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Abstract

Background: A well characterized output of the circadian clock in plants is the daily rhythmic movement of leaves.

This process has been used extensively in Arabidopsis to estimate circadian period in natural accessions as well as

mutants with known defects in circadian clock function. Current methods for estimating circadian period by leaf

movement involve manual steps throughout the analysis and are often limited to analyzing one leaf or cotyledon at a

time.

Results: In this study, we describe the development of TRiP (Tracking Rhythms in Plants), a newmethod for estimating

circadian period using a motion estimation algorithm that can be applied to whole plant images. To validate this new

method, we apply TRiP to a Recombinant Inbred Line (RIL) population in Arabidopsis using our high-throughput

imaging platform. We begin imaging at the cotyledon stage and image through the emergence of true leaves.

TRiP successfully tracks the movement of cotyledons and leaves without the need to select individual leaves to be

analyzed.

Conclusions: TRiP is a program for analyzing leaf movement by motion estimation that enables high-throughput

analysis of large populations of plants. TRiP is also able to analyze plant species with diverse leaf morphologies.

We have used TRiP to estimate period for 150 Arabidopsis RILs as well as 5 diverse plant species, highlighting the

broad applicability of this new method.
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Background
The genomics era is transforming the way we form and

test biological questions. With the decreasing cost of Next

Generation Sequencing (NGS) technology the use of high-

throughput experimentation on large plant populations is

possible. This shift towards expanded genetic and pheno-

typic analysis has led to next generation mapping popula-

tions which include Nested Association Mapping (NAM)

populations [1] and Multiparent Advanced Generation

Inter-Cross (MAGIC) lines [2] for enhanced gene map-

ping and trait discovery. The availability of genome

sequencing and the advancements in de novo genome
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assembly have stimulated research in important crop

plants and the development of better model systems for

studying biofuel production, photosynthesis, abiotic stress

response and the impacts of climate change on yield

[3]. Many of the current techniques used for phenotyp-

ing are extremely labor intensive and often not feasible

for the study of large populations. New methods for

high-throughput phenotyping [4,5] are being developed

to catch up with the mass of NGS data that is being

generated.

It is well established thatanoutputofv thecircadianclock in

plants is the daily rhythmic movements of their leaves

[6]. This rhythmic movement can be used to estimate the

period of the internal clock. To determine the timing of

leaf movement, time-lapse photography is used to image

every 10-20 min over a window of 5-10 days under con-

stant light conditions. This generates large image series
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that are then analyzed for rhythmicity by tracking the

position of the cotyledons or leaves in each image. Several

methods have been developed to perform this analysis;

however, they all require user input at several steps dur-

ing the analysis [7-9]. For example, one commonly used

method relies on MetaMorph® software in combination

with the Biological Rhythms Analysis Software System

(BRASS), which analyzes individual cotyledon movement

and fits period, phase and amplitude data using a Fast

Fourier Transform Nonlinear Least Squares (FFT-NLLS)

method [8]. The input data for BRASS is generated in

MetaMorph®, or an equivalent image analysis software,

and this step is a major bottleneck to the analysis. In

MetaMorph®, the region tool is used to select the region

surrounding individual leaves. This region must be drawn

large enough to surround the leaf across the image stack

as it grows and moves over the course of the time series.

The coordinates of the leaf are then recorded across the

stack and exported to Excel for analyses with BRASS.

The need to process each plant individually makes the

analysis of a large population extremely labor inten-

sive and time consuming. Another drawback to using

a single cotyledon is that the movement of the cotyle-

don is dependent on active growth of the petiole and

once growth ceases the movement dampens dramatically

causing unreliable period detection [6]. A more auto-

mated method was used to analyze leaf movement on

Brassica oleracea seedlings; however it required glue-

ing polystyrene balls to each cotyledon blade in order to

track the movement in MetaMorph® [10,11]. To overcome

these constraints, we have developed a motion estimation

algorithm [12] called Tracking Rhythms in Plants (TRiP)

that tracks leaf movement of cotyledons and true leaves

simultaneously.

Results and discussion
Ground truth

To validate this new method we first simulated time series

data with a 3-D computer generated (CG)model of a plant

with a 24 h and 25 h period (Figure 1). This 3-D model

was animated with a time series based on the manually

estimated motion of an Arabidopsis Col-0 seedling. We

used TRiP to analyze these simulated video sequences,

and obtained 24 h and 25 h periods from the CG model

thereby validating the motion detection algorithm. To

further test the performance of the circadian period esti-

mation we created simulated traces with periods ranging

from 20 h to 28 h. For each period, we introduced 3 differ-

ent amplitude trends and 3 noise levels that approximate

the traces generated from leaf movement data (Figure 2A;

Table 1). TRiP accurately estimated the correct period for

all simulated traces at all noise levels (Figure 2B). The

amplitude trends did not have much of an effect on the

model output, which is consistent with previous analy-

sis of FFT-NLLS methods [13]. It should be noted that

the motion detection and circadian period estimation are

separate steps in the analysis. The motion detection out-

put can be used as input into other circadian period
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Figure 1 TRiP successfully detects leaf movement from CG plant model with known period. Images of growing Arabidopsis seedlings were

digitized and used to animate a time series of leaf movement. (A) A trough (T=12, subjective dusk) and (B) a peak image (T= 24, subjective dawn)

keyframe were each used to produce two animations that demonstrated plant leaf movement with defined circadian periods, which were assessed

using TRiP. (C) Visualization of motion field at T=24. (D) Traces of simulated leaf movement with periods of 24 h or 25 h measured with TRiP.



Greenham et al. Plant Methods  (2015) 11:33 Page 3 of 11

20 21 22 23 24 25 26 27 28

Known Period (h)

0

0.1

0.2

0.3

A
b

s
o

lu
te

 E
rr

o
r 

(h
)

Noise Level : A CB

0.4

00 .5

B

Amplitude : I IIIII

0.2

0.3

0.4

A
b

s
o

lu
te

 E
rr

o
r 

(h
)

C

20 21 22 23 24 25 26 27 28

Known Period (h)

0

0.1

Noise Level A Noise Level B Noise Level C

A
m

p
lit

u
d

e
 I

A
m

p
lit

u
d

e
 I

I
A

m
p

lit
u

d
e

 I
II

A

Figure 2 TRiP successfully estimates circadian period from simulated period data. (A) Examples of simulations generated for 3 amplitude trends

and 3 levels of noise (A = 0.2 amplitude, B = 0.6 amplitude, C = 1 amplitude) (B) Error surrounding TRiP period estimates for the 3 levels of noise.

(C) Error surrounding TRiP period estimates at the 3 amplitude trends with known period. Period and standard deviation data for all simulations can

be found in Table 1.
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Table 1 Period estimation using TRiP to analyze simulated data with different amplitude trends and noise levels

Known Amplitude 2 Noise level A 3 Noise level B 3 Noise level C 3

Period 1 Period Period Period

(h) (h; mean± sd) (h; mean± sd) (h; mean± sd)

20 I 20.00 ± 0.02 19.98 ± 0.06 19.99 ± 0.12

21 I 21.04 ± 0.07 21.07 ± 0.09 21.07 ± 0.12

22 I 22.08 ± 0.07 22.11 ± 0.09 22.10 ± 0.18

23 I 23.08 ± 0.07 23.09 ± 0.07 23.07 ± 0.18

24 I 23.99 ± 0.02 24.00 ± 0.04 24.06 ± 0.15

25 I 25.05 ± 0.06 25.05 ± 0.11 25.05 ± 0.26

26 I 26.09 ± 0.14 26.08 ± 0.24 25.98 ± 0.26

27 I 27.11 ± 0.12 27.20 ± 0.12 27.10 ± 0.34

28 I 28.13 ± 0.16 28.12 ± 0.22 28.14 ± 0.27

20 II 20.00 ± 0.03 20.00 ± 0.12 19.97 ± 0.10

21 II 21.06 ± 0.06 21.05 ± 0.09 21.06 ± 0.21

22 II 22.08 ± 0.09 22.10 ± 0.07 22.04 ± 0.14

23 II 23.08 ± 0.07 23.12 ± 0.12 23.05 ± 0.22

24 II 24.00 ± 0.04 23.98 ± 0.09 24.06 ± 0.19

25 II 25.07 ± 0.06 25.06 ± 0.13 25.07 ± 0.28

26 II 26.15 ± 0.11 26.07 ± 0.09 26.08 ± 0.27

27 II 27.16 ± 0.14 27.14 ± 0.14 26.99 ± 0.31

28 II 28.17 ± 0.15 28.19 ± 0.20 28.17 ± 0.31

20 III 20.00 ± 0.03 20.00 ± 0.07 20.06 ± 0.15

21 III 21.07 ± 0.05 21.08 ± 0.14 21.12 ± 0.20

22 III 22.09 ± 0.09 22.12 ± 0.09 22.02 ± 0.16

23 III 23.08 ± 0.08 23.04 ± 0.12 23.04 ± 0.18

24 III 24.00 ± 0.02 23.96 ± 0.12 24.08 ± 0.20

25 III 25.07 ± 0.05 25.08 ± 0.15 24.97 ± 0.19

26 III 26.18 ± 0.11 26.12 ± 0.19 26.22 ± 0.29

27 III 27.15 ± 0.14 27.18 ± 0.14 27.01 ± 0.17

28 III 28.18 ± 0.12 28.17 ± 0.17 28.16 ± 0.38

1A cosine of known frequency.
2Three levels of amplitude trends, defined as the rate at which the amplitude envelope of the signal decays, were applied: I = 0, II = 0.001, III = 0.002.
3Noise levels (A=0.2 amplitude, B=0.6 amplitude, C=1 amplitude).

The mean and standard deviation were calculated from 10 repeated simulations. Circadian periods plotted in Figure 2 were calculated using TRiP.

estimation algorithms provided on other platforms such

as BioDare [13,14].

We next wanted to test TRiP on live plant images using

growth conditions that have previously been used for the

leaf movement analysis in Arabidopsis. To test the abil-

ity of TRiP to detect period differences on agar grown

seedlings, we grew Col-0 and the long period mutant

prmt5-2 [15,16]. Seedlings were imaged for 5 days and

analyzed using TRiP; output traces are shown in Figure 3.

TRiP calculated a period of 24 h for wild type and 26

h for prmt5-2, consistent with published results using

the MetaMorph® and BRASS method described above

(Figure 3A). To test the ability of TRiP to analyze leaf

movement during emergence of true leaves we grew

Col-0, a collection of previously characterized circadian

clock mutants and the natural accession Jea on soil and

imaged seedlings for 5 days during which time true

leaves emerged. Leaf movement was successfully detected

and resulted in period estimates consistent with pub-

lished data (Figure 3B-C, Table 2). These results confirm

the functionality of this new method for the analysis of

leaf movement in Arabidopsis. An important advantage

to the motion estimation algorithm applied in TRiP is

that the cotyledon/leaf movement captured in the image

is processed to generate one waveform for each plant.

This method also alleviates common problems with leaf
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Figure 3 TRiP analysis of agar and soil grown Arabidopsis seedlings.

(A) TRiP motion traces for the long period mutant prmt5-2 and Col-0

grown on agar. (B) TRiP motion traces for the short period mutant

toc1-101 and Col-0 grown in soil (C) TRiP motion traces for Col-0 and

the Jea accession grown in soil. Relative vertical motion traces are an

average of 10 individual plants for prmt5-2 and Jea and 5 plants for

toc1-101. Shading indicates the standard deviation.

Table 2 Circadian period of leaf movement on Arabidopsis

clockmutants estimated using TRiP

Mutant N Period

(h; mean± sem)

Col-0 34 24.96 ± 0.15

cca1-1lhy-201 4 19.92 ± 0.20

toc1-1012 5 22.39 ± 0.21

prr5-13 4 23.09 ± 0.15

ztl-4fkf1-24 10 31.81 ± 0.87

prr5-1prr7-3prr9-15 8 arrhythmic

1Previously described in [17].
2Previously described in [18].
3Previously described in [19].
4Previously described in [20].
5Triple mutant generated using alleles described in [19].

Arrhythmicity is consistent with the triple mutant described in [21].

movement analyses such as overlapping leaves. Even as

true leaves emerge and interfere with the cotyledons the

movement is still captured.

Applying TRiP to an Arabidopsis RIL population

To apply our leaf movement system to a high-throughput

experiment, we analyzed a 150 line RIL population

derived from a cross between the Arabidopsis accessions

Col-0 and Jea [22]. The ability to image cotyledons and

true leaves reduces the complications around germina-

tion and growth rate differences within the population. As

leaves emerge, TRiP continues to capture the motion in

the entire frame. Our current imaging platform allows us

to image 1652 plants in one week (Additional file 1). To

estimate period in the RIL population we implemented a

randomized block design to account for camera and posi-

tion effects. The resulting mean period values (Additional

file 2) were used to map quantitative trait loci (QTL)

in this population using available SNP marker data [22].

We identified 3 putative and 2 suggestive QTL for cir-

cadian period, with one on each of the 5 chromosomes

(Figure 4, Table 3). QTL on the top of chromosome 5

have been identified for circadian period in other stud-

ies [19,23]. Candidate clock genes in this region include

PSEUDO-RESPONSE REGULATOR 7 (PRR7) [24] and

REVEILLE1 (RVE1) [25]. The QTL identified on chro-

mosome 2 includes EARLY FLOWERING3 (ELF3) [26]

that has been identified as a QTL for period in a Bay-0

x Shakdara RIL population [27]. Finally, the QTL on

chromosome 4 includes PROTEIN ARGININE METHYL-

TRANSFERASE 5 (PRMT5) [15,16]. We did not detect

any significant interactions between the identified QTL.

These results demonstrate the utility and sensitivity of

TRiP for assessing natural variation in the circadian clock

in large plant populations.



Greenham et al. Plant Methods  (2015) 11:33 Page 6 of 11

L
O

D
 S

c
o
re

Significance threshold (p < 0.01)

A B

P
e
ri
o
d
 (

h
)

23.5

23.7

23.9

24.1

24.3

Col-0Jea

1

2

3

Chromosome

Significance threshold (p < 0.05)

4

5

Chr1 Chr2 Chr3 Chr4 Chr5

Figure 4 Genetic mapping of circadian period in Col-0 x Jea RIL population. (A) QTL likelihood map was generated in R/qtl for each chromosome.

Horizontal dashed lines indicate significance levels. (B) Effects plot for the QTL above a significance threshold of 0.05. Colors correspond to the QTL

in panel A.

Applying TRiP to diverse plant species

An important goal while developing a newmethod for leaf

movement detection was to be able to apply this method

to a range of plant species with varying leaf morphology.

To test the versatility of TRiP on different plant species

we took a phylogenetic approach and selected flowering

plant species from diverse clades that included the model

species Arabidopsis as well as important crop species

including Brassica rapa and Soybean. We successfully

estimated circadian period from leaf movement data on

Brassica rapa, Arabidopsis thaliana,Glycine max, Cleome

violacea, Solanum lycopersicum, and Mimulus guttatus

(Figure 5; Table 4). Additional video sequences for each

species show the leaf movement with and without the

TRiP motion vectors (Additional files 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13 and 14). This highlights the broad appli-

cability of TRiP to model and non-model species and the

feasibility of analyzing large populations of plants in a rea-

sonable amount of time with few hands-on steps during

the analysis process.

Conclusions
The presence of circadian rhythms in plants was first doc-

umented in 1729 by the French astronomer Jean Jacques

Ortous de Mairan following his observations of the daily

leaf movements of the heliotrope plant (Mimosa) that

persisted in constant darkness [28]. This innate diurnal

periodicity was measured a century later by de Candolle

and others and found to be approximately 24 h in length

[29]. Darwin characterized and quantified these move-

ments extensively in the 1880s [30], paving the way for

the emergence of circadian biology. The development

of transgenic technologies and the use of fluorescent

reporter systems have increased the sensitivity and feasi-

bility of more elaborate circadian clock studies in plants,

in particular the model plant Arabidopsis [31,32]. How-

ever, with the advances in NGS technology and reduction

in cost, the field of molecular ecology is transforming. The

ability to sequence natural populations facilitates more

directed study for evolutionary and ecological questions

such as the genetic basis of local adaptation, specia-

tion, species composition and species interactions [33].

To complement these NGS studies, high-throughput phe-

notyping methods will need to be developed that can

be applied to these natural populations. Understanding

the genetic contributions to changes in flowering time in

response to photoperiod, temperature and precipitation

is critical towards expanding the geographical distribu-

tion of crops as well as their adaptability to the changing

environment [34,35]. The circadian clock is an impor-

tant integrator of environmental cues that coordinates the

physiological response of the plant through a complex

genetic network [36]. The ability to asses circadian clock

function and variation in these natural populations will

Table 3 Summary of circadian period QTL detected in Jea x Col-0 RIL population

QTL CHR LOD INT/POS1 ADD2 VAR3 Candidate Genes

Jea 2 2.33 13.80-33.50 (24) 0.43 7.11 ELF3, CCR2, XCT, FIO1, LIP1, PHYB, LKP2

Jea 4 3.01 51.80-60.40 (59) 0.51 5.61 PRMT5, bHLH69

Jea 5 4.68 0.00-4.50 (0) 0.56 9.34 PRR7, RVE1

1INT/POS: 1-LOD QTL interval with peak position, cM.
2ADD: Additive effects of the QTL, hours.
3VAR: Percent of the variation explained.
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Figure 5 TRiP can be applied to a wide range of plant species with varying leaf morphologies. (From top to bottom: Brassica rapa, Arabidopsis

thaliana, Cleome violacea, Glycinemax,Mimulus guttatus, and Solanum lycopersicum. Plants were imaged every 20 minutes for 5 days under constant

light and temperature at 20°C except Glycinemax, which was imaged at 25°C. For each species, the relative vertical motion traces are an average of 8

individual plants (except Solanum lycopersicum, where n = 5) analyzed over 5 days. Shading indicates the standard deviation. White and gray bars

below each trace indicate subjective day and subjective night, respectively, defined by the entraining photocycle. The phylogenetic relationships

among the species are indicated at the right.
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Table 4 Circadian period of cotyledon or leaf movement

across diverse plant species

Species N Period

(h; mean± sd)

Brassica rapa 8 23.58 ± 0.76

Arabidopsis thaliana 8 22.51 ± 0.54

Cleome violacea 8 25.67 ± 0.94

Glycinemax 8 24.61 ± 0.25

Mimulus guttatus 8 25.02 ± 0.47

Solanum lycopersicum 5 25.76 ± 0.64

TRiP was used to estimate circadian period for the six plant species shown in

Figure 3.

lead to significant advances in our understanding of the

interactions between the circadian clock and plant fitness.

The automated nature of TRiP, as well as its utility on non-

model organisms as demonstrated in this study, makes it

an excellent platform for addressing these questions.

Material andmethods
TRiP program

TRiP is a Matlab-based program. The source code can

be run on the open source Octave software with slight

modifications outlined in the readme file provided with

the TRiP package. The TRiP code has been provided as

a supplemental file (Additional file 15) and can also be

found on GitHub (http://github.com/KTgreenham/TRiP).

The first step of the TRiP analysis is generating indi-

vidually cropped images of each plant. We have applied

a grid-based cropping function that takes each camera

image stack as input and crops the images using the grid

coordinates given and outputs the cropped image files in

a separate directory. We generate the grid coordinates in

Matlab of each box drawn around the plant. It is impor-

tant that the cells are drawn based on the first and last

image of the time series to ensure that the entire plant is

captured in the crop. Additional notes regarding the grid

coordinates can be found in the readme file. Once the

grid has been designed, all subsequent experiments can

use the same crop function and requires no manual image

processing.

Motion estimation

Within the Computer Vision and Image Processing

communities, differential motion estimation has proven

highly effective at computing fine-grained and large-scale

motion in video sequences [12,37,38]. We describe one

such standard motion estimation algorithm.

To begin, the motion between two sequential frames,

f (x, y, t) and f (x, y, t − 1) is modeled with a simple 2-D

translation motion vector at each pixel location:

f (x, y, t) = f (x + vx, y + vy, t − 1), (1)

where vx and vy are the horizontal and vertical motions.

That is, the image (or an image patch) is assumed to trans-

late uniformly between times t and t − 1. In order to

estimate the motion, we define the following quadratic

error function to be minimized:

E(vx, vy) =
∑

x,y∈�

[ f (x, y, t) − f (x + vx, y + vy, t − 1)]2 , (2)

where � denotes a user specified region of interest (ROI)

in the image over which themotion is estimated.Minimiz-

ing this error function can be difficult and computation-

ally demanding because it is non-linear in the unknown

motion parameters. The minimization can be simplified

by approximating the error function using a first-order

truncated Taylor series expansion:

E(vx, vy) ≈
∑

x,y∈�

[ f − (f + vx fx + vyfy − ft)]
2

≈
∑

x,y∈�

[ ft − vx fx − vy fy]
2

≈
∑

x,y∈�

[

ft −
(

fx fy
)

(

vx

vy

)]2

≈
∑

x,y∈�

[

ft − �fs
T
�v
]2

, (3)

where, fx, fy, and ft are the spatial and temporal image

derivatives and where, for notational convenience, the

spatial/temporal parameters on f and its derivatives are

dropped.

This quadratic error function is now linear in the

motion parameters �v and can therefore be minimized

analytically by differentiating with respect to �v:

dE

d�v
=

∑

x,y∈�

−2�fs

[

ft − �fs
T
�v
]

, (4)

seeting the result equal to zero and solving for �v:

dE

d�v
= 0

∑

x,y∈�

−2�fs

[

ft − �fs
T
�v
]

= 0

∑

x,y∈�

−2�fsft −
∑

x,y∈�

−2�fs�fs
T
�v = 0

∑

x,y∈�

�fs�fs
T
�v =

∑

x,y∈�

�fsft

�v =

⎡

⎣

∑

x,y∈�

�fs�fs
T

⎤

⎦

−1
∑

x,y∈�

�fsft

�v = M−1�b. (5)

http://github.com/KTgreenham/TRiP
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This solution assumes that the 2× 2 matrixM is invert-

ible. This can usually be guaranteed by integrating over a

large enough ROI � with sufficient image content.

Given a pair of frames f (x, y, t) and f (x, y, t − 1), the

spatial and temporal derivatives are numerically approxi-

mated as follows:

fx(x, y, t) = (0.5f (x, y, t) + 0.5f (x, y, t − 1)) ⋆ d(x) ⋆ p(y)

fy(x, y, t) = (0.5f (x, y, t) + 0.5f (x, y, t − 1)) ⋆ p(x) ⋆ d(y)

ft(x, y, t) = (0.5f (x, y, t) − 0.5f (x, y, t − 1)) ⋆ p(x) ⋆ p(y),

(6)

where ⋆ denotes the convolution operator and d and p are

1-D separable filters:

d(x) = (0.5 − 0.5) and p(x) = (0.5 0.5), (7)

and where d(y) and p(y) are the same filters oriented

vertically instead of horizontally.

Circadian period estimation

The circadian period is estimated using a two-step pro-

cess. Denote the plant’s vertical leaf motion over time as

vy(t). In the first step, this time series is detrended to

remove any linear trend. The Fourier transform of vy(t)

is then computed and the circadian period τ0 is taken to

be the frequency with the maximal amplitude. In the sec-

ond step, an iterative Nelder-Mead optimization is used to

refine this estimate by searching for the frequency, phase

and amplitude that best, in the root mean square sense,

fits the motion data vy(t). This simple approach is similar

to employing FFT-NLLS with only a single frequency. We

have found that because the motion estimation is fairly

accurate, a model based on only a single frequency suffices

to extract accurate estimates of circadian period.

3-D Computer generated plant model

A 3-D computer generated (CG) model of a plant with a

realistic and precisely known motion was used to validate

TRiP. Top, front and side views of an Arabidopsis Col-0

seedling were taken every 10 minutes over a 5 day period

under constant light conditions and 20°C. This time series

was used to build and animate a 3-D CG plant model

(Figure 1). The modeling, texturing, and animation were

done in Autodesk Maya®. To verify the motion estimation

algorithm of TRiP with known motion we used the first

day of the 3-DCGmodel to generate simulated traces with

a period of 24 h and 25 h. The resulting rendered video

sequence could then be supplied to TRiP for validation

of the motion estimation and circadian period estimation.

We have also provided the raw images that were selected

as key frames across the 5 day imaging along with movie

files for the 24 h and 25 h simulations and the full 5 day

model (Additional files 16, 17, 18, 19, 20, 21, 22, 23).

Camera and imaging set up

Our imaging system uses 14 cameras, both Canon Power-

Shot ELPH 300s and A2300 IS models, employing the

CHDK (Canon Hacker Development Kit) software to set

interval shooting to take a picture every 20 min. The

CHDK software is installed on 4GB SIM cards that have

been formatted to FAT32. The Ultimate Intervalometer

script is used to run the time interval shooting. Details

of the CHDK installation and use can be found on the

CHDK wiki. A 4GB memory card can hold images from

3-4 weeks of 20 min interval shooting depending on the

camera and image resolution. There are othermethods for

setting interval shooting on other camera platforms that

have been described in previous studies [7,8,39]. Any of

these camera systems can be used to generate the images;

the new method described in this study was designed for

any sequence of jpeg-formatted images. The cameras were

mounted with a fixed focus and minimum per plant pixel

count of 10,000 (100 × 100 pixels). Plants are placed

in front of a black background for contrast. For all plant

species tested except Glycine max, we built a step shaped

structure to maximize the number of plants in one image

frame. Each wood frame (L 18 cm × W 12 cm × H 6 cm)

supports 6 shelves made of steel hollow sections cut in

half lengthwise (L 24 cm × W 1.75 cm × H 0.75 cm). The

edges were filed down and covered with electrical tape.

Pieces of Plexiglass were glued to the ends using Aquar-

ium safe silicone. The plants are placed in the stands with

the tips of the cotyledons or true leaves pointing to either

side, the first row holds 18 plants and the remaining rows

have 20 for a total of 118 plants/camera (Additional file 1).

Larger plants cannot be imaged on every shelf so we limit

the imaging to 3 rows of 20 plants for each camera. The

plants were watered daily to maintain soil saturation and

prevent wilting or movement from soil swelling. To image

Glycine max, we placed 10 plants in a plexiglass stand (L

45 cm × W 2.75 cm × H 2.5 cm) with 800 mL of water

at the start of imaging and watered every day. Imaging for

all plants began 24 h following transfer to constant light

conditions.

QTLmapping and analysis

A total of 150 lines in the Col-0 x Jea population were

assayed for leaf movement and circadian period estima-

tion using TRiP. Model fit traces that gave period values

above 32 h and below 18 h were removed. Standard

error of the mean (SEM) was calculated for each line

and lines with an SEM above 0.50 (corresponding to 30

min) were removed from the analysis (Additional file 2).

Mean period values were used for QTL mapping. The

markers and construction of the genetic map were previ-

ously described [22]. Composite interval mapping (CIM)

was performed with R/qtl [40] using 3 marker covari-

ates and a window size of 20 cM to detect QTL. LOD
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threshold was calculated based on the averaged LOD fol-

lowing 1000 permutations. A two dimensional genome

scan was performed using the “scantwo” function in R/qtl

to test for QTL interactions. No significant interactions

were detected.

Plant growth conditions

All plants were grown in Sunshine Redi-earth under

∼90μmol s−
1
m−2

light unless otherwise stated. All plant

species described except Glycine max were grown in 0.5"

pvc coupling purchased from Home Depot. The pots/pvc

couplings were filled with damp soil wet with water. A

day after transferring plants to the imaging chamber they

were watered once with a 20-20-20 fertilizer. Plants were

watered daily to prevent any movement due to water loss

or uptake. Soil saturation must be maintained throughout

the imaging.

Arabidopsis thaliana

Arabidopsis seeds were stratified in H2O for 3 days at 4°C

in the dark. Seeds were germinated in soil and put in a

12 h light : 12 h dark (12L:12D) entrainment chamber at

20°C for 7 days. On day 4 of entrainment the lights were

turned off 4 h after dawn for 20 h to promote hypocotyl

elongation and then returned to 12L:12D for 2 additional

days. Following entrainment, seedlings were transferred

to 24 h constant light (LL) and temperature (HH) for

imaging.

Brassica rapa

Dry seeds were sown directly on soil. Plants were

entrained for 7 days in a growth chamber at 20°C under

12L:12D conditions and high light (∼350 μmol s−
1
m−2

)

to limit hypocotyl elongation. Once cotyledons had

expanded (7 days), plants were transferred to LLHH

conditions for imaging.

Cleome violacea

Dry seeds were sown directly onto damp soil and

entrained to 12L:12D at 20°C until true leaves emerged.

Plants were imaged in LLHH at 20°C for 5 days.

Solanum lycopersicum

Dry seeds were sown directly onto damp soil and

entrained to 12L:12D at 20°C for 7 days under low light.

Cotyledons were imaged in LLHH at 20°C for 5 days.

Glycinemax

Dry seeds were sown directly onto damp soil in 2.25"

square pots and put in a growth chamber at 12L:12D with

a daytime temperature of 25°C and night time temper-

ature of 18°C. Following emergence of the first trifoliate

leaves, plants were transferred to LLHH at 25°C for

imaging.

Mimulus guttatus

Seeds were stratified in the dark at 4°C in water for 1

week. Seeds were planted in soil and germinated in the

entrainment chamber at 12L:12D with a daytime temper-

ature of 20°C and night time temperature of 16°C. We

observed more robust leaf movement from true leaves.

Plants were moved into the imaging room at the emer-

gence of the first set of true leaves and imaged in LLHH at

20°C.

Additional files

Additional file 1: Figure S1. Leaf movement camera setup. (A) Image

from one camera with 118 Arabidopsis seedlings. (B) Image of the full

camera setup showing the step-shaped platform designed to hold 20

seedlings per row.

Additional file 2: Table S1. Data file with the mean period values for

each line in the Jea x Col-0 RIL population, the lines highlighted in grey

were removed due to SEM values above 0.50.

Additional file 3: Movie S1. Brassica rapa seedling imaged every 20 min

over 5 days.

Additional file 4: Movie S2. Brassica rapa seedling imaged every 20 min

over 5 days. Red arrows represent the TRiP motion vectors.

Additional file 5: Movie S3. Arabidopsis thaliana seedling imaged every

20 min over 5 days.

Additional file 6: Movie S4. Arabidopsis thaliana seedling imaged every

20 min over 5 days. Red arrows represent the TRiP motion vectors.

Additional file 7: Movie S5. Cleome violacea seedling imaged every 20

min over 5 days.

Additional file 8: Movie S6. Cleome violacea seedling imaged every 20

min over 5 days. Red arrows represent the TRiP motion vectors.

Additional file 9: Movie S7. Glycinemax seedling imaged every 20 min

over 5 days.

Additional file 10: Movie S8. Glycinemax seedling imaged every 20 min

over 5 days. Red arrows represent the TRiP motion vectors.

Additional file 11: Movie S9.Mimulus guttatus seedling imaged every 20

min over 5 days.

Additional file 12: Movie S10.Mimulus guttatus seedling imaged every

20 min over 5 days. Red arrows represent the TRiP motion vectors.

Additional file 13: Movie S11. Solanum lycopersicum seedling imaged

every 20 min over 5 days.

Additional file 14: Movie S12. Solanum lycopersicum seedling imaged

every 20 min over 5 days. Red arrows represent the TRiP motion vectors.

Additional file 15: TRiP. Compressed folder containing the TRiP code

including a ReadMe file and sample image data.

Additional file 16: Movie S13. CG plant model simulating a 24 h period.

Additional file 17: Movie S14. CG plant model simulating a 25 h period.

Additional file 18: Movie S15. CG plant model over 5 day time course.

Additional file 19: Col-0 Side View Images for 3-D Model. Images of

Col-0 captured every 10 min for 5 days from the side view for the 3-D CG

model. Table S2 lists the images used as key frames in the model.

Additional file 20: Col-0 Front View Images for 3-D Model. Images of

Col-0 captured every 10 min for 5 days from the front view for the 3-D CG

model. Table S2 lists the images used as key frames in the model.

Additional file 21: Col-0 Top View Images for 3-D Model. First half of

images of Col-0 captured every 10 min for 5 days from the top view for the

3-D CG model. Table S2 lists the images used as key frames in the model.

Additional file 22: Col-0 Top View Images for 3-DModel. Second half of

images of Col-0 captured every 10 min for 5 days from the top view for the

3-D CG model. Table S2 lists the images used as key frames in the model.
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http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s1.pdf
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s2.xlsx
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http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s3.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s4.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s5.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s6.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s7.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s8.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s9.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s10.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s11.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s12.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s13.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s14.mp4
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s15.zip
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s16.mov
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s17.mov
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s18.mov
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s19.zip
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s20.zip
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s21.zip
http://www.plantmethods.com/content/supplementary/s13007-015-0075-5-s22.zip
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Additional file 23: Table S2. List of the images used as key frames for the

3-D CG model animation.
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