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Abstract: A method of tripling for a three-level design, which triples both the run size and the number
of factors of the initial design, has been proposed for constructing a design that can accommodate a
large number of factors by combining all possible level permutations of its initial design. Based on
the link between the indicator functions of a triple design and its initial design, the close relation-
ships between a triple design and its initial design are built from properties such as resolution and
orthogonality. These theoretical results present a closer look at a triple design and provide a solid
foundation for a design constructed using the tripling method, where the constructed designs have
better properties, such as high resolution and orthogonality, and are recommended for application in
high dimension topics of statistics or large-scale experiments.
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1. Introduction

Fractional factorial designs are among the most popular experimental designs in
various fields. The minimum aberration criterion [1] and its extension, the generalized
minimum aberration criterion [2,3] are commonly used for comparing fractional factorials.

If the goal is to conduct a sensitivity analysis between inputs and outputs, computer
experiments are commonly used, especially if the input-output relation of experiments
is likely to have some curvature. With the rapid increase in computational power, more
and more large fractional factorial designs are used in large-scale computer experiments
in practice. For example, researchers at Johns Hopkins University initially employed a
design with 512 runs followed by 352 additional runs to resolve the aliasing of two-factor
interactions in a ballistic missile defense project [4]. The second scenario was explored
using a resolution V design with 4096 runs obtained using SAS’s PROC FACTEX. Another
example is reported in [5] that designs with over 600 runs, and as many as 53 parameters
were used in computer simulations at Los Alamos National Laboratory. Bettonvil and
Kleijnen [6] discussed a case study on the CO2 greenhouse effect using a deterministic
simulation model with 281 factors [7]. Kleijnen et al. [8] applied sequential bifurcation to a
practical discrete event simulation of a supply chain centered around the Ericsson company
in Sweden, involving 92 factors. Motivated by practical applications, the construction
method for designs with a large size (a large number of runs and/or a large number
of factors while keeping the run size relatively small) is urgently needed, and it is an
important issue. In particular, the construction of large-size designs from small designs
has attracted more and more attention. For two-level designs, doubling plays an important
role in the construction of two-level designs of resolution IV [9]. Given a two-level regular
fractional factorial design of resolution IV, the method of doubling produces another design
of resolution IV which doubles both the run size and the number of factors of the initial
design. One can refer to [10–13] for more details about doubling.

When both the factorial main effects and some quadratic effects need to be detected, it
is very necessary to apply multi-level designs for that purpose. Since three-level designs
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are the most commonly used designs with factor levels higher than two, the three-level
fractional factorials constructed in this paper provide an alternative for this demand in
practical applications, such as elemental factorial analysis of nanostructure congeners,
capturing curvature or active pure-quadratic effects of quality control, and so on. For
designs with more than two levels, based on the level permutation method [14–19], the
doubling process of two-level designs has been naturally extended to three-level designs.
A method of tripling for three-level designs, which triples both the run size and the number
of factors of the initial three-level design, is proposed by combining all possible level
permutations of its initial design in Ou et al. [20] and Li and Qin [21], respectively.

In this paper, we aim to explore the additional properties of triple designs using
indicator functions, which provide a closer look at triple designs. The indicator function
has been adopted by Fontana et al. [22] to study the two-level factorial designs. It allows
us to discuss not only the regular factorial designs but also non-regular factorial designs.
The indicator function has become a powerful tool for studying general two-level facto-
rial designs; see, for example [12,23–32]. Furthermore, Cheng and Ye [14], Pistone and
Rogantin [33,34], and Pang and Liu [35] established that general fractional factorial designs,
three or higher levels or multilevel, can also be represented with indicator functions.

The contribution of this paper is twofold. First, the closer relationship between a
triple design and its initial design is built with indicator functions. It is shown that the
indicator function of a triple design is decided uniquely by one of its initial designs.
The internal structure of a triple design is explored from the word characteristic of its
indicator function, and a new look of triple designs is provided. Second, the properties
of a triple design and its projections, such as resolution and orthogonality, are studied
by the expression of the indicator function. Given a three-level fractional factorial design
of resolution III (IV), we show that its triple design is a design of resolution III, and the
projections of a triple design also is a design of resolution III (IV). These theoretical results
provide a solid foundation for the tripling construction method for a design with a large
size, in which the constructed designs have better properties, such as high resolution and
orthogonality, and are recommended for use in practice. The triple designs discussed in this
paper are competitive in large-scale computer experiments, such as aerospace, quantum
communication, intelligent manufacturing, and so on.

The paper is organized as follows. In Section 2, some notations and preliminaries are
included. In Section 3, the indicator function of a triple design is expressed based on the
indicator function of its initial design, and the section provides a closer look at the internal
structure of a triple design by its indicator function. In Section 4, the close relationships
between a triple design and its initial design are built from properties such as resolution
and orthogonality. Finally, some conclusions are given in Section 5. For clarity, we have
placed all the proofs in Appendix A.

2. Notations and Preliminaries

Let D be a 3s full factorial design [36] with s three-level factors, where the three levels
of each factor are w0 = 1, w1 = ei 2π

3 , and w2 = ei 4π
3 , i.e., evenly spaced solutions of z3 = 1

on the unit circle in the complex plane C. Accordingly, the design points of D are just the
solutions of the polynomial system {x3

1 = 1, . . . , x3
s = 1} on Cs. Under this level coding

strategy, the polynomial representation of the indicator function benefits from its cube-free
property. An n-run unreplicated three-level fractional factorial design F is regarded as a
subset of D, each row of F corresponds to a run and each column of F to an experimental
factor in the design. Let U (n; 3s) be the set of U-type designs with n runs and s three-level
factors. A design F in U (n; 3s) can be presented as an n × s matrix with entries 0, 1, 2
(or equivalently with entries w0, w1, w2), where each entry appears equally often in each
column of F . If all the possible 3t level combinations corresponding to any t columns of
design F appear equally often, design F is called an orthogonal array [37] of strength t
and denoted by OA(n; 3s, t).
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The indicator function fF (x) of design F ∈ U (n; 3s), due to [22,26], is defined as a
function on 3s full factorial design D such that

fF (x) =

{
1, if x ∈ F ,
0, if x ∈ D −F .

Under the constraint x3
i = 1, i = 1, . . . , s, the indicator function fF (x) of design F can be

uniquely cube-free represented by the complex polynomial function defined on D as

fF (x) = ∑
α∈L

bαxα, (1)

where L is the set of all s tuples α, that is, L = {α = (α1, . . . , αs)|αi = 0, 1, 2, for i = 1, . . . , s},
xα = xα1

1 · · · x
αs
s and

bα =
1
3s ∑

x∈F
xα, (2)

where xα is the conjugate of xα. Therefore, an indicator function of design F has the unique
cube-free polynomial representation on D.

The coefficients bα of fF (x) reflect some basic information of design F . In particular,
b0 = n/3s, where n is the run size of F . In other words, b0 is just the ratio between the
number of points of F and the number of points of D. The coefficients bα of fF (x) satisfy
|bα/b0| ≤ 1. A design is a regular design if and only if |bα/b0| = 1 for any bα 6= 0. A word
of the design F is defined as the term with a non-zero coefficient (except the constant) in
the indicator function fF (x) of design F . Following Li et al. [24] for two-level designs,
the length of a word xα is defined as ‖x‖ = |α|+ (1− |bα/b0|), where |α| represents the
number of letters in the word xα, i.e., the number of nonzero elements in α. The length of
the shortest word of fF (x) is called the generalized resolution of design F .

The definition of an indicator function follows immediately from the following lemma.
The proof of the lemma is straightforward and is omitted here.

Lemma 1. Let fA and fB be indicator functions of two disjoint designs A and B, respectively. The
indicator function of design A∪ B is then fA∪B = fA + fB .

Following Cheng and Ye [14], the generalized word-length pattern and generalized
minimum aberration criterion of three-level design F are defined as follows.

Definition 1. Let F be an n runs s three-level factors fractional factorial design, fF (x) =

∑α∈L bαxα is its indicator function. The generalized word-length pattern of F is defined as

Ai(F ) = ∑
|α|=i

∥∥∥∥ bα

b0

∥∥∥∥2
, i = 1, . . . , s, (3)

where ‖·‖ is the complex module. The generalized minimum aberration criterion is to sequentially
minimize Ai(F ) for i = 1, . . . , s. The resolution of F equals the smallest t such that At(F ) > 0.

Remark 1. The definition of the generalized word-length pattern of F in Definition 1 is equivalent
to the definition in Xu and Wu [3].

Example 1. Consider a 35−2 regular three-level design F with defining relations I = ABD2 =
AB2CE2, where A, B, C, D, E (or x1, . . . , x5) are the facotor labels of design F . Accordingly, the
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definition contrast subgroup of F is I = ABD2 = AB2CE2 = AC2DE = BCDE2. The indicator
function of F is

fF (x) =
1
9

(
1 + x1x2x2

4 + x2
1x2

2x4 + x1x2
2x3x2

5 + x2
1x2x2

3x5 + x1x2
3x4x5 + x2

1x3x2
4x2

5

+x2x3x4x2
5 + x2

2x2
3x2

4x5

)
.

From the expression of fF (x) given above, one can easily find that design F is a regular design
since |bα/b0| = 1 for any bα 6= 0. Moreover, following Definition 1, the generalized word-length
pattern of F is (0, 0, 2, 6).

Suppose F is a three-level design with n runs s three-level factors, then there are six
kinds of level permutations of F , which are listed in Table 1.

Table 1. All possible level permutations of design F .

Permutation No. Initial Design Permutation Method Image

1 F (w0, w1, w2) 7→ (w0, w1, w2) F
2 F (w0, w1, w2) 7→ (w0, w2, w1) F(1)
3 F (w0, w1, w2) 7→ (w2, w1, w0) F(2)
4 F (w0, w1, w2) 7→ (w1, w0, w2) F(3)
5 F (w0, w1, w2) 7→ (w2, w0, w1) F(4)
6 F (w0, w1, w2) 7→ (w1, w2, w0) F(5)

Ou et al. [20] and Li and Qin [21] proposed a new concept named the tripling of
three-level design F based on all of the possible level permutations of F shown in Table 1,
which is defined below.

Definition 2 (Ou et al. [20]). Suppose F is a three-level design with n runs s three-level factors,
F(i), i = 1, . . . , 5 are the level permutations of F as listed in Table 1. The 3n× 3s matrix

T(F ) =

 F F F(1)
F F(4) F(2)
F F(5) F(3)


is defined as triple design of F .

3. Indicator Function of Triple Design

In this section, we aim to explore the link between a triple design T(F ) and its initial
design F by using the tool of the indictor function, which provides a closer look at triple
design T(F ).

DenoteA1 =

 FF
F

,A2 =

 FF(4)
F(5)

 andA3 =

 F(1)
F(2)
F(3)

 as the column blocks of

T(F ), and B1 = (F ,F ,F(1)), B2 = (F ,F(4),F(2)) B3 = (F ,F(5),F(3)) as the row blocks
of T(F ). Based on the polynomial form of the indicator function of a fractional factorial
design in (1), the indicator functions of F(i) can be written as

fF(i) (x) = ∑
α∈L

b(i)α xα
(i), i = 1, . . . , 5, (4)

where x(i) is the corresponding run in F(i) for given x ∈ F .
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Define L3s = {β = (β1, β2, . . . , β3s)|βi = 0, 1, 2, for i = 1, . . . , 3s}. Similarly, the
indicator function of T(F ) can be written as

fT(F )(z) = ∑
β∈L3s

cβzβ, (5)

where zβ = zβ1
1 zβ2

2 · · · z
β3s
3s for z = (z1, z2, . . . , z3s) ∈ T(F ), and the indicator functions of Bi

can be written as

fBi
(z) = ∑

β∈L3s

c(i)β zβ, i = 1, 2, 3. (6)

For any u = (u1, . . . , us) ∈ L and v = (v1, . . . , vs) ∈ L, define

u⊕ v = (u1, . . . , us, v1, . . . , vs).

For any β ∈ L3s, there exists u, v, y ∈ L such that β = u⊕ v⊕ y. Accordingly, the indicator
functions of Bi in (6) can be rewritten as

fBi
(z) = ∑

u,v,y∈L
c(i)u⊕v⊕yzu⊕v⊕y, i = 1, 2, 3, (7)

where c(1)u⊕v⊕y = 1
33s ∑

x∈F
xuxvxy

(1), c(2)u⊕v⊕y = 1
33s ∑

x∈F
xuxv

(4)x
y
(2), c(3)u⊕v⊕y = 1

33s ∑
x∈F

xuxv
(5)x

y
(3).

By Lemma 1, the indicator function of T(F ) in (5) can be rewritten as

fT(F )(z) = ∑
u,v,y∈L

cu⊕v⊕yzu⊕v⊕y, (8)

where cu⊕v⊕y = c(1)u⊕v⊕y + c(2)u⊕v⊕y + c(3)u⊕v⊕y.
For any α = (α1, . . . , αs) ∈ L, define α

[3] = α mod 3 = (α1 mod 3, . . . , αs mod 3),
and denote ᾱ = (3 − α)

[3] = ((3 − α1) mod 3, . . . , (3 − αs) mod 3), α(j) = |{αi|α =

(α1, . . . , αs) ∈ L, αi = j}|, that is, α(j) is the number of j in α, j = 0, 1, 2. For any v ∈
L and y ∈ L, define A = v(1) mod 3, B = v(2) mod 3 and M = y(1) mod 3, N =
y(2) mod 3. Moreover, denote H = {(0, 0), (1, 1), (2, 2)}, J = {(0, 1), (1, 2), (2, 0)} and
K = {(1, 0), (2, 1), (0, 2)}.

Based on the above notations, the following three lemmas provide some properties of
the term xα

(i) in (4).

Lemma 2. Let F be an n runs s three-level factors fractional factorial design. For v ∈ L and
∀x ∈ F , we have
(a) if (A, B) ∈ H, xv = xv

(4) = xv
(5); (b) if (A, B) /∈ H, xv + xv

(4) + xv
(5) = 0;

(c) if (M, N) ∈ H, xy
(1) = xy

(2) = xy
(3); (d) if (M, N) /∈ H, xy

(1) + xy
(2) + xy

(3) = 0.

Lemma 3. Let F be an n runs s three-level factors fractional factorial design.
(a) For v, y ∈ L and ∀x ∈ F , we have xvxy

(1) = xv
(4)x

y
(2) = xv

(5)x
y
(3) when one of the following

conditions satisfies:
(i) (A, B) ∈ H and (M, N) ∈ H; (ii) (A, B) ∈ J and (M, N) ∈ K; (iii) (A, B) ∈ K and
(M, N) ∈ J.
(b) For v, y ∈ L and ∀x ∈ F , we have xvxy

(1) + xv
(4)x

y
(2) + xv

(5)x
y
(3) = 0 when one of the following

conditions satisfies:
(i) (A, B) ∈ J and (M, N) ∈ J; (ii) (A, B) ∈ K and (M, N) ∈ K; (iii) (A, B) ∈ H and
(M, N) ∈ J; (iv) (A, B) ∈ H and (M, N) ∈ K; (v) (A, B) ∈ J and (M, N) ∈ H; (vi) (A, B) ∈ K
and (M, N) ∈ H.
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Lemma 4. Let F be an n runs s three-level factors fractional factorial design, fF (x) = ∑α∈L bαxα

and fF(1)(x) = ∑α∈L b(1)α xα
(1) respectively be the indicator functions of F and F(1), then xᾱ = xα

(1).

Based on Lemmas 2–4, the following two theorems provide the relationships between
the coefficients c(i)u⊕v⊕y’s of fBi

(z) given in (7) and the coefficients bα’s of the indicator
function fF (x) of F .

Theorem 1. LetF be an n runs s three-level factors fractional factorial design, fF (x) = ∑α∈L bαxα

be the indicator function of F , then for any u ∈ L and 0 ∈ L, we have
(a) if (A, B) ∈ H for v ∈ L, c(1)u⊕v⊕0 = c(2)u⊕v⊕0 = c(3)u⊕v⊕0 = 1

32s b(u+v)[3] ;

(b) if (A, B) /∈ H for v ∈ L, c(1)u⊕v⊕0 + c(2)u⊕v⊕0 + c(3)u⊕v⊕0 = 0, particularly, if v = ū, c(1)u⊕ū⊕0 =

c(2)u⊕ū⊕0 = c(3)u⊕ū⊕0 = 1
32s b(u+ū)[3] =

1
32s b0;

(c) if (M, N) ∈ H for y ∈ L, c(1)u⊕0⊕y = c(2)u⊕0⊕y = c(3)u⊕0⊕y = 1
32s b(u+ȳ)[3] , particularly, if y = u,

c(1)u⊕0⊕u = c(2)u⊕0⊕u = c(3)u⊕0⊕u = 1
32s b(u+ū)[3] =

1
32s b0;

(d) if (M, N) /∈ H for y ∈ L, c(1)u⊕0⊕y + c(2)u⊕0⊕y + c(3)u⊕0⊕y = 0.

Remark 2. Theorem 1 shows the close relationship between the initial design F and the subdesigns
Bi of the triple design T(F ), i = 1, 2, 3. Since cu⊕v⊕y = c(1)u⊕v⊕y + c(2)u⊕v⊕y + c(3)u⊕v⊕y, the word
zu⊕v⊕0 in fT(F )(z) with coefficient cu⊕v⊕0 6= 0 if and only if (A, B) ∈ H for v ∈ L, the word
zu⊕0⊕y in fT(F )(z) with coefficient cu⊕0⊕y 6= 0 if and only if (M, N) ∈ H for y ∈ L. Based on
Theorem 1, one can easily obtain some properties of the projection designs of T(F ), which is given
in Theorem 5.

Theorem 2. LetF be an n runs s three-level factors fractional factorial design, fF (x) = ∑α∈L bαxα

be the indicator function of F , then for any u, v, y ∈ L, we have
(a) c(1)u⊕v⊕y = c(2)u⊕v⊕y = c(3)u⊕v⊕y = 1

32s b(u+v+ȳ)[3] when one of the following three conditions
satisfies:
(i) (A, B) ∈ H and (M, N) ∈ H for v, y ∈ L; (ii) (A, B) ∈ J and (M, N) ∈ K for v, y ∈ L;
(iii) (A, B) ∈ K and (M, N) ∈ J for v, y ∈ L.
(b) c(1)u⊕v⊕y + c(2)u⊕v⊕y + c(3)u⊕v⊕y = 0 when one of the following six conditions satisfies:
(i) (A, B) ∈ J and (M, N) ∈ J for v, y ∈ L; (ii) (A, B) ∈ K and (M, N) ∈ K for v, y ∈ L;
(iii) (A, B) ∈ H and (M, N) ∈ J for v, y ∈ L; (iv) (A, B) ∈ H and (M, N) ∈ K for v, y ∈ L;
(v) (A, B) ∈ J and (M, N) ∈ H for v, y ∈ L; (vi) (A, B) ∈ K and (M, N) ∈ H for v, y ∈ L.

Based on Theorems 1 and 2, the following theorem gives the expression of the indicator
function of triple design T(F ) from the indicator function of its original design F .

Theorem 3. LetF be an n runs s three-level factors fractional factorial design, fF (x) = ∑α∈L bαxα

be the indicator function of F , then the indicator function f
T(F )(z) in (8) of the triple design T(F )

of F can be expressed as follows

fT(F )(z) =
1

32s−1

∑
u∈L

∑
v∈L,(A,B)∈H

∑
y∈L,(M,N)∈H

b(u+v+ȳ)[3]z
u⊕v⊕y

+ ∑
u∈L

∑
v∈L,(A,B)∈J

∑
y∈L,(M,N)∈K

b(u+v+ȳ)[3]z
u⊕v⊕y

+ ∑
u∈L

∑
v∈L,(A,B)∈K

∑
y∈L,(M,N)∈J

b(u+v+ȳ)[3]z
u⊕v⊕y

. (9)
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Remark 3. Theorem 3 gives the analytical relationship between the indicator functions of initial
design F and its triple design T(F ). One can easily find that the coefficients of the indicator
function f

T(F )(z) of T(F ) are completely decided by the coefficients of the indicator function fF (x)
of F .

4. Some Basic Properties of Triple Designs

In this section, some good properties of T(F ) are provided. Based on these good
properties, one can easily construct large designs with resolution III or IV.

The following result, whose two-level design version of doubling can also be found in
Chen and Cheng [9], reveals the crucial role played by the method of tripling in constructing
designs of resolution III.

Theorem 4. If F is a design of resolution III, then T(F ) is also a design of resolution III. Particu-
larly, if F is a regular design of resolution III, then T(F ) is also a regular design of resolution III.

Remark 4. Theorem 4 shows that if the resolution of F is III, the resolution of triple design T(F )
remains the same as its initial design F . Theorem 4 has no counterpart for designs of higher
resolution than III. In fact, if the resolution of F is higher than III, the resolution of T(F ) can only
achieve III. For any u, v, y ∈ L such that u(1) + u(2) = 1 and v = ȳ = u, (A, B) ∈ J for v and
(M, N) ∈ K for y (or (A, B) ∈ K for v and (M, N) ∈ J for y), (u⊕ v⊕ ȳ)(1)+(u⊕ v⊕ ȳ)(2) =
3, and the coefficient of zu⊕v⊕ȳ is bu⊕v⊕ȳ = 1

32s b0 6= 0. Hence, T(F ) must contain word(s) with
a length of 3.

In the following, the designs with resolution IV are constructed by the projections of
T(F ). Denote the projection designs of T(F ) as

T1(F ) =

 F F(1)
F(4) F(2)
F(5) F(3)

, T2(F ) =

 F F(1)
F F(2)
F F(3)

 and T3(F ) =

 F F
F F(4)
F F(5)

.

Theorem 5. If F is a design of resolution III (or IV), then Ti(F ) are also designs of resolution III
(or IV) for i = 1, 2, 3. Particularly, If F is a regular design of resolution III (or IV), then Ti(F ) are
also regular designs of resolution III (or IV) for i = 1, 2, 3.

Remark 5. Theorem 5 shows that if the resolution of F is III, the resolution of the projection
designs T1(F ), T2(F ) and T3(F ) of triple design T(F ) remains the same as its original design F .
Theorem 5 has no counterpart for designs of higher resolution than IV. In fact, if the resolution of F
is higher than IV, the resolution of T1(F ), T2(F ) and T3(F ) can only achieve IV. For any v, u ∈ L
such that v(1) = v(2) = 1 and u = v̄, (A, B) ∈ H for v and (u⊕ v)(1)+ = (u⊕ v)(2) = 4.
According to Theorem 1, the coefficient of zu⊕v in the indicator function fT3(F )

(z) of T3(F ) is

bu ⊕ v = 1
3s b0, namely, T3(F ) must contains word(s) with a length of 4. Hence, the resolution of

T3(F ) can only achieve IV. The same is true for T1(F ) and T2(F ).

From Theorems 4 and 5, the following result is obvious.

Corollary 1. If F is an orthogonal array of strength 2, then both T(F ) and Ti(F ) are orthogonal
arrays of strength 2 for i = 1, 2, 3.

5. Concluding Remarks

The additional properties of triple designs are thoroughly studied using the indicator
function in this paper. The indicator function of a triple design is expressed by the indicator
function of its initial design, and it is shown that the inner structure of a triple design can
be effectively explored with its indicator function. The close relationships between a triple
design and its initial design are built from the viewpoint of resolution and orthogonality. All



Mathematics 2023, 11, 750 8 of 12

the theoretical results in this paper provide a closer look at triple designs and provide a solid
foundation for a design constructed by the tripling method, where the constructed designs
have better properties, such as high resolution and orthogonality, and are recommended
for use in practice. Using the tripling method, many good designs with a large size can
be constructed from an existing small design. The construction method is effective and
efficient because it does not depend on any research algorithm.

This paper focuses on the indicator function expression of a triple design and its
properties. Several directions are worthy of future research as follows:

(1) The results show that the designs constructed by tripling are competitive. Therefore,
a natural question is: can we extend the tripling technology to a high-level or mixed-level
design? The idea of constructing triple designs can be generalized to higher levels, which
will be considered in future research. Another research interest is the construction of
multiple mixed-level designs such as mixed two- and three-level, mixed two- and four-
level cases.

(2) Both the run sizes and columns of designs constructed in this paper are triple
those of its original design and thus have some limitations. It is interesting to enhance the
flexibility in run sizes of the constructed designs so that the resulting designs have good
performance as well.

(3) A strong orthogonal array [38–40] is widely used in different topics of statistics.
Therefore, it is of great interest to examine the performance of tripling of strong orthogonal
arrays of strength 3 or strength 2+ and analyze the space-filling properties of the resulting
design. This matter deserves further comprehensive and systematic exploration.
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Appendix A. Proofs

Proof of Lemma 2. Following the line of Pistone and Rogantin [34], the proof of Lemma 2
can be greatly simplified. Take item (b) of Lemma 2 as example, if x ∈ F , xv = (xv1

1 , . . . , xvs
s ),

then

xv
(1) = (x2v1

1 , . . . , x2vs
s ) = x2v

xv
(2) = ((ω2x1)

2v1 , . . . , (ω2xs)
2vs) = ω

(v1+···+vs)
1 x2v = ω

(v(1)+2v(2))
1 x2v

xv
(3) = ((ω1x1)

2v1 , . . . , (ω1xs)
2vs) = ω

(v1+···+vs)
2 x2v = ω

(v(1)+2v(2))
2 x2v

xv
(4) = ((ω2x1)

v1 , . . . , (ω2xs)
vs) = ω

(v1+···+vs)
2 x2v = ω

(v(1)+2v(2))
2 xv

xv
(5) = ((ω1x1)

v1 , . . . , (ω1xs)
vs) = ω

(v1+···+vs)
1 x2v = ω

(v(1)+2v(2))
1 xv.

Thus, ω
(v(1)+2v(2))
2 = 1 iff v(1) = v(2) and

xv + xv
(4) + xv

(5) =

(
1 + ω

(v(1)+2v(2))
2 + ω

(v(1)+2v(2))
1

)
xv.

The coefficient is (1 + ω2 + ω1) if v(1) + 2v(2) = 1 and (1 + ω2 + ω1) if v(1) + 2v(2) = 2.
Thus xv + xv

(4) + xv
(5) = 0 for (A, B) /∈ H, and item (b) of Lemma 2 is true.
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Proof of Lemma 3. The proof is omitted since it is similar to the proof of Lemma 2.

Proof of Lemma 4. For any α = (α1, . . . , αs) ∈ L, let α(1) + α(2) = k and α(2) = a + b + c.
Then xα contains k factors of F , where α(1) factors with power 1 and α(2) factors with
power 2. Without loss of generality, let the k factors be xi1 , xi2 , . . . , xik , where the α(2)
factors xj1 , xj2 , . . . , xj(a+b+c)

with power 2. Moreover, let the elements in the j-th row and
the columns group {i1, i2, . . . , ik} of F consist of k1 elements with entry w1, k2 elements
with entry w2 and the other k − k1 − k2 elements with entry w0, let the elements in the
j-th row and the columns group {j1, j2, . . . , j(a+b+c)} of F consist of a elements with entry
w0, b elements with entry w1 and the other c elements with entry w2. Therefore, for xj ∈
F , j = 1, . . . , n, xα

j = wk1−b
1 wk2−c

2 w2b
1 w2c

2 , and xᾱ
j = w2k1−2b

1 w2k2−2c
2 wb

1wc
2 = w2k1−b

1 w2k2−c
2 =

w2k1+2b
1 w2k2+2c

2 = w2k1+k2+2b+c
1 . On the other hand, F(1) comes from F based on the level

permutation {w0, w1, w2} → {w0, w2, w1}, thus (xj)
α
(1) = wk2−c

1 wk1−b
2 w2c

1 w2b
2 = wk2+c

1 wk1+b
2

= w2k1+k2+2b+c
1 . Hence proved.

Proof of Theorem 1. According to the definition of c(i)u⊕v⊕y in (7) for i = 1, 2, 3, we have

c(1)u⊕v⊕0 =
1

33s ∑
x∈F

xuxv =
1

33s ∑
x∈F

x(u+v)[3] =
1

32s b(u+v)[3] ,

c(2)u⊕v⊕0 =
1

33s ∑
x∈F

xuxv
(4), c(3)u⊕v⊕0 =

1
33s ∑

x∈F
xuxv

(5).

From Lemma 2, if (A, B) ∈ H for v ∈ L, c(1)u⊕v⊕0 = c(2)u⊕v⊕0 = c(3)u⊕v⊕0 = 1
32s b(u+v)[3]

since xv = xv
(4) = xv

(5), if (A, B) /∈ H for v ∈ L, c(1)u⊕v⊕0 + c(2)u⊕v⊕0 + c(3)u⊕v⊕0 = 0 since
xv + xv

(4) + xv
(5)=0.

Similarly, from Lemmas 2 and 4, if (M, N) ∈ H for y ∈ L, c(1)u⊕0⊕y = c(2)u⊕0⊕y =

c(3)u⊕0⊕y = 1
32s b(u+ȳ)[3] since xy

(1) = xy
(2) = xy

(3) and xy
(1) = xȳ, if (M, N) /∈ H for y ∈ L,

c(1)u⊕0⊕y + c(2)u⊕0⊕y + c(3)u⊕0⊕y = 0 since xy
(1) + xy

(2) + xy
(3) = 0. Hence proved.

Proof of Theorem 2. According to the definition of c(i)u⊕v⊕y in (7) for i = 1, 2, 3, we have

c(1)u⊕v⊕y =
1

33s ∑
x∈F

xuxvxy
(1) =

1
33s ∑

x∈F
xuxvxȳ =

1
33s ∑

x∈F
x(u+v+ȳ)[3] =

1
32s b(u+v+ȳ)[3] ,

c(2)u⊕v⊕y =
1

33s ∑
x∈F

xuxv
(4)x

y
(2), c(3)u⊕v⊕y =

1
33s ∑

x∈F
xuxv

(5)x
y
(3).

From Lemma 3, it is obvious that the conclusions are true. Hence proved.

Proof of Theorem 3. From (6), for i = 1, 2, 3, we have

fBi
(z) = ∑

u∈L
∑
v∈L

∑
y∈L

c(i)u⊕v⊕yzu⊕v⊕y

= ∑
u∈L

∑
v∈L,(A,B)∈H

∑
y∈L,(M,N)∈H

c(i)u⊕v⊕yzu⊕v⊕y

+ ∑
u∈L

∑
v∈L,(A,B)∈J

∑
y∈L,(M,N)∈K

c(i)u⊕v⊕yzu⊕v⊕y

+ ∑
u∈L

∑
v∈L,(A,B)∈K

∑
y∈L,(M,N)∈J

c(i)u⊕v⊕yzu⊕v⊕y
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+ ∑
u∈L

∑
v∈L,(A,B)∈J

∑
y∈L,(M,N)∈J

c(i)u⊕v⊕yzu⊕v⊕y

+ ∑
u∈L

∑
v∈L,(A,B)∈K

∑
y∈L,(M,N)∈K

c(i)u⊕v⊕yzu⊕v⊕y

+ ∑
u∈L

∑
v∈L,(A,B)∈H

∑
y∈L,(M,N)∈J

c(i)u⊕v⊕yzu⊕v⊕y

+ ∑
u∈L

∑
v∈L,(A,B)∈H

∑
y∈L,(M,N)∈K

c(i)u⊕v⊕yzu⊕v⊕y

+ ∑
u∈L

∑
v∈L,(A,B)∈J

∑
y∈L,(M,N)∈H

c(i)u⊕v⊕yzu⊕v⊕y

+ ∑
u∈L

∑
v∈L,(A,B)∈K

∑
y∈L,(M,N)∈H

c(i)u⊕v⊕yzu⊕v⊕y.

By Lemma 1, f
T(F )(z) = fB1

(z)+ fB2
(z)+ fB3

(z), therefore, it is obvious that the conclusion
is true according to Theorem 2. Hence proved.

Proof of Theorem 4. If F is a design of resolution III, then the length of the shortest
word in fF (x) is 3. It means that there exists at least a α ∈ L such that bα 6= 0 and
α(1) + α(2) = 3, for any α ∈ L, if α(1) + α(2) < 3, bα = 0. Therefore, for u, v, y ∈ L, if
[(u + v + ȳ)[3]](1) + [(u + v + ȳ)[3]](2) < 3, b(u+v+ȳ)[3] = 0. In other words, if b(u+v+ȳ)[3] 6=
0, [(u+ v+ ȳ)[3]](1) + [(u+ v+ ȳ)[3]](2) ≥ 3. It is to be noted that (u⊕ v⊕ y)(1) + (u⊕ v⊕
y)(2) ≥ [(u+ v+ ȳ)[3]](1) + [(u+ v+ ȳ)[3]](2). Therefore, (u⊕ v⊕ y)(1) + (u⊕ v⊕ y)(2) ≥
3. This means that the length of the word zu⊕v⊕y is at least 3. On the other hand, if
v = y = 0, the words in ∑u∈L buzu⊕0⊕0 are just the words of fF (x), and the length of the
shortest word in fF (x) is 3. Thus the length of the words in fT(F )(x) are at least 3, and there
exists at least a word with length 3. It means that the resolution of T(F ) is III.

Moreover, if F is regular |bα/b0| = 1 for any α ∈ L and bα 6= 0. The coefficients
in fT(F )(x) are 3bα/32s, where α = (u + v + y)[3]. Therefore, T(F ) also is regular since

| 3bα
32s / 3n

33s | = |bα/b0| = 1 for α ∈ L and bα 6= 0.

Proof of Theorem 5. From Theorem 3, one can easily obtain the indicator function of T1(F )
as follows

fT1(F )
(z) =

1
3s−1

 ∑
v∈L,(A,B)∈H

∑
y∈L,(M,N)∈H

b(v+ȳ)[3]z
v⊕y + ∑

v∈L,(A,B)∈J
∑

y∈L,(M,N)∈K
b(v+ȳ)[3]z

v⊕y

+ ∑
v∈L,(A,B)∈K

∑
y∈L,(M,N)∈J

b(v+ȳ)[3]z
v⊕y

.

If the resolution of F is III (or IV), there exists some α0 ∈ L such that α0(1) + α0(2) = 3 (or 4)
and bα0 6= 0, and bα = 0 for any α ∈ L and α(1) + α(2) < 3 (or 4). If bα 6= 0 for any α ∈ L,
there exists v, y such that v + ȳ = α and bv+ȳ 6= 0. Hence, there exists word(s) with length
3 (or 4), and there is no word with a length smaller than 3 (or 4). That is, the resolution of
T1(F ) is III (or IV). Moreover, if F is regular, T1(F ) also is regular since it is a projection
of T(F ). Similarly, the indicator functions of T2(F ) and T3(F ) can also be obtained from
Theorem 3. According to Theorem 1, the conclusions are true for T2(F ) and T3(F ). Hence
proved.
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