SUSPECT_D
suspect

crime

with confidences

HIGH_SUSPECT

suspect
crime

SUSPECT_S

ccccc

PERSON

DRIVES
person

car

SAWCAR
witness

car

CRIME

WITNESS

type

name

name

sector

sector

hair

clothes

SAWPERSON
witness.
hair

dothes

Figure 2: TrioExplorer Screenshot.

A formal semantics for ULDBs based possible instances spec-
ified in [2], which also shows that the ULDB model gemplete
any finite set of possible instances can be represented a8 UL

The following example illustrates a ULDB for a highly simpli
fied “crime-solver” applicatiot. TablesSaw(wi t ness, car)
andDr i ves(person, car) capture (possibly uncertain) driver
information and crime vehicle sightings, respectively. bléa
Suspect s(per son) is derived by joiningSaw andDr i ves,
S0 it contains (possible) drivers of (possibly) sightedscaConfi-
dence values are optional in ULDB tables—for now imagine tha
they are not present in tabl&awandDr i ves. Confidences will
be discussed in Section 3.1.

TriQL query processing proceeds in two phases. Iritéwesla-
tion phase, a TriQL parse tree is created and progressively-trans
formed into a tree representing one or more standard SQé-stat
ments, based on the data encoding scheme. Iaxéeutiorphase,
the SQL statements are executed against the relationlatatan-
coding. Depending on the original TriQL query, Trio stora@-p
cedures may be invoked and some post-processing may oagur. F
efficiency, most additional runtime processing is writtarC and
executes in the DBMS server via the Postd@&interface.

TriQL query results can either betored or transient Stored
query results are placed in a new persistent table, andjénesda-
tionships from the query’s result data to data in the quéngsit ta-
bles also is stored persistently. Transient query restdtaecessed
through the Trio API in a typical cursor-oriented fashiorthaan
additional method that can be invoked to explore the lineafge
each returned tuple. For transient queries, query resottegsing
and lineage creation occurs in response to cufsth calls, and
neither the result data nor its lineage are persistent.

TrioExplorer offers a rich interface for interacting with the Trio
system. It implements a Python-generated, multi-threadel
server usingCherryPy and it supports multiple users logged into
private and/or shared databases. It accepts Trio DDL and DML
commands and provides numerous features for browsing and ex
ploring schema, data, uncertainty, and lineage. It alsbleaan-
demand confidence computation, coexistence checks, arahext
ous data removal. Finally, it supports loading of scriptsnmand
recall, and other user conveniences. Figure 2 shows a sstapsh
of TrioExplorer’s schema visualizer including schemeeldineage
relationships among tables.

3. TRIO DATA

We briefly reviewULDBs (Uncertainty-Lineage Databasgsthe
data model forming the basis of the Trio system. More detaits
examples can be found in [2, 3]. ULDBs extend the standard SQL
relational model with four new constructs:
1. tuple alternatives representing uncertainty about the con-
tents of a tuple
2. maybe(“?”) annotations, representing uncertainty about the
presence of a tuple
3. numericalconfidencevalues, optionally attached to alterna-
tives and “?”
4. lineage connecting tuple alternatives to other alternatives
from which they were derived

270

[ID] Saw (witness, car) |
[51 [(Cathy, Honda): 0.6 [| (Cathy, Mazda): 0.4 |
[ID] Drives (person, car) |
61 | (Ji my, Mazda): 0.3 || (Freddy, Mazda): 0.7
62 (Billy, Honda): 0.8 ?
63 (Hank, Honda) : 1. 0
[ID | Suspects (person) | A7L,1) =(51,2) A (61, 1)
71 | Jimmy [| Freddy |7 X(71,2) =(51,2) A (61,2)
72 Billy ? A72,1)=(51,1) A (62,1)
73 Hank ? \73,1)=(51,1) A (63,1)

Tuples 51, 61, and 71 have twadternativeswhich are mutually
exclusive in our model. Tuple 62 and all thrBespect s tuples
havemaybe(“?”) annotations. The Booleai functions on the
derivedSuspect s table represent the lineage of individual alter-
natives. For example, Jimmy or Freddy may be a suspect, becau
one of them drives a Mazda and Cathy may have seen a Mazda
(alternatives (71,1) and (71,2) with lineag®l, 2) A (61,1) and
(51,2) A (61,2) respectively). If Cathy saw a Honda, then nei-
ther Jimmy nor Freddy is a suspect, captured by the “?” atioata
on tuple 71. Hank definitely drives a Honda, so he is a suspect i
Cathy saw a Honda (tuple 73 with lineagel, 1) A (63,1)), and
Billy may also be a suspect (tuple 72 with lineg@e, 1) A (62, 1)).

3.1 Confidence Values

Confidencesalues may optionally be attached to alternatives, as il-
lustrated in tableSawandDr i ves above. By default, ULDBs use
a probabilistic interpretation of confidence values, although alter-
nate user-specified interpretations are allowed (briefigutised in
Section 4). Using the sample confidence values on the basgnlat
the Suspect s join result aboveJi my, Freddy, Bi | | y, and
Hank have confidence values 0.12, 0.28, 0.48, and 0.6 respsctivel
Particularly noteworthy is the fact that confidence valuegoin
results (and other query results) can be computed basechon i
eage. For example, the lineage of tuple B I(l y) is the for-
mula(51,1) A (62, 1). Treating (51,1) and (62,1) as symbols with
probabilities 0.6 and 0.8 (the confidence values associattd
(Cat hy, Honda) and(Bi | | y, Honda)), the probability of the
formula, and therefore the confidence of susyBédt! y, is 0.48.

3.2 Disjunctive Lineage
Suppose we add a fourth tuple to tablel ves:

[64 | (Frank, Honda): 0.7 [| (Frank, Mazda): 0.3 |

yielding a newSuspect s tuple:

LApologies for incessant use of the same toy applicationitbitty

far the best vehicle we have found for compact, easily-ustded
examples of Trio features. The actual system demonstrates a
more complex movie-recommendation application.

In the TriQL query language (Section 4), the default is fasrihon-
tal duplicates” to be merged in query results, producingudigive
lineage. Thus, tuple 74 would actually contain a sirigl@nk al-
ternative (still with a “?”), and its lineage would be:

[74 [Frank [Frank |? X(74,1)=(51,1) A (64, 1)

In addition to modifying SQL semantics for ULDBs, TriQL adds
A(74,2) =(51,2) A (64,2)

a number of new constructs for querying and manipulating baot
certainty and lineage. A comprehensive specification fi@I's
query and update language appears in [5]. In the remaindéaisof
section we use examples to illustrate TriQL semantics and-fu
tionality, and how TriQL queries are rewritten automatiganhto
standard SQL over the relationally-encoded ULDB data.

((51,1) A (64,1)) Vv ((51,2) A (64,2))

We can still compute the confidence l&f ank based on lineage,
i.e., as the probability of the above formula. Notice thatehthe
variables in the lineage formula are not independent: }54ntl
(51,2) are mutually exclusive, and so are (64,1) and (64&8ing
mutual exclusion into account, the probability of the abfmrenula
is (0.6-0.7) + (0.4-0.3) = 0.54. In other words, the probability of

4.1 Basic Rewriting Scheme

Consider theSuspect s query shown above, first in its transient
form (i.e., withoutCREATE TABLE). The Trio Python layer trans-
lates the TriQL query into the following SQL query, send®ithie
underlying DBMS, and opens a cursor on the result:

Cathy seeing the same car Frank drives, and therefore Feang b sQL>
a suspect, is 0.54. SQL>

3.3 Encoding ULDB Data sQL>

We now describe how ULDB databases are encoded in regular re-SQ->
lational tables. Hereafter we usetupleto refer to a tuple in the
ULDB model, i.e., a tuple that may include alternatives,, “@id
confidence values, artdpleto denote a regular relational tuple.

fidences and lineage. We store the data portiofi @fs a conven-
tional table (which we will also refer to 88) with four additional
attributes:T'(ai d, xi d, conf, num Ay, ...
tive in the original ULDB table is stored as its own tuple€finand
the additional attributes function as follows:

SELECT Drives. person,
Saw. ai d, Drives. aid,
SQL> Saw. xi d, Drives.xid,
(Saw. num * Drives.nun) AS num
FROM Saw, Drives
WHERE Saw. car = Drives. car
SQ.> ORDER BY Saw. xid, Drives.xid

Let Tfetchdenote a cursor call to the Trio API for the original TriQL
query, and leSfetchdenote a cursor call to the underlying DBMS
for the translated SQL query. Each callitfetchmust return a com-
plete x-tuple, which may entail several callsSéetch Each tuple
returned fronSfetchon the SQL query corresponds to one alterna-
tive in the TriQL query result, and the set of alternativethvihe
same returne®aw. xi d andDr i ves. xi d pair comprise a sin-
gle result x-tuple. (The TriQL operational join semanticsgented
in [3] makes this property very clear.) Thus, ®fetch Trio col-
lects all SQL result tuples for a singigaw. xi d/Dri ves. xi d
pair (enabled by th€RDER BY clause in the SQL query), gen-
erates a newi d and newai d’s, and constructs and returns the
result x-tuple.

LetT(A4,...,Ay) be a ULDB table that may include both con-

, A,). Each alterna-

e ai dis a unique alternative identifier.
e Xi d identifies the x-tuple that this alternative belongs to.

e conf stores the confidence of the alternative,NiLL if
there are no confidence values or if this confidence value has
not yet been computed. (Each table either permits confidence

yalues on all alternatlyes or on none of them; thisle type Note that the underlying SQL query also returnsahel’s from
is part of the schema information.) Saw andDri ves. These values (together with the table names)
numefficiently tracks whether the alternative’s x-tuple has a comprise the lineage for the alternatives in the resultptetu As
“?". (Some details are given in Section 4.1.) mentioned earlier, theumfield is used to encode the presence or

The system always creates indexesadml andxi d. In addition, absence of “?% Finally, since result confidence values for joins
Trio users may create indexes on any of the original datéatérs
Ai1,..., A, using standardCREATE | NDEX commands that are
simply passed through Trio to the underlying DBMS.

The lineage information for each tableis stored in a separate
tablelin_T'(ai d, src_ai d, src_t abl e), indexed onai d and
src_ai d. Atuple (a1, az,T3) in lin_T denotes thaf's alterna-
tive a; has alternative., from tableT> in its lineage. Additional
flags (details omitted) encode whether multiple lineagatieh-
ships for alternatives are conjunctive or disjunctive.

4. TRIO QUERIES

TriQL [3, 5], Trio’s query language for ULDBS, is an extension of
SQL. TriQL queries return uncertain relations in the ULDBdeb
with lineage that connects query result data to the quesdgal d\s
mentioned in Section 2, a TriQL query result mayttansient of-
fering a cursor interface and a special method for retrgpliireage,

or the query result and its lineage may be stored in persisbles
according to the encoding scheme described in Section 33 A
first example, the join query from Section 3 with its resuiret in
tableSuspect s would be written in TriQL simply as:

Tri Q> CREATE TABLE Suspects AS

Tri Q> SELECT person

Tri Q> FROM Saw, Drives

Tri Q> WHERE Saw. car = Drives. car

271

Tri QL>
Tri Q>

are not computed until they are explicitly requested (seti@e5),
Tfetchinitially returnsNULL confidence for all alternatives, whether
or not the query result logically contains confidence values

For the stored@QREATE TABLE) version of the query, Trio first

issues DDL commands to create new tables for the query rasdilt
its lineage. Trio then executes the same SQL query showreabov
except instead of constructing and returning x-tuples d¢retiane,

the system directly inserts the new alternatives and thedabe
into the result and lineage tables, already in their encéaoled. All
processing occurs within an SPI stored procedure on théaksta
server, thus avoiding unnecessary roundtrips between \ttreiP
module and the underlying DBMS.

4.2 Duplicate Elimination

Like the “horizontal” merging of duplicate alternativesosim in
Section 3.2, TriQL queries can perform more conventionattiv
cal” duplicate elimination, which also results in disjuretlineage:

SELECT DI STI NCT car
FROM Dri ves

Considering the version d i ves without confidences, we get:

20ur scheme essentially maintains the invariant that amnalte
tive’s x-tuple has a “?” if and only if it;humfield exceeds the
x-tuple’s number of alternatives.

81 | Mazda | £(81,1)=(61,1) Vv (61,2)
82 | Honda | A(82,1)=(62,1) v (63,1)

In general, horizontal and/or vertical duplicate elimioatoc-

curs as the final step in a query that may also include filtering

joins, and other operations. Two related issues must beeasield:
(1) how the resulting disjunctive lineage is encoded, anc{®v

the TriQL queries are translated. In the currently suppbvegsion
of TriQL, all lineage generated by a query prior to duplicalieni-

nation is conjunctive. Thus, after duplicate eliminatitirg lineage
of each result alternative is a formula in disjunctive narfoem:

(@t A---Na))V(bi A~ Abj)V---V(c1 A+ Ack)

Trio encodes these DNF formulas by introducing dummy identi
fiers for each disjunct and storing flags to indicate whethsataf
lineage relationships is conjunctive or disjunctive. {Rar details
are omitted due to space constraints.)

Merging “horizontal” duplicates and creating the correstiog
disjunctive lineage can occur entirely within tiiéetchmethod (re-
call the basic rewriting scheme in Section 4.1): All alteres for
each result x-tuple, together with their lineage, alreaggdto be
collected withinTfetchbefore the x-tuple is returned. ThuEetch
can merge all duplicate alternatives and create the disyeniin-
eage for them, then return the modified x-tuple. If the query i
cludesUNMERGED, indicating that horizontal duplicate-elimination
should not occur, the extra steps are simply skipped.

SELECT DI STI NCT is more complicated, requiring two phases.
First, a translated SQL query is produced &3 iSTI NCT were not
present, except the result is ordered by the data attrithsesad

of xi d’s. One scan through this SQL result is required to merge

duplicates and create disjunctive lineage. This interatediesult
must then be reordered by d’s, in order to construct the correct
x-tuples in the final result. For our very simple example a)akie
following two SQL queries are generateBenp holds the tempo-
rary result after the first query is used to eliminate duptisaand
create disjunctive lineage.

sQL>
sQL>
sQL>

sQL>
sQL>

SELECT person, aid, xid,
FROM Dri ves

CORDER BY per son,

car, num

car

SELECT person, car, aid, xid, num

FROM Tenp
SQ.> ORDER BY xid

4.3 Aggregation

TriQL supports standard SQL grouping and aggregation. idens
the following query:

Tri Q> SELECT car, count(*)
Tri Q> FROM Drives GROUP BY car

The query result appears fairly straightforward for ounva@mple
example, although notice that tuple 91 is the result of nmgrgivo
duplicate alternatives.

(car, count)

| A(91,1)=(61,1) v (61,2)

91 (Mazda, 1) A(92,1) = (63,1)

92 | (Honda, 1) [[(Honda, 2) | X(92,2) =(62,1) A (63,1)

In general, aggregation can be an exponential operatior. DB3
(and in other data models for uncertainty). Thus, TriQL uais
built-in approximateaggregation functions, includirigw andhigh
bounds for the aggregate result, angectedalues that take con-
fidence into account. For example, the following query mesuex-
pected values for the number of occurrences of each typerdfica
Drives.

272

Tri Q>
Tri QL>

SELECT car, ecount(*)
FROM Dri ves GROUP BY car

The result on our exampler i ves table with confidence values is
(Mazda, 1. 0), (Honda, 1. 8).

TriQL supports 20 different aggregation functions: foursiens
(full, low, high, andexpectell for each of the five standard func-
tions (count min, max sum avg. (Distinct versions of the ag-
gregation functions currently are not supported.) All of thll
functions and some of the approximations unfortunatelynotbe
translated to SQL queries over the encoded data, and thusmare
plemented as algorithmic stored procedures. Furthernsexeral
of the low/high bounds and one of thexpectedvalues are them-
selves approximations to the tightest bound or value, secfind-
ing the exact answer based on possible-instances can leenekjr
expensive. (We expect the approximations to do well in fract
but details are far beyond the scope of this description. nyMat
the approximate functions can be implemented exactly aatbir
lated very easily. For example, for tleeount TriQL example
above, the SQL query over the encoded data is simply:

sQL>
sQL>
Note that with approximate aggregation, query results egelar

tables and not ULDB tables: they do not include alternafi@s
confidence values, or lineage.

4.4 Reorganizing Alternatives
TriQL has two constructs for reorganizing the alternativesquery
result:

e Flattenturns each alternative of a table into its own tuple.

e GroupAltsregroups alternatives into new x-tuples based on a
set of attributes.

As simple examples, and omitting lineage (which in both sase
a straightforward one-to-one mapping from result altéveatto
source alternatives) SELECT FLATTEN* FROMSaw’ gives us:

SELECT car, sun{conf)
FROM Dri ves GROUP BY car

[(witness, car) |
(Cat hy, Honda)
(Cat hy, Mazda)

and “SELECT GROUPALTS(car)* FROMDr i ves” gives us:

| (person, car) |

(Ji my, Mazda) || (Freddy, Mazda)
(Billy, Honda) || (Hank, Honda)

The translation scheme for queries wihattenis a simple modi-
fication to the basic scheme in which each result alternagiees-
signed its owrxi d. GroupAltsis also a straightforward modifica-
tion: Instead of the translated SQL query groupingxioyl’s from
the input tables to create result x-tuples, it groups by ttrébates
specified iNGROUPALTS.

4.5 Horizontal Subqueries

“Horizontal” subqueries in TriQL enable querying across dtter-
natives that comprise individual x-tuples. As a (meanisgjleon-
trived) example, we can select from taldaw all vehicles sighted
that are not Mazdas, but a Mazda sighting appears as andtirer a
native of the same x-tuple:

Tri Q> SELECT car

Tri QL> FROM Saw

Tri Q> WHERE car <> 'Mazda’

Tri Q> AND EXI STS [car = 'Mazda']

On our example data, this query would return just the firgralt-
tive, Honda, of tuple 51.

In general, enclosing a subquery[ih instead of() causes the
subquery to be evaluated over the “current” x-tuple, trepiis al-
ternatives as if they are a table. Syntactic shortcuts areiged
for common cases, such as simple filtering predicates agiaxh
ample above. Full details of horizontal subqueries and moose
examples can be found in [5].

Horizontal subqueries are very powerful, but surprisinghsy
to implement based on our data encoding. First, syntactidalts
are expanded. In our example abojear "Mazda'] is a
shortcut for] SELECT * FROM Saw WHERE car =" Mazda’].
Here,Sawwithin the horizontal subquery refers to tBawalterna-
tives in the current x-tuple being evaluated [5].) Secohd, tori-
zontal subquery is replaced with a standard SQL subqueradtiuks
aliases for inner tables and a condition correlatingl’s with the
outer query:

SQ.> ... AND EXI STS (SELECT * FROM Saw S
SQL> VWHERE car = ' Mazda’
SQL> AND S. xid = Saw. xi d)

S. xi d=Saw. xi d restricts the horizontal subquery to operate on
the data in the current x-tuple. Translation for the geneaak in-
volves a fair amount of context and bookkeeping to ensurpgsro
aliasing and ambiguity checks, but all horizontal submserire-
gardless of their complexity, have a direct translationegutar
SQL subqueries with additional d equality conditions.

4.6 Built-In Predicates and Functions

TriQL currently includes three built-in predicates and dtions:
Conf (), Maybe(), andLi neage() . FunctionConf () can be
used to filter query results based on the confidence of the dgia
(e.g.,Conf (Saw)) and the confidence of the resu@anf (*)).

For example, if we want to compute suspects only considering
sightings with confidence- 0.5 and only retaining results whose
confidence would be- 0.4, we add the following conjuncts to our
original join query:

Tri Q> AND Conf(Saw) > 0.5 AND Conf(*) > 0.4

Built-in predicateMaybe() takes no arguments and is true if and
only if the current x-tuple has a “?".

Built-in predicateLi neage() allows lineage to be traced as
part of a TriQL query. For example, we can ask for all witnesse
contributing to Hank being a suspect:

Tri Q.> SELECT Saw. wi t ness
Tri Q> FROM Suspects, Saw
Tri Q> WHERE Li neage(Suspects, Saw)
Tri Q> AND Suspects. person = ' Hank’

Li neage(X, Y) (which can also be written ax&=>Y") is true
wheneverY is reachable fronX by one or more lineage steps. That
is, it considers the transitive closure of the lineage fiomcA.

FunctionConf () is implemented as an SPI stored procedure.
If it has just one argumert, the procedure first examines the cur-
rent T. conf field to see if a value is present. If so, that value
is returned. If theT. conf is NULL, on-demand confidence com-
putation is invoked (see Section 5.2), and the resultindidence
value is stored permanently and returnegbnf (*) always ac-
tivates confidence computation, and includes the resuttorgi-
dence value in the query result (instead\blLL) as well as return-
ing it from the function. An “intermediate” version @nf () can
also be called, with multiple table arguments but not the“ftl;
details are omitted due to space constraints [5].

273

TheMaybe() andLi neage() predicates are incorporated into
the query translation phase (recall Section 2). Predidaybe()
is straightforward: It translates to a simple compariomleet the
numattribute and the number of alternatives in the currentptetu
(One subtlety is thalvhybe() returnst r ue even when a tuple’s
question mark is “extraneous”—that is, the tuple in factaferhas
an alternative present, due to its lineage. See Sectiorobaitrief
discussion.)

Predicateli neage(X, Y) is translated into one or more SQL
subqueries that check if the lineage relationship holdheBa-
level lineage information is used to determine the pos<ihlbée-
level “paths” fromX to Y. Each path produces a subquery that
joins lineage tables along that path, wKkandY at the endpoints.
Suppose for the sake of illustration that a taBen2 was derived
from Saw, and thenSuspect s was derived fromSaw2. Then
Li neage(Suspect s, Saw) would be translated as follows, re-
calling the lineage encoding described in Section 3.

SQ.> EXI STS (SELECT *

SQL> FROM | i n_Suspects L1, lin_Saw2 L2
SQL> WHERE Suspects.aid = L1.aid

SQL> AND L1.src_table = ' Saw2’

SQL> AND L1.src_aid = L2.aid

SQL> AND L2.src_table = ' Saw

SQL> AND L2.src_aid = Saw. aid)

4.7 Query-Defined Result Confidences

By default, confidence values on query results respect apiiid
tic interpretation, and they are computed by the systemesnashd.
(A “COVPUTE CONFI DENCES” clause can be added to a query
force confidence compuation as part of query execution.)oAlg
rithms for confidence computation are discussed in Sect@n 5

A query can override the default result confidence values by
assigning values in itSELECT clause to the reserved attribute
nameconf . Suppose in ouBuspect s join query we prefer re-
sult confidences to be the lesser of the two input confiderines,
stead of their (probabilistic) product. Assuming a builtfinction
| esser, we write:

Tri Q>
Tri QL>
Tri Q>
Tri QL>

SELECT person,

| esser (Conf (S), Conf (D)) AS conf
FROM Saw S, Drives D
WHERE S. car = D.car

Referring back to Section 3.1 to see the difference, downy,
Fr eddy, Bi | | y, andHank in the join result have confidence val-
ues 0.3, 0.4, 0.6, and 0.6 respectively.

Recall from Section 3.3 that our data encoding scheme adds a
columnconf to each underlying table to store confidence values.
Consequently, AS conf ” clauses simply pass through the query
translation phase unmodified.

5. ADDITIONAL TRIO FEATURES

TriQL queries and updates are the typical way of interactiity
Trio data, just as SQL is used in a standard relational DBM$vH
ever, uncertainty and lineage in ULDBSs introduce sevearést-
ing features beyond just query execution.

5.1 Lineage

As TriQL queries are executed and their results are stored, a
additional queries are posed over previous results, conlple
eage relationships can arise. As we have seen, data-laeelgk
is used for confidence computation abdneage() predicates;

it is also used for coexistence checks (Section 5.3) ancrmeir
ous data removal (Section 5.4). Trio also maintaissizema-level

lineage graphthat is used folLi neage() predicate translation its lineage includes the conjunction of data that cannokistie a

(Section 4.6) and for some confidence-computation optitioizs. “?" annotation is extraneous if its tuple is always preseittis
This graph can also be a useful tool for the user; it is degibte possible to check for extraneous alternatives and ?’s inatedy
TrioExplorer in Figure 2. after query execution (and, sometimes, as part of queryutixeg.
TrioExplorer supports data-level lineage tracing throsghcial However, like confidence computation and coexisistencekshe
buttons next to each displayed alternative. This featubeiiis on extraneous data detection may require tracing lineageetddse
a methodExpl ai nLi neage() in the Trio API: For any alter- data. Because we expect extraneous data and ?’s to be ellativ
native a, Expl ai nLi neage(a) returns a representation of the uncommon, and users may not be concerned about their pegsenc
boolean formula\(a), containing the alternatives ia's immedi- we have chosen to implement extraneous data removal asratepa

ate lineage. Lineage can be traced further by calirgl ai n-

Li neage() on the alternatives from the first-level result. An-
other method,BaselLi neage(a), returnsa’s lineage formula
traced and “unfolded” all the way to the base data—the resfult
aBaseLi neage() call is comprised of alternatives that have no
further lineage.

5.2 Confidence Computation

In the formalization of ULDBs [2], eaclpossible instancéas a
probability based on the confidences of the data in thatrestaln
query results, lineage ties the possible result instamct®etpossi-
ble instances of the queried data. Thus, using lineage, rescift
alternative has a confidence value that captures the fracfipos-
sible instances in which its lineage appears. This confielentue
is correctly computed by constructing an alternative’sdige for-
mula in terms of base data (i.e., the result ofBaselLi neage()
method described above) and then evaluating the prohabilthe
formula using the confidence values on the base alternd@Jes
Some simple examples were given in Section 3.

Thus, when confidence computation is invoked for an alterna-
tive a, the system effectively invokd3aselLi neage(a) and then
evaluates the probability of the resulting formula usingesdata
confidences. We have developed several improvements toetivis
approach:

e Whenever confidence values are computed, theyrameo-
izedfor future use.

e Itis not always necessary to traverse lineage all the wehygto t
base data. If non-base alternatives:is lineage are known

to be independent, and their confidences have already been

computed, there is no need to go further. Even when their

confidences have not been computed, the lineage formula can

be split, reducing overall complexity.

e We have developed algorithms foatchconfidence compu-
tation that are implemented through SQL queries. These al-
gorithms are appropriate and efficient when confidence val-
ues are desired for a significant portion of a result table.

5.3 Coexistence Checks

A user may wish to select a set of alternatives from one or reere
bles and ask whether those alternatives can all coexist.afiema-
tives from the same x-tuple clearly cannot coexist, but teegal
case must take into account arbitrarily complex lineagaticat-
ships as well as tuple alternatives. For example, if we askedit
alternatives (51,2) and (72,1) in our sample database,ydtera
would tell us these alternatives cannot coexist. Coexisteheck-
ing can be performed by generating base-lineage formulathéo
set of alternatives, augmenting them with formulas capturmu-
tual exclusion of tuple-alternatives, and then checkinig&ability.

5.4 Extraneous Data Removal

The natural execution of TriQL queries can genemtganeous
data atuple alternative is extraneous if it can never be choisen (

274

operation, roughly akin to garbage collection.

The astute reader may note that all of the features discussed
this section are interconnected. In fact they share codeeirsys-
tem, and they can share some of the optimizations discusseti
tion 5.2 as well. For example, we can determine if an altéreat
is extraneous by computing its confidence and checkingsifit0,
while conversely a “?” is extraneous if the confidence valiogs
its tuple sum to 1. Similarly, a set of alternatives can cseiff,
when treated as conjunctive lineage for a dummy alternatitiee
confidence ofi is > 0.

6. FUTURE DIRECTIONS

The Trio prototype is available online for anyone to expetin
with; please visit the project home page (seastiafiford trid’) for
alink. We are pursuing—or plan to pursue—a number of dioasti
of future work, including:

o Efficiently processing queries that either provide a comibae
threshold or ask for the top+esults by confidence.

e Extending the data model to includentinuous uncertainty
(e.g., intervals, Gaussians) aimtomplete relations

e Capturingor-sets[4] as a special-case of tuple alternatives
that can be handled more efficiently.

e Completing the translation-based implementation of ttie fu
TriQL language [5], including regular (“vertical”) subqies,
set operators, and data modification statements.

e Extending lineage to external relationships, and perhaps t
track updates and support versioning.

e Considering a less layered and more “native” approadio{
Two), for which we would develop specialized storage meth-
ods, indexes, statistics, and query optimization techtesqu
geared specifically to ULDB data and TriQL queries.

7. REFERENCES
[1] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth,

S. Nabar, T. Sugihara, and J. Widom. Trio: A system for data,
uncertainty, and lineage. Proc. of VLDB pages 1151-1154,
Seoul, Korea, September 20@emonstration description

[2] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineagePtoc. of
VLDB, pages 953-964, Seoul, Korea, September 2006.

[3] O.Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom.
An introduction to ULDBs and the Trio systenEE Data
Engineering Bulletin, Special Issue on Probabilistic
Databases29(1):5-16, March 2006.

[4] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. Rroc. of ICDE Atlanta,
Georgia, April 2006.

[5] TriQL: The Trio Query Language. Available from
http://infol ab.stanford. edu/trio.

[6] J. Widom. Trio: A system for integrated management ofgat
accuracy, and lineage. Proc. of CIDR Pacific Grove,
California, 2005.

